Structures

Proseminar “C — Grundlagen und Konzepte”

Michael Kuhn

Research Group Scientific Computing
Department of Informatics
Faculty of Mathematics, Informatics und Natural Sciences
University of Hamburg

2013-05-10

1form
i'h‘ Universitat Hamburg dle Zl..Ikunft

DER FORSCHUNG | DER LEHRE | DER BILDUNG

ires, Unions Ali e i Bit Fields Initialization d s O 1e Structures Summar

Overview

Structures and Unions

Alignment, Padding and Bit Fields
Access and Initialization
Compound Literals

Opaque Structures

[@ Summary

Structures, Unions Ali ent, Padding, B eld Initialization Compound Literals Opaque Structures Summary

@00

struct

B structs can contain multiple variables
m Potentially different data types

m The contained variables are called members

1 |struct fool_s

2 | {

3 double bar;

4 int baz;

51%;

1 |sizeof (double) == 8
2 |sizeof (int) == 4
3 |sizeof (struct fool_s) == 12

Structures, Unions Alignment, Padding, Bit Fields Access, Initialization Compound Literals Opaque Structures Summary

000

union

m unions look the same as structs
m They only take up the space required by the largest member
m Only one member is valid at any time

1 |union fool_u

2 | {

3 double bar;

4 char baz [8];

51%;

1 |sizeof (double) == 8
2 |sizeof (char [8]) == 8
3 |sizeof (union fool_u) == 8

Structures, Unions Alignment, Padding, Bit Fields Access, Initialization Compound Literals Opaque Structures Summary

[ele] J

typedef

O© 0O NO OB~ WD

[y
o

m Writing “struct fool_s” every time can be cumbersome
m typedef allows defining a new data type
m Done implicitly in C++

struct fool_s

{
double bar;
int baz;

3
typedef struct fool_s fool_s;

struct fool_s a;
fool_s b;

15

Structures, Unions Alignment, Padding, Bit Fields Access, Initialization Compound Literals Opaque Structures Summary

o0

Introduction

m The compiler aligns struct members for optimal access
m This can lead to padding

1 |struct foo2_s

2 | {

3 char bar;

4 int baz;

5|1};

1 |sizeof (char) == 1
2 |sizeof (int) == 4
3 |sizeof (struct foo2_s) == 8

m baz starts at a 4 byte boundary, wasting 3 bytes after bar
m Best practice: Group members of same type, from largest to
smallest

Structures, Unions

Alignment, Padding, Bit Fields Access, Initialization

oe

Bit Fields

O© 0O ~NO OB~ WDN -

=
o

Compound Literals Opaque Structures Summary

m Bit fields allow limiting the memory occupied by a member
m Can be used to provide convenient bitwise access

struct foo3_s

{
unsigned int bar : 8;
unsigned int flag : 1;
unsigned int 23;

s

struct foo3_s a;

a.bar = 255;

a.flag = 2; /* invalid! */

sizeof (struct foo3_s) == 4

Structures, Unions Alignment, Pad Bit Fields Access, Initialization Compound Literals Opaque Structures Summary

o0

Access

m Members can be accessed using . and ->
m a->b is equal to (*¥a).b

1 |struct foo2_s

2 | {

3 char bar;

4 int baz;

51%F;

6

7 |struct foo2_s a;
8 |la.bar = ’a’;

9

10 |struct foo2_s b[1];
11 |b->baz = 42;

tures, Unions i nent, Padding, Bit Fields Access, Initialization Compound Literals que Structures Summary

oe

Initialization

B structs can also be directly initialized
m Unspecified members are initialized to zero

struct foo2_s
{
char bar;
int baz;

};

[}
-~
o
NS
N
L'_l

struct foo2_s a
struct foo2_s b
struct foo2_s c

© O ~NO Ol WN -
]
’_A_\
o
)
N o
]
N
w
[

I
-
o
(-]

Structures, Unions Alignment, Padding, Bit Fields /

, Initialization Compound Literals Opaque Structures Summary

o0

Assignments

O© 00 NO OB WN K

—
o

m Compound literals have the following form:

(type){arguments}

struct arg_s
{

int a;

int b;
};

struct arg_s a = { 1, 2 };
struct arg_s b;

b=4{1, 2 3} /* dnvalid! */
b = (struct arg_s){ 1, 2 };

10/15

Structures, Unions Alignment, Padding, Bit Fields Access, Initialization ~Compound Literals Opaque Structures Summary

oe

Assignments, Function Arguments and Return Values

© 0O NO OB~ WD -

struct arg_s* p;
p=&{ 1, 2 3} /* dinvaled! */
p = &(struct arg_s){ 1, 2 };

static

struct arg_s

foo (struct arg_s a)
{

return (struct arg_s){ a.a, a.b };

}

foo({ 1, 2 }); /* invalid! */
foo((struct arg_s){ 1, 2 });

11/15

Initialization Compound Literals Opaque Structures

Summary

[1e]

Declaration

m Putting struct definitions into header files unnecessarily
leaks implementation details to users

m structs are often used as opaque data types

Listing 1: opaque.h

struct opaque_s;
typedef struct opaque_s opaque_s;

A WDN R

char const* opaque_get_name (opaque_sx*);

12 /15

res, Unions Alignment, Pad Bit Fields ss, Initialization Compound Literals Opaque Structures Summary

oe

Definition
m The actual struct contents and implementation are hidden

Listing 2: opaque.c

#include "opaque.h"

struct opaque_s
{

char* name;

};

char const* opaque_get_name (opaque_s* o)

{

© 0O NO OB~ WDN -

=
o

return o->name;

—
—

3

13/15

ires, Unions Alignment, Padding, Bit Fields s, Initialization pound Literals 1e Structures Summary

Summary

m Structures and unions allow grouping of different data types

m The compiler aligns and pads structures for optimal access,
which can lead to wasted memory

m Structures can be initialized by simply listing values for all
members or by using designated initializers

m Compound literals allow assigning structures directly and
passing anonymous structures to functions

m Opaque structures can be used to separate the interface from
the implementation

14 /15

Structures, Unions lignment, Padding, Bit Fields Access, Initialization Compound Literals Opaque Structures Summary

Bonus: Strict Aliasing

A W N

m The compiler can assume that two objects of different data
types do not reside at the same memory address

m That is, they do not alias each other

uinti16_t af[2] = { 1, 2 };
(uint32_tx)a

1]
W
N

printf ("%d %d\n", al[0], al1l);

42 0

warning: dereferencing type-punned pointer
— will break strict-aliasing rules
— [-Wstrict-aliasing]

15/15

	Structures and Unions
	Alignment, Padding and Bit Fields
	Access and Initialization
	Compound Literals
	Opaque Structures
	Summary

