
Memory Leaks Valgrind Memcheck Summary Appendix Literature

Memory Leaks And Debugging With Valgrind

Jula Menck

Working group scientific computing
Department of informatics

Faculty of mathematics, informatics and natural sciences
University of Hamburg

2014-06-19

1 / 24

Memory Leaks Valgrind Memcheck Summary Appendix Literature

Content

1 Memory Leaks

2 Valgrind

3 Memcheck

4 Summary

5 Appendix

6 Literature

2 / 24

Memory Leaks Valgrind Memcheck Summary Appendix Literature

Memory Leaks

Memory Leaks are mismanaged memory allocations

Caused by heap areas that can no longer be freed up, due to a
lost pointer

Occur because C doesn’t clean up after itself, unlike Java or
C#

Program might work for a while and then crash without
apparent reason

Are hard to find

3 / 24

Memory Leaks Valgrind Memcheck Summary Appendix Literature

Troublemakers I

Uninitialized memory

Example: Allocating a pointer to a certain amount of bytes,
possibly containing garbage data

1 #include <stdio.h>

2 #include <stdlib.h>

3

4 int main(void)

5 {

6 char *p;

7

8 char c = *p;

9

10 printf("\n [%c]\n",c);

11

12 return 0;

13 }

4 / 24

Memory Leaks Valgrind Memcheck Summary Appendix Literature

Troublemakers II

Memory overwrite

Writing more into a pointer than allocated bytes

Memory overread

Reading more from a pointer than allocated bytes

1 #include <stdlib.h>

2

3 int main()

4 {

5 char *ptr = (char *) malloc (10);

6 char name [12] ;

7 memcpy (name ,ptr ,12);

8 }

5 / 24

Memory Leaks Valgrind Memcheck Summary Appendix Literature

Causes

Losing Pointer through Reassignment

Reassigning the pointer ”memoryArea” to point towards
”newArea”

Improper handling of return values

If a function returns a reference to a dynamically allocated
memory it is the job of the calling function to keep track of
the memory location. If it fails to do so you lose the address

6 / 24

Memory Leaks Valgrind Memcheck Summary Appendix Literature

Causes II

Freeing the Parent Block of a Pointer

Freeing the parent block of a pointer first causes you to lose
the address of the pointer within

1 #include <stdlib.h>

2 int main(int argc , char* argv [])

3 {

4 int z=3;

5 int s=z+1;

6 int ** matrix ;

7 int i,k;

8 matrix =(int **) malloc(z*sizeof(void*));

9 for (i=0;i<z;i++)

10 {

11 matrix[i]=(int*) malloc(s*sizeof(int));

12 }

13 free(matrix);

14 return 0;

15 } 7 / 24

Memory Leaks Valgrind Memcheck Summary Appendix Literature

Matrix

8 / 24

Memory Leaks Valgrind Memcheck Summary Appendix Literature

Tips

Remember to use free() after malloc()

Use a copy of a pointer to avoid changing the original
accidentally

Don’t orphan memory locations when (re)assigning pointers

Free structured pointers from child to parent

Don’t access null pointers

Handle returned references properly

9 / 24

Memory Leaks Valgrind Memcheck Summary Appendix Literature

What is Valgrind?

Instrumentation framework for building dynamic analysis tools

Open source software

Licensed under GNU General Public License

OS: Linux, Mac, Android, Not Windows

Program Language: Any

Modular Architecture

Several tools are included by default:

Memcheck, Cachegrind, Helgrind,...

Simulates every single instruction (including libraries,
suppressions)

Is done on a synthetic core
Need to start the program with Valgrind attached

10 / 24

Memory Leaks Valgrind Memcheck Summary Appendix Literature

Memcheck

Memory error detector

Standard tool of Valgrind

Especially made for C, C++, Fortran

Makes program run 10-50 times slower while in use

Reports errors before executing the code

Allows for suppressing errors (Suppressing system library code)

11 / 24

Memory Leaks Valgrind Memcheck Summary Appendix Literature

Checks performed

Tracks addressability per byte and initialization per bit,
enabling it to detect the use of single uninitialized bits

Tracks heap blocks allocated with malloc(), thus can detect
false or missing frees

Checks all reads and writes of memory if they overlap

Performs definedness check, allowing it to detect undefined
value errors with bit-precision (via shadow bits)

12 / 24

Memory Leaks Valgrind Memcheck Summary Appendix Literature

Commands

Invoke the tools via:
valgrind [valgrind-options] your-program [your-program-options]

As Memcheck is the default you can omit the --tool=[name]
option

Careful with compiler optimization flags

”-o2” or ”-o1”, sometimes report (missing) uninitialized value
errors
Use -o while using Memcheck (other Valgrind tools unaffected)

Use ”-g” upon compiling to let Valgrind use line numbers in
its error messages

13 / 24

Memory Leaks Valgrind Memcheck Summary Appendix Literature

Options

commands description
-v Adds more detail to error message description

(another -v adds yet more detail)
--leak-check=full Gives details on definitely lost and

possibly lost blocks
--num-callers Makes stack traces longer
--track-origins=yes See the origins of uninitialized values
--gen-suppressions=yes Writes a suppression for each error message

which you can copy into a suppression file
--read-var-info gives more detailed description of

any illegal addresses (may run slower)

14 / 24

Memory Leaks Valgrind Memcheck Summary Appendix Literature

Commentary

Error message written into commentary

Commentary is send to a specific location. Options being:

Default: stderr
Specify file: --log-file=filename
Send to network socket: --log-socket=”IP-Address”

Use Valgrind-Listener to listen in on that end

15 / 24

Memory Leaks Valgrind Memcheck Summary Appendix Literature

Error Messages

Errors are reported before the associated operation happens
Possible errors messages are:

Illegal read / Illegal write errors

”Invalid read of size [number]”
Happens when Memcheck thinks it shouldn’t be accessed at
that point
Also tells you if that block might have been free()’d already
Informs you if it is off by one (heap block)

16 / 24

Memory Leaks Valgrind Memcheck Summary Appendix Literature

Error Messages II

Use of uninitialized values

”Conditional jump or move depends on uninitialized value(s)”
If program uses a value which hasn’t been initialized (is
undefined)
Keeps track if you copy undefined values, but only comments
on it, if it causes issues

17 / 24

Memory Leaks Valgrind Memcheck Summary Appendix Literature

Leak Error Messages I

Leak Error Messages are summarized in a leak summary with
number of bytes and blocks. These messages being:

Definitely lost

Program is leaking memory. Fix that!

Indirectly lost

Program is leaking memory in a pointer-based structure. (e.g.
you have a parent node which is ”definitely lost”, making all
the children ”indirectly lost”)
Fixing the ”definitely lost” will most likely fix the ”indirectly
lost”

18 / 24

Memory Leaks Valgrind Memcheck Summary Appendix Literature

Leak Error Messages II

Possibly lost

Program is leaking memory, unless you did something inventive
with pointers, thus causing them to point to the middle of
allocated blocks
Use: ’--show-possibly-lost=no’ if you don’t want to see these

Still reachable

Program didn’t free some memory it could have, but is
probably ok (quite common and often reasonable)
Use ’--show-reachable=yes’ if you want to see these reports

Suppressed

A leak error has been suppressed
Some are already in the default suppression files and can be
ignored

19 / 24

Memory Leaks Valgrind Memcheck Summary Appendix Literature

Summary

Memory leaks occur by forgetting to free() space or by losing
pointer to memory area before freeing

Valgrind is a tool for debugging your program

Memcheck is the standard Valgrind tool, used for debugging
memory errors/leaks

20 / 24

Memory Leaks Valgrind Memcheck Summary Appendix Literature

Valgrind Error Message Parentblock Matrix:

1 ==4152== HEAP SUMMARY:

2 ==4152== in use at exit: 48 bytes in 3 blocks

3 ==4152== total heap usage: 4 allocs , 1 frees , 60

bytes allocated

4

5 ==4152== LEAK SUMMARY:

6 ==4152== definitely lost: 48 bytes in 3 blocks

7 ==4152== indirectly lost: 0 bytes in 0 blocks

8 ==4152== possibly lost: 0 bytes in 0 blocks

9 ==4152== still reachable: 0 bytes in 0 blocks

10 ==4152== suppressed: 0 bytes in 0 blocks

11

12 ==4152== ERROR SUMMARY: 0 errors from 0 contexts

(suppressed: 0 from 0)

21 / 24

Memory Leaks Valgrind Memcheck Summary Appendix Literature

Valgrind Error Message Overread:

1 ==4148== Invalid read of size 4

2 ==4148== at 0x80484A3: main (Overread.c:7)

3 ==4148== Address 0x4204030 is 8 bytes inside a

block of size 10 alloc ’d

4 ==4148== at 0x40299D8: malloc(in/usr/lib/

valgrind/vgpreload_memcheck -x86 -linux.so)

5 ==4148== by 0x804848D: main (Overread.c:5)

6 ==4148== HEAP SUMMARY:

7 ==4148== in use at exit: 10 bytes in 1 blocks

8 ==4148== total heap usage: 1 allocs , 0 frees , 10

 bytes allocated

9 ==4148== LEAK SUMMARY:

10 ==4148== definitely lost: 10 bytes in 1 blocks

11 ==4148== indirectly lost: 0 bytes in 0 blocks

12 ==4148== possibly lost: 0 bytes in 0 blocks

13 ==4148== still reachable: 0 bytes in 0 blocks

14 ==4148== suppressed: 0 bytes in 0 blocks

15 ==4148== ERROR SUMMARY: 2 errors from 2 contexts

 (suppressed: 0 from 0)
22 / 24

Memory Leaks Valgrind Memcheck Summary Appendix Literature

Literature I

Valgrind Manual
http://valgrind.org/docs/manual/manual.html

Pointers and memory leaks in C
http://www.ibm.com/developerworks/aix/library/au-
toughgame/

Simple rules to avoid Memory Leaks in C
http://mousomer.wordpress.com/2010/11/03/simple-rules-to-
avoid-memory-leaks-in-c/

Seward, Julian; Nethercote, Nicholas.
Using Valgrind to detect undefined value errors with
bit-precision.
Proceedings of the USENIX’05 Annual Technical Conference.
Anaheim, California, USA. (April, 2005).

23 / 24

h
h
h

Memory Leaks Valgrind Memcheck Summary Appendix Literature

Literature II

How to Detect Memory Leaks Using memcheck Tool for C or
C++
http://www.thegeekstuff.com/2011/11/valgrind-memcheck/

Using Valgrind to Find Memory Leaks and Invalid Memory Use
http://www.cprogramming.com/debugging/valgrind.html

Speicherverwaltung und fortgeschrittene Pointer-Themen
http://www.fh-kl.de/ guenter.biehl/lehrgebiete/c/c08.html

24 / 24

h
h
h

	Memory Leaks
	Valgrind
	Valgrind

	Memcheck
	Memcheck

	Summary
	Appendix
	Literature

