
Shared Memory:
Virtual Shared Memory, Threads & OpenMP

Eugen Betke

University of Hamburg
Department Informatik
Scientific Computing

09.01.2012

Agenda
1 Introduction

Architectures of Memory Systems
2 Virtual Shared Memory

Memory Mapping
Separated Address Space
Fundamental Problems

3 Pthreads
Example
Race Conditions and Critical Sections
Locks

4 OpenMP
Example
Race Conditions and Critical Sections
Locks

5 Summary

Eugen Betke 2

Table Of Content
1 Introduction

Architectures of Memory Systems
2 Virtual Shared Memory

Memory Mapping
Separated Address Space
Fundamental Problems

3 Pthreads
Example
Race Conditions and Critical Sections
Locks

4 OpenMP
Example
Race Conditions and Critical Sections
Locks

5 Summary

Eugen Betke 3

Shared Memory vs. Distributed Memory [1]

I Shared Memory

Interconnect

CPU CPU CPU CPU

Memory

I Distributed Memory

CPU

Memory

CPU

Memory

CPU

Memory

CPU

Memory

Interconnect

Eugen Betke 4

Shared Memory: Uniform Memory Access System

Interconnect

Core 1 Core 1Core 2 Core 2

Chip 2Chip 1

Memory

I Same access times for all the cores
I Direct connection to a block of memory
I Relative easy to program

Eugen Betke 5

Shared Memory: Nonuniform Memory Access System

Core 1 Core 2

Interconnect Interconnect

MemoryMemory

Core 1 Core 2

Chip 2Chip 1

I Different access times
I Different memory locations

Eugen Betke 6

Table Of Content
1 Introduction

Architectures of Memory Systems
2 Virtual Shared Memory

Memory Mapping
Separated Address Space
Fundamental Problems

3 Pthreads
Example
Race Conditions and Critical Sections
Locks

4 OpenMP
Example
Race Conditions and Critical Sections
Locks

5 Summary

Eugen Betke 7

Memory: Physical Address Space [2]

I A system that uses physical addressing

Eugen Betke 8

Virtual Memory: Mapping I

I A system that uses virtual addressing
I MMU - Memory Management Unit

Eugen Betke 9

Virtual Memory: Mapping II

Eugen Betke 10

Virtual Memory: Mapping III

Eugen Betke 11

Virtual Shared Memory: Separated Address Space I

I Each process has its own Virtual Address Space

Eugen Betke 12

Virtual Shared Memory: Separated Address Space II

I Simplifying linking
I Allows a linker to produce fully linked executables that are

independent of the ultimate location of the code and data in
the physical memory

I Simplifying loading
I Easy to load executable and shared objects into memory

I Simplifying sharing
I Mapping to the same physical page

I Simplifying memory allocation
I Allocation of contiguous space

Eugen Betke 13

Cache Coherence

Core 0

Cache 0

Interconnect

x 2 y1

z1y0

Cache 1

Core 1

Example
x is initialized to 2
y0 is private and owned by core 0
y1, z1 are private and owned by core 1

Time Thread 0 Thread 1
0 y0 = x; y1 = 3 * x;
1 x = 7;
2 z1 = 4 * x;

What is the value of z1?
z1 = 4 * 7 = 28
or
z1 = 4 * 2 = 8

Eugen Betke 14

Problem: Cache Coherence

Snooping cache coherence
Cores share a bus. When core 0 updates the copy of x stored in its
cache, it broadcasts this information across the bus. Core 1 is
“snooping” the bus and it will see that x has been updated. He
marks his copy of x as invalid.

Directory-based cache coherence
A directory stores the status of each cache line. A directory is
typically distributed and each CPU/Memory pair is responsible to
update the status of its own local memory. If core 0 reads a cache
line in its own local cache, it writes in the directory, that he has a
copy of this cache line in his local cache. When an other core
modifies a variable, that lies in that cache line, the cache controller
invalidates the copies in corresponding local caches.

Eugen Betke 15

Problem: False Sharing I

Example (Serial program)
As an example, suppose we want to repeatedly call a function
f(i,j) and add the computed values into a vector.

1 int i, j, m, n;
2 double y[m];
3 /* Assign y = 0 */
4 ...
5 for (i = 0; i < m; i++)
6 for (j = 0; i < n; i++)
7 y[i] += f(i,j);

Eugen Betke 16

Problem: False Sharing II

Example (Parallel program)

1 /* Private variable */
2 int i, j, iter_count;
3 /* Shared variables initialized by one core */
4 int m, n, core_count;
5 double y[m];
6
7 iter_count = m/core_count;
8
9 /* Core 0 does this */

10 for (i = 0; i < iter_count; i++)
11 for (j = 0; i < n; i++)
12 y[i] += f(i,j);
13
14 /* Core 1 does this */
15 for (i = iter_count + 1; i < 2 * iter_count; i++)
16 for (j = 0; i < n; i++)
17 y[i] += f(i,j);

I m = 8
I doubles are 8 bytes
I cache line can store eight doubles (64 bytes)
I y takes one full cache line

What happens?

Eugen Betke 17

Table Of Content
1 Introduction

Architectures of Memory Systems
2 Virtual Shared Memory

Memory Mapping
Separated Address Space
Fundamental Problems

3 Pthreads
Example
Race Conditions and Critical Sections
Locks

4 OpenMP
Example
Race Conditions and Critical Sections
Locks

5 Summary

Eugen Betke 18

Pthreads

I Pthreads - POSIX threads
I Specifies a library for Unix-like systems
I It exists other specifications like: Java threads, Windows

threads, Solaris threads. All of the specifications support the
same basic ideas.

Eugen Betke 19

Pthreads: Forking and Joining

Thread

Thread

Process

I Threads are often called light-weight processes
I Master thread forks slave threads
I Slave threads joins to the master thread
I Typical approaches to thread startup:

I Static threads: all threads are created before computation
I Example: Computation of scalar product

I Dynamic threads: threads are created at demand
I Example: Web server applications, that responds to client

requests

Eugen Betke 20

Pthreads: Example I

1 # include <stdio.h>
2 # include <stdlib.h>
3 #include <pthread.h>
4
5 /* Global variable : accessible to all threads */
6 int thread_count;
7
8 void *Hello(void* rank); /* Thread function */

Eugen Betke 21

Pthreads: Example II

1 int main(int argc , char* argv []) {
2 long thread; /* Use long in case of a 64- bit system */
3 pthread_t* thread_handles;
4
5 /* Get number of threads from command line */
6 thread_count = strtol(argv[1], NULL , 10);
7
8 thread_handles = malloc (thread_count*sizeof(pthread_t));
9

10 for (thread = 0; thread < thread_count; thread ++)
11 pthread create(&thread handles[thread], NULL, Hello, (void*) thread);
12
13 printf("Hello␣from␣the␣main␣thread\n");
14
15 for (thread = 0; thread < thread_count; thread ++)
16 pthread join(thread handles[thread], NULL);
17
18 free(thread_handles);
19 return 0;
20 } /* main */

Eugen Betke 22

Pthreads: Example III

1 void *Hello(void* rank) {
2 long my_rank = (long) rank; /* Use long in case of 64- bit system */
3
4 printf("Hello␣from␣thread␣%ld␣of␣%d\n", my_rank , thread_count);
5
6 return NULL;
7 } /* Hello */

Eugen Betke 23

Pthreads: Forking and Joining functions

I Starting/forking threads
1 int pthread_create(
2 pthread_t* thread_p ,
3 const pthread_attr_t* attr_p ,
4 void* (* start_routine)(void*),
5 void* arg_p);

I Thread function
1 void* thread_function(void* args_p);

I Stopping/joining threads
1 int pthread_join(
2 pthread_t thread ,
3 void** ret_val_p);

Eugen Betke 24

Pthreads: Example execution

I Compilation
1 gcc -g -Wall -o pth_hello pth_hello.c -lpthreads

I Execution with 1 thread
1 ./ pth_hello 1

1 Hello from the main thread
2 Hello from thread 0 of 1

I Execution with 4 threads results in a non-deterministic output
1 ./ pth_hello 4

1 Hello from the main thread
2 Hello from thread 0 of 4
3 Hello from thread 1 of 4
4 Hello from thread 2 of 4
5 Hello from thread 3 of 4

1 Hello from thread 0 of 4
2 Hello from thread 2 of 4
3 Hello from thread 1 of 4
4 Hello from the main thread
5 Hello from thread 3 of 4

Eugen Betke 25

Pthreads: Race conditions and critical sections

Race condition
When several threads attempt to access a shared resource such as
a shared variable or a shared file, at least one of the accesses is an
update, and the access can result in an error, we have a race
condition.

Eugen Betke 26

Pthreads: Example of Race Condition

Example
Suppose that we have two threads. Each thread computes a value and stores it in a
private variable y. We want add these both values to the shared variable x.

1 y = Compute(my_rank);
2 x = x + y;

Time Thread 0 Thread 1
1 Started by main thread
2 Call Compute() Started by main thread
3 Assign y = 1 Call Compute()
4 Put x = 0 and y = 1 into registers Assign y = 2
5 Add 0 and 1 Put x = 0 and y = 2 into registers
6 Store 1 in memory location x Add 0 and 2
7 Store 2 in memory location x

The “winner” result will be overwritten by the “loser”.

Eugen Betke 27

Pthreads: Locks

I Locks
I busy-waiting
I mutexes (mutual exclusions)
I semaphores
I read-write locks

Eugen Betke 28

Pthreads: Example of Critical Section

Formula for computing π

π = 4
(

1 − 1
3 +

1
5 − 1

7 + · · · + (−1)n 1
2n + 1 + · · ·

)
(1)

I Serial computation of π

1 double Serial_pi(long long n) {
2 double sum = 0.0;
3 long long i;
4 double factor = 1.0;
5
6 for (i = 0; i < n; i++, factor = -factor) {
7 sum += factor /(2*i+1);
8 }
9 return 4.0* sum;

10 } /* Serial_pi */

Eugen Betke 29

Pthreads: Example of Critical Section I

1 void* Thread_sum(void* rank) {
2 long my_rank = (long) rank;
3 double factor;
4 long long i;
5 long long my_n = n/thread_count;
6 long long my_first_i = my_n*my_rank;
7 long long my_last_i = my_first_i + my_n;
8
9 if (my_first_i % 2 == 0)

10 factor = 1.0;
11 else
12 factor = -1.0;
13
14 for (i = my_first_i; i < my_last_i; i++, factor = -factor) {
15 sum += factor/(2*i+1); // Critical Section
16 }
17
18 return NULL;
19 } /* Thread_sum */

Eugen Betke 30

Pthreads: Busy-Waiting

”Concept of Busy-Waiting”
1 y = Compute(my_rank);
2 while = (flag != my_rank);
3 x = x + y;
4 flag ++;

I Thread keep re-executing the test until the test is false
I Simple implementation with a busy-wait loop
I Programmer can control the order of execution of threads
I Consumes CPU cycles
I Can seriously degrade performance

Eugen Betke 31

Pthreads: Example of Busy-Waiting

1 void* Thread_sum(void* rank) {
2 long my_rank = (long) rank;
3 double factor , my_sum = 0.0;
4 long long i;
5 long long my_n = n/thread_count;
6 long long my_first_i = my_n*my_rank;
7 long long my_last_i = my_first_i + my_n;
8
9 if (my_first_i % 2 == 0)

10 factor = 1.0;
11 else
12 factor = -1.0;
13
14 for (i = my_first_i; i < my_last_i; i++, factor = -factor)
15 my sum += factor(2*i+1);
16
17 while (flag != my rank);
18 sum += my sum;
19 flag = (flag+1) % thread count;
20
21 return NULL;
22 } /* Thread_sum */

Eugen Betke 32

Pthreads: Mutexes

I Abbreviation of mutual exclusions
I A mutex is a special type of a variable

Eugen Betke 33

Pthreads: Mutexes

A variable of type pthread mutex t needs to be initialized before
it (a mutex) can be used.

I Initialization of a mutex
1 int pthread_mutex_init(
2 pthread_mutex_t* mutex_p ,
3 const pthread_mutexattr_t* attr_p);

I Destruction of a mutex
1 int pthread_mutex_destroy(pthread_mutex_t* mutex_p);

I Gain access to a critical section
1 int pthread_mutex_lock(pthread_mutex_t* mutex_p);

I Unlock critical section
1 int pthread_mutex_unlock(pthread_mutex_t* mutex_p);

Eugen Betke 34

Pthreads: Semaphores

I Semaphores can be thought as a special type of unsigned
int

I They can take values 0, 1, 2, ...
I Binary semaphore takes 0 and 1 as values
I Value 0 means “locked” and 1 means “unlocked”

I Semaphores are not a part of Pthreads and it’s necessary to
add the following preprocessor directive:

1 #include <semaphore.h>

I It’s possible to control the order in which the threads execute
the critical section

Eugen Betke 35

Pthreads: Semaphores in C-Language
A variable of type sem t needs to be initialized before it (a
semaphore) can be used.

I Initialization of a semaphore
1 int sem_init(
2 sem_t* semaphore_p ,
3 int shared ,
4 unsigned initial_val);

I Destruction of a mutex
1 int sem_destroy(sem_t* semaphore_p);

I Increment semaphore
1 int sem_post(sem_t* semaphore_p);

I Decrement semaphore
1 int sem_wait(sem_t* semaphore_p);

Eugen Betke 36

Pthreads: Read-Write Locks

I Low-level locking
I Provides two lock-functions

I One lock function locks the read-write lock for reading
I The other lock function locks the read-write lock for writing

Eugen Betke 37

Pthreads: Read-Write Locks in C-Language
A variable of type pthread rwlock t needs to be initialized before
it (a rwlock) can be used.

I Initialization of rwlock
1 int pthread_rwlock_init(
2 pthread_rwlock_t* rwlock_p ,
3 const pthread_rwlockattr_t *);

I Destruction of rwlock
1 int pthread_rwlock_destroy(pthread_rwlock_t* rwlock_p);

I Read-write lock for reading
1 int pthread_rwlock_rdlock(pthread_rwlock_t* rwlock_p);

I Read-write lock for writing
1 int pthread_rwlock_rwlock(pthread_rwlock_t* rwlock_p);

I Unlock
1 int pthread_rwlock_unlock(pthread_rwlock_t* rwlock_p);

Eugen Betke 38

Table Of Content
1 Introduction

Architectures of Memory Systems
2 Virtual Shared Memory

Memory Mapping
Separated Address Space
Fundamental Problems

3 Pthreads
Example
Race Conditions and Critical Sections
Locks

4 OpenMP
Example
Race Conditions and Critical Sections
Locks

5 Summary

Eugen Betke 39

OpenMP (OpenMultiProcessing)

I Standard for programming shared memory systems
I Uses library functions and preprocessor directives (pragmas)
I Requires compiler support
I Developers could incrementally parallelize existing serial

programs
I Higher-level than Pthreads

Eugen Betke 40

OpenMP: Example I

1 # include <stdio.h>
2 # include <stdlib.h>
3 #include <omp.h>
4
5 void Hello(void); /* Thread function */
6
7 int main(int argc , char* argv []) {
8 int thread_count = strtol(argv[1], NULL , 10);
9

10 # pragma omp parallel num threads(thread count)
11 Hello();
12
13 return 0;
14 } /* main */
15
16 void Hello(void) {
17 int my_rank = omp get thread num();
18 int thread_count = omp get num threads();
19
20 printf("Hello␣from␣thread␣%d␣of␣%d\n", my_rank , thread_count);
21
22 } /* Hello */

Eugen Betke 41

OpenMP: Example II

I Compilation

1 gcc −g −Wall −fopenmp −o o m p h e l l o o m p h e l l o . c

I Execution with 4 threads

1 . / o m p h e l l o 4

I Output is non-deterministic

1 Hello from thread 0 of 4
2 Hello from thread 1 of 4
3 Hello from thread 2 of 4
4 Hello from thread 3 of 4

1 Hello from thread 1 of 4
2 Hello from thread 2 of 4
3 Hello from thread 0 of 4
4 Hello from thread 3 of 4

Eugen Betke 42

OpenMP: Pragmas

OpenMP pragmas always begin with # pragma omp. They are
followed by a directive. Strings after a directive are called clauses.
Clauses provide additional information for the directive.

Example

1 # pragma omp parallel num_threads(thread_count)
2 Hello ();

I The parallel directive specifies, that the structured block of
code that follows should be executed by multiple threads

I The clause num_threads(thread_count) specifies how
many threads of the structured block below should be created

Eugen Betke 43

OpenMP: Library

I #include <omp.h> provides predefined constants and
OpenMP functions

I int omp_get_thread_num(void); returns the ID of the
current thread

I int omp_get_num_threads(void); returns the number of
threads in the team

I #include omp.h is only needed, if we use predefined
constants or call OpenMP functions

Eugen Betke 44

Race Conditions and Critical Sections
Race Condition: multiple threads are attempting to access a shared
resource, at least one of the accesses is an update, and the
accesses can result in an error.
Example

Time Thread 0 Thread 1
0 global_result = 0 to register finish my_result
1 my_result = 1 to register global_result = 0 to register
2 add my_result to global_result my_result = 2 to register
3 store global_result = 1 add my_result to global_result
4 store global_result = 2

1 # pragma omp critical
2 global_result = my_result;

I Only one thread can execute after # pragma omp critical
following structured block of code.

I No other thread can start execute this code until the first
thread has finished.

Eugen Betke 45

OpenMP: Locks

I # pragma omp critical
I # pragma omp atomic
I Lock-functions in omp.h

Eugen Betke 46

OpenMP: critical Directive

1 # pragma omp critical (name)
2 <structured block >

I Blocks protected with critical directives with different
names can be executed simultaneously.

Eugen Betke 47

OpenMP: atomic Directive

1 # pragma omp atomic
2 <single C assignment statement >

I Can only protect critical sections that consist of a single C
assignment statement.

I Statement must ave one of the following form:
I x <op> = <expression>;
I x++;
I ++x;
I x--;
I --x;

I <op> can be one of the binary operators:
I +, *, -, /, &, ˆ, |, <<, >>

I <expression> must not reference x

Eugen Betke 48

OpenMP: Lock Functions

A variable of type omp lock t needs to be initialized before it (a
lock) can be used.

I Initialization
1 void omp_init_lock(omp_lock_t* lock_p);

I Set lock
1 void omp_set_lock(omp_lock_t* lock_p);

I Unset lock
1 void omp_unset_lock(omp_lock_t* lock_p);

I Destroy lock
1 void omp_destroy_lock(omp_lock_t* lock_p);

Eugen Betke 49

OpenMP: reduction Clause

1 reduction (<operator >: <variable list >)

I <operator> can be +, *, -, &, |, ˆ, &&, ||
I OpenMP creates for each variable in variable list a

private variable and stores there the result of computation
I OpenMP creates a critical section, where the results from the

private variables are computed with the corresponding variable

Eugen Betke 50

OpenMP: Reduction Clause in C-Language

Example
Code without reduction clause:

1 global_result = 0.0;
2 # pragma omp parallel num_threads(thread_count)
3 {
4 double my_result = 0.0 /* private */
5 my_result += Local_trap(double a, double b, int n);
6 # pragma omp critical
7 global_result += my_result;
8 }

Equivalent code with reduction clause:
1 global_result = 0.0
2 # pragma omp parallel num_threads(thread_count) \
3 reduction (+: global_result)
4 global_result += Local_trap(double a, double b, int n);

Eugen Betke 51

OpenMP

OpenMP provides many more other directives, clauses and library
functions.

I Parallelization of for-loops
I Barriers and condition variables

Eugen Betke 52

Table Of Content
1 Introduction

Architectures of Memory Systems
2 Virtual Shared Memory

Memory Mapping
Separated Address Space
Fundamental Problems

3 Pthreads
Example
Race Conditions and Critical Sections
Locks

4 OpenMP
Example
Race Conditions and Critical Sections
Locks

5 Summary

Eugen Betke 53

Summary

I Memory Systems
I Shared and distributed systems
I Uniform and non-uniform memory systems

I Virtual shared memory
I Virtual addressing
I Problems: cache coherence and false sharing

I Pthreads and OpenMP
I Example
I Race conditions
I Locks

Eugen Betke 54

References I

P. Pacheco, An Introduction to Parallel Programming.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1st ed.,
2011.

R. E. Bryant and D. R. O’Hallaron, Computer Systems: A
Programmer’s Perspective.
USA: Addison-Wesley Publishing Company, 2nd ed., 2010.

Eugen Betke 55

	Introduction
	Architectures of Memory Systems

	Virtual Shared Memory
	Memory Mapping
	Separated Address Space
	Fundamental Problems

	Pthreads
	Example
	Race Conditions and Critical Sections
	Locks

	OpenMP
	Example
	Race Conditions and Critical Sections
	Locks

	Summary

