
Joachim

Nitschke

PARALLEL

PROGRAMMING

Project Seminar “Parallel Programming”, Summer Semester 2011

 Introduction

 Parallel program design

 Patterns for parallel programming

 A: Algorithm structure

 B: Supporting structures

CONTENT

2

Context

around

parallel

programming

INTRODUCTION

 Many different models reflecting the various

different parallel hardware architectures

 2 or rather 3 most common models:

 Shared memory

 Distributed memory

 Hybrid models (combining shared and distributed memory)

PARALLEL PROGRAMMING MODELS

4

Shared memory Distributed memory

PARALLEL PROGRAMMING MODELS

5

Shared memory

 Synchronize memory

access

 Locking vs. potential

race conditions

Distributed memory

 Communication

bandwidth and

resulting latency

 Manage message

passing

 Synchronous vs.

asynchronous

communication

PROGRAMMING CHALLENGES

6

 2 common standards as examples for the 2

parallel programming models:

 Open Multi-Processing (OpenMP)

 Message passing interface (MPI)

PARALLEL PROGRAMMING STANDARDS

7

 Collection of libraries and compiler directives for
parallel programming on shared memory
computers

 Programmers have to explicitly designate blocks
that are to run in parallel by adding directives like:

 OpenMP then creates a number of threads
executing the designated code block

OpenMP

8

 Library with routines to manage message passing

for programming on distributed memory computers

 Messages are sent from one process to another

 Routines for synchronization, broadcasts, blocking

and non blocking communication

MPI

9

MPI.Scatter MPI.Gather

MPI EXAMPLE

10

General

strategies

for finding

concurrency

PARALLEL PROGRAM

DESIGN

 General approach: Analyze a problem to identify

exploitable concurrency

 Main concept is decomposition : Divide a

computation into smaller parts all or some of

which can run concurrently

FINDING CONCURRENCY

12

 Tasks: Programmer-defined units into which the

main computation is decomposed

 Unit of execution (UE) : Generalization of processes

and threads

SOME TERMINOLOGY

13

 Decompose a problem into tasks that can run

concurrently

 Few large tasks vs. many small tasks

 Minimize dependencies among tasks

TASK DECOMPOSITION

14

 Group tasks to simplify managing their
dependencies

 Tasks within a group run at the same time

 Based on decomposition: Group tasks that belong
to the same high-level operations

 Based on constraints: Group tasks with the same
constraints

GROUP TASKS

15

 Order task groups to satisfy constraints among

them

 Order must be:

 Restrictive enough to satisfy constraints

 Not too restrictive to improve flexibility and hence efficiency

 Identify dependencies – e.g.:

 Group A requires data from group B

 Important: Also identify the independent groups

 Identify potential dead locks

ORDER TASKS

16

 Decompose a problem‘s data into units that can be
operated on relatively independent

 Look at problem‘s central data structures

 Decomposition already implied by or basis for task
decomposition

 Again: Few large chunks vs. many small chunks

 Improve flexibility: Configurable granularity

DATA DECOMPOSITION

17

 Share decomposed data among tasks

 Identify task-local and shared data

 Classify shared data: read/write or read only?

 Identify potential race conditions

 Note: Sometimes data sharing implies
communication

DATA SHARING

18

Typical

parallel

program

structures

PATTERNS FOR

PARALLEL

PROGRAMMING

 How can the identified concurrency be used to

build a program?

 3 examples for typical parallel algorithm

structures:

 Organize by tasks: Divide & conquer

 Organize by data decomposition: Geometric/domain

decomposition

 Organize by data flow: Pipeline

A: ALGORITHM STRUCTURE

20

 Principle: Split a problem recursively into smaller

solvable sub problems and merge their results

 Potential concurrency: Sub problems can be solved

simultaneously

DIVIDE & CONQUER

21

 Precondition: Sub problems can be solved

independently

 Efficiency constraint: Split and merge should be

trivial compared to sub problems

 Challenge: Standard base case can lead to too

many too small tasks

 End recursion earlier?

DIVIDE & CONQUER

22

 Principle: Organize an algorithm around a linear

data structure that was decomposed into

concurrently updatable chunks

 Potential concurrency: Chunks can be updated

simultaneously

GEOMETRIC/DOMAIN DECOMPOSITION

23

 Example: Simple blur filter

where every pixel is set to

the average value of its

surrounding pixels

 Image can be split into

squares

 Each square is updated by a

task

 To update square border

information from other

squares is required

GEOMETRIC/DOMAIN DECOMPOSITION

24

 Again: Granularity of decomposition?

 Choose square/cubic chunks to minimize surface

and thus nonlocal data

 Replicating nonlocal data can reduce

communication → “ghost boundaries”

 Optimization: Overlap update and exchange of

nonlocal data

 Number of tasks > number of UEs for better load

balance

GEOMETRIC/DOMAIN DECOMPOSITION

25

 Principle based on analogy assembly line : Data

flowing through a set of stages

 Potential concurrency: Operations can be performed

simultaneously on different data items

PIPELINE

26

C1 C2 C3 C4 C5 C6

C1 C2 C3 C4 C5 C6

C1 C2 C3 C4 C5 C6

Pipeline stage 1

Pipeline stage 2

Pipeline stage 3

time

 Example: Instruction pipeline in CPUs

 Fetch (instruction)

 Decode

 Execute

 ...

PIPELINE

27

 Precondition: Dependencies among tasks allow an

appropriate ordering

 Efficiency constraint: Number of stages << number

of processed items

 Pipeline can also be nonlinear

PIPELINE

28

 Intermediate stage between problem oriented

algorithm structure patterns and their realization

in a programming environment

 Structures that “support” the realization of parallel

algorithms

 4 examples:

 Single program, multiple data (SPMD)

 Task farming/Master & Worker

 Fork & Join

 Shared data

B: SUPPORTING STRUCTURES

29

 Principle: The same code runs on every UE

processing different data

 Most common technique to write parallel

programs!

SINGLE PROGRAM, MULTIPLE DATA

30

 Program stages:

1. Initialize and obtain unique ID for each UE

2. Run the same program on every UE: Differences in the

instructions are driven by the ID

3. Distribute data by decomposing or sharing/copying global

data

 Risk: Complex branching and data decomposition

can make the code awful to understand and

maintain

SINGLE PROGRAM, MULTIPLE DATA

31

 Principle: A master task (“farmer”) dispatches

tasks to many worker UEs and collects (“farms”)

the results

TASK FARMING/MASTER & WORKER

32

TASK FARMING/MASTER & WORKER

33

 Precondition: Tasks are relatively independent

 Master:

 Initiates computation

 Creates a bag of tasks and stores them e.g. in a shared queue

 Launches the worker tasks and waits

 Collects the results and shuts down the computation

 Workers:

 While the bag of tasks is not empty pop a task and solve it

 Flexible through indirect scheduling

 Optimization: Master can become a worker too

TASK FARMING/MASTER & WORKER

34

 Principle: Tasks create (“fork”) and terminate

(“join”) other tasks dynamically

 Example: An algorithm designed after the Divide &

Conquer pattern

FORK & JOIN

35

 Mapping the tasks to UEs can be done directly or

indirectly

 Direct: Each subtask is mapped to a new UE

 Disadvantage: UE creation and destruction is expensive

 Standard programming model in OpenMP

 Indirect: Subtasks are stored inside a shared

queue and handled by a static number of UEs

 Concept behind OpenMP

FORK & JOIN

36

 Problem: Manage access to shared data

 Principle: Define an access protocol that assures

that the results of a computation are correct for

any ordering of the operations on the data

SHARED DATA

37

 Model shared data as a(n) (abstract) data type with

a fixed set of operations

 Operations can be seen as transactions (→ ACID

properties)

 Start with a simple solution and improve

performance step-by-step:

 Only one operation can be executed at any point in time

 Improve performance by separating operations into

noninterfering sets

 Separate operations in read and write operations

 Many different lock strategies…

SHARED DATA

38

QUESTIONS?

 T. Mattson, B. Sanders and B. Massingill. Patterns
for parallel programming. Addison-Wesley, 2004.

 A. Grama, A. Gupta, G. Karypis and V. Kumar.
Introduction to parallel computing. Addison
Wesley, 2nd Edition, 2003.

 P. S. Pacheco. An introduction to parallel
programming . Morgan Kaufmann, 2011.

 Images from Mattson et al. 2004

REFERENCES

40

