
Introduction PThreads Examples Pitfalls and Solutions C11 C++11

“C - Grundlagen und Konzepte”
Threads

Marcel Hellwig
1hellwig@informatik.uni-hamburg.de

Universität Hamburg

5. Juli 2013
SOSE 13

Introduction PThreads Examples Pitfalls and Solutions C11 C++11

cba
This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported

License.

Introduction PThreads Examples Pitfalls and Solutions C11 C++11

Questions?
Just raise your hand and ask (in German, if you like).

Fragen?
Einfach die Hand heben und fragen (gerne auch in Deutsch).

Introduction PThreads Examples Pitfalls and Solutions C11 C++11

Table of contents

1 Introduction

2 PThreads

3 Examples

4 Pitfalls and Solutions

5 C11

6 C++11

1 / 45

Introduction PThreads Examples Pitfalls and Solutions C11 C++11

Why run things in parallel

computing in parallel may be faster
take advantage of multi-core systems
use of different resources of the system
because we can ,

2 / 45

Introduction PThreads Examples Pitfalls and Solutions C11 C++11

Ways to run things in parallel

Forks
Threads

3 / 45

Introduction PThreads Examples Pitfalls and Solutions C11 C++11

(Process) Forks

call fork() in C program
inherits the code and the IP of parent process
but not the memory
child starts where fork() has been called
parent and child processing independent from each other
simple example: call “ls” in bash

Horror of every unix user:
:(){ :|:&};:

4 / 45

Introduction PThreads Examples Pitfalls and Solutions C11 C++11

(Process) Forks

call fork() in C program
inherits the code and the IP of parent process
but not the memory
child starts where fork() has been called
parent and child processing independent from each other
simple example: call “ls” in bash

Horror of every unix user:
:(){ :|:&};:

4 / 45

Introduction PThreads Examples Pitfalls and Solutions C11 C++11

Threads

often called light-weight process
share resources with parent (e.g. file descriptor, PID, signals)
much cheaper to create than forks
starts not at the same point, but in a (user-)defined function

5 / 45

Introduction PThreads Examples Pitfalls and Solutions C11 C++11

Battle: Forks vs Threads

50000 thread/fork creation that won’t do anything
time in ms

Ite Fork Thread
1 5830 750
2 5680 730
3 5840 750
4 5620 740
5 5660 770
6 5580 750
7 5780 780
8 5890 750
9 5810 760
10 5670 770

Average 5736 750
6 / 45

Introduction PThreads Examples Pitfalls and Solutions C11 C++11

Why threads?

light-weight
easier to manage than forks
start at a defined function, not at the thread_create point

7 / 45

Introduction PThreads Examples Pitfalls and Solutions C11 C++11

Why not threads?

high complexity
very hard to debug
produce errors more often (than ST application)
not a speed up every time

8 / 45

Introduction PThreads Examples Pitfalls and Solutions C11 C++11

Where do we use threads?

GUI-Application
Network-application
Garbagecollection
“Divide and Conquer”

9 / 45

Introduction PThreads Examples Pitfalls and Solutions C11 C++11

PThreads

short for POSIX Threads
API for thread using in C (before C11)
defined for all POSIX systems
therefore highly portable
“Native POSIX Thread Library”

10 / 45

Introduction PThreads Examples Pitfalls and Solutions C11 C++11

PThread API

#include <pthread.h>

pthread_ main functions
pthread_attr_ thread attribute objects

pthread_mutex_ mutexes
pthread_mutexattr_ mutex attributes objects

pthread_cond_ condition variables
pthread_condattr_ condition attributes objects
pthread_rwlock_ read/write locks

11 / 45

Introduction PThreads Examples Pitfalls and Solutions C11 C++11

PThread API

int pthread_create(pthread_t *thread, const pthread_attr_t *attr,
void *(*start_routine)(void *), void *arg);

int pthread_join(pthread_t thread, void **status);
int pthread_cancel(pthread_t thread);
void pthread_exit(void *status);

man 7 pthreads

12 / 45

Introduction PThreads Examples Pitfalls and Solutions C11 C++11

quicksort

Classic “Divide and Conquer” 1

Quicksort

1please don’t mix up with “Multiply and Surrender”
13 / 45

Introduction PThreads Examples Pitfalls and Solutions C11 C++11

quicksort

50 · 106 Elements time in ms
Ite std::sort() ST Async
1 7309 6555 2512
2 6977 6320 2337
3 7180 6516 2450
4 6933 6388 2372
5 7189 7074 2387
6 7040 7399 2339
7 7040 6875 2434
8 7187 7060 2562
9 7145 7050 2470
10 6898 6846 2422

Average 7089.8 6808.3 2428.5

14 / 45

Introduction PThreads Examples Pitfalls and Solutions C11 C++11

simple example

void *par(void *par) {
int i;
for(i = 0; i < 10; i++) {

printf("%d is here.\n", i);
sched_yield();

}
}

int main() {
int i;
pthread_t t;
pthread_create(&t, NULL, par, NULL);
for(i = 0; i < 10; i++) {

printf("%d was here.\n", i);
sched_yield();

}
pthread_join(t, NULL);

}

15 / 45

Introduction PThreads Examples Pitfalls and Solutions C11 C++11

simple example

Possible output:

0 was here.
0 is here.
1 was here.
2 was here.
3 was here.
1 is here.
2 is here.
3 is here.
4 was here.
5 was here.

6 was here.
7 was here
4 is here.
5 is here.
6 is here.
7 is here.
8 is here.
9 is here.
8 was here.
9 was here.

16 / 45

Introduction PThreads Examples Pitfalls and Solutions C11 C++11

pitfalls

int i;

void *par(void *par) {
for(i = 0; i < 10; i++) {

printf("%d is here.\n", i);
sched_yield();

}
}

int main() {
pthread_t t;
pthread_create(&t, NULL, par, NULL);
for(i = 0; i < 10; i++) {

printf("%d was here.\n", i);
sched_yield();

}
pthread_join(t, NULL);

}

17 / 45

Introduction PThreads Examples Pitfalls and Solutions C11 C++11

pitfalls

0 was here.
0 is here.
1 was here.
3 was here.
4 was here.
5 was here.
6 was here.
7 was here.
8 was here.
9 was here.
2 is here.

What happend here?

⇒ lost update ∧ race-condition

18 / 45

Introduction PThreads Examples Pitfalls and Solutions C11 C++11

pitfalls

0 was here.
0 is here.
1 was here.
3 was here.
4 was here.
5 was here.
6 was here.
7 was here.
8 was here.
9 was here.
2 is here.

What happend here? ⇒ lost update ∧ race-condition

18 / 45

Introduction PThreads Examples Pitfalls and Solutions C11 C++11

race-conditions

Balance: 100e
time Thread 1 Thread 2
1 reads 100e
2 reads 100e
3 withdraw 75e
4 write new balance: 25e
5 deposits 50e
6 write new balance: 150e

new balance: 150e ⇒ Wrong!

Is there a way out of this dilemma?

19 / 45

Introduction PThreads Examples Pitfalls and Solutions C11 C++11

race-conditions

Balance: 100e
time Thread 1 Thread 2
1 reads 100e
2 reads 100e
3 withdraw 75e
4 write new balance: 25e
5 deposits 50e
6 write new balance: 150e

new balance: 150e ⇒ Wrong!
Is there a way out of this dilemma?

19 / 45

Introduction PThreads Examples Pitfalls and Solutions C11 C++11

Locks

grant exclusive access to certain regions in code/resource
provide at least two operations

lock
unlock

20 / 45

Introduction PThreads Examples Pitfalls and Solutions C11 C++11

Sorts of locks

semaphore
mutex-lock
read-write-lock
monitoring

21 / 45

Introduction PThreads Examples Pitfalls and Solutions C11 C++11

semaphore

struct Semaphor {
int counter;
Queue queue;

};

void Lock (Semaphor s) {
s.counter = s.couter - 1;
if (s.counter < 0)

self_block(s.queue);
}

void Unlock (Semaphor s) {
s.counter = s.counter + 1;
if (s.counter <= 0)

unblock(s.queue);
}

22 / 45

Introduction PThreads Examples Pitfalls and Solutions C11 C++11

Mutex

in fact a binary semaphore
has concept of an owner
recursive locking is possible

23 / 45

Introduction PThreads Examples Pitfalls and Solutions C11 C++11

Mutex

mutex a;
int i;

void inc()
{

lock(a);
i++;
unlock(a);

}

void dec()
{

lock(a);
i--;
unlock(a);

}

24 / 45

Introduction PThreads Examples Pitfalls and Solutions C11 C++11

Problems while Locking

mutex a;
int i;

void incAndPrint()
{

lock(a);
inc();
print();
unlock(a);

}

void inc()
{

lock(a);
i++;
unlock(a)

}

void print()
{

lock(a);
printf("%d", i);
unlock(a);

}
25 / 45

Introduction PThreads Examples Pitfalls and Solutions C11 C++11

Recursive Locking

mutex a;
int i;

void incAndPrint()
{

rec_lock(a);
inc();
print();
rec_unlock(a);

}

void inc()
{

rec_lock(a);
i++;
rec_unlock(a)

}

void print()
{

rec_lock(a);
printf("%d", i);
rec_unlock(a);

}
26 / 45

Introduction PThreads Examples Pitfalls and Solutions C11 C++11

deadlock

27 / 45

Introduction PThreads Examples Pitfalls and Solutions C11 C++11

deadlock

A deadlock is a state where is
no back and no forth.
mutex a, b;

void thread1() {
lock(a);
lock(b);

}

void thread2() {
lock(b);
lock(a);

}

Solution

mutex a, b;

void thread1() {
lock(a);
lock(b);

}

void thread2() {
lock(a);
lock(b);

}

28 / 45

Introduction PThreads Examples Pitfalls and Solutions C11 C++11

deadlock

A deadlock is a state where is
no back and no forth.
mutex a, b;

void thread1() {
lock(a);
lock(b);

}

void thread2() {
lock(b);
lock(a);

}

Solution

mutex a, b;

void thread1() {
lock(a);
lock(b);

}

void thread2() {
lock(a);
lock(b);

}

28 / 45

Introduction PThreads Examples Pitfalls and Solutions C11 C++11

Read-/Writelock

grants multiple threads access to one resource
multiple threads can read
only one thread can write
can gain more performance
C++ STL is designed to have multiple read access

29 / 45

Introduction PThreads Examples Pitfalls and Solutions C11 C++11

Read-/Writelock

mutex m;
list li;

int findItem(char *item)
{

readLock(m);
int result = li.find(item);
readUnlock(m);
return result;

}

void insertItem(char *item)
{

writeLock(m);
li.insert(item);
writeUnlock(m);

}

30 / 45

Introduction PThreads Examples Pitfalls and Solutions C11 C++11

Monitor

also used for protecting critical regions
provide more support like mutex

wait
notify

31 / 45

Introduction PThreads Examples Pitfalls and Solutions C11 C++11

C11 API

copied API mostly from pthreads
get rid of thread attributes
common prefix is thrd_ 2

currently no compiler supports the C11 standard
they rely on pthreads or the windows implementation

2are people too lazy to type in two more characters?
32 / 45

Introduction PThreads Examples Pitfalls and Solutions C11 C++11

C11 API

#include <threads.h>

thrd_t t; // thread struct
thrd_create(thrd_t *thr, thrd_start_t func, void *arg);
thrd_join(thrd_t *thr);
thrd_exit(int res);

33 / 45

Introduction PThreads Examples Pitfalls and Solutions C11 C++11

C11 API

C11 supports also supports
mutex
condition variables
thread local storage

34 / 45

Introduction PThreads Examples Pitfalls and Solutions C11 C++11

C++11

RAII idom (Resource Acquisition Is Initialization)
C++ has support of

constructors
destructors
exceptions

therefore thread things can get more complicated
C++11 is supported by most of modern compilers (gcc, clang, msvc)

35 / 45

Introduction PThreads Examples Pitfalls and Solutions C11 C++11

C++11 example

#include <iostream>
#include <thread>

int main()
{

std::thread t1([]() {
std::cout << "Hallo" << std::endl;

});

t1.join();
return 0;

}

36 / 45

Introduction PThreads Examples Pitfalls and Solutions C11 C++11

C++11 exception

std::mutex m;
int i;

void foo()
{

m.lock();
do_fancy_stuff_with(i);
m.unlock();

}

void baz()
{

m.lock();
do_fancy_stuff_with(i);
m.unlock();

}

Be aware that do_fancy_stuff_with may throw an exception
37 / 45

Introduction PThreads Examples Pitfalls and Solutions C11 C++11

C++

rember RAII?
c’tor creates object and locks mutex
d’tor unlocks mutex and destroy object
failsafe and easy to use!
works because C++ does not have GC, but call d’tor instant
this way also unique_ptr works

38 / 45

Introduction PThreads Examples Pitfalls and Solutions C11 C++11

C++11

mutex m;
int i;

void foo()
{

std::lock_guard<std::mutex> l(m);
do_fancy_stuff_with(i);

}

void baz()
{

std::lock_guard<std::mutex> l(m);
do_fancy_stuff_with(i);

}
39 / 45

Introduction PThreads Examples Pitfalls and Solutions C11 C++11

C++11 mutexes

mutex
timed_mutex
recursive_mutex
recursive_timed_mutex
shared_mutex

40 / 45

Introduction PThreads Examples Pitfalls and Solutions C11 C++11

C++11 locking

lock_guard
provides needed methods
lock and unlock

unique_lock
like lock_guard but provides more methods
try_lock, time_based_lock, etc

shared_lock
will be used for read-/writelocks
uses shared mutexes for this

41 / 45

Introduction PThreads Examples Pitfalls and Solutions C11 C++11

C++11 fancy stuff

C++11 also provides some fancy stuff like:
functional programming
lambda expressions
promises
futures
async threads

If you are interested, I will give a talk on C++11 at KBS next semester.

42 / 45

Introduction PThreads Examples Pitfalls and Solutions C11 C++11

Conclusion

Threads could make programs run faster
increase complexity a lot
be aware of pitfalls like race-conditions
use different locks for different situations
do not forget to unlock!
use it only when necessary

43 / 45

Introduction PThreads Examples Pitfalls and Solutions C11 C++11

References

6 - https://computing.llnl.gov/tutorials/pthreads/fork_vs_thread.txt
11 - https://computing.llnl.gov/tutorials/pthreads/
14 - http://demin.ws/blog/english/2012/04/28/multithreaded-quicksort/
27 - http://www.nichtlustig.de/toondb/050528.html

44 / 45

https://computing.llnl.gov/tutorials/pthreads/fork_vs_thread.txt
https://computing.llnl.gov/tutorials/pthreads/
http://demin.ws/blog/english/2012/04/28/multithreaded-quicksort/
http://www.nichtlustig.de/toondb/050528.html

Introduction PThreads Examples Pitfalls and Solutions C11 C++11

Sources

https://computing.llnl.gov/tutorials/pthreads/
http://en.cppreference.com/w/c/thread
http://en.cppreference.com/w/cpp/thread
https://en.wikipedia.org/wiki/Lock_%28computer_science%29
https:
//stackoverflow.com/questions/520837/what-are-common-concurrency-pitfalls

45 / 45

https://computing.llnl.gov/tutorials/pthreads/
http://en.cppreference.com/w/c/thread
http://en.cppreference.com/w/cpp/thread
https://en.wikipedia.org/wiki/Lock_%28computer_science%29
https://stackoverflow.com/questions/520837/what-are-common-concurrency-pitfalls
https://stackoverflow.com/questions/520837/what-are-common-concurrency-pitfalls

	Introduction
	Bla
	(Process) Forks
	Threads

	PThreads
	Pthreads
	PThreads API

	Examples
	quicksort
	Hello World

	Pitfalls and Solutions
	race-condition
	locks
	mutex
	deadlock
	Read-/Writelock
	Monitor

	C11
	C11 API

	C++11
	C++11

