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Abstract

Simulators have found a wide application in science. They have established in
almost all fields of research and help to answer to some of the open key questions.
They are often used to simulate problems were other methods have been proven to
be too complicated in some situations. Another strength of simulations is that the
additional complexity can often be easily integrated in the simulated model.

The main objective of this project is to develop a multi-core capable simulator for
the prey-predator model. The simulator shall have the ability to visualize the world,
to show statistics about the population development and allow users to control the
most important parameters. The simulator doesn’t comply with a special prey-
predator model, but implements the model, that is developed in this project.

The programming languages used in this project are C and C++. The project
benefits from open source software, particularly gtkmm for graphical user interface
and pthreads for the implementation of the multi-core capable simulation.

1 Introduction

The prey-predator model shows the growth of two interdependent populations. The
interdependency arises because the preys serve as food for the predators and because
of this interdependency the growth of one population is influenced by the size of the
other population. For example the simulation of such a model can end up in a kind
of vicious circle as illustrated in the Fig. 1(a): (1) decrease of prey-population causes
(2) decrease of predator-population causes (3) increase of prey-population causes (4)
increase of predator-population causes (1). . . (2). . . (3). . . Typically this ends in an
endless fluctuation like sketched in Fig. 1(b). An other outcome of the simulation
can be that all predators die off. It is also possible that all creatures die.

decrease of
prey-population

decrease of
predator-population

increase of
prey-population

increase of
predator-population

(a) Vicious circle

number
of creatures

time

preys
predators

(b) Fluctuation populations

Figure 1: Prey-predator model

Such simulations show that the populations in the real world can change naturally
even when humans do not interfere. Social scientists also use similar simulations to
study human behaviour and community dynamics.
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2 Definition of the project

The primary goal of this project is the implementation of a prey-predator model in
a multi-core capable software simulator. The simulator should have the following
components:

1. Simulation core

2. Visualization of the world

3. Statistics

4. User interface

Simulation core is the most important component of the simulator. It imple-
ments the model and is the only multi-core capable part of the simulator. The
second component is the visualisation of the world, so that a user can easier observe
and understand the events. The third component deals with statistics about the
population in the world. It also shows the history of the simulation. Finally there
is a user interface, where the user can change the properties of the objects and the
simulation. The components that are not multi-core capable can be switched on and
off, so that the simulation core can use as much processor as possible.

3 Modeling

This section gives an overview over the main concepts of the prey-predator model
used by this simulator.

3.1 World

The world is represented as a two dimensional hex grid of fields (Fig. 3.1). The
main advantage of such a representation is that each field has the same distance to
all of its neighbours. This makes the simulation a little bit closer to the real world.
Another property of this world is that nobody can enter or leave it, as if the world
is surrounded by a wall.

3.2 Field

Fields are the main building blocks of the world. In a hex grid they can have two
to six neighbours, depending on their position, i.e. the inner fields have always six
neighbours (Fig. 3.4), the fields in the corners have two or three neighbours and the
field on the border between the corners have four neighbours.

Every field contains one instance of a plant and can contain several preys and
predators to the same time. The intensity of the green colour shows how many
plants are available on the field. A white coloured field means, that there are no
plants on the field and full green colour means, that the maximal amount of plants
is available and no further plants can grow. The number on the top of the cell shows
how many preys are on the field and the number below shows how many predators
are on the field.
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Figure 2: Example of a world. Intensity of green indicates how much plants are on the
field. The number on the top of a field shows how many preys and the number on the
bottom shows how many predators are on the field.

3.3 Living organisms

Before going further we should clarify some terms.

Organisms Organisms is a generic term for plants, preys and predators.

Creatures Creatures is a generic term for preys and predators.

Energy All organisms in the world have some quantity of energy, which is rep-
resented as a positive natural number and limited by an upper bound. Depending
on the environment conditions, the energy can increase and decrease. How or when
this happens is discussed later in detail (see further chapters). Energy models the
nutritional value of the body, which is often measured in kcal in the real world.

Satiation Satiation is the opposite of hunger. Similar to the energy it is repre-
sented as a positive natural number and is also limited by an upper bound.

3.3.1 Plants

A plant is an organism that can not die, even if preys eat everything on the field the
plant can still regenerate. We assume that plants get a constant amount of energy
from the sun (not explicitly modelled) and therefore they are growing constantly
during the simulation.
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3.3.2 Creatures

In the simulation fat bodies would have a lot of energy and a slim body less energy.
Young creatures are small and would have a relatively small upper bound, but the
upper bound grows, when a creatures becomes older until some limit is reached.
When creatures do not get enough food they become slimmer and slimmer, until
they die of starvation. Satiation is in the first place a motivation for looking for
food and it can change the behaviour of the creatures. Creatures die when satiation
decreases to some level, even if they have a lot of energy. Analogy: In the real world,
we can feed an animal until it becomes fat. When suddenly stopped being fed, the
animal dies in about a week, but it is still fat.

Typically, preys move to a field that contains more plants. They don’t move, if
they find on the current field more plants than on the adjacent fields. This behaviour
changes drastically, if a prey meets a predator. In this case it tries to escape in a
random adjacent field. It doesn’t matter how many plants there are.

The preys have a small visibility range and are not able to see predators in the
adjacent fields. Therefore it can happen that they move to a field where a hungry
predator is waiting for them. This is a bad situation for a prey, but it doesn’t always
mean the end. It can survive, if other preys are located on the field and are eaten by
the predators first. Preys can also survive, if the predators are not hungry. In this
case they don’t touch the preys.

As already mentioned, a predator doesn’t kill preys, if it is not hungry, even if it
finds preys on the same field. A predator has the ability to see, if preys are on the
adjacent fields. If it is hungry and doesn’t find food on the current field, it moves
to the adjacent field were a prey is located. If a predator is hungry and it finds no
preys, it moves to a random adjacent field.

3.4 Concept of the food chain

As already mentioned, each field contains a plant. They all together serve as a food
source for the preys. Preys, in turn, serve as food source for the predators. Thus we
obtain a short food chain that is illustrated in Fig. 3.4.

Plant Prey Predator

Figure 3: Food chain: predators eat preys and preys eat plants.

Let’s take a closer look at the act of eating, that is relatively simple and is always
following a common scheme. As described above, all organisms have some amount
of energy (e.g. in the real world this energy could be measured in kcal). When a
creature is eating, it takes a certain amount energy from its food and transfers it to
his body.

5



0

1

2

34

5

6

Figure 4: 6 Neighbours of a field 0.

3.5 Simulation

In the cycle-based simulation each field runs at the beginning of each cycle an instance
of the process that is illustrated in Fig. 5. A cycle is finished, when all fields finish
their processes, then a new cycle can be started. Unfortunately, the processes of
different fields can influence each other. For example misbehaviour can occur when a
process moves some preys to an adjacent field, where the movement operation is not
executed. The adjacent field executes the movement operation and can move these
preys again. In this way these preys can be moved twice. To avoid such misbehaviour
some control structures are needed.

Process

food chain

movement

vital functions

Breed plants

Preys eat plants

Predators eat preys

Choose direction

Move creatures

Increase age

Make creatures hungry

Generate offsprings

Figure 5: Simulation process

6



4 Implementation

4.1 Simulation Core

Simulation core is the most important part of the simulator. It creates an abstract
representation of the world and determines the behaviour of creatures. This is also
the only part that can not be disabled during the simulation and needs to take
into account the whole world. Therefore it could be a good idea to apply some
performance-enhancing methods.

To improve the responsiveness of the GUI, the GUI and the simulation core are
executed in different threads. Simulation core in turn creates several sub-threads,
that do the work in parallel and increase the performance of the simulator.

4.1.1 Internal representation of the world

The hex grid of the world uses a somewhat strange and non-intuitive coordinate
system (Fig. 6). The fields in a column are one below the other, but there is a lot of
space between them. The fields in a row seems to be arranged not in a single, but in
two rows. Nevertheless, the grid has a well defined grid structure and each field can
be uniquely identified. This makes this coordinate system suitable for our purposes.
We will later see the advantage of this system, when we distribute the fields among
the threads.
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Figure 6: Coordinate system of hex grid
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4.1.2 Phase model

The simulation process described in the previous chapter is used by the simulation
core in a modified way (Fig. 7). The operations of the process are combined to
phases, whereby a phase needs to be completed by all threads, before the execution
of the next phase can be started. Such a subdivision allows a synchronisation of the
processes on different fields and helps to avoid the misbehaviour of the simulation.

The model has some additional operations that are executed in the “phase 0”.
These operations were integrated for convenience purposes. They make it possible
to change the configuration of organisms at runtime. The price for this convenience
is a small overhead on each simulation cycle. The overhead we get compared to the
whole process is small and can be neglected.

P
h
as

e
0 update plants

update preys
update predators

Phase
1

breed plant
eat plants
eat preys

Phase 2
choose direction

P
h
ase

3

move creatures

Phase
4

finish move creatures Phase 5

increase age
get hungry

generate offsprings

Figure 7: Phase model.

As already mentioned the simulation core is a performance critical part of the
simulator and therefore it was made with multi-core processing in mind. Here it
means that each phase is splitted over several threads. Each thread in turn is assigned
to a number of consecutive columns. Fig. 8 shows how a 20 × 5 hex grid is divided
among four threads. In this case each thread gets 5 columns. In general, an algorithm
computes for each thread an interval and tries to distribute the columns uniformly
as far as possible. Of course this works best with slim columns, such as they were
defined in the previous section. By the way, this is also an explanation why this
strange coordinate system was chosen.

Let’s take a look at the thread functions. They all have a common structure, that
is shown in the pseudo-code in the Listing 1. There are dependencies between the
cycles, therefore the Each thread processes a part of abstract world.
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Figure 8: Thread intervals

1 void* CAbstractWorld :: phase_x(void* param) {

2 SThreadParam* tp = (SThreadParam *) param;

3 CAbstractWorld* aw = tp ->abstract_world;

4 SInterval interval = aw->calc_interval(tp->thread_id );

5
6 for (int x = interval.a; x <= interval.b; x++) {

7 for (int y = 0; y < aw->get_size_y (); y++) {

8 aw->get_field(x, y)->some_operation ();

9 }

10 }

11
12 pthread_mutex_lock (&aw->mutex_x );

13 aw->counter_x ++;

14 if (aw->counter_x == aw->num_of_threads) {

15 aw->counter_x = 0;

16 pthread_cond_broadcast (&aw->cond_var_x );

17 }

18 else {

19 while (pthread_cond_wait (&aw->cond_var_x , &aw ->mutex_x) != 0);

20 }

21 pthread_mutex_unlock (&aw->mutex_x );

22 }

Listing 1: Thread function

4.2 User interface

The GUI (Fig. 9) is written in gtkmm [1]. It is divided in to three parts. On the left
side you find control/info panel. The visualization of the world is placed right to the
panel and at the bottom you find a history of the population development.
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Figure 9: GUI of the prey-predators simulator.

When the simulator is closed it saves many parameters and settings in an INI file,
so that when the simulator is started again, it restores almost completely the state
of the previous run. This behaviour improves the usability the program enormously
and was achieved with the help of the iniParser library [2].

4.2.1 Control/Info panel

On the top of the control/info panel are control elements for simulation. There you
can define the size of the simulation run and number of threads and start and stop the
simulation. The GUI checks if the the values are valid and sets them automatically
to the nearest possible value, if they are not already. There you can also activate
and deactivate the serial components of the simulator. These are the info panel, the
visualization of the world and and the visualization of the graph. But even when the
visualization of the graph is deactivated, the statistics will still be recorded.

The info block below show information about the current population of the world.
Below you find some death counters that register four kinds of death: aging, kill,
underfed and starvation.

The simulation itself can be customized in the block of the bottom of the con-
trol/info panel. Most of the settings there can be changed at runtime / during the
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simulation. The setting that are not runtime capable are disable after the start
button is pressed. The block itself consists of four parts: world, plants, preys and
predators. In the world tab you can define the size of the world and the initial
number of the creatures. In the plants, preys and predators tabs you can define the
reproduction and vital functions.

4.2.2 World

The visualization of the world is very similar to the model, described in the previous
section. Therefore a detailed description will be omitted.

4.2.3 Statistics

The history of the population development is shown at the bottom of the GUI. In
the drawing area the development of the populations is visualized by the two lines.
The red line represents the predator-population and the black line prey-population.
Both lines are automatically scaled, so that you can better see the fluctuations of
the populations. If you need the exact values, look for the export feature, that is
described later in this section.

You can scroll through the history with the two scales below the drawing area.
With the pos-scale you decide from which cycle the graph should be drawn. Right
to the pos-scale you find and entry, where you can enter the precise value. Left to
the scale you find a check box. When activated, the graph will automatically move
forward and show you the last values.

Below the pos-scale you find the zoom-scale. By moving this scale you can de-
termine the range that shall be displayed. Left to the zoom-scale you find an entry,
where you can enter the precise zoom value. Right to the zoom-scale you find a
check box. When activated, the whole history will be drawn in the drawing area and
automatically update, when the simulation is running.

Statistics can also be exported to the a CSV file, which is widely used and can
be imported by various programs, i.e. Libreoffice. This file contains exact values of
population on each cycle and corresponding death statistics. An example of a CSV
file is given in the listing 2. The first line contains column names and the following
lines are filled with data. To export the data click on “File → Export to CSV”.

1 preys total;preys aged;preys killed;preys starved;preys underfed;preds total←↩
;preds aged;preds killed;preds straved;preds underfed

2 2884;2;17;5;17;356;0;0;0;0

3 2894;3;38;11;36;362;0;0;2;1

4 2916;7;50;15;47;367;0;0;3;2

5 2937;10;63;23;62;376;0;0;3;3

6 2970;12;76;30;75;380;1;0;3;3

7 3007;14;87;38;89;387;3;0;4;3

8 3027;17;113;46;99;394;4;0;4;4

9 3039;22;129;54;113;392;5;0;6;4

10 3053;24;151;61;124;402;5;0;6;5

11 3093;25;172;71;137;406;6;0;7;6

12 3108;28;193;82;149;408;7;0;8;6

13 3123;33;205;94;162;415;7;0;8;6

Listing 2: An example of a CSV file.
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5 Experiments

During the experiments only world parameters and number of threads were changed.
These are the most interesting parameters for this project, because they have direct
and comprehensive impact on the performance. Although the change of plants, preys
and predators parameters can also significantly influence the performance, they were
kept constant. It is very difficult to predict how exactly performance is influenced.
The main purpose of these parameters is to control the behaviour of the populations.
All relevant parameters are shown in the figure 10.

Parameter Range
size x 128− 1024
size y 32− 256
init number pred 100− 10000
init number prey 100− 10000

(a) World

Parameter Value
max energy 900
growth rate 0.1

(b) Plants

Parameter Value
birth rate 0.04
energy consumption 200
satiation consumption 100
max age 1000
max satiation 1000
max energy 1000

(c) Preys

Parameter Value
birth rate 0.04
energy consumption 100
satiation consumption 30
max age 1000
max satiation 1000
max energy 1000

(d) Predators

Figure 10: Simulation parameters.

5.1 Model

This section takes a closer look at the implementation of the model. The results of
the experiments should be compared with the theory of prey-predator model.

5.1.1 Dependency between populations

As already discussed in the introduction, there is an dependency between two pop-
ulation. The special and maybe the most interesting case of fluctuating populations
could be verified by several simulation runs. Some of them are shown in the Fig. 11.
The lines are running similar to the lines shown in the Fig. 1(b). That also means
that the populations behave in the same manner as was described by the viscous
circle.

12



(a) 128× 64 grid

(b) 256× 128 grid

(c) 512× 256 grid

(d) 1024× 512 grid

Figure 11: Fluctuation of populations during 2000 simulation cycles.

The conclusion of these simulation runs may be the following: if preys and preda-
tors live on the same area and neither of the populations die off, then both populations
are fluctuating. The other cases where both populations die off or only preys survive
can be easily induced and reproduced, but they are out of interest and will not be
examined further.

5.1.2 Large vs. small worlds

The size of the world is also an important criteria for survivability of populations. In
worlds smaller than 128 × 64 fields it is difficult to find parameters, that keep both
populations alive. This problem becomes less important in large worlds.

5.2 Performance

Another interesting aspect of the simulator is the performance. To measure the
performance we’ve run different simulations on our testing system (Tab. 1) under
different configurations and noted the results. The intention of this performance test
is find out how performance increases when we run a simulation on several processor
cores. We also guess that the performance can be strongly affected by the grid
size. Therefore we ran some simulation with different grid sizes. The simulation
parameters stayed the same for all tests. They are listed in the table 10(a).

The most important components of our testing system are listed in the table 1.
The simulations were run on Arch-Linux with 3.9.6-1-ARCH kernel. Besides we’ve
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ensured that the hyper-threading technology was disabled during the simulation runs.

Component Manufacturer Model
CPU Intel Intel(R) Core(TM) i5-3570 CPU @ 3.40GHz
Mainboard Supermicro X9SAE
Graphic adapter Nvidia NVS300
RAM Hynix HMT351U6CFR8C-PB (4× 4GB)

Table 1: Testing system.

5.2.1 Data

As discussed in the previous section we run simulation with a different number of
threads. Precisely we are interested in results produced by simulations with 1, 2, 3
and 4 threads. Simulations with more than 4 threads would assign several threads
to one core and therefore they are out of interest, because we don’t expect a signif-
icant increase of performance. We also run simulation on different grid sizes. From
our point of view worlds simulations with worlds smaller than 128 × 32 are not re-
ally interesting. There is not enough room for population and they can easily die.
Therefore we begin to simulate a 128 × 32 world and double the axis in the next
simulations. We’ve also decided to keep the number of processed fields constant.
That means when we double the axis we quarter the number of cycles. We start with
32000 cycles in the 128 × 32, then we run 8000 cycles on the 256 × 64 world, 2000
cycles on the 512× 128 world and 500 cycles on the 1024× 256 world. The results of
the test runs are summarized in the table 5.2.1.

5.2.2 Acceleration

In an ideal case the performance would rise linearly to the number of threads, but
unfortunately our implementation has some drawbacks that prevent it from running
optimal. There are two main reasons for the performance losses. Firstly the simulator
runs serial code during the simulation. For example each time a cycle is completed
serial code needs to be executed to gather some statistics. Secondly to avoid mis-
behaviour of the simulation the threads must be synchronized. We have already
discussed that without synchronization prey and predators could jump several times

1024× 256 grid 512× 128 grid 256× 64 grid 128× 32 grid
500 cycles 2000 cycles 8000 cycles 32000 cycles

Threads Duration Accel. Duration Accel. Duration Accel. Duration Accel.
in [sec] in [sec] in [sec] in [sec

1 678 1.00 660 1.00 646 1.00 632 1.00
2 346 1.96 340 1.94 345 1.87 340 1.86
3 239 2.84 241 2.74 246 2.63 243 2.60
4 192 3.53 192 3.44 199 3.25 195 3.24
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in one cycle. Synchronization implies waiting times for threads that have finished
their job first.

The results of test runs are visualized in the Fig. 12. We can see there that
the acceleration factor becomes better with the increasing world size. This property
seems to be independent from the number of threads. This can be easily explained
by the fact, that the size of the serial code is constant after each cycle and when
we increase world size, we also increase the run length of threads. In this way total
execution time of serial code is reduced. The same applies to the synchronization
overhead and waiting times are also reduced.
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Figure 12: Acceleration

5.2.3 Efficency

In the last section we saw, that the performance increases, when we increased the
number of threads. Now we take a look how efficient the simulator uses the resources
of the system. We assume that efficiency is maximal when we run the simulator
only with one thread. In such a configuration no synchronisation between threads is
necessary and no thread will wait for other threads.

In Fig. 13 the data was reordered so that we can see how the number of threads
accelerates the simulation. This property seems to be independent from the size of
the world. Utilisation of the processor seems to be higher when we run the simulation
on bigger worlds. Nevertheless the efficiency decreases when we increase the number
of threads. We can directly see this in the Fig. 14. The percentages shows how many
computing resources the simulator uses compared to the ideal case.

6 Summary

In this project a prey-predator model was implemented with multi-processing in
mind. It consists of four main parts: control/info panel, visualization of the world,
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Figure 13: Acceleration of simulation, ordered by size of the world.

visualization of the population history and simulation core, whereby the simulation
core is the only multi threading capable part. Other parts can be disabled during
the simulation to reduce the execution of serial code.

The results show that the implementation works best with large worlds and with
a number of threads equal to the number of processor cores. (The situation where
the number of threads exceeds the number of cores was not tested.)
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