A Golang Wrapper for MPI

— Project: parallel programming —

Scientific Computing
Department of Informatics

MIN Faculty
University of Hamburg

Submitted by: Alexander Beifuss

E-Mail-Address: 7Tbeifuss@informatik.uni-hamburg.de
Matriculation number: 5953026

Study course: Informatics (M.Sc)

Submitted by: Johann Weging

E-Mail-Address: 8weging@informatik.uni-hamburg.de
Matriculation number: 6053290

Study course: Informatics (M.SC)

Advisor: Dr. Julian Kunkel

Hamburg, March 4, 2014

mailto:7beifuss@informatik.uni-hamburg.de.de
mailto:8weging@informatik.uni-hamburg.de

Abstract

This project aims to implement bindings of the Message Passing Interface for Googles
programming language Go. Go is a young, clean, to native machine code compiling
programming language which has the potential to gain ground inside the scientific
community and the field of high performance computing. It offers a variety of concurrency
features that can be used for parallel programming on shared memory architectures.
There all ready exists bindings for different data formates like HDF5 or approaches for
GPGPU-Computing with OpenCL or CUDA. This project will enable Go to be run on
compute clusters and parallel programming over the network in general. The project
uses cgo to wrap Go around existing MPI implementations like OpenMPI and MPICH2.
The final implementation of the bindings is than benchmarked against C to determine
it’s usefulness and potential. Go, like expected is slower than C but there are still a lot
of possibilities for improvements to catch up with the performance of C. The current
bindings support a C like interface to MPI according to the standard with only minor
changes. Supported is MPI version two and the implementations OpenMPI and MPICH2.
In the future support for MPI version 3 and other implementations will follow.

Contents

1 Motivation 5
2 Introduction 6
2.1 Introduction into MPI (3) 6
2.2 Basic Concept 6
2.2.1 Non-Blocking Collective Communication 8

2.2.2 Neighbourhood Collective Functions 8

2.3 Introduction into Golang 10
2.3.1 History. 10

2.3.2 Variables, Function Calls and Return Values 10

2.3.3 Data Types 12

2.3.4 Type specific functions L. 20

2.3.5 Imterfaces 21

2.3.6 Concurrency Features. 23

2.3.7 The Sync Package 28

23.8 Geand Geego - .. oL L Lo 29

239 Cgo . . . 30

3 Initial Situation & Project Goals 31
4 Implementation and Realization 32
4.1 Design decisions at the beginning of the project 32
4.2 Decisions during the development phase 32
4.2.1 Type conversions e 32

4.2.2 Passing typed data: Arrays vs. Slices 34

4.2.3 Passing arbitrary data: The empty interface 35

4.2.4 MPI Definitions and how to access them from Golang space . . . 36

4.2.5 Callback functions L. 37

4.3 How to write MPI wrapper function in Golang 40
4.4 Build System 42

5 Benchmarks 43
5.1 Writing fast Gocode 43
5.2 The Benchmark 44
5.3 Compilers 44
54 Results 44

6 Conclusion
6.1 Go for Scientific Computing
6.2 Future Work
6.2.1 MPI 3 and Wrapping More Implementations
6.2.2 High Level API

Bibliography
List of Figures
List of Tables
List of Listings
Appendices

A Appendix
A.1 Used Software (Tools)
A.2 Configuration: Testbed oL
A.3 Configuration: Development Systems

46
46
46
46
47

48

50

51

52

1. Motivation

The motivation to develop Go bindings for MPI is to push another programming language
to compute clusters and scientific computing. Go is a easy to learn language, suitable
for HPC' users and scientist that are not computer scientist. The default language C
used for scientific computations has a lot of pitfalls and can be quiet tedious at some point.

It is a fast language since it compiles to native machine code and dose not require a
virtual machine like Java or is interpreted like Python. In addition Go has a already
builtin concurrency features which can be utilized for parallel computation. This makes
Go a interesting tool for high performance computing and parallel computation in general.

Go is easy to wrap around existing C libraries. Where writing a MPI implementation in
pure Go would take a lot of effort and will unlikely match the performance of an optimised
and well tested existing MPI implementation. Furthermore multiple implementations
can be wrapped and Go can take benefit of proprietary implementations and hardware.

Our report is structured as follows. In the next section we introduce the MPI (Message
Passing Interface) standard and Golang (Google language) to provide the reader with
some basics. The introduction is followed by a short description of the initial situation
which prevailed when we started our project. In section 4 we briefly state our project
goals. Section 5 deals with the implementation of our wrapper functions. Afterwards
we describe the benchmark tool and present its results in section 6. Finally we give a
conclusion as well as an outlook in section 7.

— =

— O © 00O O Wi -

2. Introduction

Before directly starting with the implementation details of our wrapper functions, we
want to give the reader the chance to become familiar with the MPI standard and
Golang system programming language. It will show which technologies where used to
successfully implement the bindings and show how to use them. This section splits
up into two subsections one for each. The first subsection gives a rough overview of
MPI and exemplifies what it is good for. The second subsections deals with Googles
new programming language. At the beginning we provide the historical background of
Golang. Then we switch to a part that is written in a tutorial like fashion that explains
the peculiarities of Golang.

2.1. Introduction into MPI (3)

MPI is used on compute clusters for parallel programming over the network. The
examples used in this section are written in C and not in Go. The Go examples will
follow later in this document (see 2.3).

2.2. Basic Concept

The basic concept is like the name states it, message passing. Meaning different processes
are communicating with each other by passing data as messages around. Each process is
identified by a unique identifier called rank.

Listing 2.1: Simple MPI example

char message [100];
int rank = MPI_Comm_rank (MPI_COMM_WORLD) ;

if (rank == 0) {
message = "Hello Wolrd!\n"
MPI_Send (message, 100, MPI_CHAR, 1, 0, MPI_COMM_WORLD) ;
} else {
MPI_Status status;
MPI_Recv(message, 100, MPI_CHAR, 0, O, MPI_COMM_WORLD, &status);
printf (message) ;

3

Listing 2.1 shows a very simply MPI program. Rank 0 will send the message Hello
World! to rank 1 and rank 1 will print the message. The parameter used are the data
itself, the count of elements to send, the datatype, where to send the data to / receive

form, a tag to identify the message and a communicator containing information about
which processes can speak with each other. The receive statement additionally has a
status parameter which contains information about the received message.

Listing 2.2: Simple MPI example for non-blocking communication

0O Ut Wi

char message [100];
MPI_Request request;
int rank = MPI_Comm_rank (MPI_COMM_WORLD) ;

if (rank == 0) {
message = "Hello Wolrd!\mn"
MPI_ISend(message, 100, MPI_CHAR, 1, 0, MPI_COMM_WORLD, &request);
MPI_Wait (&request, &status)
} else {
MPI_Status status;
MPI_IRecv(message, 100, MPI_CHAR, O, O, MPI_COMM_WORLD, &request);
MPI_Wait (&request, &status)
printf (message);

}

Listing 2.2 shows the usage of non-blocking commutation. Non-Blocking communication
is used to over leap computation and communication to increase the parallelism of the
program. Another aspect is to avoid dead locks. The program in this example dose
the same as the program in listing 2.1. The send and receive function are replaced
with the intermediate equivalent MPI ISend and MPI IRecv. These function require a
additional parameter, a request object, which is used to determine if the call has finished.
To determine if a non-blocking function call has finished one can use MPI Wait. This
call blocks until the corresponding intermediate function hast finished and returns.

Listing 2.3: Simple MPI example for collective communications.

O © 00O Uk W

—_

char message [100]
int rank = MPI_Comm_rank (MPI_COMM_WORLD)
if (rank == 0) {

message = "Hello from rank O!\n";

}

int MPI_Bcast(message, 100, MPI_CHAR, O, MPI_COMM_WORLD);
if (rank != 0) {
printf (message)

}

Listing 2.3 shows the simple usage of collective communication. The code snippet takes
the message from rank 0 and broadcast it to every one else. Every one else than prints
the message. The rank which sends the message is determined by root rank passed as 4th
argument of the broadcast function. In this case the rank 0. Collective communications
must be called by every process inside the communicator passed to the function. In this
example MPI COMM _WORLD is passed to the function, this means every process that
runs this program needs to call this function. The call blocks until every process has
received the message from rank 0. This will lead to poor performance if there is a load

imbalance in the program since all processes have to wait for the slowest to complete the
collective call.

2.2.1. Non-Blocking Collective Communication

Non-Blocking collective communication is a new set off function introduced in MPI 3
[MPI12]. They are very useful since collective operations are expensive. Like the point to
point non-blocking communication the function name prepends a [to the operation name
to indicate that it’s a intermediate function. The intermediate equivalent of MPI Bcast
is MPI IBcast. The function arguments are mostly the same as the blocking function
call, all the the intermediate function needs is a additional request object to determine if
the call has finished. These request can than be passed to MPI _Wait or MPI _Test to
check if the call has finished.

One special case is the non-blocking barrier MPI _[Barrier. Like all non-blocking function
MPI _IBarrier the function returns instantly. This is useful if the synchronization is
needed but the program can continue to do other computation. The synchronization
happens asynchronous. At some point the program needs to ensure that the synchro-
nization has finished using a function like MPI Wait. In the best case synchronization
has already happened in the background when calling MPI Wait and the program can
continue to run.

2.2.2. Neighbourhood Collective Functions

Another addition in MPI 3 is the introduction of neighbourhood collectives. These
functions operate on a topology that is created first. A topology is a way to model which
compute nodes are neighbours of each other and thus can directly communicate with
each other.

00(01(0,2(0,3

1,0

3,3

Figure 2.1.: A simple topology to be used with MPI.

~N O Uk W N

Listing 2.4: The topology of figure 2.1 implemented in MPI.

MPI_Comm topologyComm;
MPI_Cart_create (MPI_COMM_WORLD, 2, {4,4}, {0,0}, 1, &topologyComm) ;
int rank = MPI_Comm_rank (topologyComm) ;

int recvBuf [4] = {-1,-1,-1,-1};
MPI_Neighbor_allgather (rank, 1, MPI_INT, recvBuf, int recvcount,
— MPI_INT, topologyComm) ;

Lets consider the topology of figure 2.1. It is a two-dimensional array with four by
four processes. Listing 2.4 shows the same topology modelled with MPI. To model a
n-dimensional array one can use the function MPI Cart_create. The first parameter is
the old communicator, which indicates which processes should be involved in the new
topology. The second parameter is the count of dimensions of the array. The third
parameter is a array providing the size of the dimensions. The fourth parameter is a
array indicating if a dimension should be periodic. The fifth parameter tells the function
if the ranks are allowed to be reordered. The last parameter is the topology presented by
a communicator. The program creates the new topology on top of the MPI COMM -
WORLD communicator. And than calls MPI Neighbor _allgather to obtain the the
ranks of its neighbours. Since one rank has a maximum of four neighbours the receive
buffer can store four elements. The data of the first neighbour is stored at the first
position, the second at the second and so on. With the function MPI _Dist_graph_ create
MPI is able to create arbitrary topology, modelling all kinds of graphs. The neighbour
functions functions of MPI don’t lead to a significant performance improvements but
they are used to make the program code cleaner and easier to read.

N O U W N

2.3. Introduction into Golang

In this section we provide some basic information about Google’s new programming
language called Go (also known as Golang). Rather than going to much into detail and
covering every aspect of Golang, we give a short and compact introduction to bring
the readers to a common level. For those readers who want to delve much more into
detail, we suggest the official Golang documentation [Go] or one of the few books ([Ball2]
[Chil2] [FB10], [M11], [Sum12]) that are available. On the other hand, readers who are
already familiar with Golang might feel free skip this section — and fall back as needed.

2.3.1. History

In September 2007 Ken Thompson, Rob Pike and Robert Griesemer began with the
design of Google Go at Google Inc as a free time project. In the mid of 2008 the project
had become a full-time project and Ross Cox joined the team. On November 10th 2009
Golang has been officially announced and became a public open source project. After
several releases in 2011, the first stable long term major release gol has been released on
March 28th 2012. Three minor revisions followed in the same year. The current version
gol.1 has been released on May 13th 2013 the minor revision gol.1.1 followed one moth
later on June 13th 2013.

2.3.2. Variables, Function Calls and Return Values

Since Golang’s Syntax differs form those most of the readers might be familiar with
from other programming languages (like C, Java or Python), we will present some code
examples and depict some of the major differences. Like nearly every guide, we start
with a "hello world” example (listing 2.5).

Listing 2.5: "Hello world” example in Golang

package main
import "fmt"
func main () {

fmt.Println("Hello, world!")
}

In the first line of the example there is a package statement. It is always the first statement
in a Golang source file and it is used by Golang to declare the default package(name) for
later imports in external projects. Since the example should be build as an executable
(and not as a package), the name of the package should conform to 'main’. The third line
shows an import statement. The keyword “import’ is followed by a string that specifies
which packet should be imported. In this case the imported the package is 'fmt’ which
exports the I/O functionality needed to print out text on the shell. The 'main’ function
begins in line 5. Unlike in the programing language C, Golang needs a special keyword
(namely ’func’) to indicate the beginning of a function declaration. To the right of this

10

keyword, one has to provide the signature of the function which should be declared.
Here the 'main’ function is declared and in this case it neither takes arguments nor
returns something — the 'main’ function is like in most other programming languages
the entry point of the program. The curly brackets after the function signature indicates
the beginning of the function definition. Since the function body starts with a curly
bracket, it also has to be closed with a corresponding curly bracket (line 7). The lines
which are surrounded by such a pair of bracket, build the function defining code block.
In the ’hello world” example the function Printin’ is called with the string "Hello , world
I’ given as an argument. The prefix 'fmt. tells Golang, that 'Println’ is part of the
'fmt’ package (which already has been imported in line 3), so Golang is able to find the
function that should be called. Some readers might wonder why "Println’ starts with a
capital letter, since in other languages it is convention to begin a function name with
lower case. The reason for this is, that in Golang the beginning capital letter is used
indicate a function that is callable from outside the package (the function is public)
— on contrary, a function name beginning with a lower case letter indicates a private
function, that is just callable from inside the package. Additionally, it is to mention that
the Golang compiler in fact expects a semicolon at the end of each expression. Looking
at the listing one will not find a single semicolon. Strictly speaking programmers are
even discouraged to write those semicolons by themselves. An integrated set of rules
keeps track of proper code formating and automatically inserts such semicolons right
before compiling. One can prove this by adding a semicolon at the end of line 6 and
apply Golang’s formatter tool gofmt to the code — the semicolon is going to be removed
in the output, but the output is still compilable as well as the code with the additional
semicolons. To run the example, one could use the Go Tools and either build end execute
the program in a single step with the command ’go run <sourcefile.go>" or first build
the executable with 'go build <sourcefile.go>" and then execute it with ’./<sourcefile>".

The listing 2.6 depicts a modified version of the former ’hello world’ example. It is
extended by an additional function named ’assembleSalutation’ which expects two argu-
ments of the type string. This function concatenate each of these arguments with the
static part of our salutation and then returns both (yes, both!) assembled strings to the
main function.

First of all we will examine line 5 which contains the signature of our new function.
Between the brackets we find two arguments namely 'nameOne’ and 'nameTwo’ which are
of type string. Contrary to most other popular programming languages, the programmer
has to provide the type directly behind the argument’s name. Since both arguments are
of the same type, Golang allows to reduce the typing overhead by declaring the type
just once after the last argument — this also holds for more than two arguments of the
same type. Like Python do Golang provides the ability to return multiple values. In
the function signature the tuple of return values is defined right after the argument list
— for single return values one can omit the brackets. But as our function returns two
values return has to name exact two values which must be separated by a colon (see line
6). Dealing with two or more return values of the same type requires some care since the

11

00 ~J O U= Wi~

order of providing the values is important. The ability to return more than one value
does not increase the expressiveness of a programming language but it helps to avoid
packing data into structs or dealing with output parameters and therefore supports the
programmer in writing cleaner and more readable code.

Listing 2.6: Extended "Hello world” example in Golang

package main

import "fmt"

func assembleGeetring(nameOne, nameTwo string) (string, string) {
return "Hello, " + nameOne + "!", "Hello, " + nameTwo + "I"

}

func main() {
var jane string

jane = "Jane"
var jack = "Jack"
saluationOne, saluationTwo := assembleGeetring(jane, jack)

fmt.Println(saluationOne)
fmt.Println(saluationTwo)

}

Now let us have a look at the main function. In line 10 a string variable named "Jane" is
declared by using the keyword var followed by the variable name followed by its data
type. In line 11 the sting value "Jane" is assigned to this variable. Line 12 depicts how
to declare a variable and directly assign a value to it in a single step. The attentive
reader noticed that we do not define the data type in this variable declaration — doing
the declaration and assignment in a single step allows to omit the type as the Golang
compiler can deduce the type from the value which should be assigned to the variable.
An alternative version of performing the declaration and the assignment in a single step
is shown in line 15. Instead of using the assign operator =" we make use of another
operator >=’ which declares a variable and directly assigns a value to it. As one can
see this operator also allows multiple declarations and assignments, since it is allowed
to have multiple variables on the left side of the operator which is necessary because a
function (e.g. ’assebleGreeting’) might have multiple return values.

2.3.3. Data Types

In this subsection we cover the data types of Golang. After giving a short introduction
to the numeric types, we have a closer look to the built-in collection types ’array’ and
'slice” as well as the strings type since these are the interesting high-level types.

12

0O Ut Wi

~N OOk W N

Regarding the data types, it is first to mention that each type in Golang is distinct. In
Listing 2.7 a simple program is listed that performs compare operations with different
integer types.

Listing 2.7: Example of distinct types in Golang

package main
import (

n fmt n
)

func main() {

a := int (42)

b := int32(42)

c := int64(42)

if a == b {
fmt.Println("a = b")

}

if a == ¢ {
fmt.Println("a = c¢")

}

}

Trying to compile this program will result in compiler errors, because int, int32 and
int6/ are pairwise not comparable. This means the type conversion has to be performed
explicitly. Listing 2.8 shows the two modifications that are necessary to make the program
compilable.

Listing 2.8: Example of type conversion

if (int32)(a) == b {
fmt.Println("a = b")
}

(¢]
-~

if (int64) (a) ==
fmt.Println("a

Cll)

}

While the actual program would do its job for values fitting in a 32 bit signed represen-
tation higher values might cause an overflow when conversing int to int32. Using the
unsafe-package and the Sizeof-function as shown in listing 2.9, we can test the sizes of
nt32 and int64. As expected int32 has a size of 4 Byte while int6/ is with 8 Byte two
times as big as int32. The exact size of int depends on the system and is either 4 or 8
Byte (this also holds for the unsigned integer types).

13

0O Ui Wi

— =
W N = OO

Listing 2.9: Example of type conversion

package main

import (
n fmt n
"unsafe"

)

func main() {

fmt.Println(unsafe.Sizeof (int32(42)))

fmt.Println(unsafe.Sizeof (int (42)))

fmt.Println (unsafe.Sizeof (int64(42)))
}

In addition to the signed and unsigned integer types, Golang provides also built-in
numeric types for floating-point and complex numbers (native support for complex
numbers might be very favorable for scientific computing). A complete list of all numeric
types is given in table 2.1.

uint8 / byte | 8 bit unsigned integer

uint16 16 bit unsigned integer
uint32 32 bit unsigned integer
uint64 64 bit unsigned integer
int8 8 bit signed integer
int16 16 bit signed integer

int32 / rune
int64

signed integer
64 bit signed integer

float32 32 bit floating-point numbers

float64 64 bit floating-point numbers

complex64 | complex numbers with float32 real and imaginary parts
complex128 | complex numbers with float64 real and imaginary parts
uint either 32 or 64 bit unsigned integer

int either 32 or 64 bit signed integer

uintptr unsigned integer large enough to store a pointer

Table 2.1.: Numeric types in Golang

Unlike C Golang provides a built-in type for strings. The string type is realized as a
sequence of bytes (uint8) interpreted as series of UTF8 characters. The length of a
string can be obtained using the len-function. Accessing a specific element of a string s
is possible using the indexes between 0 and len(s)-1. In Golang strings are very flexible
and it is also possible to directly access substrings by using the slice operator (we cover
this later). In oder to manipulate strings Golang also provides a very powerful package
with the name ’strings’. Listing 2.10 gives a short overview of how to handle the string

type.

14

0O Ui Wi

= e s e
DU WD~ OO

CO J O UL W N+

[I I I e e e e el e e e
W O OO0 Ui WNnEFE OO

Listing 2.10: Using strings in Golang

package main

import "fmt"
import "strings"

func main() {

var str string = "Hello, world"
// str[0] = ’b’ dinvalid, strings are immutable
for i := 0; i < len(str); i++ {

fmt.Printf ("%c", strl[il)
}
fmt.Printf ("\n")
fmt.Println(str[3 : len(str)-3])
fmt.Printf ("%q\n", strings.Split(str, ","))
}

Golang also provides array types. An array is a sequence of elements of a particular
type (this type is named element-type) which are located in continuous block of memory.
In Golang the array type is defined by the element-type and the number of elements
(called the length of an array). Since the length is part of the type, it must evaluate to a
constant integer during compile time. Like with strings, the len-function can be used to
peek an array’s length.

Listing 2.11 introduces the usage of arrays in Golang.

Listing 2.11: Using arrays in Golang

package main

import "fmt"
import "unsafe"

func callByValue(a [9]int, name byte) {
for i, elem := range a {
fmt.Printf ("%c[%d]l: %d\n", name, i, elem)
}
}

func callByReference(b *[9]int, name byte) {
for i := 0; i < len(b); i++ {
fmt.Printf ("%c[¥%d]l: %d\n", name, i, b[il)
}
}

func main() {
a := [...]int{0, 1, 2, 3, 4, 5, 6, 7, 8%}
callByReference (&a, ’a’)

b := new([9]int)

b[1] =1

15

24
25
26
27
28
29
30
31
32

b[2] = 2
callByValue (¥*b, ’b’)

var ¢ [3][3]int

cfolfo]l =0

c[1][o0] 3

c[2][0] =86
callByReference ((x[9]int) (unsafe.Pointer (&c)), ’c’)

}

Line 19, 22 and 27 illustrate three different variants of declaring array variables in Golang.
In line 19 the variable a is not just declared but also initialized. Since the initializer list
holds a constant number of elements the compiler can derive the length of the array,
so the programmer does not need to provide the length explicitly. To indicate that the
compiler should derive the length it is sufficient to write three dots instead of the length
while providing the type. It might be a bit confusing but unlike in C, arrays in Golang
are values. This means that if an array is passed to a function the whole array will be
copied (call by value). Sometimes it is wise to pass a reference (call by reference) in order
to avoid too much overhead. To obtain the address one can use the address operator (&)
as line 20 indicates.

In line 22 the built-in function new is used to allocate memory for an array of three
int. The special about new is that is allocates a block of zeroed storage and returns
the reference. Therefore, b is a pointer to an int array of the length three where each
element has initially the value zero. The next two lines show how values are assigned
to the second and the third element of the array. To dereference a pointer one can use
the dereference operator * Referencing and dereferencing in Golang behaves similar to
referencing and dereferencing in C but there are no pointer arithmetics in Golang.

In line 27 the variable ¢ is declared to be a two dimensional array of int (more dimensions
are also possible). Like before the array is initialized with zeros. The whole array is rep-
resented by a continuous block of memory and therefore it is possible to cast a reference
of the two dimensional array into any shape (e.g. a reference of an one dimensional
array of the length nine, see line 31). Although arrays are very useful for allocating
continuous blocks of memory they are not very often used in high-level programs. This is
because they are very impractical regarding the fact that it is tedious to write functions
for specific array types (sizes). Instead arrays are used as building blocks for so called
slices. Slices are data structures that consist of three different items.

1. data pointer into an array
2. length

3. capacity

16

0O Ul Wi

NN DNNNNNRFRRFRRFR R /= 22 e
DU R WP O OO U WD~ OO

While arrays can be allocated with new slices (and some other high-level types) has
to be allocated with make. The difference between both functions is that new just
allocates memory and make additionally performs some initialization. The initialization
is necessary because the items of the data structure slices needs to be set before the
slice can be used (e.g. allocating the underlying array(s)). A slice can be considered
as a wrapper for arrays that holds the length in its structure (and not in its type def-
inition). This allows it to write functions that accepts data(-blocks) with arbitrary length.

Listing 2.12 depicts how slices and arrays are connected and that shaping can be realized
by simple casting.

Listing 2.12: Handling slices in Golang

package main

import "fmt"
import "unsafe"

func main() {

al := make([]int, 3, 10)
fmt.Println(al)

a2 := al[0:cap(al)]
a2[1] =1

fmt.Println(a2)
fmt.Println(al)

bl := make ([][3]int, 2, 3)
b1 [1]1[0] = 42
fmt.Println(bl)

b2 := *x(*[][2]int) (unsafe.Pointer (&b1l))
fmt.Println(b2)

b2 = b2[0:cap(b2)]

b2 [1][1] = 23

fmt.Println(bl)

fmt.Println(b2)
}

Line 7 shows how built-in allocation primitive make is used to build a slice. The first
parameter defines the type of the slice. In this case a slice of int should be allocated.
The second parameter specifies the length and the third parameter the capacity of the
slice. Internally the following happens: A continuous block of memory for 10 ints is
allocated. Then the address of the array is assigned to the data pointer of the slice, the
length is set to 3 and the capacity field gets the value 10. Since the slice type comprises
the element type the address for element can be calculated by offsets. So each element
is accessible via an index. Printing the complete slice will result in the output of an
three-item array where each data element is zero. Now it should be easy to understand
where the name slice comes from. A slice is just a data segment. In this case the first

17

0O Ui Wi+

— e e e
B w N = O o

three elements of an underlying array that has in total 10 elements. The slice operator
(see line 9) is used to create new slices from existing slices or arrays (cap is a built-in
function to obtain the capacity of a slice). Although a! and a2 are different arrays they
share the same memory since both data pointers point to the same array. This means
changing an element of al also effects the representation of a2 iff the changed element is
part of intersection of al and a2.

In line 14 a new slice (b1) is created but this time the element type is [3/int and the length
of the slice is 2, so the slice has a total number of 6 elements. Printing this slice will unveil
its two-dimensional structure of two arrays each with a length of 3. In line 18 the pointer
to the original slice is converted into a pointer of a slice of integer arrays of the length 2.
Afterwards, this pointer is dereferenced and stored in the variable 2. The intention of
this line is to reshape the slice. Printing b2 shows that this new slice now addresses 2 int
arrays each of the length 2. The length of the slice has not been changed because casting
just effects the type and since the length is not part of the type it remains. To correct the
slice length one could use the slice operator as shown in line 21. To proof that the new
slice b2 shares the data with b1, the 4th entry is altered in line 23. Then, both slices are
printed out to verify that the value of the 4th element of each slice is now 23 instead of 42.

While the casting technique presented in listing 2.12 is nice to understand the structure of
slices (and eventually suitable for libraries), it is definitely bad style in real applications
and should be avoided. Listing 2.13 demonstrates a much better way for productive
applications to build dynamically a two-dimensional slice with a continuous block of
memory.

Listing 2.13: Dynamic allocation of a two-dimensional array

package main
import "fmt"

func main() {

X, y = 4, 2

flat := make ([]lint, x*y)
dim2 := make ([][]int, x)
for i := range dim2 {

dim2[i] = flat[i*xy : (i+1)=*y]
}
}

Let z and y hold the lengths for dimensions. First a flat int slice of the length x*y is
allocated. Remember: the allocated space is a continuous block in memory. Afterwards,
a second slice is created which is a slice of x slices. Looping over the elements of dim2
allows to assign successively slices of the flat slice (with length y).

If things getting more complex (like in real world applications) it is convenient to
structure data that belongs together. These days most programming languages follow

18

0O Ut Wi+

the paradigm of object-orientation and encapsulate data and corresponding functions in
so called classes. Golang is different. Strictly speaking it is a procedural language like C
and does not follow the concept of classes. However, Golang provides structures (called
structs) to combine data. Listing 2.14 shows how to define and initialize structs.

Listing 2.14: Structuring data in Golang

package main

import (
n fmt n
)

type tube struct {
radius float64
height float64

}

type block struct {
length float64
width float64
height float64

X

func main() {

x := new(struct{ fi1, f2 int })
x.f2 = 2

t := tube{1.0, 2.0}

b := new(block)

b.width = 1.0

fmt.Println(x)

fmt.Println(t)

fmt.Println (b)
}

In line 20 the allocation primitive new is used to allocate memory for an anonymous
struct that combines two fields of the type int. The pointer to the new structure is
assigned to the variable z. Using the dot-notation (line 21) one can access the fields
within the structure. The dot-notations works for values as well as for pointers since
Golang is able to evaluate the type of a variable and if necessary able to perform the
dereferencing. Besides creating anonymous structs as in line 20 it is possible to define a
type based on structs. In the lines 7 to 10 and 12 to 16 it is shown how the keyword type
is used to define data types. The name for the new type occurs right behind the keyword
type. The name is followed by the type that should be associated with this name — in
this case an anonymous struct. Here a new type tube is defined which is a struct of
two named fields radius and height both of the type float64. In line 23 the variable t is
declared to be of the type tube and then an initializer-list is used to initialize the fields

19

0O Ui Wi

R S I I I I I T Y g e ey gy g PGP Y
XN EWNR,OW©W-ITODU W~ O W©

within the structure. Heads up: The order of providing the values in the initializer-list is
important and has to correspond to the order within the type definition.

In line 24 the allocation of a new variable is done using new and a named type. Here it
is not possible to provide an initializer-list. All fields are initialized with zeros and then
the fields have to be set manually using the dot-notation as shown in line 25.

2.3.4. Type specific functions

While typical object-oriented programming languages encapsulates the functionality
together with the data in classes Golang does no follow tis concept. Golang works
different. Generally it is procedural but it allows to write functions associated with a
specific type and therefore supports an object-oriented style of programming. Listing
2.15 is an extension of listing (2.14) and depicts the association of functions and types.

Listing 2.15: An example of writing type specific functions in Golang

package main

import "fmt"
import "math"

type Tube struct {
radius float64
height float64

¥

type Block struct {
length floaté64
width float64
height float64

}

func (t Tube) Volume() float64 {
return 2.0 * math.Pi * t.radius * t.height
}

func (b Block) Volume() float64 {
return b.length * b.width * b.height
}

func main() {
t, b := Tube{1.0, 1.0}, Block{1.0, 1.0, 1.0}
fmt.Println(t.Volume (), b.Volume())

}

In line 17 and following as well as in line 21 and following a new notation of writing
type specific functions is introduced. The only difference to general functions is that
the type to which this function should be bound is provided between the keyword func
and the function’s signature. It is possible to bind the calling object to a local variable.

20

00 ~J O U= Wi+~

So the object and its fields are accessible within the function definition. Also, one can
omit this variable but then the type bound function can not operate on the specific data
of an object. That would not be very meaningful and come close to what some pure
object-oriented programming languages introduce as static functions where classes are
not only templates for objects but also part of the namespace. In order to call such an
associated function the dot-notation is used again which is typical for object-oriented
programming languages. From now on we consider the term ‘object” as the value of a
variable with a particular type and the set of associated functions.

2.3.5. Interfaces

The concept of interfaces is where Golang really differs form common object-oriented
programming languages. While inheritance is typically a key-feature of class based
object-orientation that enables polymorphism Golang neither has a real class concept nor
allows to derive attributes and / or functionality from existing types and their associated
functions. However, Golang allows to write functions that can handle different types
even though there is no superclass. This is possible because Golang provides a concept
that is called interface. An interface is a set of functions and each object who’s type
provides all functions required by the interface automatically implement the interface.
This means the type of an object can be deduced by its implemented functions. Such a
technique is often called ‘duck-typing’. This name comes from a famous poetry: “When
I see a bird that walks like a duck and swims like a duck and quacks like a duck, I call
that bird a duck.” (James Whitcomb Riley)

In listing 2.16 the old example from listing 2.15 is extended and presents the usage of
interfaces in Golang.

Listing 2.16: A simple example of using interfaces

package main

import "fmt"
import "math"

type Tube struct {
radius float64
height float64

}

type Block struct {
length float64
width float64
height float64

}

type Modeler interface {
Volume () float64
}

21

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

type Model struct {
mod Modeler

3

func (t Tube) Volume() float64 A{
return 2.0 * math.Pi * t.radius * t.height
}

func (b Block) Volume () float64 {
return b.length * b.width * b.height

}
func volumeDifference(vl, v2 Modeler) float64 {
return v1.Volume () - v2.Volume ()
}
func main() {
t := Tube{1.0, 1.0}
b := Block{1.0, 1.0, 1.0}
m := Model{t}

fmt.Println(m)
fmt.Println(volumeDifference(m.mod, b))

}

Mainly this example is extended by three definitions. The first one is the definition of
an interface with the name Modeler (beginning at line 17). The definition says that
everything that implements the function Volume() is a Modeler (interfaces can also
be considered as types). The second definition, begins at line 21 and is the definition
of the type Model that has a field of the type Modeler. The third definition defines a
global function named volumeDifference that requires two objects implementing Modeler
and then calculates the difference between the float6 values of both objects which are
returned when Volume() is called.

Besides these definitions, there are some changes in the main function. In line 40 the
variable m is declared and initialized with the value of ¢. Since ¢ has the type Tube which
implements volume and therefore fulfills the interface named Modeler it is convenient to
make this assignment. Printing out m shows that it is a struct which contains another
struct with two fields both with the value 1. So it is possible to use interfaces as a kind
of polymorph type within other type definitions. Furthermore, m.mod is known to be
something that fulfills Modeler and b is from type Block which implements Volume()
and therefore fulfills Modeler as well. This mean both values can be used as parameters
for volumeDifference(...) (see line 42).

The benefit of resigning the concept of classes and instead using ’duck-typing’ lies in
the reduction of keywords. Golang consequently tries to avoid as many keywords as
possible (and they do it very well) to keep the language simple. So, the programmer
is not bothered with typing work. But there is also a pitfall that comes along with

22

0O Ut Wi+

interfaces. The programmer has to be careful, because a bad chosen function name can
accidentally make a type implementing an interface.

2.3.6. Concurrency Features

On of the major goals of Golang is to provide an easy way to handle concurrency (and even
parallelism). Inspired by Tony C. Hoare’s work "Communicating Sequential Processes'
[Hoa78] Golang picked up the idea of combining ’parallel composition of sequential
processes’ with ‘gquarded commands’. The result is an integrated high-level concurrency
concept based on two parts: Coroutines and synchronization by communication.

Goroutines

The implementation of coroutines in Golang is called goroutine. Goroutines can be
considered as a lightweight version of threads. Compared to real OS threads they
are really lightweight because they can coexist in a single OS thread. Goroutines are
completely managed by the Go runtime, which is part of every go program. This saves
a lot of context switches at the OS-level and reduces the overhead of creating threads.
Therefore goroutines are even convenient for very small routines. Listing 2.17 shows how
goroutines are used.

Listing 2.17: A simple example of using goroutines

package main

import "fmt"
import "time"

func sequential () {
for i := 0; i < 10; i++ {
fmt.Println (i)
}
}

func concurrent () {
for i := 0; i < 10; i++ {
go func (number int) {
fmt.Println (number)
(i)
}
}

func main() {
go sequential ()
concurrent ()
time.Sleep (1)

}

In this listing there are two additional functions next to the main function. The first one
is the function definition for sequential. This definition starts in line 6 and its semantics

23

is just to loop 10 times over a print statement that prints the actual value of the counter
variable. In line 21 the program calls this function but it is called in a special way! In
front of the function name there is the small keyword namely go. This keyword tells
the Go-runtime to create a new goroutine and run the called function within it. Since
the go-runtime also runs in a goroutine and the go-runtime is responsible for spawning
the main function there are now two active goroutines. Each of this goroutines can
be pictured as a separate and independent path of execution. After creating the new
goroutine the go-runtime has to schedule the goroutines. The number of maximal parallel
working goroutines depends on the system. On a multi core machine this means it
is possible that both goroutines run in parallel. In case of a single core machine the
scheduler has to pick an active goroutine, where active means the goroutine is not blocked
(we cover this later when we talk about channels). Now things are getting fuzzy! Since
the scheduler is an implementation detail, it is not possible to make assumptions about
the order in which the go-runtime schedules the active goroutines (but thats not really
an issue). We know that both goroutines are independent (there are no race conditions),
so it does not matter how the execution is serialized.

The second definition is the definition of the function concurrent. The difference to
sequential is that the print statement within the loop is surrounded by a typical Golang
pattern. The print statement is now part of an anonymous function (with a parameter
i) which should be executed as a goroutine. This mean calling concurrent results in
spawning 10 goroutines. So this pattern is for example appropriate to spawn something
like worker routines.

Channels

Channels are Golangs concept of communication. They are first class values. This means
it is possible to assign channels to variables or use them as function parameters. Under
the hood channels are typed queues that provide atomic access. The idea is that processes
can write into and / or read from such a queue in order to communicate with each other.
There are two general types of channels regarding the size of the channel. If the channel
has the size zero it is said to be unbuffered or synchronous. Otherwise the channel is
said to be buffered or asynchronous. Unbuffered channels are also called synchronous
because writing into a channel that reached its capacity as well as reading from an empty
channel will result in a block state. A positive side effect of this communication type is
the indirect synchronization that follows from the communication relationship and the
kind of used channel. Listing 2.18 demonstrate the basics of working with channels.

24

0O Ui Wi

NN DN DN = = = = = = e e e
W R O OO Uk WNn OO

Listing 2.18: A simple example of using channels

package main
import "fmt"

func produce(c chan<- int) {
for i := 0; i < 10; i++ {
fmt.Printf ("Produced: %d\n", i)
¢ <- 1 // synchronization
}
}

func consume(c <-chan int) {
for true {
i := <-c // synchronization
fmt.Printf ("Consumed: %d\n", i)
}
}

func main() {
¢ := make(chan int)
go consume (c)
produce (c)

}

This example shows how channels could be used to program some kind of producer
consumer relationship. In line 20 make is used to create a new channel of the type int.
The created channel is an unbuffered one because no size is passed to make. As line 21
and 22 show the channel is passed as an argument to two functions. The first function is
consume, which is defined in line 5 and the second one is produce which is defined in line
12. Since the channel is passed to both functions it can act as a communication path.

Produce requires a channel of the type int. One might wonder what the arrow on the right
side of the keyword chan stand for. This simply means that the channel is write-only.
In turn, consume requires an read-only channel (this time the arrow is on the left side).
The produce function is very simple. Is consists of a loop that iterates 10 times. Each
round it prints out the actual value of the loop counter variable and then passes the
variable into the channel c. The arrow is used again, but this time it indicates that the
variable on the right-hand is passed to the left-hand channel. Consume works quite
similar but instead of writing into the channel ¢ the function reads from the channel.
The notation of reading a value from a channel into a variable requires additionally the
assignment operator. On the first look this may seem like a break in the syntax but it is
not. While ¢ <- ¢ means that the whole typed variable (not only the value) is passed
to the channel, '<-c¢” means that a typed variable is read from the channel. Therefore
'<-c¢’ evaluates to a variable and the assignment operator is needed to copy the value
of this variable into another. Let ¢! and ¢2 be two channels of the same type and a
variable should be passed from c1 to ¢2. In such a case it is convenient to omit the
assignment operator because c2 takes the whole variable and therefore 'c2 <- c¢1’is valid.

25

O~ O U W N+

As mentioned before reading and writing into an unbuffered channel results in a syn-
chronous communication. Both functions run in a separate goroutine (consume in it’s
own and produce in that one used for the main routine). Every time a read or write on
the channel is executed the go runtime is called. It evaluates which of the goroutines are
still blocked and which are not. After this procedure the scheduler invokes one of the
non-blocked goroutines. This simple mechanism allows to determine the flow of execution
by serializing the goroutines based on their communication relationships. On a single
core system this would mean that produce and consume are executed alternately (and
therefore concurrent) because in each case of reading and writing the actual goroutine
will block and the scheduler picks the respective other goroutine. On a multi core system
both functions can run partially in parallel and the read and write operation on the
channel can be seen as rendezvous point where both functions synchronize.

The attentive reader might have noticed that produce is not called within a goroutine.
The reason for this is to prevent the main from returning at an early stage — this also
counts for the sleep at the end of Listing 2.17. If the main function returns too early
the whole program will quit regardless if all goroutines terminated or not (especially for
beginners this is a common mistake).

Listing 2.19 demonstrates a more complex example of utilizing channels in combination
with the select statement.

Listing 2.19: An advanced example of using channels

package main

import "fmt"
import "time"
import "math/rand"

func produce (in chan<- int) {
for i := 0; i < 10; i++ {
fmt.Printf ("Produced: %d\n", i)
in <- i // synchronization
time.Sleep(time.Duration(rand.Intn(5)) * time.Millisecond)
}
}

func consume (out []Jchan int) {
for i := 0; i < len(out); i++ {
go func(c <-chan int, id int) {
for {
i := <-c // synchronization
fmt.Printf (" (%d)Consumed: %d\n", id, i)
}
YCout [i1, i)
}
}

26

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
o7

func demux(in <-chan int, out []Jchan int) {
for {
timeout := make (chan bool, 0)
go func() {
time.Sleep(l * time.Millisecond)
timeout <- true

O
select {
case 1 := <-in:
if i%2 == 0 {
out [0] <- i // synchronization
} else {
out [1] <- i // synchronization
}

case <-timeout:
fmt.Printf ("Timeout\n")

default:
fmt.Println("default")

}
}
}
func main() {
in := make(chan int)
out := make([]chan int, 2)
out [0] = make(chan int, O0)
out [1] = make(chan int, O0)

go demux (in, out)
go consume (out)
produce (in)
time.Sleep (1)

}

At the beginning of the main function a single channel as well as a two dimensional
channel array are created. The two dimensional channel array is a little bit more complex
to instantiate because make is not able to determine the capacity and therefore can not
instantiate the underlying channels itself.

Next to the slightly modified producer and consumer functions there is a new function
which takes the name demuz. This function is used as some kind of sorter component
which has one incoming channel and two outgoing channels. The definition of demux
begins in line 26. It consists of an unconditioned loop and a typical pattern for timeouts.
A goroutine is used to spawn an anonymous function that justs waits a specific time and
then writes into a channel named timeout. Although timeout is not directly passed into
the anonymous function it is visible from within the function. This is possible because
golang provides clousures which means that a function knows the context it was called in.
The function definition is followed by a new statement namely the select statement. It is
golang’s lightweight version of Dijkstas’s guarded commands as purposed in Hoare’s work

27

0O Ui Wi

CSP [Hoa78]. The major difference is that golang does not evaluate boolean expressions
in order to decide if a command is blocked or not. Instead golang checks if a read or
write operation on a channel was successful or not. This is quite similar to the select
statement which is often used by C programmers in /O programming to probe read-
or writeability of file-handlers. A select statement can consist of multiple cases. Each
of those cases begin with the keyword ’case’ and has a condition that guards the code
within the block that follows the case. In line 34 for example there is a case which has
the condition that channel in is readable (has at least one variable to read). In this case
the value of the read variable is assigned to the variable 7. The guarded code is very
simple and just forwards a copy of the variable i either to the channel out[0] if the value
of i is even or to channel out[1] if the value of i is odd. The second case of the select
statement is the case where the channel timeout is readable. In this example a timeout
is not really necessary but since this is an often used pattern, it might be helpful if one
already has seen a timeout construct.

If no guards are fulfilled then the default case will be executed (if it is defined). In the
listing the default case is defined in line 42 and 43. But as long as the default case is
defined, a timeout will practically never occur. This is because each loop the timeout
gets a reset and either 7 is readable before the timeout happens or the default case is
chosen. To see how the program performs with the timeout it is sufficient to comment
out line 42 and line 43. In contrast, if the guards of more than one case are fulfilled then
one of the set of possible cases is picked randomly (the order in which the cases are
listed has no influence) to realize fairness between the cases.

2.3.7. The Sync Package

The sync [Syn] package provides synchronization primitives. These primitives are mostly
used for low level libraries. High level synchronization should be done by channel and
communication.

One of the most known synchronization primitives is the mutex. With the mutex it is
possible to lock data structures from parallel access. Listing 2.20 shows one possible
way to lock a data structure with a mutex. The type LockableInt inherits from the type
sync. Mutex, this way the functions Lock and Unlock can be called on a instance of the

type.

Listing 2.20: Using a mutex by inhering from the sync. Mutex type.

package main
import (
n SynC n

)

type LockableInt struct {
data int

28

10
11
12
13
14
15
16
17
18

CO O UL W N+

I I e N el e e e
N — O O© 00O Ui WwWwhhrH— OO

sync.Mutex

}

func main() {
var lockInt Lockabellnt

lockInt.Lock ()

lockInt.data = 1

lockInt.Unlock ()
}

Another way of synchronisation is to use WaitGroups. A WaitGroup waits for a collection
of goroutines to finish. The WaitGroup is initialized with a count of goroutines to wait
for. When a goroutine finishes it decrements the WaitGroup counter and waits for the
other goroutines to finish. If the counter reaches zero all blocked goroutines which are
block on a wait will continue.

Listing 2.21: Using a WaitGroup

import (
n SynC n

)

func main () {

// Allocate a new WaitGroup

wg := new(sync.WaitGroup)

for i:=0; i<10; i++ {
// Add a delta of 1 for every goroutine
wg.Add (1)
go DoStuff (wg)

}

// Wait for the goroutines to finish
wg.Wait ()
}

func DoStuff (wg *sync.WaitGroup) {
// Call Done() on the WaitGroup when finished with the function
defer wg.Done()
// Do computioation

2.3.8. Gc and Gccego

There are two different compilers available that follow the Golang specification [GoS].
The original compiler from the Golang team is called Gc and it is the default compiler
used by the Go tools. The second compiler is Geego (it is a Gee frontend) wrote by a
community member. Each of both compilers has its pros and cons. The major differences
are related to the topics portability, optimization and implementation of goroutines.

29

While Ge implements goroutines by multiplexing several goroutines into one OS-thread,
Gcego maps each goroutine to a single OS-thread. This means programs that spawn a
lot of goroutines might perform better with Gec since thread context switching is slow
compared to real goroutine context switching. However, with the gold linker it should
be possible to make use of segmented stacks as well. Segmented stacks are required
by the Go runtime to enable real goroutines. This means multiplexing of goroutine is
also possible with the gcego using the gold linker instead of [d. Unfortunately gold only
supports x86 and ARM architectures.

On the other hand a drawback related to Gc is its general portability. Compared to
Glcego it is quite poor because Ge only supports x86 (32 bit and 64 bit) and ARM
CPUs while Geego theoretically supports x86 (32 bit and 64 bit), ARM, SPARC, MIPS,
PowerPC and Alpha and so on. Another benefit of Gceego is that Gee offers much better
optimization but this in turn means the compile time is not as good as with Gc¢’s.

Choosing the right compiler is therefore a question of the platform as well as of the
project and how it is implemented. Since we benchmark our wrapper on a x86 system,
we are able to compare both compilers. Furthermore we can test the two different linker
for gcego (Id and gold).

2.3.9. Cgo

Cygo is part of the Go tools and allows the programmer to create packages that call C
code. But Cgo does not work with pure Geego yet. However, Go build allows to choose
the compiler (either gc or Geego) and therefore allows the usage of Cgo together with
Geego. Since Go tools are just available for x86 and ARM, this means that projects
which choose this way has to be compiled on one of these two platforms. However, using
Geego together with Go build enables cross compiling for other platforms, therefore using
Cgo is not that bad.

The general idea of Cgo is to enrich Go files with special comments. These comments are
recognized and evaluated. Such comments can be #cgo directives used to pass cflags to
the compiler and / or ldflags to the linker and //export directives to make Go functions
callable from C code. Other comments can be treated as C header informations. The
Cgo tool is described at [Cgob| and an introduction how it should be used is given at
[Cgoal.

Besides Cgo there is also a pure Geego solution to generate Go declarations from C
code. Unfortunately this approach is much more complex and the Go source files are not
compatible with those using Cgo. This leads to problems when building such a project
with Go build and Ge which is typically the case.

30

3. Initial Situation & Project Goals

At the beginning of the project there only exists one other attempt to bring MPI to Go
[Oth] which is far from feature complete and has data type depend functions which is
not conform with the MPI standard.

The only other possible options to realize parallel computation over the network were to
either use raw sockets or maybe use some sort of remote procedure call.

As the former sections foreshadow, Golang offers many favorable aspects that sup-
port developers in designing and writing concurrent / parallel programs. Our opinion
is that especially the scientific research community can benefit from this relatively
young language despite the lack of wrappers / bindings for well-established programming
libraries. For this reason we would like to contribute and write a Golang wrapper for MPI.

Within the phase of development, we use OpenMPI (1.6, current stable) but since MPI
is a standard and not a concrete implementation, our wrapper should also work with
other implementations as well (for example MPICH2).

In order to evaluate whether the combination of Golang and MPI is suitable or not,
we ported an existing MPI based benchmark tool (originally written in C) by using
Golang and our function wrapper. The benchmarks have been performed on a cluster at
"Deutsches Klimarechenzentrum’ (DKRZ - for specification see appendix). Comparing the
observed execution times unveils the additional overhead needed by Golang (compared
to the C version) and therefore we use it as the major criteria for suitability regarding
performance. Detailed informations on the benchmarks are given in section 5.

31

4. Implementation and Realization

Writing software often requires to make fundamental decisions regarding the software and
its implementation. While some general decisions can or have to be made in the initial
phase of a project (design decisions) other difficulties arise during the implementation
phase. In such a case it useful to dynamically explore different approaches before coming
to a decision. This section can be considered as a meticulous record of the project
related decisions we took and the obstacles that where encounter while implementing
the wrapper. In the end we provide a small wrapper programming guide that emerged
during our project time. This guide describes how a C function wrapper can be written
in Golang by obeying 5 simple rules.

4.1. Design decisions at the beginning of the project

The wrapper should add as small as possible overhead to MPI while keep the feeling
of programming Go instead of C. Since Cgo only supports only C and not C++ it’s
out of question to implement the wrapper on top of the C++ bindings. A high level
interface for Go can always be implemented on top of on this C like syntax. This is
further discussed in capter 6.2.

4.2. Decisions during the development phase

Now we point out the challenging parts of writing the MPI wrapper for Golang. For each
challenge we give a short introduction for the specific topic before we propose concrete
approaches and discuss their benefits and drawbacks.

4.2.1. Type conversions

Type conversion (also known as type casting) is a technique to change the type of an
object into another type. Basically conversion is a kind of changing the interpretation and
/ or representation of bit data. However, manipulating bit data might result in loosing
information and therefore is a potential pitfall to be aware of. For further investigations,
we introduce the concept of a type system.

A Type system can be considered as a set of definitions and rules that enforce the correct
usage of program components and their interaction. The purpose of these rules is to
detect and avoid erroneous program code. Typically the type system of a programming
language is categorized along the following three dimensions.

32

1. static vs. dynamic typing: A programming language is said to be statically
typed iff the typing rules are performed during compile time. Programming
languages that check the typing during execution-time are said to be dynamically
typed.

2. strong vs. weak typing: A programming language is said to be strongly typed
iff the execution of an operation is prevented in the case that the types of arguments
does not fulfill the operation’s specification. In contrast, a programming language
may perform implicit type conversion, such a language is said to be weakly typed.

3. safe vs. unsafe type systems: A programming language is said to be type-safe
iff it permits conversions and operations that will lead to erroneous conditions.

Golang is a statically typed language, since type checking is done during compile time.
The type system does not convert indirectly and only allows performing well defined
operations. This means Golang’s is strongly typed. Furthermore, Golang offers (when
not manually disables) bound checking for collection types, thus its type-system can also
be considered as type safe.

Since the problem of loosing precision potentially comprises all types, it is a fundamental
problem. Considering each type individually is impractical and unnecessary, so we will
just examine the integer type(s) representatively and leave the reader to apply the
gathered ideas to the remaining types.

In Golang all types are distinct [exceptions: (byte, uint8) and (rune, int32)] (see section
2.3). Especially for numeric types this is an important fact that means even if int is
a 64-bit type on a particular machine, it is not possible to use arithmetic operations
or comparisons mixing int and int64 without using conversion [Suml2]. As indirect
conversion between types may result in precision loss. Golang requires the programmer to
make conversions explicitly. Dealing exclusively with Golang, conversion is relatively easy
to manage.Things getting more complex if a second programming language is involved.
The type C.int for example is distinct as well and therefrom differs from Golang’s types
even if its size is identical. However, another problem is that the size of C.int depends
on the C compiler and the System. Thus, we can not make any assumptions on this
type. Especially careless conversion between pointers with distinct base types implies
a high risk of failures in the code, that might be hard to detect. This is why Golang
also prohibits the conversion of pointers based on different underlying types. Such a
procedures enforces type safe programming and allows type checking during compile
time. However, most of the functions offered by MPI Implementations (written in C)
require pointers [e.g. the out parameter(s)]. Fortunately Golang provides the 'unsafe’
package, that allows the programmer to represent pointers of arbitrary type and hence
bypass Golang’s type safety (unsafe pointer can be considered as Golang’s pendant to
void pointers in C).

33

The easiest way to deal with data types (regarding the wrapper functions) would be
to fall back to the C-types. This proceeding would guarantee type safety and prevent
from precision loss. Additionally, the overhead caused by conversion would be avoided.
While this approach might seem suitable on the first look, it implies a major drawback.
The user would have to import the 'C’” package and deal with the different types him-
self / herself. Including the ’C’ package also grant access to C-bindings and therefore
indirectly to an implementation of MPI that offers an interface for C. Summing up, this
means that going this way would totally break the idea of writing a Golang MPI wrapper.

Another solution would be to detect the size of C.int within our GOMPI package. A
proper dedicated integer type with the same size as C.int could be defined. Using this
type instead of the standard int for all offered functions would allow to pass a variable to
the wrapper function that performs an explicit cast without the danger to lose precision.
But there is a small blemish we would like to avoid. Since all other packages do not
know about this special type, the user might have to perform a lot of conversions if other
packages than GOMPI are involved in the project.

At this point in time, we solve this issue by passing standard int to the function and
copy the data form an int variable into a C.int variable and then pass the reference of
the C.int variable into the C-function that requires the pointer. The disadvantage of this
approach should be clear. Copying data introduces overhead. Sporadically copying just
a single value is not that critical, but when dealing with large arrays (which is no rarity
when using MPI) the copy process will waste a lot of time.

In the past an int in Golang was always represented by a 32 bit integer. In [Sum12] it is
mentioned that in future the bit-representation of an int might change. This became
true with Golang version 1.1 [Gol]. While with Golang 1.0.3 a C int was at least as big
as Golang’s int, there was no problem with precision loss. Now, this has changed. For
the combination of a 32 bit C int and a 64 bit Golang int, now there is a high risk to
loose precision. This could turn nasty, because the compiler has no chance to detect
this kind of malicious code, which might result under special conditions in unrecognized
buffer overflows.

The easiest way to solve this issue would be to change every int into a int32, but then
we definitely loose the benefit for the case where both (C as well as Golang) int are 64
bit. Therefore, we currently looking for an approach that satisfies the requirement of
precision loss free conversion and avoids introducing a dedicated data type.

4.2.2. Passing typed data: Arrays vs. Slices

Besides the standard types we can find in C, Golang also provides a set of high level
types. For this project the important types are arrays, slices and strings, which we
already introduced in section 2.3. Golang arrays are different from those one might know
from C. Probably the most important difference is, that the size of an array is also part

34

of the type. The slice type (see section 2.3.2) is a struct which is generally based on the
array type. It encapsulates an array by referencing its array-pointer. Two extra fields are
used to store the actual size as well as the capacity. Therefore, the size of a slice is not
directly part of its type. This means compared to arrays being more flexible regarding
passing data of arbitrary size to a function.

The majority of functions defined by the MPI standard demand arrays of arbitrary
size as input or output parameters. For this reason there is no better alternative for
our wrapper functions than permanently make use of slices instead of inflexible arrays.
Due to employing slices it is the logical consequence to avoid passing data sizes directly
but use the slice’s knowledge of its own size. Although this means to deviate from the
function signatures defined by the MPI standard we consistently enforce this advance for
two reasons.

1. Passing the size of an slice explicitly (redundant) to a function implies additional
and avoidable overhead.

2. Formulating the wrapper functions more clear and Go-like will increase the usability
and decrease error sources.

4.2.3. Passing arbitrary data: The empty interface

As mentioned before Golang is statically typed. This as well as the fact that Golang does
not provide generics (see [GoG|) makes passing data of arbitrary type a bit challenging.
The Problem is that MPI provide several indispensable functions that do not make
assumptions of the input-parameters type (i.e. MPI_Send). Our investigations on how
to solve this issue led us to two possible solutions.

The naive (and closer to the MPI standard) way, would be to pass arbitrary data via a
pointer or reference to the function. In Golang there are three different types of pointers:

1. typed pointers:
Due to fact that type checking is also performed for typed pointers, they are
ineligible to solve the problem of passing arbitrary data to a specific function.

2. unsafe. Pointer:
Using unsafe. Pointer would force the user to import the unsafe-package but this is
something we do not want! Therefore this sort of pointer is also not appropriate to
solve the problem.

3. uintptr:
An unitptr would work. Using the reflect-package one could easily access the header
of a slice an obtain the underlying uintptr that points to the slice’s data. Therefore
a wrapper function that expects a unitptr could indirectly receive data of arbitrary

type.

35

But there is a more Go-like solution that is very user friendly. Instead of manually
obtaining the unitptr and passing it to the function it would be nice to have a feature like
a super-type that fits on everything. In the introduction to Golang (2.3) we mentioned
the idea of interfaces. A special interface is the empty interface (interface{}) because
every object implements this interface. Therefore interface{} provides a back door to
pass objects of any type. Within the function it is possible to obtain the original type
of the passed object. Then, using the reflect-package it is easy to get access to a data
pointer. Our actual implementation provides a helper function for this procedure and
considers the types channel, function, map, and slice.

4.2.4. MPI Definitions and how to access them from Golang space

The file mpi.h (shipped with the MPI implementation) contains the definitions of MPI
constants and data types. While some constants and data types are directly accessible
through the header file, others use preprocessor directives and are not visible for Golang.
We found two approaches to make those values available for Golang.

The proposal for a first approach is quite simple. By manually tracing the required defi-
nitions in the source code of the MPI implementation, it is possible to write a particular
header file for GOMPI. But this approach involve major implications. Since MPI is a
standard, one should think the API (Application Programming Interface) is well defined.
Unfortunately that is not true. Each MPI implementations has its own version of the
header file mpi.h. The result is that all implementations of MPI differ more or less in
some details. GOMPI has the goal to work with each MPI implementation. Thus, it
would be too much work to create a dedicated header file (with the needed definitions)
for each available MPI implementation. Another point is that some internal details may
change in future releases of a MPI implementation (while the API remains). Therefore, it
would not be enough to provide MPI implementation specific but also version dependent
files that hold the definitions.

Our second approach (the one we have implemented) respect both addressed issues. A set
of helper functions (defined in scr/MPI/c-helper.h implemented in scr/MPI/c-helper.c)
is used to request the required values at runtime and automatically assign those values
to intended variables provided by GOMPI. The involved files are:

1. sr¢/MPI/const.go (MPI communicators, groups and handles identifier)
2. src/MPI/datatype.go (MPI Data type identifier)

3. src/MPI/operations.go (MPI Operation identifier)

36

CO O UL W N+

NN NNNDNNNF ===
CO O Ul WIN OO0 Uk WwNFE OO

4.2.5. Callback functions

Callback functions are functions that are called by other function. Such a feature is
generally realized passing the callback function to a second function, which in turn
execute the callback function. In Golang functions are treated as first class objects,
therefore they can be directly passed as arguments to other functions. Listing 4.1 shows
how callbacks could be realized in Golang.

Listing 4.1: Callback function example in Golang

package main
import "fmt"

func square(arg *int) {
xarg *= *arg

}
func apply(fn func (*int), items []lint) {

for i, _ := range items {
fn(&items[i]) // callback
}
}

func main() {
items := [Jint{1, 2, 3, 4, 5}

callback := square
apply(callback, items)

for _, v := range items {
fmt.Printf ("%d, ", v)
}
fmt.Printf ("\n")
}

// Output: 1, 4, 9, 16, 25

The main purpose of callbacks is to write functions in an abstract way where the exact
behavior depends on the implementation of the callback function. As one can see, the
function square is assigned to the variable callback, which in turn is passed to apply (it is
also possible to pass square directly to apply). The big advantage is, that apply does not
need to have any information about the callback function but the address. Therefore,
square and apply exhibit low coupling. The areas of application for such a technique are
for example the domain of signal handling or hooks, where own functionality needs to be
called by foreign code. Writing the MPI wrapper we had to implement error-handler
functionality.

37

C can not directly access Golangs’s memory. Therefore, it is not feasible to simply pass
function-pointers to a C-function in order to perform callbacks on the Golang-function
out of the C space. Luckily, we were able to figure out two approaches to handle this issue.

Our first approach for this problem consists in writing the error-handlers directly in C. A
C-helper-function could used to pass a pointer to error-handler to the Golang space. In
turn helper-functions could be used to pass data from Golang to C space and backwards.
Even if this approach is applicable, it is not very handy. The user has to be familiar
with C and has to provide a lot of setter and getter functions. Furthermore, mixing two
different programming languages is from our point of view not a good style. It decreases
the project’s clarity, requires additional knowledge and is therefore a potential source
of errors. For these reasons we investigated for a another, better approach that avoids
writing much C code.

Before we present our current approach, we want to address another issue that occurs
when the MPI error-handlers function are written in Golang.

Although variable-argument work within a pure Golang project, it does not work together
with Cgo. Trying to call C-functions that use such argument lists, will lead to a compiler
error. This issue is already known (see http://code.google.com/p/go/issues, issue:
975). Unfortunately some MPI functions (namely the errhandler-functions) require a
function pointer (of a specific type) for callback functions that support variable parameter
lists. As long as Cgo does not provide calling C function with variable-argument lists,
we also can not provide this functionality in Golang.

However, to avoid loosing the whole error-handling when working with GOMPI, we
provide a workaround that bypasses variable-argument lists. For each of the three error-
handler types (MPI _Comm__errhandler _function, MPI File errhandler _function and
MPI_Win__errhandler_function), we provide a special function declaration that fits
the original function-pointer type but omits the variable-argument list (see 4.2). For
each of these function declarations, we provide a special helper function that returns the
particular function-pointer (see 4.3). While the function declaration as well as the related
helper function reside in C space and Golang can access C space, the actual function
definition / implementation of the error-handler can be written in Golang. The idea is to
use the //export directive to make a function with a predefined name accessible for C (see
4.4). The function-pointer for a particular error-handler function could be obtained by
using the related helper-function. This detour is necessary to take care that the function-
pointer can be processed by C. But heads up! Declaring a function in C and using the
//export in Golang implies that the function-name is known during compile-time. This
means there can only be a limited (and constant) number of such functions. We decided
to ship GOMPI with a single predefined function for each of the three error-handler types.

38

http://code.google.com/p/go/issues

00 ~J O U= Wi~

0O Ui Wi

[R e T
=~ wNn = O o

If more than one error-handler are needed, we advise to inspect the following files:

1. src/tests/src/errhandler.h

2. src/tests/src/errhandler.c

These files could be used as templates for declaring further functions which can be used
to achieve multiple error-handlers in a GOMPI project. Both files are used to build a
library that has to be linked against the project’s object files. If it should not be clear
how to use the declared function or the helper function, an example is provided by the
file src/tests/test-errhandler.go.

Listing 4.2: src/tests/src/errhandler.h

#ifndef _GOMPIERRHANDLER_H_
#define _GOMPIERRHANDLER_H_

#include "mpi.h"

extern void GOMPI_Comm_errhandler_function(MPI_Comm *, int *);
extern void GOMPI_File_errhandler_function(MPI_File *, int *);
extern void GOMPI_Win_errhandler_function(MPI_Win *, int x*);
void* getCommErrhandler () ;

void* getFileErrhandler () ;

void* getWinErrhandler ();

#endif

Listing 4.3: src/tests/src/errhandler.c

#include "errhandler.h"
#include "stdio.h"

void* getCommErrhandler (){
return &GOMPI_Comm_errhandler_function;

}

void* getFileErrhandler (){
return &GOMPI_File_errhandler_function;

}

void* getWinErrhandler (){
return &GOMPI_Win_errhandler_function;

}

39

0O Ui Wi

CO Lo OO R DD R DD N R DN N N B = = 2 2 2
RN, O TJONEWNR—R, DO~ U W~ O ©

Listing 4.4: Extract from src/tests/test-errhandler.go

package main

/%

#cgo LDFLAGS: -L/usr/lib/openmpi -L../../libs -lmpt -lcerr
#include <stdlib.h>

#include <mpt.h>

#include "src/errhandler.h”

*/

//export GOMPI_Comm_errhandler_function

func GOMPI_Comm_errhandler_function(comm *C.MPI_Comm, err *C.int) {
er := int (xerr)
fmt.Printf ("GO Errorcode %d\n", *err)

if er != MPI.ERR_OTHER {
errs++
fmt.Printf ("Unexpected error code\n")
}
if MPI.Comm(*comm) != mycomm {
errs++
fmt.Printf ("Unexpected communicator\n")
}
calls++
return

If error-handler functions with variable-argument lists are essential for a specific GOMPI
project, we recommend to fall back to our first presented approach (there is no alternative).

4.3. How to write MPI wrapper function in Golang

For MPI implementations which are written in C, the creation of function wrappers is
straight forward. Since Cgo creates the C pseudo package that contains ready to use C
bindings, there are just few steps necessary to write the wrapper function.

1. Identify input and output parameters Golang supports multiple return values.
Hence, it is a good idea to make use of this feature in order to organize the function
signatures more clearly. This requires to identify and separate the input parameters
form the output parameters. Exceptions are pointers to memory regions that are
used as buffers for arbitrary data. As mentioned before (section 4.2.3), we use the

40

empty interface (instead of a pointer) to pass arbitrary data into our wrappers (a
helper function is used to extract the data pointer from the interface). Especially
for buffer regions this technique has proven beneficial, but it requires that also
buffer which are used for output are passed into the wrapper and therefore has to
be listed in the list of input parameters.

. Eliminate unnecessary input / output parameters:

Some MPI functions expect arrays of a specific type (typically integer or MPI_ -
Datatype arrays). In C those functions expect a data pointer as well as the array
size. In Golang we can make use of slices instead. Since the length / size of a
slice is part of its type, an extra parameter for the size is dispensable. Therefore,
it is sometimes possible to reduce the parameter list in a reasonable manner to
avoid additional copy overhead (call by value) and keep the signatures clear by
decreasing their complexity.

. Declare local variables for the output parameters:

MPI functions that are realized in C just return an error code and expect for
further output so called output parameters. As mentioned, we make use of the
multiple return value feature of Golang. This requires that the wrapper holds a
local variable for each output parameter that can be passed in the C function. Our
convention is that these variables are declared using C types, so they can directly
be passed into the C function and are converted to Golang types right before the
wrapper returns.

. Call the C function with in line type conversion of the input parameters:

Before an input parameter can be passed into the C function it has to be converted
to the corresponding C type. Instead of spending additional local variables which
would require memory and runtime, we directly convert the input parameters
within the argument list of the C function.

. Convert the types of the local variables and return their value:

In order to return the values the wrapper obtained via the output parameters of
the C function, the local variables which hold the data have to be converted to
Golang types. As befoolors that will be used to display "good", "degraded" or "bad"
values using the color good, core the conversion can happen in line.

An example of a typical and simple wrapper function (that follows the above mentioned
rules) is shown in listing 4.5. The considered function is MPI_Recv(). Regarding the
complexity of the wrapper it is to say that majority of our 266 wrapper functions are
almost as simple as the MPI Recv() wrapper.

41

0O Ui Wi

D) = = b e e e e
O © 00 IO UL W~ OO

Listing 4.5: The wrapper for MPI_Recv() (Extracted from src/MPI/comm.go)

func Recv(buffer interfaced{},
count int,
dataType Datatype,
source int,
tag int,
comm Comm) (Status, int) {

var status C.MPI_Status
bufferVoidPointer := Get_void_ptr (buffer)

err := C.MPI_Recv(bufferVoidPointer,
C.int (count),
C.MPI_Datatype(dataType),
C.int (source),
C.int (tag),

C.MPI_Comm(comm) ,

&status)

return Status(status), int(err)

4.4. Build System

When trying to build the bindings the Go build tools hit their limit limit of flexibility
really fast. There where several problems when trying to build the bindings for different
implementations on a single system. The solution was to ship a custom build system
written in Python.

Go needs to know the location of the shared object files of MPI in order to successfully
build the bindings. The Go build system is capable of utilizing pkg-config. But on many
compute clusters the shared object files are located in some kind of custom folder and
can’t be found by pkg-config. 1t’s possible to pass the path of the shared object files to
Go by exporting it as en environment variable. The Python build script first tries to
determine the path of the shared object files by using pkg-config and than adding custom
paths that are handed to the it by the command line. Another problem is that not
all MPI implementations are absolute compatible to the standard, like they introduce
different error codes. Since Go doesn’t support macros the source code needs to be
custom generated. When installing the bindings it’s necessary to pass the implementation
to the build script, so it knows how to generate the source code.

Since a compute cluster can have more than one MPI implementation installed, like
OpenMPI and MPICH2. It must be possible to install the bindings more than once. The
build script can generate different libraries of the bindings in case there is more than one
implementation present — the complete install instructions can be found at the go-mpi
project home page on GitHub [go-].

42

=W N =

=W N

5. Benchmarks

This chapter takes a look at the performance of the MPI wrapper and the Go language.
It will give a brief introduction to writing fast Go code. Then the benchmark is described
and the different compilers used to build it. At last the benchmark is evaluated and the
results are discussed.

5.1. Writing fast Go code

When writing high performance computing applications with Go there are some aspects
to take into consideration to write fast Go code. Consider a loop like Listing 5.1, the
loop iterates over a slice of numbers and sums the numbers up. In addition a static offset
is added in each iteration. The offset is read form the struct attributes and the struct is
accessed in each iteration.

Listing 5.1: Summing up the numbers of a slice and adding a static offset in each iteration.

for i:=0; i < len(numbers); i++ {
sum = sum + numbers[i] + attributes.offset

}

At first struct lookups should be minimized as much as possible. When accessing the
same struct inside a loop over and over again, the value of the struct member should be
stored in a local variable. The code from Listing 5.1 can be optimised by moving the
struct lookup of attributes out of the loop, into a variable. Listing 5.2 shows a optimised
version.

Listing 5.2: Summing up numbers and adding a static offset, utilizing the range operator.

offset := attributes.offset

for i:=0m i < len(numbers); i++ {
sum = sum + numbers[i] + offset

}

Another optimization is to minimize slice lookups. For example when iterating over a
slice it’s faster to use the range operator than using a for loop with a counter variable.
Listing 5.2 shows the listing 5.2 with range operator applied.

Listing 5.3: Summing up numbers and adding a static offset, utilizing the range operator.

offset := attributes.offset
for index, element:= range numbers {
sum = sum + element + offset

3

43

5.2. The Benchmark

The benchmark uses the Jacobi method to solve partial differential equations. It is a line
by line port of the C program die Go program is compared with. The only optimizations
applied to the code a the two Go specific optimizations from Chapter 5.1. The parallelism
is only archived through the MPI wrapper. Every MPI process only consists of a single
goroutine.

5.3. Compilers

The benchmark is build with different compilers and linkers. It is compiled with the
Go GC compiler with the 1.0.3 runtime and the 1.1.1 runtime. Furthermore the Go
GCC compiler is used with 1.1.1 runtime. When compiling the program with GCC' two
different linker where used. One test case uses the default GNU BFD linker and the
other uses the gold linker developed by Google for faster linking.

5.4. Results

Figure 5.1.: Benchmarking GO, build with different tools, versus C, using the Jacobi
method to solve partial differential equation with blocking communication.

Blocking Communication

1600

— Go 1.1.1 GCC Id.gold
1400F _

Go 1.1.1 GCC Id.bfd
1200f
— Goll1lGC

1000 CGCC

— Go1l.0.3GC

Runtime in s
©
o
o

1 2 3 4 5 6 7 8 9 10
Number of nodes

The results show that Go can not match up with the performance of C but that was
to be expected. One interesting observation is that Go scales a lot nicer when using
non-blocking communication when comparing the blocking C implementation with the
blocking Go implementation and the and comparing the non-blocking implementations
with each other.

44

Figure 5.2.:

Benchmarking Go, build with different tools, versus C, using the Jacobi
method to solve partial differential equation with non blocking communica-
tion.

Non Blocking Communication

— Go1.1.1 GCCld.gold| |
Go 1.1.1 GCC Id.bfd
— Gol.l.lGC

CGCC

=

o

o

o
T

— Go1l.0.3GC

8001

Runtime in s

1 2 3 4 5 6 7 8 9 10
Number of nodes

Another property is that Go 1.0.3 is faster than 1.1.1. The cause of this is that Go 1.1.1
iterates slower over slices than 1.0.3 [Slo].

When looking at the non-blocking communication benchmark it is obvious that the GCC
compiler dose better optimizations than the GC compiler of Go.

45

6. Conclusion

This project successfully implemented Go bindings for MPI 2. The source code can be
found at https://github.com/JohannWeging/go-mpi.

6.1. Go for Scientific Computing

Go is a programming language that could have a future in scientific computing. There
are several reasons for that. First it is a quit easy to learn programming language because
of its slim instruction set and garbage collection (2.3). This makes Go suitable not only
for computer scientists but although for all kinds for HPC users.

It’s very easy to write bindings for existing C libraries for Go. See section 4.3. Common
used libraries for scientific computing can be connected to Go. There are already bindings
for several other libraries commonly used in scientific computing. Like the go-hdf5, which
can be found on Github [HDF|. Even GPGPU computing is possible with Go. There are
bindings for CUDA [CUD] and OpenCL [Ope], both open source and hosted on Github.
Science Go is a quiet young language (2.3.1) it’s most likely that the compiler optimiza-
tions will get better and the performance will improve over time and will get closer to
the performance of C. The MPI bindings are feature complete for MPI version 2, working
with OpenMPI and MPI

6.2. Future Work

6.2.1. MPI 3 and Wrapping More Implementations

Currently the implementation only supports OpenMPI and MPICH2 with the features
of MPI version 2. The bindings need further support of more implementations. One
problem is to test the bindings with proprietary implementations of MPI because it
would be necessary to obtain a license of the implementation. Maybe asking nicely helps.
In addition more and more MPI implementations will support MPI version 3. The
bindings will have to adapt to the new standard at some point and support the new
features. Some of them where introduced in section 6.2.1. The new functions need to
supported and deprecated functions need to be deleted. In general there is still a lot of
testing left to ensure the correctness of the bindings. A unit test suit for each individual
function has to be introduced.

46

OO UL W N+

6.2.2. High Level API

The go-mpi bindings are are very close designed to the original C API of MPI. refref
But the Go language offers more features (2.3) than C which can be used to simplify the
usage of MPI.

Listing 6.1: Comparing a C like MPI call against a more high level approach.

var array [100][100] int

// C like MPI call with: send buffer, count, data type, dest, tag,
— comm
MPI.Send(array [0][10], 10, MPI.INT, O, O, MPI.COMM_WORLD)

// High level call where the send method %s part of a communticator
— struct

// with: sendbuffer, dest, tag

commWorld.Send (array [0] [10:21], 0, 0)

Listing 6.1 shows a possible high level approach to MPI bindings. The Send function
is not longer bound to the MPI package but bound to the communicator like it’s done
in the C++ API of MPI [Mes09]. However the support of the C++ bindings where
discontinued in MPI 3 [MPI12] [Dis]. The count of elements to send is no longer needed
because slice expressions [Go] can be used to send a portion of the array. The data type
can be obtained from the data passed to the send function. This approach looks a lot
nicer but it has to use reflections to obtain information about the data passed to the
function. Using reflections to obtain the count of elements to send and the data type is
slow. The approach adds overhead to a function call. If this high level call is executed
inside a loop the overhead can be quit significant.

Listing 6.2: Incompatibility between the high level and C like API

var array [100][100] int
commWorld := MPI.COMM_WORLD

commWorld.Send (array [0] [10:21], 0, O0)

// The mew commWorld struct can used on the C like API too
MPI.Send (array[0][10], 10, MPI.INT, O, O, commWorld)

In addition the communicator used in the low- and the high level function is the same to
ensure compatibility between the two calls. The two APIs should be located in different
packages. One normal MPI package an a high level HLMPI package but they should be
usable at the same time. This would allow iterative tuning the program. The program
could be first programmed with the high level bindings and than use the low level C like
bindings on portions of the program that often call MPI functions.

47

Bibliography

[Bal12]

[Cgoal

[Cgob]

[Chi12]

[CUD]

[Dis|

[FB10]

I. Balbaert. The Way to Go: A Thorough Introduction to the Go Programming
Language. Tuniverse.Com, 3 2012.

C? go? cgo! Online Resource. url: http://golang.org/doc/articles/c_go_
cgo.html (last check: 2013-03-15).

Command cgo. Online Resource. url: http://golang.org/cmd/cgo/ (last
check: 2013-03-15).

D. Chisnal. The Go Programming Language Phrasebook. Developer’s Library.
Addison Wesley, 4 2012.

Cuda bindings for go. Online Resource. url: https://github.com/barnex/
cudab (last check: 2014-02-10).

The mpi c++ bindings: what happened, and why? On-
line Resource. url: http://blogs.cisco.com/performance/
the-mpi-c-bindings-what-happened-and-why/ (last check: 2014-02-10).

R. Feike and S. Blass. Programmierung in Google Go: Finstieg, Beispiele und
professionelle Anwendung. Open Source Library. Addison Wesley, 11 2010.

Gecego, a compiler for go language. Online Resource. url: http://golang.org/
ref/spec (last check: 2013-03-15).

go-mpi bindings. Online Resource. url: https://github.com/johannweging/
go-mpi (last check: 2014-02-10).

The go programming language. Online Resource. url: http://golang.org/doc/
(last check: 2013-03-15).

Go 1.1 release notes. Online Resource. url: http://golang.org/doc/gol.1
(last check: 2013-03-15).

The go programming language - faq. why does go not have generic types? Online
Resource. url: http://golang.org/doc/fag#tgenerics (last check: 2013-03-
15).

The go programming language specification. Online Resource. url:
http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15440-f11/go/
doc/gccgo_install.html (last check: 2013-03-15).

48

http://golang.org/doc/articles/c_go_cgo.html
http://golang.org/doc/articles/c_go_cgo.html
http://golang.org/cmd/cgo/
https://github.com/barnex/cuda5
https://github.com/barnex/cuda5
http://blogs.cisco.com/performance/the-mpi-c-bindings-what-happened-and-why/
http://blogs.cisco.com/performance/the-mpi-c-bindings-what-happened-and-why/
http://golang.org/ref/spec
http://golang.org/ref/spec
https://github.com/johannweging/go-mpi
https://github.com/johannweging/go-mpi
http://golang.org/doc/
http://golang.org/doc/go1.1
http://golang.org/doc/faq#generics
http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15440-f11/go/doc/gccgo_install.html
http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15440-f11/go/doc/gccgo_install.html

[HDF] Online Resource. url: https://github.com/kisielk/go-hdf5 (last check:
2014-02-10).

[Hoa78] Charles Antony Richard Hoare. Communicating sequential processes. Commu-

nications of the ACM, 21(8):666-677, 1978.

[Mi1] F. Miiller. Systemprogrammierung in Google Go: Grundlagen, Skalierbarkeit,
Performanz, Sicherheit, volume 1. Dpunkt Verlag, 2 2011.

[Mes09] Message Passing Interface Forum. Mpi: A message-passing interface standard,
version 2.2. Specification, September 2009.

[MPI12] MPI Forum. MPI: A Message-Passing Interface Standard Version 3.0, 9 2012.
url: http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
(last check: 2013-03-15).

[Ope|] Opencl bindings for go. Online Resource. url: https://github.com/PieterD/
gocl (last check: 2014-02-10).

[Oth] Mpi bindings for go. Online Resource. url: https://github.com/
marcusthierfelder/mpi (last check: 2014-02-10).

[Slo] Array access time regression, significantly slower than slice. Online Resource.
url: https://groups.google.com/forum/#!msg/golang-dev/TI540YWno68/
cH4xw525IF8J (last check: 2014-02-10).

[Sum12] M. Summerfield. Programming in Go: Creating Applications for the 21st
Century. Developer’s Library. Addison Wesley, 5 2012.

[Syn] Package sync. Online Resource. url: http://golang.org/pkg/sync/
#WaitGroup (last check: 2013-10-02).

49

https://github.com/kisielk/go-hdf5
http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
https://github.com/PieterD/gocl
https://github.com/PieterD/gocl
https://github.com/marcusthierfelder/mpi
https://github.com/marcusthierfelder/mpi
https://groups.google.com/forum/#!msg/golang-dev/TI54OYWno68/cH4xw525IF8J
https://groups.google.com/forum/#!msg/golang-dev/TI54OYWno68/cH4xw525IF8J
http://golang.org/pkg/sync/#WaitGroup
http://golang.org/pkg/sync/#WaitGroup

List of Figures

2.1

5.1

5.2

A simple topology to be used with MPI. 8

Benchmarking GO, build with different tools, versus C, using the Jacobi
method to solve partial differential equation with blocking communication. 44
Benchmarking Go, build with different tools, versus C, using the Jacobi
method to solve partial differential equation with non blocking communi-
cation. L 45

20

List of Tables

2.1 Numeric types in Golang

51

List of Listings

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20
2.21

4.1
4.2
4.3
4.4
4.5

5.1

5.2
5.3

6.1
6.2

Simple MPI example 6
Simple MPI example for non-blocking communication 7
Simple MPI example for collective communications. 7
The topology of figure 2.1 implemented in MPIL. 9
"Hello world” example in Golang 10
Extended 'Hello world” example in Golang 12
Example of distinct types in Golang 13
Example of type conversion L L. 13
Example of type conversion L. 14
Using strings in Golang 15
Using arrays in Golang 15
Handling slices in Golang 17
Dynamic allocation of a two-dimensional array 18
Structuring data in Golang 19
An example of writing type specific functions in Golang 20
A simple example of using interfaces 21
A simple example of using goroutines L. 23
A simple example of using channels 25
An advanced example of using channels 26
Using a mutex by inhering from the sync. Mutex type. 28
Using a WaitGroup 29
Callback function example in Golang 37
src/tests/src/errhandler.ho o000 39
src/tests/src/erthandler.co 39
Extract from src/tests/test-errhandler.go 40
The wrapper for MPI_Recv() (Extracted from src/MPI/comm.go) . .. 42

Summing up the numbers of a slice and adding a static offset in each

iteration. oL 43
Summing up numbers and adding a static offset, utilizing the range operator. 43
Summing up numbers and adding a static offset, utilizing the range operator. 43

Comparing a C like MPI call against a more high level approach. 47
Incompatibility between the high level and C like API 47

52

Appendices

23

A. Appendix

A.1. Used Software (Tools)

e Programming Languages
— Google Go (Golang)
- C
— Python

Compiler
- GCC
- GC

Linker
— GNU linker (1d)
— Google Linker (gold)

Libraries
— OpenMPI
— MPICH2

Version Control System
— Git http://stud.wr.informatik.uni-hamburg.de/git/1213-gompi
— Github https://github.com/JohannWeging/go-mpi

A.2. Configuration: Testbed

o DKRZ Cluster (cluster.wr.informatik.uni-hamburg.de)

e 10 nodes, each:
2 x 6 Cores (Intel Xeon Westmere 5650 @ 2.67GHz)
12 GByte DDR3 / PC1333 RAM
2 x Gigabit-Ethernet

o4

 http://stud.wr.informatik.uni-hamburg.de/git/1213-gompi
https://github.com/JohannWeging/go-mpi
cluster.wr.informatik.uni-hamburg.de

A.3. Configuration: Development Systems

e Lenovo Thinkpad W530
CPU: Ivy-bridge 4x2.6 GHz
RAM: 8 Gigabyte
SSD: Intel 320
OS: Gentoo Linux
Kernek: 3.6.11-x86 64
GCC: 4.6.3
Python: 2.7
GO: 1.03 /1.1.1
MPI: OpenMPI 1.6.3

e Lenovo Thinkpad X1
CPU: Sandy-bridge 2x2,4 GHz
RAM: 8 Gigabyte
SSD: Crucial m4
OS: Arch Linux
Kernel: 3.7.11-x86 64
GCC: 4.7.2
GO: 1.0.3 / 1.1.1
MPI: OpenMPI 1.6.4

95

	Motivation
	Introduction
	Introduction into MPI (3)
	Basic Concept
	Non-Blocking Collective Communication
	Neighbourhood Collective Functions

	Introduction into Golang
	History
	Variables, Function Calls and Return Values
	Data Types
	Type specific functions
	Interfaces
	Concurrency Features
	The Sync Package
	Gc and Gccgo
	Cgo

	Initial Situation & Project Goals
	Implementation and Realization
	Design decisions at the beginning of the project
	Decisions during the development phase
	Type conversions
	Passing typed data: Arrays vs. Slices
	Passing arbitrary data: The empty interface
	MPI Definitions and how to access them from Golang space
	Callback functions

	How to write MPI wrapper function in Golang
	Build System

	Benchmarks
	Writing fast Go code
	The Benchmark
	Compilers
	Results

	Conclusion
	Go for Scientific Computing
	Future Work
	MPI 3 and Wrapping More Implementations
	High Level API

	Bibliography
	List of Figures
	List of Tables
	List of Listings
	Appendices
	Appendix
	Used Software (Tools)
	Configuration: Testbed
	Configuration: Development Systems

