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Context 

around 

parallel 

programming 

INTRODUCTION 



 Many different models reflecting the various 

different parallel hardware architectures  

 2 or rather 3 most common models:  

 Shared memory 

 Distributed memory 

 Hybrid models (combining shared and distributed memory)  

PARALLEL PROGRAMMING MODELS 
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Shared memory Distributed memory 

PARALLEL PROGRAMMING MODELS 
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Shared memory 

 Synchronize memory 

access 

 Locking vs. potential 

race conditions 

 

Distributed memory 

 Communication 

bandwidth and 

resulting latency 

 Manage message 

passing 

 Synchronous vs. 

asynchronous 

communication 

PROGRAMMING CHALLENGES 
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 2 common standards as examples for the 2 

parallel programming models:  

 Open Multi-Processing (OpenMP) 

 Message passing interface (MPI) 

 

PARALLEL PROGRAMMING STANDARDS 
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 Collection of libraries and compiler directives for 
parallel programming on shared memory 
computers 

 

 Programmers have to explicitly designate blocks 
that are to run in parallel by adding directives like:  

 

 OpenMP then creates a number of threads 
executing the designated code block  

 

 

OpenMP 
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 Library with routines to manage message passing 

for programming on distributed memory computers  

 

 Messages are sent from one process to another  

 Routines for synchronization, broadcasts, blocking 

and non blocking communication 

MPI 

9 



MPI.Scatter MPI.Gather 

MPI EXAMPLE 
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General 

strategies 

for finding 

concurrency 

PARALLEL PROGRAM 

DESIGN 



 General approach: Analyze a problem to identify 

exploitable concurrency 

 

 Main concept is decomposition : Divide a 

computation into smaller parts all or some of 

which can run concurrently 

FINDING CONCURRENCY 
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 Tasks: Programmer-defined units into which the 

main computation is decomposed 

 Unit of execution (UE) : Generalization of processes 

and threads 

SOME TERMINOLOGY 
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 Decompose a problem into tasks that can run 

concurrently 

 

 Few large tasks vs. many small tasks 

 Minimize dependencies among tasks  

TASK DECOMPOSITION 
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 Group tasks to simplify managing their 
dependencies 

 

 Tasks within a group run at the same time 

 Based on decomposition: Group tasks that belong 
to the same high-level operations  

 Based on constraints: Group tasks with the same 
constraints 

GROUP TASKS 
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 Order task groups to satisfy constraints among 

them 

 

 Order must be: 

 Restrictive enough to satisfy constraints 

 Not too restrictive to improve flexibility and hence efficiency  

 Identify dependencies – e.g.: 

 Group A requires data from group B 

 Important: Also identify the independent groups  

 Identify potential dead locks 

 

ORDER TASKS 
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 Decompose a problem‘s data into units that can be 
operated on relatively independent 

 

 Look at problem‘s central data structures  

 Decomposition already implied by or basis for task 
decomposition 

 Again: Few large chunks vs. many small chunks 

 Improve flexibility: Configurable granularity  

DATA DECOMPOSITION 
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 Share decomposed data among tasks 

 

 Identify task-local and shared data 

 Classify shared data: read/write or read only?  

 Identify potential race conditions 

 Note: Sometimes data sharing implies 
communication 

DATA SHARING 
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Typical 

parallel 

program 

structures 

PATTERNS FOR 

PARALLEL 

PROGRAMMING 



 How can the identified concurrency be used to 

build a program? 

 3 examples for typical parallel algorithm 

structures: 

 Organize by tasks: Divide & conquer 

 Organize by data decomposition: Geometric/domain 

decomposition 

 Organize by data flow: Pipeline 

A: ALGORITHM STRUCTURE 
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 Principle: Split a problem recursively into smaller 

solvable sub problems and merge their results 

 Potential concurrency: Sub problems can be solved 

simultaneously 

DIVIDE & CONQUER 
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 Precondition: Sub problems can be solved 

independently 

 Efficiency constraint: Split and merge should be 

trivial compared to sub problems 

 Challenge: Standard base case can lead to too 

many too small tasks  

 End recursion earlier? 

DIVIDE & CONQUER 
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 Principle: Organize an algorithm around a linear 

data structure that was decomposed into 

concurrently updatable chunks 

 Potential concurrency: Chunks can be updated 

simultaneously 

GEOMETRIC/DOMAIN DECOMPOSITION 
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 Example: Simple blur filter 

where every pixel is set to 

the average value of its 

surrounding pixels 

 Image can be split into 

squares 

 Each square is updated by a 

task 

 To update square border 

information from other 

squares is required 

 

 

GEOMETRIC/DOMAIN DECOMPOSITION 
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 Again: Granularity of decomposition? 

 Choose square/cubic chunks to minimize surface 

and thus nonlocal data 

 Replicating nonlocal data can reduce 

communication → “ghost boundaries”  

 Optimization: Overlap update and exchange of 

nonlocal data 

 Number of tasks > number of UEs for better load 

balance 

GEOMETRIC/DOMAIN DECOMPOSITION 
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 Principle based on analogy assembly line : Data 

flowing through a set of stages 

 Potential concurrency: Operations can be performed 

simultaneously on different data items 

PIPELINE 
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C1 C2 C3 C4 C5 C6 

Pipeline stage 1 

Pipeline stage 2 

Pipeline stage 3 

time 



 Example: Instruction pipeline in CPUs 

 Fetch (instruction) 

 Decode 

 Execute 

 ... 

PIPELINE 
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 Precondition: Dependencies among tasks allow an 

appropriate ordering 

 Efficiency constraint: Number of stages << number 

of processed items 

 Pipeline can also be nonlinear 

PIPELINE 
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 Intermediate stage between problem oriented 

algorithm structure patterns and their realization 

in a programming environment 

 Structures that “support” the realization of parallel 

algorithms 

 4 examples: 

 Single program, multiple data (SPMD) 

 Task farming/Master & Worker 

 Fork & Join 

 Shared data 

B: SUPPORTING STRUCTURES 
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 Principle: The same code runs on every UE 

processing different data 

 

 Most common technique to write parallel 

programs! 

SINGLE PROGRAM, MULTIPLE DATA 
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 Program stages: 

1. Initialize and obtain unique ID for each UE 

2. Run the same program on every UE: Differences in the 

instructions are driven by the ID 

3. Distribute data by decomposing or sharing/copying global 

data 

 

 Risk: Complex branching and data decomposition 

can make the code awful to understand and 

maintain 

SINGLE PROGRAM, MULTIPLE DATA 
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 Principle: A master task (“farmer”) dispatches 

tasks to many worker UEs and collects (“farms”) 

the results 

TASK FARMING/MASTER & WORKER 
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TASK FARMING/MASTER & WORKER 
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 Precondition: Tasks are relatively independent  

 

 Master:  

 Initiates computation 

 Creates a bag of tasks and stores them e.g. in a shared queue 

 Launches the worker tasks and waits 

 Collects the results and shuts down the computation 

 Workers: 

 While the bag of tasks is not empty pop a task and solve it  

 

 Flexible through indirect scheduling 

 Optimization: Master can become a worker too  

TASK FARMING/MASTER & WORKER 
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 Principle: Tasks create (“fork”) and terminate 

(“join”) other tasks dynamically  

 

 Example: An algorithm designed after the Divide & 

Conquer pattern 

FORK & JOIN 
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 Mapping the tasks to UEs can be done directly or 

indirectly 

 

 Direct: Each subtask is mapped to a new UE 

 Disadvantage: UE creation and destruction is expensive  

 Standard programming model in OpenMP 

 Indirect: Subtasks are stored inside a shared 

queue and handled by a static number of UEs  

 

 Concept behind OpenMP 

FORK & JOIN 
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 Problem: Manage access to shared data 

 Principle: Define an access protocol that assures 

that the results of a computation are correct for 

any ordering of the operations on the data  

SHARED DATA 
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 Model shared data as a(n) (abstract) data type with 

a fixed set of operations 

 Operations can be seen as transactions (→ ACID 

properties) 

 Start with a simple solution and improve 

performance step-by-step: 

 Only one operation can be executed at any point in time 

 Improve performance by separating operations into 

noninterfering sets 

 Separate operations in read and write operations 

 Many different lock strategies…  

SHARED DATA 
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QUESTIONS? 
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