
Structures, Unions Alignment, Padding, Bit Fields Access, Initialization Compound Literals Opaque Structures Summary

Structures
Proseminar “C – Grundlagen und Konzepte”

Michael Kuhn

Research Group Scientific Computing
Department of Informatics

Faculty of Mathematics, Informatics und Natural Sciences
University of Hamburg

2013-05-10

1 / 15

Structures, Unions Alignment, Padding, Bit Fields Access, Initialization Compound Literals Opaque Structures Summary

Overview

1 Structures and Unions

2 Alignment, Padding and Bit Fields

3 Access and Initialization

4 Compound Literals

5 Opaque Structures

6 Summary

2 / 15

Structures, Unions Alignment, Padding, Bit Fields Access, Initialization Compound Literals Opaque Structures Summary

struct

structs can contain multiple variables

Potentially different data types

The contained variables are called members

1 struct foo1_s

2 {

3 double bar;

4 int baz;

5 };

1 sizeof(double) == 8

2 sizeof(int) == 4

3 sizeof(struct foo1_s) == 12

3 / 15

Structures, Unions Alignment, Padding, Bit Fields Access, Initialization Compound Literals Opaque Structures Summary

union

unions look the same as structs

They only take up the space required by the largest member

Only one member is valid at any time

1 union foo1_u

2 {

3 double bar;

4 char baz [8];

5 };

1 sizeof(double) == 8

2 sizeof(char [8]) == 8

3 sizeof(union foo1_u) == 8

4 / 15

Structures, Unions Alignment, Padding, Bit Fields Access, Initialization Compound Literals Opaque Structures Summary

typedef

Writing “struct foo1 s” every time can be cumbersome

typedef allows defining a new data type

Done implicitly in C++

1 struct foo1_s

2 {

3 double bar;

4 int baz;

5 };

6
7 typedef struct foo1_s foo1_s;

8
9 struct foo1_s a;

10 foo1_s b;

5 / 15

Structures, Unions Alignment, Padding, Bit Fields Access, Initialization Compound Literals Opaque Structures Summary

Introduction

The compiler aligns struct members for optimal access
This can lead to padding

1 struct foo2_s

2 {

3 char bar;

4 int baz;

5 };

1 sizeof(char) == 1

2 sizeof(int) == 4

3 sizeof(struct foo2_s) == 8

baz starts at a 4 byte boundary, wasting 3 bytes after bar

Best practice: Group members of same type, from largest to
smallest

6 / 15

Structures, Unions Alignment, Padding, Bit Fields Access, Initialization Compound Literals Opaque Structures Summary

Bit Fields

Bit fields allow limiting the memory occupied by a member
Can be used to provide convenient bitwise access

1 struct foo3_s

2 {

3 unsigned int bar : 8;

4 unsigned int flag : 1;

5 unsigned int : 23;

6 };

7
8 struct foo3_s a;

9 a.bar = 255;

10 a.flag = 2; /* invalid! */

1 sizeof(struct foo3_s) == 4

7 / 15

Structures, Unions Alignment, Padding, Bit Fields Access, Initialization Compound Literals Opaque Structures Summary

Access

Members can be accessed using . and ->

a->b is equal to (*a).b

1 struct foo2_s

2 {

3 char bar;

4 int baz;

5 };

6
7 struct foo2_s a;

8 a.bar = ’a’;

9
10 struct foo2_s b[1];

11 b->baz = 42;

8 / 15

Structures, Unions Alignment, Padding, Bit Fields Access, Initialization Compound Literals Opaque Structures Summary

Initialization

structs can also be directly initialized

Unspecified members are initialized to zero

1 struct foo2_s

2 {

3 char bar;

4 int baz;

5 };

6
7 struct foo2_s a = { ’a’, 42 };

8 struct foo2_s b = { .baz = 23 };

9 struct foo2_s c = { 0 };

9 / 15

Structures, Unions Alignment, Padding, Bit Fields Access, Initialization Compound Literals Opaque Structures Summary

Assignments

Compound literals have the following form:
(type){arguments}

1 struct arg_s

2 {

3 int a;

4 int b;

5 };

6
7 struct arg_s a = { 1, 2 };

8 struct arg_s b;

9 b = { 1, 2 }; /* invalid! */

10 b = (struct arg_s){ 1, 2 };

10 / 15

Structures, Unions Alignment, Padding, Bit Fields Access, Initialization Compound Literals Opaque Structures Summary

Assignments, Function Arguments and Return Values

1 struct arg_s* p;

2 p = &{ 1, 2 }; /* invalid! */

3 p = &(struct arg_s){ 1, 2 };

1 static

2 struct arg_s

3 foo (struct arg_s a)

4 {

5 return (struct arg_s){ a.a, a.b };

6 }

7
8 foo({ 1, 2 }); /* invalid! */

9 foo((struct arg_s){ 1, 2 });

11 / 15

Structures, Unions Alignment, Padding, Bit Fields Access, Initialization Compound Literals Opaque Structures Summary

Declaration

Putting struct definitions into header files unnecessarily
leaks implementation details to users

structs are often used as opaque data types

Listing 1: opaque.h

1 struct opaque_s;

2 typedef struct opaque_s opaque_s;

3
4 char const* opaque_get_name (opaque_s *);

12 / 15

Structures, Unions Alignment, Padding, Bit Fields Access, Initialization Compound Literals Opaque Structures Summary

Definition

The actual struct contents and implementation are hidden

Listing 2: opaque.c

1 #include "opaque.h"

2
3 struct opaque_s

4 {

5 char* name;

6 };

7
8 char const* opaque_get_name (opaque_s* o)

9 {

10 return o->name;

11 }

13 / 15

Structures, Unions Alignment, Padding, Bit Fields Access, Initialization Compound Literals Opaque Structures Summary

Summary

Structures and unions allow grouping of different data types

The compiler aligns and pads structures for optimal access,
which can lead to wasted memory

Structures can be initialized by simply listing values for all
members or by using designated initializers

Compound literals allow assigning structures directly and
passing anonymous structures to functions

Opaque structures can be used to separate the interface from
the implementation

14 / 15

Structures, Unions Alignment, Padding, Bit Fields Access, Initialization Compound Literals Opaque Structures Summary

Bonus: Strict Aliasing

The compiler can assume that two objects of different data
types do not reside at the same memory address

That is, they do not alias each other

1 uint16_t a[2] = { 1, 2 };

2 *(uint32_t *)a = 42;

3
4 printf("%d %d\n", a[0], a[1]);

1 42 0

1 warning: dereferencing type -punned pointer

↪→ will break strict -aliasing rules

↪→ [-Wstrict -aliasing]

15 / 15

	Structures and Unions
	Alignment, Padding and Bit Fields
	Access and Initialization
	Compound Literals
	Opaque Structures
	Summary

