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Abstract

The Message Passing Interface (MPI) is a widely adopted standard for use in high-performance,
distributed memory, parallel computing. Due to its high complexity, caused by complex com-
munication patterns and often unknown numbers of participating processes, both manual and
automated error detection for MPI software is difficult.

Colored Petri Nets (CPNs) offer a powerful, high-level modelling framework to model com-
plex systems. Arbitrary annotations in a modelling language allow a CPN to model almost
anything. They are suited particularly well for modelling distributed systems, making them a
good match for MPI software.

This thesis presents a novel approach for modelling the communication patterns of MPI
programs as Colored Petri Nets. It includes a fully-featured CPN implementation, a proposed
specification of an intermediate representation for compiling MPI software into CPNs, as well
as a proof-of-concept evaluator tool which can analyze the proposed IR and detect a variety
of programming errors.

The evaluator is as yet incomplete, supporting only a very small subset of the MPI standard,
but the modelling approach should transfer to most MPI operations, and the performance
of the software is promising. Other approaches to modelling and checking MPI software are
either slower or defunct.
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1 Introduction

This document details an M. Sc. thesis project that attempts to simulate Message Passing
Interface (MPI) communication using Colored Petri Nets (CPNs). This chapter provides a
general overview of both the project in general and this document specifically. Section 1.1
will introduce the context of the work, briefly describing MPI and CPNs and their uses.
Section 1.2 on the next page will explain why pursuing this project was desirable. Section 1.3
on the following page poses four leading questions that will be answered throughout this
document. Section 1.4 on page 3 concludes the chapter by detailing the structure of this
document and giving an overview of the following chapters.

1.1 General Context

The thesis project is done in the context of High-Performance Computing (HPC). The Mes-
sage Passing Interface is a standard for parallel computing in distributed-memory systems,
often employed by supercomputers.

Implementing MPI communication correctly is difficult for various reasons (cf. e.g. Gorlatch,
2004; Gropp, 2001). The MPI compiler lacks compile-time logic checks. The OpenMPI
manual for the compiler mpicc states: “mpicc is a convenience wrappers [sic] for the underlying
C compiler” (The Open MPI Project, 2021). It does not check, for example, whether all send
operations have a corresponding receive operation elsewhere in the program code. Or whether
there are circular communication patterns that can cause deadlocks. The soundness of an
MPI program may depend on the number of processes involved, which can vary between
invocations. Perhaps an MPI program is only correct when an even number of processes are
involved.

Colored Petri Nets provide a powerful modelling tool. According to Jensen and Kristensen,
2009, p. 3, “typical application domains of CP-nets are communication protocols, data net-
works, distributed algorithms, and embedded systems”. They state that CPNs are “also
applicable more generally for modelling systems where concurrency and communication are
key characteristics”. These are obviously characteristics of MPI programs. However, CPNs
are relatively simple. A CPN is just a directed graph with two types of nodes and some
additional features. This makes a CPN quite easy to display visually, which can help with the
modelling process. The inclusion of annotations in a modelling language such as CPN ML
makes CPNs essentially equivalent to a high-level programming language.

Part of the thesis project is an implementation of Colored Petri Nets. This implementation
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1 Introduction

is then used to model a variety of MPI programs, and to evaluate these models.

1.2 Rationale

The thesis aims to investigate the feasibility of translating MPI communication patterns into
CPNs and using the resulting models to analyze the communication. The ultimate goal of
this effort is to construct nets that accurately model the MPI communication they represent
and can thus be used to detect logic errors in an MPI program.

It is explicitly not within the scope of the thesis to implement a fully automated translation
of MPI programs into CPNs and subsequent analysis. However, this goal is kept in mind
throughout the project, and it will attempt to provide the foundation for an automated
process.

1.3 Leading Questions

This thesis document will answer the following leading questions.

Which individual MPI operations can be modelled, and how?

Answering this question entails creating CPN models for individual MPI operations. These
models will not represent real-world MPI programs but will lay the groundwork for modelling
more complex MPI software.

To determine whether an MPI operation can be modelled, a candidate CPN must be analyzed
and shown to represent the operation accurately. This can likely be done by exploring its
possible state space.

Because the MPI standard defines well over one hundred operations (cf. Message Passing
Interface Forum, 2021), this thesis will cover only the most-used operations. It is possible
that not all of these can be modelled accurately using CPNs.

Can more complex MPI programs with multiple MPI operations be
modelled, and if so, how?

This question is the logical continuation of the previous one. If at least some individual
MPI operations can be modelled, then an entire MPI program can likely be modelled, too.
This will entail more complexity as the model is no longer concerned with just the pure MPI
communication but also the control flow of the program, and the interaction between different
MPI operations.

2



1.4 Overview

What information from an MPI program is relevant for creating a CPN
representation?

This question ties in with the previous one. To accomplish a fully automated translation from
MPI program to CPN at some point in the future, as mentioned in Section 1.2 on the facing
page, an exact specification of the information that needs to be extracted from the program
to facilitate the construction of a model is required.

What kinds of errors can be detected using the CPN-based modelling
approach, and how?

Since the project aims to model MPI communication for error detection, the different kinds
of programmer errors need to be collected, and each must be evaluated. The error types that
CPNs can detect and how exactly this detection is possible shall be documented.

1.4 Overview

This section will give a short overview of the structure of the remaining chapters in this
document. Chapter 2 on page 5 will continue with more in-depth information on MPI, CPNs
and other concepts and technologies used for the thesis project. Chapter 3 on page 19 presents
the modelling approach central to the thesis, and shows how individual MPI operations and
entire MPI programs can be represented as CPNs. Chapter 4 on page 41 will propose an
intermediate representation that can be used in future work in a translation pipeline from C
program to CPN. Chapter 5 on page 47 provides insights into the technical aspects of the
implementation. Chapter 6 on page 57 evaluates the merits of the thesis project and will
show both the strengths and shortcomings of the modelling approach used. Chapter 7 on
page 73 lists and compares related work and similar approaches to this thesis. Chapter 8 on
page 83 and Chapter 9 on page 87 will conclude the document by giving and overview of
possible future work on the thesis topic and summarizing the work done.
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2 Background

This chapter will provide the theoretical and technical background for the thesis. First,
Section 2.1 will describe the Message Passing Interface. The other defining concept of the
thesis is the Colored Petri Net. Section 2.2 on page 13 will cover the the basic Petri Nets,
before Section 2.3 on page 15 will describe Colored Petri Nets. Finally, as the Colored Petri
Nets used for this thesis use Python as their modelling language, a short introduction to the
Python programming language is given in Section 2.4 on page 17.

2.1 Message Passing Interface

The Message Passing Interface (MPI) (cf. Message Passing Interface Forum, 2021) is a
standard for parallel computing in distributed-memory systems. MPI allows parallelization of
software not just on one machine with multiple processor cores but across many machines,
such as the nodes of a supercomputer. MPI standard implementations exist for various
languages, but the standard provides library routines for C and Fortran. This thesis will
focus on MPI programs written in C and using Version 4.0 of the MPI standard. There are
competing implementations of the MPI standard, like OpenMPI1 and MPICH2. Code written
and tested for this thesis was built using OpenMPI, version 4.1.5.

MPI is used to specify the communication between processes. To this end, the standard
includes, according to New Mexico State University, 2021, the following:

• Point-to-point communication, i.e., the sending of messages from one specific process
to another.

• Collective communication, i.e., operations that involve a specific group of processes, or
all processes

• Process groups

• Communicators

• Process topologies

• Language bindings for C and Fortran, as previously mentioned

• A profiling interface

1https://www.open-mpi.org/, accessed July 11, 2023
2https://www.mpich.org/, accessed July 11, 2023

5

https://www.open-mpi.org/
https://www.mpich.org/


2 Background

#include <mpi.h>

int main(void)
{

int size, rank;
int send = 42;
int recv;

MPI_Init(NULL, NULL);
MPI_Comm_size(MPI_COMM_WORLD, &size);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);

if (rank == 0) {
MPI_Send(&send, 1, MPI_INT, 1, 0,

MPI_COMM_WORLD);
} else if (rank == 1) {

MPI_Recv(&recv, 1, MPI_INT, 1, 0,
MPI_COMM_WORLD, MPI_STATUS_IGNORE);

}

MPI_Finalize();
return 0;

}

Listing 2.1: A simple MPI program that demonstrates MPI_Send and MPI_Recv.

• Miscellaneous environmental and inquiry functions

This thesis will focus on the first two points from the list above, namely point-to-point and
collective communication. The remaining elements either specify process groupings that then
use one of the mentioned communication methods or things that are unrelated to runtime
communication, such as the exact language bindings or the profiling interface.

Listing 2.1 shows a simple MPI program that makes use of point-to-point communication.
MPI_Send is used by a process to send a message to another process. To receive the
message, this other process must invoke MPI_Recv. Note that most MPI functions can
return an error code and that the program assumes that the number of processes in the
MPI_COMM_WORLD communicator is equal to two. Both potential errors and the number of
processes go unchecked in this example program for brevity. Other code examples in this
thesis document will follow this convention.

An MPI communicator is a set of processes. The MPI_COMM_WORLD communicator contains
all processes participating in the MPI program.

Listing 2.2 on the facing page demonstrates a collective operation, MPI_Allreduce. All

6



2.1 Message Passing Interface

#include <stdio.h>
#include <mpi.h>

int main(void) {
int rank, size, max_rank;

MPI_Init(NULL, NULL);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);

MPI_Allreduce(&rank, &max_rank, 1,
MPI_INT, MPI_MAX,
MPI_COMM_WORLD);

printf("process %d: the highest rank is: %d\n",
rank, max_rank);

MPI_Finalize();
return 0;

}

Listing 2.2: A simple MPI program that demonstrates MPI_Allreduce.

processes in the program invoke this operation, with their rank as the argument. The operation
returns the maximum (as indicated by the MPI_MAX argument) of all its inputs to each process.

2.1.1 MPI Programming Errors

Nguyen Ba and Arora, 2018 list five types of logical errors in MPI programs:

• Incorrect initialization of variables

• Lack of code handling different numbers of processes

• Incorrect distribution of non-contiguous data

• Incorrect choice of collective operations for data distribution

• Incorrect handling of break statements in loops

This thesis will largely ignore these errors because they are indirectly related to MPI com-
munication. A model of just the communication, such as the one this thesis proposes, will
never be able to detect an incorrectly initialized variable. Instead, the project aims to identify
the following types of errors reliably. Section 6.1 on page 57 will show that the modelling
approach developed for the thesis project can detect all of these.

7



2 Background

#include <mpi.h>

int main(void) {
int size, rank, recv, send = 42;

MPI_Init(NULL, NULL);
MPI_Comm_size(MPI_COMM_WORLD, &size);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);

if (rank == 0) {
MPI_Recv(&recv, 1, MPI_INT, 1, 1,

MPI_COMM_WORLD, MPI_STATUS_IGNORE);
MPI_Send(&send, 1, MPI_INT, 1, 0,

MPI_COMM_WORLD);
} else if (rank == 1) {

MPI_Recv(&recv, 1, MPI_INT, 0, 0,
MPI_COMM_WORLD, MPI_STATUS_IGNORE);

MPI_Send(&send, 1, MPI_INT, 0, 1,
MPI_COMM_WORLD);

}

MPI_Finalize();
return 0;

}

Listing 2.3: Two processes deadlock because they each call MPI_Recv and wait for one another
indefinitely.

Deadlocks

A deadlock occurs when one process begins a communication operation that requires partici-
pation by another process, but this other process is waiting in a different operation for the first
process. Neither process can continue, and the program stops its computation indefinitely.

Listing 2.3 shows a simple MPI program, which assumes two participating processes. Both call
MPI_Recv before MPI_Send, which results in both processes waiting on the other indefinitely.
The MPI_Send operations will never be executed.

Unmatched Send

An unmatched, synchronous send, e.g., MPI_Send in some cases, or MPI_Ssend, will cause a
process to wait indefinitely. The send operation can only return once some other process has
started a matching receive. But if there is no matching receive in the program, the operation
will not return. This is a bug in the MPI program.

8



2.1 Message Passing Interface

#include <mpi.h>

int main(void) {
int size, rank, out = 42;

MPI_Init(NULL, NULL);
MPI_Comm_size(MPI_COMM_WORLD, &size);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);

if (rank == 0) {
MPI_Ssend(&out, 1, MPI_INT, 1, 0, MPI_COMM_WORLD);

} else {
/* logic error: missing receive */

}

MPI_Finalize();
return 0;

}

Listing 2.4: An example of an unmatched send operation in an MPI program.

An unmatched, buffered send, e.g., MPI_Bsend, does not have to wait for a matching receive
operation. The sending process can continue almost immediately. However, it is still most
likely a bug in the MPI program when such a send with no receiver exists. It was surely the
intention of the programmer for the sent value to reach some other process.

Non-blocking MPI send operations, such as MPI_Ibsend, will always return immediately, but
any subsequent MPI_Wait on the created request object will then never complete.

Listing 2.4 shows a short example program with an unmatched send operation.

Unmatched Receive

When a process initiates a receive operation with no matching send operation, the receive
operation will never complete. This is the inverse of the unmatched send described in Sec-
tion 2.1.1 on the facing page.

Rank or Tag Mismatch

Any send or receive operation must specify which rank to send to or receive from and a tag
for the message. If the programmer accidentally specifies an incorrect rank or tag, they can
create a combination of an unmatched send and unmatched receive.

9



2 Background

keyword: mpi
language: c,c++
stars: >2
pushed: >2013-01-01

Listing 2.5: AGSearch repository query file.

2.1.2 MPI Functionality Usage Statistics

To better understand MPI usage, and to focus on the most-used MPI functions, the tool
AGSearch3 was used with the repository query shown in Listing 2.5. The query searches
the popular git4 hosting website GitHub5 for repositories tagged with the keyword mpi that
contain code in either of the two languages, C or C++. Repositories must have more than
two stars on GitHub to filter out repositories with almost no popularity. Additionally, the
repositories must have had commits (i.e., updates) pushed to them some time since January
1, 2013. AGSearch clones each repository that matches the query and performs a search of
its source code. For this analysis, AGSearch was configured to search for each C-Code MPI
function, as defined by the OpenMPI documentation6. Two additional code search terms were
added, the wildcard receive parameters MPI_ANY_SOURCE and MPI_ANY_TAG. The results of
the search are outlined in the following subsections.

Overview

AGSearch found 721 repositories. Of these, though, only 657 contained any of the code
search terms. That is, 657 repositories make use of the MPI API. The remainder were
likely false positives, such as the project “fuzzball”, where the acronym “MPI” is used to
refer to “Message Parsing Interpreter”7, not the Message Passing Interface. After a cursory
manual analysis, two repositories, https://github.com/open-mpi/ompi and https://github.
com/pmodels/mpich, were identified as implementations of the MPI standard. Both the false
positives and the MPI implementations are excluded from further analysis. That leaves a
total of 655 repositories considered for further analysis. In these 655 repositories, the sum of
all invocations of any MPI function was 913 671.

Wildcard Receives

Wildcard receive operations are those that do not specify either the source rank, tag, or both.
They use the special parameters MPI_ANY_SOURCE (for rank) and MPI_ANY_TAG (for tag).
When an MPI process performs a receive using MPI_ANY_SOURCE, it will accept a matching

3https://github.com/wr-hamburg/AGSearch, accessed July 23, 2023
4https://git-scm.com, accessed July 23, 2023
5https://github.com, accessed July 23, 2023
6https://www.open-mpi.org/doc/current/, accessed February 8, 2023
7https://github.com/fuzzball-muck/fuzzball/blob/master/docs/mpi-intro#L27, accessed February 8, 2023
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2.1 Message Passing Interface

Table 2.1: Usage of MPI Wildcard Parameters

Parameter Users % of total

MPI_ANY_SOURCE 183 27.9%
MPI_ANY_TAG 132 20.2%

Both 115 17.6%
Either 200 30.5%

send from any process, potentially causing non-deterministic communication patterns. Ac-
cordingly, a receive with MPI_ANY_TAG can potentially match several messages, as any tag
will be accepted rather than one specific tag. This can also cause non-determinism. Usage
of wildcard receives thus makes modelling MPI communication difficult, as non-determinism
can greatly increase the state-space of a model.

The number of repositories using either wildcard parameter, or both, is shown in Table 2.1.
Percentage values are rounded to one decimal place.

Most Frequently Used Operations

There are two approaches to identifying the most used MPI communication operations based
on the data gathered by AGSearch. One can count the number of repositories that use a
given operation at all, or one can count the total number of times an operation is used across
all repositories.

Table 2.2 on the next page shows the 20 most common MPI communication operations, both
according to how many repositories use them at all (in the left half of the table), and by
how many usage instances there are across all analysed repositories (right half). Note that
non-communication operations, such as MPI_Init and MPI_File_write, were filtered out.

Table 2.3 on the following page shows the 25 unique operations extracted from those displayed
in Table 2.2 on the next page. The operations are sorted alphabetically.

11



2 Background

Table 2.2: The 20 most-used MPI Operations by Users and Usage

Operation Users of total Operation Usage Instances of total

MPI_Send 453 69% MPI_Get 21 857 2.4%
MPI_Barrier 445 68% MPI_Send 14 977 1.6%
MPI_Recv 444 68% MPI_Put 12 642 1.4%
MPI_Bcast 409 62% MPI_Barrier 11 987 1.3%
MPI_Reduce 312 48% MPI_Wait 11 844 1.3%
MPI_Allreduce 308 47% MPI_Recv 11 698 1.3%
MPI_Gather 299 46% MPI_Bcast 10 596 1.2%
MPI_Wait 285 44% MPI_Reduce 9496 1.0%
MPI_Get 284 43% MPI_Test 8343 0.9%
MPI_Isend 270 41% MPI_Alltoall 8163 0.9%
MPI_Irecv 254 39% MPI_Allreduce 7078 0.8%
MPI_Allgather 219 33% MPI_Irecv 5415 0.6%
MPI_Scatter 201 31% MPI_Gather 4558 0.5%
MPI_Waitall 195 30% MPI_Isend 4494 0.5%
MPI_Gatherv 164 25% MPI_Win_flush 4423 0.5%
MPI_Test 163 25% MPI_Win_lock 4212 0.5%
MPI_Sendrecv 157 24% MPI_Allgather 4102 0.4%
MPI_Alltoall 144 22% MPI_Win_unlock 3993 0.4%
MPI_Allgatherv 124 19% MPI_Sendrecv 3735 0.4%
MPI_Scatterv 120 18% MPI_Alltoallv 3602 0.4%

Total 167 215 18.3%

Table 2.3: Most-used MPI Operations extracted from Table 2.2

MPI_Allgatherv MPI_Allgather MPI_Allreduce MPI_Alltoallv MPI_Alltoall
MPI_Barrier MPI_Bcast MPI_Gatherv MPI_Gather MPI_Get
MPI_Irecv MPI_Isend MPI_Put MPI_Recv MPI_Reduce
MPI_Scatterv MPI_Scatter MPI_Sendrecv MPI_Send MPI_Test
MPI_Waitall MPI_Wait MPI_Win_flush MPI_Win_lock MPI_Win_unlock

12



2.2 Petri Nets

2.2 Petri Nets

A Petri Net, first defined by Petri, 1962, and summarized by Peterson, 1977, is a directed
graph with two different kinds of nodes: places and transitions. Edges in a Petri Net may
only ever connect a place to a transition, or a transition to a place. There can never be an
edge between two nodes of the same kind. By convention, edges in Petri Nets are referred to
as “arcs”. This document will follow this convention.

Places may contain “tokens”. Tokens are used to perform simulations with Petri Nets. In any
given simulation step, a transition may consume tokens from places that have outgoing arcs
to that transition. The transition may also produce new tokens and deposit them into places
that have an incoming arc from that transition.

Figure 2.1 shows a straightforward Petri Net. It has two places, P0, and P1, as well as one
transition, T0. P0 contains a single token. T0 can thus fire once, consuming the token from
P0 and emitting a new token to P1. Figure 2.2 on the next page depicts the same Petri Net
after T0 has fired once.

Figure 2.3 on the following page shows a Petri Net modelling a traffic light. This net is
extended with the notion of capacity. Capacity is part of some Petri Net definitions, such as
the one presented by Chen, n.d. In this instance, the places “red” and “yellow” are each given
a maximum capacity of 1. The place “green” defaults to an infinite capacity.

The traffic light net is deterministic. In the depicted state, only “green” contains a token, and
therefore only T0 can fire. When it does fire, the token from “green” is consumed, and a new
token is deposited into “yellow”. Then, only T1 can fire. After it has, “red” will contain the
only token in the net. Now, T2 can fire, consuming the token from “red” and depositing one
token each into “red” and “yellow”. Now, T1 and T2 could fire again, but their target places
have already reached the maximum number of tokens they may contain, as specified by their
capacity. So only T3 may fire, consuming both tokens and depositing a token into “green”.
This puts the net back into its initial state, as depicted in Figure 2.3 on the next page.

Arc weights determine how many tokens a transition needs to consume from its input-places

P0

T0

P1

Figure 2.1: A straightforward Petri Net with one place containing a single token, one empty
place, and one transition.
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P0

T0

P1

Figure 2.2: The Petri Net from Figure 2.1 on the previous page, after T0 has fired once.

red/1

yellow/1

green

T0

T1T2

T3

Figure 2.3: A Petri Net modelling a traffic light.

P0

T0

4

Figure 2.4: A dead Petri Net, due to the weight of the arc from P0 to T0.
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in order to fire. If these places do not meet the token requirements, the transition cannot
fire. When a transition fires, it consumes as many tokens as specified by the arc weights from
each input-place. Figure 2.4 on the facing page shows a Petri Net with a place P0 which
contains three tokens. The transition T0 cannot fire, though, because the arc connecting P0

to T0 has a weight of 4.

As showcased in Figure 2.3 on the preceding page, a transition may have more than one
incoming arc and more than one outgoing arc. A transition that has incoming arcs from two
places, for example, will consume tokens from both these places when it fires, not just from
either one. Accordingly, the transition will generate and deposit tokens into all places to
which it connects via outgoing arcs.

2.3 Colored Petri Nets

Colored Petri Nets (sometimes spelled Coloured Petri Nets), are what Jensen and Kristensen,
2009 refer to as “high-level Petri Nets”. CPNs extend Petri Nets with a number of additional
features.

2.3.1 Color

The name-giving feature of CPNs is “color”. The “color” feature allows tokens to have a
specific value of a specific type. Tokens in CPNs are no longer necessarily indistinguishable.
A token can, for example, be of the type “integer” and have the value 42. Or it can be of
type “string” and have the value "hello world". The types and values that a token can
have depend on the associated Modelling Language of the CPN.

2.3.2 Modelling Language

For the “color” of a token to have a tangible effect, CPNs include modelling language. CPNs,
as defined by Jensen and Kristensen, 2009, use a language called CPN ML, derived from
Standard ML8. The SNAKES project (cf. Pommereau, 2015) uses Python (cf. Python Soft-
ware Foundation, 2023) as its modelling language. Inspired by this, the CPNs used for this
thesis project also use Python.

8See e.g.: https://smlfamily.github.io/, accessed July 23, 2023

P0
0

3 7

T0

Figure 2.5: A simple CPN, with just one place and a few tokens of type integer.
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2 Background

P0
0

3 7

P1

T0

x * 2

Figure 2.6: A CPN with an arc with an expression.

P0

P1
0

6 14

T0

x * 2

Figure 2.7: The CPN of Figure 2.6 in its final state.

The modelling language is used to define “colors”, i.e., types, arc expressions, and transition
guards. Arc expressions can perform arbitrary modifications on the tokens that pass through
them. Figure 2.6 shows a CPN where the incoming arc to the transition T0 modifies its token.
The expression is written in the Python language and doubles the token value. After T0 has
fired three times, the net is dead. Figure 2.7 depicts the final state.

2.3.3 Transition Guards

Another feature enabled by the inclusion of a modelling language is the transition guard. Each
transition may have a guard attached to it, containing an expression that must evaluate to
the boolean value true. The transition cannot fire if it does not, even if a sufficient number
of tokens is available in its input-places.

Figure 2.8 on the facing page shows a variant of the net from Figure 2.5 on the previous page
where T0 has a transition guard. The guard here is displayed as a pseudo-code statement
with a light-grey background. Notice also the expression on the arc, binding whichever token
is passed along it to the variable name x.

T0 of the net in Figure 2.8 on the facing page can fire twice, since P0 contains two tokens
that satisfy the guard expression of T0. The third token does not satisfy this condition; thus,
the net is dead after two firings.
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P0
0

3 7

T0 x > 2

x

Figure 2.8: A CPN with a transition that has a transition guard.

2.4 Python

This section briefly introduces the Python programming language (cf. Python Software Foun-
dation, 2023), since Python is used as the modelling language for CPNs in this thesis. This
section will attempt to cover exactly those features of Python that are required to understand
the CPNs presented in future chapters and omit those features that are not necessary for
understanding this thesis document.

Python is a high-level, dynamically typed, interpreted programming language. This makes its
syntax generally very simple and easy to understand. The Python “hello world” program is as
simple as:

print("Hello, world!")

Variable assignments are simple, too. No keyword or type specifier is required. The following
code assigns the value 42 and therefore the type int to a variable named x:

x = 42

The def keyword defines functions, and blocks are delimited not by braces, such as in C, but
by white-space. The following example shows a function definition and subsequent invocation:

def do_something(value):
print(value * 2)

do_something(21)

Python has a variety of built-in types, such as the integer type int, the floating point num-
ber type float, and the string type str. To define a new type for a Python program, a
programmer may use the class keyword. For example:

class Place:
def __init__(self, tokens):

self.tokens = tokens

The above defines a class Place, and a constructor function (called __init__ in Python)
that accepts the parameter tokens. An instance of the type can now be constructed like so:

place = Place([1, 2, 3])

A more concise way of defining a simple class like the one shown above is to use “dataclasses”:
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from dataclasses import dataclass

@dataclass
class Place:

tokens: list

place = Place([1, 2, 3])

The above is equivalent to the previous declaration of class Place .

18



3 Modelling MPI Communication

This chapter will present the modelling approach central to this thesis. It will show how
Colored Petri Nets and their high-level features can be leveraged to model communication in
MPI programs.

3.1 Communication Modes

Message Passing Interface Forum, 2021, pp. 48–54 defines four blocking communication
modes: standard, buffered, synchronous, and ready.

A buffered send, explicitly invoked via MPI_Bsend, copies the data to a new buffer and im-
mediately returns control to the process. It can thus return before a corresponding MPI_Recv
operation has started.

A synchronous send, via MPI_Ssend, only returns once the receiving process has started its
MPI_Recv operation.

A “ready” send operation, via MPI_Rsend, may only be called if the matching MPI_Recv
has already been invoked. If the programmer does not honor this condition, the result is
undefined. MPI_Rsend uses this extra information for optimization but is otherwise equivalent
to a synchronous send.

A standard send, via MPI_Send, is among the most popular MPI operations, as shown in
Section 2.1.2 on page 11. Standard mode means that the MPI library is allowed to choose
whether to perform a buffered or a synchronous send. It is, therefore, challenging to ac-
curately model MPI_Send because it may return after buffering the data before any actual
communication occurs. Or it may return after the communication is mostly complete.

In addition to these four blocking communication modes, communication can also be non-
blocking. Non-blocking sends have the same four possible modes as blocking sends. The
important distinction is that a non-blocking send returns immediately with a status object.
The object can then be queried for the state of the communication, which then depends on
which communication mode was chosen. The primary purpose of non-blocking communication
is to avoid deadlocks in complicated communication patterns.
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3.2 Modelling Individual MPI Operations

This section will show CPN models of the different send operations described in Section 3.1 on
the preceding page. It will then show models of the most common individual MPI operations,
as shown in Table 2.3 on page 12. It will thus answer the first leading question posed in
Section 1.3 on page 2.

The “v” variants of operations, e.g., MPI_Allgatherv for MPI_Allgather, are left out, as the
communication pattern is equivalent to their regular counterparts. The “v” variants allow each
process to send a variable amount of data. Additionally, MPI_Waitall is not considered here
because it is a special case of MPI_Wait. Furthermore, one-sided MPI operations, also known
as Remote Memory Access operations, are left out. Section 3.5 on page 39 discusses these
in more detail. The “ready” mode variants of MPI_Send and MPI_Isend, i.e., MPI_Rsend
and MPI_Irsend, are also left out. They are not one of the modes the implementation may
choose to use when a “normal” mode send is called, and MPI_Rsend and MPI_Irsend are
only used by 63 and 53 repositories, respectively. Finally, MPI_Test is left out because it
provides information about a pending communication operation to its calling process but is
not actually involved in the communication itself.

This leaves the following operations to consider: the specific blocking sends MPI_Bsend, and
MPI_Ssend; their non-blocking counterparts MPI_Ibsend, and MPI_Issend; and the popu-
lar operations MPI_Allgather, MPI_Allreduce, MPI_Alltoall, MPI_Barrier, MPI_Bcast,
MPI_Gather, MPI_Irecv, MPI_Isend, MPI_Reduce, MPI_Scatter, MPI_Send, MPI_Waitall,
and MPI_Wait.

3.2.1 Point-to-Point Operations

Blocking sends and MPI_Recv

Figure 3.1 on the facing page shows a CPN modelling the operations MPI_Bsend and MPI_Recv.
The places P0 and P1 represent the two processes involved in the communication. Place I is
an intermediate place, which models the buffering and network traversal of the message. The
MPI_Bsend transition takes a token from place P0. It has a transition guard that ensures only
orange-colored tokens can be used. The token is deposited unchanged into the intermediate
place I. From there, MPI_Recv takes it and deposits it into P1. MPI_Recv also takes a token
from P1 when it fires. This models the fact that P1 must actively call the receive operation;
it is not invoked automatically or by P0 having called a send operation.

MPI_Bsend also deposits a new orange token back into P0. This is used here to illustrate
that P0 becomes ready for its next operation immediately after invoking the buffered send
operation. In a more complex net modelling a whole MPI program, perhaps MPI_Bsend would
generate a different-colored token for P0, to enable it for whatever operation it would call
after MPI_Bsend.

P1 contains a different-colored token than P0. The teal token from P1 is consumed by
MPI_Recv, and immediately deposited back into P1. This ensures that P1 can perform
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P0

MPI_Bsend s.color == orange

I

MPI_Recv r.color == teal

P1

s

s

s

s, r r

Figure 3.1: MPI_Bsend and MPI_Recv operations.

another MPI_Recv after the first one has concluded. The net can thus fire infinitely often,
with P1 accumulating the orange tokens sent by P0.

The different token colors, or types, in this CPN are used to symbolize different preconditions
for the two operations. The orange token is accepted by MPI_Bsend and symbolizes both
the data that P0 wants to send to P1, and the fact that P0 is, in fact, ready to perform a
send operation. The teal token is consumed immediately by MPI_Recv, and represents only
the fact that P1 is ready to perform a receiving operation.

The arcs of the net are annotated. All but one arc in this net pass along their token unmodified.
This is symbolized by a lowercase letter (here, s or r), indicating a variable binding. This is
done so that a token is clearly bound to a variable name, which can then be referenced in a
guard expression or, later, another arc expression. The arc from MPI_Recv to P0 ignores its
input token and instead produces a new orange token to be deposited into P0.

The different token types will become much more important in larger nets that model entire
programs. A single process may call various MPI operations, but they each must be called in
the correct order to model the program accurately. A combination of dedicated token types
and transition guards can facilitate this.

Figure 3.2 on the next page shows a CPN modelling the operations MPI_Ssend and a matching
MPI_Recv. The key difference between this model and the one in Figure 3.1, is that P0 may
only continue its operation, signified by having a token deposited back into itself, when P1

begins its MPI_Recv operation.
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P0

MPI_Ssend s.color == orange

I

MPI_Recv r.color == teal

P1

s

s

s

s, r r

Figure 3.2: MPI_Ssend and MPI_Recv operations.

Non-blocking sends and MPI_Recv

The non-blocking variants of MPI_Send, i.e., MPI_Isend, MPI_Ibsend, and MPI_Issend,
can essentially be modelled as MPI_Bsend operations on their own. They return control
immediately to the calling process and do not wait on the receiving process, which is what
makes them non-blocking. Their communication modes become relevant when paired with
an operation that depends on the communication status, such as MPI_Wait. Non-blocking
MPI operations return a request object, and its status can be queried by MPI_Test while its
completion can be awaited with MPI_Wait.

Figure 3.3 on the next page shows a CPN modelling the operations MPI_Isend, MPI_Recv,
and MPI_Wait. Note that whether or not an MPI operation is blocking has no implications
for its counterpart called by another process. That is to say, a non-blocking MPI_Isend
operation can be paired with a blocking MPI_Recv operation.

The MPI_Ibsend operation is modelled exactly as the MPI_Bsend operation in Figure 3.1 on
the preceding page. A new orange token is deposited back into P0 immediately because the
send is non-blocking, and P0 may continue its operation without waiting for a corresponding
receive. The MPI_Wait transition becomes ready immediately upon the MPI_Ibsend invo-
cation because a gray token is deposited into W , an intermediate place used to store the
result of MPI_Wait. P0 may thus call MPI_Wait directly after MPI_Ibsend, because the send
operation is buffered. The corresponding receive operation does not need to be started for
MPI_Wait to return.

Figure 3.4 on the next page shows a CPN modelling the MPI_Issend operation in conjunction
with MPI_Recv and MPI_Wait. The key difference is that MPI_Wait becomes ready only after
MPI_Recv has fired, because MPI_Issend uses the synchronous communication mode.
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P0

MPI_Ibsend s.color == orange

W

MPI_Wait

I

MPI_Recv r.color == teal

P1

s

s

s

s, r r

Figure 3.3: MPI_Ibsend, MPI_Recv, and MPI_Wait operations.

P0

MPI_Ibsend s.color == orange

W

MPI_Wait

I

MPI_Recv r.color == teal

P1

s

s

s

s, r r

Figure 3.4: MPI_Issend, MPI_Recv, and MPI_Wait operations.
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P0 P1 P2

MPI_Barrier

Figure 3.5: Three processes using the MPI_Barrier operation.

MPI_Send and MPI_Isend

The previous sections have shown how to model buffered and synchronous sends, whether
they be blocking or non-blocking. As MPI_Send and MPI_Isend can be either buffered or
synchronous, at the discretion of the implementation, they can be difficult to model. This
thesis project will decide on a case-by-case basis whether to model MPI_Send and MPI_Isend
as buffered or synchronous. When translating an MPI program to a CPN, a normal send
operation that sends only small buffers or single values will be modelled as buffered sends. All
others will be modelled as synchronous. However, for small programs with few calls to either
function, one can simply construct models with all permutations of buffered and synchronous
sends, and analyse them all. This may be impractical for programs with many different send
operations, though.

MPI_Irecv, MPI_Wait, and MPI_Test

Modelling the non-blocking receive operation MPI_Irecv depends on a corresponding MPI_Wait
or MPI_Test operation. A call to MPI_Irecv initiates a receive, but the program will need to
call MPI_Wait or MPI_Test in order to be sure that the operation has concluded. MPI_Wait
will wait for the receive operation to conclude and can thus be modelled exactly like a block-
ing MPI_Recv. An MPI_Test operation is more difficult to model. If there is a code path
that depends on the result of MPI_Test, like an if-statement, which contains further MPI
communication operations, two models must be created to model both possible execution
paths through this code.

An MPI_Irecv without a corresponding MPI_Wait or MPI_Test is a bug since there is no
way for the program to know whether the receive operation has concluded. The modelling
approach presented here will not be able to detect it; it must be detected while constructing
the CPN, not by evaluating the finished CPN.
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P0

MPI_Bsend s.color == orange

IMPI_Barrier b.color == purple

MPI_Recv r.color == teal

P1

s

s

s

r

b

b

Figure 3.6: Two processes that first perform a send/receive pair of operations and are then
synchronized using MPI_Barrier.

3.2.2 Collective Operations

MPI_Barrier

Figure 3.5 on the facing page shows an MPI_Barrier operation. The individual operation is
effortless to model. Each process can only continue when all other processes have entered this
same operation. This is easily expressed in a Petri Net by using a transition with an incoming
and outgoing arc to and from each process. Figure 3.6 shows a more complex program.
Processes P0 and P1 perform a send and receive operation in a loop. They are synchronized
after the send/receive pair of operations using an MPI_Barrier. P0 uses up its orange send
token with every firing of MPI_Bsend and gets a purple barrier token. Similarly, P1 uses up its
teal receive token with every firing of MPI_Recv and gets a purple barrier token. Once both
processes have completed their respective operation, MPI_Barrier can fire, resetting the net
into its initial state by providing P0 with another orange send token and P1 with another teal
receive token.

MPI_Gather and MPI_Allgather

Figure 3.7 on the following page shows the MPI_Gather operation. One process gathers a
value from all processes, including itself. Therefore, processes P1 and P2 may immediately
continue, while P0, the gathering process, depends on the operation to complete before it
may continue. This makes it necessary to split the single MPI_Gather operations into three
separate transitions.

Figure 3.8 on the next page shows the MPI_Allgather operation, which is much simpler.
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I

MPI_Gather0

MPI_Gather1 MPI_Gather2

P0

P1 P2

2

Figure 3.7: Three processes taking part in an MPI_Gather operation. Note that the single
operation is modelled as three separate transitions.

MPI_Allgather

P0

P1 P2

Figure 3.8: Three processes taking part in an MPI_Allgather operation.
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P0

MPI_Bcast0

I1 I2 I3

MPI_Bcast1 MPI_Bcast2
MPI_Bcast3

P1
P2

P3

Figure 3.9: Four processes partaking in an MPI_Bcast operation. P0 is the root process,
which broadcasts to all other processes, including itself.

MPI_Allgather has all participating processes send one value and receive all values. As the
operation blocks all processes until completion, only a single transition and no intermediate
place are required.

MPI_Reduce and MPI_Allreduce

The communication patterns of MPI_Reduce and MPI_Allreduce are equivalent to MPI_Gather
and MPI_Allgather, respectively. MPI_Reduce has one process perform a reduction opera-
tion on values from all processes, while MPI_Allreduce has each process perform this oper-
ation. The operations by themselves can thus be modelled like the ones shown in Figure 3.7
on the facing page and Figure 3.8 on the preceding page.

MPI_Bcast and MPI_Scatter

Figure 3.9 shows a model of an MPI_Bcast operation. MPI_Bcast sends a value from one
process, the “root”, to all other processes, including the root. The value is immediately
available for the root process when it calls MPI_Bcast. This is trivially true since it is the
one that sends it. All other processes depend on the MPI_Bcast call made by root, so they
are blocked until root enters MPI_Bcast. However, the root does not depend on the other
processes. It can call MPI_Bcast and continue, and the remaining processes may make their
call at a later time. The CPN in Figure 3.9 models this by using intermediate places for the
values sent to the non-root processes and by just having an arc from the initial MPI_Bcast
directly back to the root process, here P0. Thus, processes P1 through P3 may call MPI_Bcast
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at any time after P0 has called it. The transitions MPI_Bcast0 through MPI_Bcast3 symbolize
the same MPI_Bcast call made by the respective process.

MPI_Scatter is equivalent to MPI_Bcast in its communication. The interesting aspect of
MPI_Scatter is that a set of values is split into equal pieces, and, as the name implies,
scattered from the root process to all processes. This leaves each process with a distinct
chunk of the data. But when analyzing just the communication, it can be considered the
same operation as MPI_Bcast. Therefore, this section does not include a separate CPN for
the scatter operation.

3.3 Leveraging Higher-Level CPN Functionality

Some models discussed in Section 3.2 on page 20, while referred to as CPNs, were all also
technically Petri Nets. Modelling individual operations is often simple enough not to warrant
the use of the high-level features of CPNs. This section will show how some of the high-level
features can be used, before Section 3.4 on page 31 will continue with the modelling of entire
MPI programs.

Figure 3.10 on the facing page shows a CPN that makes use of multiple high-level CPN
features to model a simple combination of MPI_Bsend and MPI_Recv. The same combination
of operations has been modelled previously in Figure 3.1 on page 21. While the previous model
used colors to represent different types of tokens, starting with this section, models will use
Python code definitions to represent token types. These definitions are required to simulate
the models accurately using software.

P0 thus no longer contains a colored token, as was indicated by the colored dot seen in
previous CPN depictions. Instead, its token is displayed next to the place in braces. Its token
is an object of type SendMarker. Figure 3.11 on page 30 displays the Python definition and
the two other classes used in this model. The token contains information about the MPI
operation that is to be carried out. It is tagged with the MPI datatype, the source and
destination ranks, and a tag. The Python code definitions are not part of the CPN as such;
when the model is simulated, the simulation software must load the Python definitions before
the simulation.

The transitions in this net now also contain more complex transition guards. While the now
more extensive checks do not affect the type state of this model, they will become important
in models with more operations. Each transition guard ensures that only the correct type of
token may pass through the transition, as seen in previous nets. The guard now also ensures
that the right data type, source, destination, and tag properties are set on the token.

The arc from MPI_Bsend to P0 ignores whatever token passes through it and instead creates a
new token of type Finished before depositing it in P0. This indicates that P0 has completed
its MPI operation and is thus ready to perform another action. At the same time, it prevents
MPI_Bsend from firing again, as that would require a token of type SendMarker.
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P0 {SendMarker('MPI_INT', 0, 1, 0)}

MPI_Send type(s) == SendMarker \
and s.matches('MPI_INT', 0, 1, 0)

I

MPI_Recv

type(s) == SendMarker \
and s.matches('MPI_INT', 0, 1, 0) \
and type(r) == RecvMarker \
and r.matches('MPI_INT', 0, 1, 0)

P1 {RecvMarker()}

s Finished()

s

s

s r

Figure 3.10: A version of Figure 3.1 on page 21 that uses high-level CPN features.
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from dataclasses import dataclass

class Finished:
pass

@dataclass
class RecvMarker:

datatype: str
src: int
dest: int
tag: int

def matches(self, dtype, src, dest, tag):
return self.datatype == dtype \

and self.src == src \
and self.dest == dest \
and self.tag == tag

@dataclass
class SendMarker:

datatype: str
src: int
dest: int
tag: int

def matches(self, dtype, src, dest, tag):
return self.datatype == dtype \

and self.src == src \
and self.dest == dest \
and self.tag == tag

Figure 3.11: Python class definitions used by the CPN in Figure 3.10 on the previous page.
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3.4 Modelling MPI Programs

This section will apply the methods introduced in Section 3.3 on page 28 to model entire
MPI programs. It will answer the second leading question posed in Section 1.3 on page 2,
how to model complete MPI programs rather than just single operations.

Listing 2.1 on page 6 showed an MPI program that assumes two processes, and sends a
value from one process to the other by way of MPI_Send and MPI_Recv. The CPN shown in
Figure 3.12 on the following page models this MPI program more completely than previous
models shown in past sections. Besides just the communication operations, transitions for
MPI_Init and MPI_Finalize are now also included. Additionally, the places “Start” and
“End” symbolize the start and end of the MPI communication of the program. The start
place contains a single Petri Net style token, indicated by the black dot. MPI_Init converts
this into a SendMarker, enabling the MPI_Send transition. Once the core operation of the
program, namely MPI_Send and MPI_Recv have concluded, the two participating processes
contain tokens of the type Finished, which enables the MPI_Finalize transition. Once this
transition fires, a token is deposited into the end state, indicating the program has terminated.

3.4.1 Modelling Conditional Code

For the purposes of this thesis, conditional code in C comprises if statements (along with
else-if and else branches) and loops. Some state of the program must be known to determine
which code path is executed whenever such a piece of conditional code is encountered.

Modelling conditional code can be challenging. At times, it can be relatively simple, such as
in this example:

if (rank == 0)
MPI_Send(buf, 1, MPI_INT, 1, 0, MPI_COMM_WORLD);

This is trivially an MPI_Send operation performed by the process with rank zero. The following
is a much more complex example:

while (last_value - new_value >= 0.001f) {
/* perform some manner of MPI communication and other computations */

}

Presumably, the two variables are changed in the loop body, and the loop only terminates
when new_value stops changing significantly. One could attempt to model this program
state using CPNs. However, modelling the entire program state has no advantage over just
running and evaluating the initial program. The idea of the thesis project is to model just
the communication in an effort to identify issues quickly and without running a program for
a long time.

The approach taken by this thesis will be to create multiple models of the same program
to model the different code paths. For instance, to model a program with MPI operations
contained in a loop, three models could be created:
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Start

{InitMarker()}
MPI_Init

type(i) == InitMarker

P0

MPI_Send type(s) == SendMarker \
and s.matches('MPI_INT', 0, 1, 0)

I

MPI_Recv

type(s) == SendMarker \
and s.matches('MPI_INT', 0, 1, 0) \
and type(r) == RecvMarker \
and r.matches('MPI_INT', 0, 1, 0)

P1

MPI_Finalize
type(f0) == Finished and type(f1) == Finished

End

i

SendMarker('MPI_INT', 0, 1, 0)

RecvMarker()

s Finished()

s

s

Finished()r

f0

f1

Figure 3.12: A CPN that models the entire MPI program shown in Listing 2.1 on page 6,
instead of just individual operations.
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• one that skips the loop, assuming the loop condition is never true

• one where the loop is infinite, assuming the loop condition is always true

• one where the loop executes exactly once, to model the effect that the operations inside
the loop have on the communication after the loop

For if-statements, static analysis could be used to decide at net-building-time what to do,
like in the previous example where it is clear that the statement is used to have a specific
rank perform an operation. Otherwise, one net for each possible state would be created and
modelled.

To analyze an MPI program, then, multiple nets may be created, and all of them will be
analyzed to detect programming errors. This has the major drawback that, for sufficiently
complex programs, the number of different nets that need to be created can grow very large.
Still, conditional code needs to be handled, and this thesis project will focus on keeping the
models themselves relatively simple, at the expense of requiring a large number of them for
complex programs. Future work may find ways to minimize the number of nets needed.

3.4.2 Modelling Error Examples

Unmatched Send

Figure 3.13 on the next page shows a CPN modelling the unmatched MPI_Ssend operation
example of Listing 2.4 on page 9. It is similar to Figure 3.12 on the preceding page but with
the MPI_Recv transition absent. Therefore, the MPI_Ssend operation can never complete,
and no Finished token can be deposited into P0. Thus, MPI_Finalize is dead, and the
model will never reach its intended final state.

Figure 3.14 on page 35 shows a similar CPN to Figure 3.13 on the next page, but using
MPI_Bsend instead of MPI_Ssend. This CPN will reach its intended final state, as the
MPI_Bsend transition deposits a Finished token into P0, allowing MPI_Finalize to fire.
This provides an important insight: when analyzing a CPN model of a program, it is insuffi-
cient to note whether there are any dead transitions or whether the net has reached its final
state with tokens present in the “End” place. It is also necessary to see if any unexpected
tokens are left in other places, such as, in this particular case, a SendMarker in place I. This
“lost” token is the only indication offered by this net that the program contains a logic error.

Unmatched Receive

Figure 3.15 on page 36 shows a CPN modelling the reverse of an unmatched send operation:
an unmatched receive operation. Now, P0 is immediately finished, as it has nothing to do. P1

is given a RecvMarker token by the MPI_Init transition, in order to execute its MPI_Recv.
However, the MPI_Recv transition is dead, as it required a token to be present in I, but no
token can ever be deposited into I. MPI_Recv can thus never deposit a Finished token into
P1, and thus MPI_Finalize can never fire. A token can never be deposited into “End”.
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{InitMarker()}
MPI_Init

type(i) == InitMarker

P0

MPI_Ssend
type(s) == SendMarker \
and s.matches('MPI_INT', 0, 1, 0)

I

P1

MPI_Finalize
type(f0) == Finished and type(f1) == Finished

End
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SendMarker('MPI_INT', 0, 1, 0)

Finished()
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Figure 3.13: A CPN modelling an MPI program with an unmatched MPI_Ssend operation.
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Start

{InitMarker()}
MPI_Init

type(i) == InitMarker

P0

MPI_Bsend
type(s) == SendMarker \
and s.matches('MPI_INT', 0, 1, 0)

I

P1

MPI_Finalize
type(f0) == Finished and type(f1) == Finished

End

i

SendMarker('MPI_INT', 0, 1, 0)

Finished()

s Finished()

s

f0

f1

Figure 3.14: A CPN modelling an MPI program with an unmatched MPI_Bsend operation.
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Figure 3.15: A CPN modelling an MPI program with an unmatched MPI_Recv operation.
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Rank or Tag Mismatch

So long as the transition guards are set correctly, and ensure that any SendMarker passing
through the transition have the correct source and destination rank, as well as the right tag,
any such mismatch will be detected by the corresponding transition not firing when it would
be expected to.

Deadlocks

Figure 3.16 on the next page shows a CPN modelling the deadlock example of Listing 2.3
on page 8. It follows the same guidelines as the previously shown models. Due to difficulties
laying out the graphic representation of this CPN, most arc annotations, and all transition
guards, are not shown. This is purely to aid in understanding the graphic; the actual model
follows the same conventions as the previously shown CPNs, including transition guards and
arc annotations. In addition to this, all arcs that can never be activated are shown as a
thin, dashed line. This illustrates where the net deadlocks and also causes less visual clutter,
making it easier to understand the net.

Despite looking quite complicated, with many places and transitions, the net trivially show-
cases that the program must deadlock. The MPI_Init transition can fire, because the
place “Start” holds one token of type InitMarker. The transition deposits a token of type
RecvMarker each into P0 and P1. Now, the net is dead; no transition can fire. Even though
both processes have tokens that would enable them to perform a receive, the receive tran-
sitions also require tokens from the intermediate places I0 and I1. Those places can only
receive tokens from the MPI_Send transitions. Those transitions, though, can only fire with a
token of type SendMarker, but these are only generated once a receive transitions has fired,
modelling the fact that the original MPI program first calls MPI_Recv, then MPI_Send. The
CPN thus accurately models a deadlock.

Conclusions

This section has shown how to model simple examples showcasing the programming errors
introduced in Section 2.1.1 on page 7. In these simple examples, all errors can be detected
by analyzing the state space of a CPN. In most cases, if a transition never fires, an error is
indicated. In the case of an unmatched MPI_Bsend, a token that would be expected to be
consumed in a successful run of the program is left behind in an intermediate place. This
indicates the logic error. With these conclusions, MPI programs modelled as CPNs can be
analyzed to find these logic errors.
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Start MPI_Init

P0

MPI_Send0 MPI_Recv0

I

MPI_Recv1MPI_Send1

P1

MPI_Finalize

End

RecvMarker()

RecvMarker()

SendMarker('MPI_INT', 0, 1, 0)

SendMarker('MPI_INT', 1, 0, 1)

Figure 3.16: A CPN modelling the program displayed in Listing 2.3 on page 8. Most arc
annotations and all transition guards are omitted to help make this complicated
net easier to understand.
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3.5 One-sided MPI Communication

The MPI operations discussed so far have been “two-sided” operations because they neces-
sitate at least one sender and one receiver. One-sided communication uses direct memory
access to allow one process to directly read from, or write to, the memory of another process
(cf. Message Passing Interface Forum, 2021, Chapter 12). A one-sided MPI communication,
e.g., by MPI_Put, is roughly equivalent to a pair of MPI_Send and MPI_Recv. However,
only one process “knows” about the communication taking place. The passive process must
have previously made the accessed memory available via a window creation function like
MPI_Win_create. Besides this requirement, which could likely be checked fairly easily us-
ing the presented modelling approach, the correct use of one-sided communication mostly
depends on ensuring that the accessed memory contains what it is supposed to contain at
access time. Since this would necessitate modelling program details besides communication
operations, one-sided MPI communication is deemed out of scope for this thesis. Perhaps
future work can expand the modelling approach to support one-sided communication and find
some types of errors.
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Modern compilers often use an intermediate representation (IR) in their compilation pipelines.
LLVM uses the LLVM Language as defined in “LLVM Language Reference Manual”, n.d., while
GCC uses two IRs, GENERIC and GIMPLE, depending on which source language is being
translated. The C compiler frontend produces GIMPLE directly, while the Fortran frontend
produces GENERIC, which is further translated into GIMPLE, as detailed in “Parsing pass
(GNU Compiler Collection (GCC) Internals)”, n.d.

This chapter will propose an intermediate representation for a potential compilation of MPI
programs written in C into Colored Petri Nets. Figure 4.1 displays the basic proposed pipeline.
The IR itself, as well as the translation into a CPN, are part of this thesis project. The
translation of an MPI program into the IR is not. This chapter defines the IR and Chapter 5
on page 47 discusses the translation of the IR into a CPN.

This chapter will answer the third leading question posed in Section 1.3 on page 2, by
specifying exactly what information needs to be extracted from a C-language MPI program
to build a CPN model.

C-language MPI program

Intermediate Representation

Colored Petri Net

Figure 4.1: A simple visualization of the proposed compilation pipeline.
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4.1 Design Considerations

Since the primary purpose of an intermediate representation is to serve as a step in a com-
pilation pipeline, the only hard requirement is that it should be able to represent the source
accurately (for the purposes of the final model) and be translatable into the target represen-
tation. The IR proposed in this chapter will also be human-readable because this provides
several advantages. A human-readable IR is easier to showcase in this document and is easier
for a human to generate. Since a translation from MPI program to IR is out of the scope
of this thesis, it is critical that translating MPI programs to the IR “by hand” is reasonably
straightforward.

A critical choice when generating a CPN representation of an MPI program is the number of
processes to be modelled. The design of the IR assumes that this choice is made before the
IR is generated. It is thus not generic over the number of processes; this number must be
fixed when the IR is generated.

An intermediate representation of an MPI program must contain all information that is then
also represented by the CPN. It must thus be possible to generate the following CPN com-
ponents from the IR:

• places

• transitions, including transition guards

• arcs, including arc expressions

An initial marking is not necessary to include in the IR since the modelling approach presented
in Chapter 3 on page 19 simply places an InitMarker token into the “Start” place. This
marking is trivial and shared among all models and thus does not need to be expressed by
the IR.

4.1.1 Places

The modelling approach presented in Chapter 3 on page 19 uses one place for each process.
The IR thus only needs to somehow include the number of processes N the model should be
generated for, and the places Pi for 0 ≤ i < N can be created.

4.1.2 Transitions

The transitions used by the modelling approach require more, as well as more complex,
information than just how many there are. For point-to-point communication operations, such
as MPI_Bsend, the initiating and the receiving process must be known for each invocation of
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the operation. Consider the C-code snippet below:

int dest = (rank + 1) % size;
MPI_Bsend(&buf, 1, MPI_INT, dest, 0, MPI_COMM_WORLD);

Suppose that buf contains some value to be sent, rank contains the rank of the process, and
size the size of the MPI_COMM_WORLD communicator (i.e., the total number of participating
processes). This single MPI_Bsend operation would generate size transitions, and each of
these transitions would be between distinct places. The IR would need to either contain
the computation of dest, and the IR-to-CPN software would then need to interpret it to
determine the correct combination of concrete values for rank and dest; or the C-to-IR
compiler would need to interpret it while generating the IR, and “unroll” the MPI_Bsend
statement into distinct calls with the correct values already set. It would then output the IR
with the correct values already set, greatly simplifying the generation of a net from the IR.
For example:

MPI_Bsend(process=0, to=1);
MPI_Bsend(process=1, to=2);
MPI_Bsend(process=2, to=3);
/* and so on */

Transition guards are mostly derived from the modelling approach. Any transition guard
depends on the type of operation it applies to. For example, a guard for a send operation
checks that any token used to fire its corresponding transition is of the correct type and
uses the right values for source and destination. These values are already known when the
transition is created. The only additional piece of information used in the guard expression is
the tag parameter.

4.1.3 Arcs

Arcs are the most complicated component to generate. Places and transitions can be added
to a net essentially in isolation. A name collision must be avoided; otherwise, there is no
interaction between two places or two transitions. The modelling approach uses arcs to model
program flow. Consider the program modelled by Figure 3.12 on page 32. The MPI_Send
transition has two outgoing arcs. One simply moves the input token along to the next place,
I. The other arc deposits a Finished token back into the initiating place P0. This is used
to indicate that P0, the stand-in for one of the processes participating in the MPI program,
has completed its operation. In this example, it is obvious that this particular arc must be
annotated with the expression Finished() . However, a more complex program might have
P0 continue its operation with a different transition. In that case, the arc would need to have
a different annotation and perhaps deposit a SendMarker('MPI_INT', 0, 2, 3) back
into P0. The complexity increases for an MPI_Ssend operation; the next token would not be
deposited back into P0 by the send transition, but by the MPI_Recv transition, since P0 must
wait for MPI_Ssend to complete before continuing.

This makes generating the arcs for a CPN the most complex aspect. Some arcs are trivial,
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but arcs that output special tokens used to model program flow require knowledge of not just
the transition and place connected by the arc but also other aspects of the program.

One solution for this might be to use self-referential statements in the IR. A unique identifier
accompanies each operation. MPI operations like MPI_Send and MPI_Recv each contain a
reference to whatever operation will follow in the respective process. These identifiers can be
used to generate the correct arc annotations.

4.2 Approach

Consider the following pseudo-code that represents the program shown in Listing 2.1 on
page 6.

0x0000 MPI_Init()
0x0001 MPI_Send(process=0, to=1, type='MPI_INT', tag=0, next=0x0003)
0x0002 MPI_Recv(process=1, from=0, type='MPI_INT', tag=0, next=0x0003)
0x0003 MPI_Finalize()

A unique identifier represents each operation. The name of the operation follows. Its param-
eters are similar to the original program, but information irrelevant to modelling the commu-
nication is left out, and other critical information, like the sending process for MPI_Send, is
added.

The unique identifier of each operation is written in hexadecimal notation to distinguish it
from other numerical values, like process ranks. This representation of the program contains
all information required to build the corresponding CPN model.

The tokens deposited by MPI_Init can be derived from whichever operation is the first for
each participating process. Which process performs which operation can be derived from
the process parameter. The next parameter indicates which operation the process would
perform next, and can be used to deduce the token that the current operation needs to deposit
back into the place representing the process so that the process may perform its subsequent
operation.

Listing 4.1 shows the intermediate representation of Listing 2.3 on page 8. The approach is
chosen because all information can be derived either from the arguments to the MPI func-

0x0000 MPI_Init()
0x0001 MPI_Recv(process=0, from=1, type='MPI_INT', tag=1, next=0x0002)
0x0002 MPI_Send(process=0, to=1, type='MPI_INT', tag=0, next=0x0005)
0x0003 MPI_Recv(process=1, from=0, type='MPI_INT', tag=0, next=0x0004)
0x0004 MPI_Send(process=1, to=0, type='MPI_INT', tag=1, next=0x0005)
0x0005 MPI_Finalize()

Listing 4.1: Intermediate representation of Listing 2.3 on page 8.
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tion in the original C-code or from relatively simple surrounding code, such as if-statements
that query constant integers, like the rank of the process. This should make it reasonably
straightforward to construct a compiler to transform C-code into this IR.
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For this thesis project, a CPN implementation was written in the programming language
Rust1. The implementation is a library crate2 called “cpnets”. It is published on the Rust
package hosting site “crates.io”. Its source code is available on GitLab, and will be bundled
with digital distributions of this thesis. The version of the crate used in this thesis is v1.1.0.

Additionally, a program that can parse the IR defined in Chapter 4 on page 41, generate a
CPN, and analyze this CPN, was written. It is named “mpi-cpn-ir-parser” and serves only as
a proof-of-concept for the IR and the modelling approach. The version of the crate used in
this thesis is v0.1.0.

5.1 Accessing the Source Code

The “cpnets” crate can be accessed in one of these ways:

• On crates.io: https://crates.io/crates/cpnets

• On GitLab: https://gitlab.com/tronje/cpn-rs

– The version used for this thesis project, v1.1.0, is available here: https://gitlab.
com/tronje/cpn-rs/-/tree/v1.1.0

– A release package ready for download is available here: https://gitlab.com/tronje/
cpn-rs/-/releases/v1.1.0

The “mpi-cpn-ir-parser” crate can be accessed on GitLab at https://gitlab.com/tronje/mpi-cpn-ir-parser:

• The version used for this thesis project, v0.1.0, is available here: https://gitlab.com/
tronje/mpi-cpn-ir-parser/-/tree/v0.1.0

• A release package ready for download is available here: https://gitlab.com/tronje/
mpi-cpn-ir-parser/-/releases/v0.1.0

1https://rust-lang.org, accessed July 23, 2023
2A crate is essentially a Rust package. See also: https://doc.rust-lang.org/book/

ch07-01-packages-and-crates.html, accessed July 23, 2023
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5 Implementation

pub struct Net {
name: String,
pub(crate) places: HashSet<Place>,
pub(crate) transitions: Vec<Transition>,
rng: StdRng,

}

Listing 5.1: Rust definition of the “Net”, the principal component of the cpnets crate.

pub enum Capacity {
Limited(usize),
Infinite,

}

pub struct Place {
name: String,
capacity: Capacity,

}

Listing 5.2: Rust definition of the “Place” struct, and “Capacity” enum.

5.2 The cpnets Crate

This section will introduce the CPN library written for the thesis project. Even though it was
written specifically to model MPI communication, it is a general-purpose CPN implementa-
tion, which is not limited to implementing the modelling approach presented by this thesis.
It allows building generic CPNs for any purpose.

Listings displaying source code in this section will generally have code comments and derive
macros3 omitted for the sake of brevity.

5.2.1 Net
3https://doc.rust-lang.org/reference/procedural-macros.html#derive-macros, accessed July 17, 2023

pub struct Transition {
pub(crate) name: String,
pub(crate) guard: Option<Guard>,
pub(crate) in_arcs: Vec<Arc<PlaceToTransition>>,
pub(crate) out_arcs: Vec<Arc<TransitionToPlace>>,
meta: Option<Box<dyn Any>>,

}

Listing 5.3: Rust definition of the “Transition” struct.
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pub struct PlaceToTransition {
binding: String,

}

pub struct TransitionToPlace {
expression: Expression,

}

pub(crate) struct Arc<T> {
pub(crate) place: String,
pub(crate) transition: String,
pub(crate) inner: T,

}

Listing 5.4: Rust definition of the “Arc” struct and its two inner types.

The struct Net is the principal component of the cpnets crate. It contains all places,
transitions, and arcs. Places are simple structs comprised of just a name and a capacity, the
latter of which defaults to infinite. Transitions have a name and an optional guard. Their
incoming and outgoing arcs are also kept inside the transition struct. This is hidden from
the user; the user primarily interacts with the net struct, which exposes methods to add the
various components. The net additionally allows running a full simulation or single simulation
steps. The user can pass a flag to enable non-determinism. If it is emabled, a random number
generator is used to determine which transition to fire if the net is in a state in which multiple
transitions can. If non-determinism is not allowed, the program returns an error whenever it
encounters such a state. The user may create their own instance of a pseudo-random number
generator to achieve repeatable simulation results. This simulation functionality is not used
for this thesis project. The more interesting state graph, described in Section 5.2.3 on the
following page, is used instead. Listing 5.1 on the preceding page shows the definition of the
Net structure. Listing 5.2 on the facing page shows the definition of the Place structure and
the Capacity enum it uses. Note that enums in Rust may have optional values attached to
them, allowing instances of Capacity to signify either infinity or some specific value.

Listing 5.3 on the preceding page shows the definition of the Transition structure, which
contains, among other members, two types of arcs. When adding arcs to a net, a difference
is made between arcs from places to transitions and arcs that go from transitions to places.
“Incoming” arcs (from the point of view of a transition) are given a “binding”, i.e., a name
that will be assigned to the token that passes through it. The token will then be accessible in
expressions in transition guards and outgoing arcs under that name. It follows that multiple
incoming arcs may not have the same bindings to avoid name collisions. Listing 5.4 shows
the definition of the Arc structure.

“Outgoing” arcs may have arbitrary expressions attached to them. The output of their expres-
sion will determine the type of token deposited into their terminal place when their transition

49



5 Implementation

fires.

As already outlined in Section 2.4 on page 17, Python is used as the “modelling language” of
the CPN implementation provided by cpnets. That means that arc expressions and transition
guards are written in Python. Tokens are also Python objects.

Listing 5.5 on the facing page shows a Rust program that utilizes cpnets to build the traffic
light example CPN shown in Figure 2.3 on page 14. In the function build_net, first, a new
Net is created. Methods defined for the Net struct are then used to add places, transitions,
and arcs. Finally, the function returns the built Net.

5.2.2 Marking

A net is independent from its marking. A struct Marking can be generated from a net,
and it maps places to collections of tokens. This way, a net can be reused, and only new
instances of markings need to be created to run multiple simulations. This is handy for the
state graph, which uses markings as its nodes, and only keeps one copy of a net.

Listing 5.6 on the facing page shows the definition of the Marking structure and of a private
type called “TokenVec”. This inner type for the Marking is used so that the marking may be
hashable and have certain comparison semantics. For the state graph computation to work,
two markings must be considered equal when both contain the same tokens in the same
places. The order of the tokens is irrelevant. So the marking is implemented as having one
TokenVec per place, and the TokenVec struct contains its own specialized implementations
of the Hash4 and PartialEq5 traits. The TokenVec keeps a vector of the hashes of all its
members in a sorted state. This allows efficient comparison, as only the hashes need to be
compared when comparing two instances of TokenVec.

Listing 5.7 on page 52 shows how a marking is constructed for a net and subsequently used
in a simulation step. Marking construction utilizes the “Builder” pattern (cf. Gamma et al.,
1995). The net can create an empty marking, already initialized with the required places.
The with method can then be used to add tokens to places; in the shown example, a token
of type string, with the value "on", is added to the place with the name “red”.

The simulation step will cause one transition to fire, modifying the marking. The build_net
function is not shown; one may imagine it to be the same as the one shown in Listing 5.5 on
the facing page.

5.2.3 State Graph

The implementation includes a struct StateGraph, which can be used to compute the
complete state space of a CPN. It is represented as a graph because it may be the case that
multiple different states may lead to the same following state, and it is also possible that

4https://doc.rust-lang.org/std/hash/trait.Hash.html, accessed July 17, 2023
5https://doc.rust-lang.org/std/hash/trait.Hash.html, accessed July 17, 2023
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use cpnets::prelude::*;
use std::error::Error;

fn build_net() -> Result<Net, Box<dyn Error>> {
let mut net = Net::new("traffic_light");

net.add_place(Place::new("green").with_capacity(1))?;
net.add_place(Place::new("yellow").with_capacity(1))?;
net.add_place(Place::new("red").with_capacity(1))?;

net.add_transition(Transition::new("T0"))?;
net.add_transition(Transition::new("T1"))?;
net.add_transition(Transition::new("T2"))?;
net.add_transition(Transition::new("T3"))?;

net.add_in_arc("green", "T0", "x")?;
net.add_out_arc("T0", "yellow", Expression::new("x", &["x"]))?;

net.add_in_arc("yellow", "T1", "x")?;
net.add_out_arc("T1", "red", Expression::new("x", &["x"]))?;

net.add_in_arc("red", "T2", "x")?;
net.add_out_arc("T2", "yellow", Expression::new("x", &["x"]))?;
net.add_out_arc("T2", "red", Expression::new("x", &["x"]))?;

net.add_in_arc("yellow", "T3", "x")?;
net.add_in_arc("red", "T3", "y")?;
net.add_out_arc("T3", "green", Expression::new("x", &["x"]))?;

Ok(net)
}

Listing 5.5: A Rust program utilizing the cpnets crate to create the traffic light net depicted
in Figure 2.3 on page 14.

pub(crate) struct TokenVec {
hashes: Vec<u64>,
inner: Vec<Token>,

}

pub struct Marking {
inner: Vec<(Place, TokenVec)>,

}

Listing 5.6: Rust definition of the “Marking” struct.

51



5 Implementation

use cpnets::prelude::*;
use std::error::Error;

fn main() -> Result<(), Box<dyn Error>> {
let net = build_net()?;
let mut marking = net.empty_marking().with("red", [token!("\"on\"")])?;
net.simulation_step(&mut marking, false)?;
println!("new marking: {:?}", marking);
Ok(())

}

Listing 5.7: An example of how a marking is constructed for a net.

pub struct StateGraph {
net: Net,
vertices: HashSet<Rc<Marking>>,
edges: HashSet<(Rc<Marking>, Rc<Marking>)>,
terminal_states: HashSet<Rc<Marking>>,
dead_transitions: HashSet<String>,

}

Listing 5.8: Rust definition of the state graph struct.

there are cycles between states. Therefore, a tree is not suitable. A tree would be able to
represent the state space by including duplicate states, but if a model did not terminate, the
tree would become infinite. Thus, a bidirectional, unweighted graph is used.

The state graph is the primary means of evaluating a model. It can be queried for various
properties, which allow various conclusions on the properties of the modelled MPI program.
For example, the modelling approach generally expects a model of a sound program to have
exactly one final marking, with a Finished token in the “End” place. If the state graph does
not contain such a marking, there must be an error in the program. It is also possible that
this end state is reached but that certain transitions have never fired. The state graph keeps
track of the transition that fired to reach a given state and can thus be used to determine
whether any transitions can never fire. These so-called dead transitions also indicate an error.

The nodes of the state graph are markings since a marking completely describes the state
of a CPN. Markings are kept in a hash set to ensure no duplicates. An initial marking must
be provided to construct a state graph. This marking is added to a queue of states to be
evaluated. Then, for every state in the queue, all follow-up states are computed by simulating
the firing of all transitions that can fire. Any of these follow-up markings that were not
already nodes in the graph are added to the graph and to the queue of states to be evaluated
so that their following states may also be found. Thus, all possible states of the CPN are
computed.
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Figure 5.1: “Flamegraph” showing that the code constructing a state graph spends the ma-
jority of its time in libpython3.

5.2.4 Python Integration

As the modelling language of cpnets is Python, it must include some way to interpret Python
code. To this end, the “pyo3” crate6 is used. It is essentially a wrapper around libpython3,
and so to evaluate Python code, simply calls into the Python shared library. No custom
interpreter was written. This has the advantage of saving a large amount of work but also
causes performance limitations. The proof-of-concept program which parses the IR, builds
the CPN, and computes its state graph, spends about 87% of its CPU cycles in libpython3.
In absolute terms, this would be about 75 ms out of its 86 ms runtime. It is speculated that
this scales linearly; the larger the state space, the longer the program runs, but the relative
time spent in libpython3 should remain about the same. This was determined by using the
perf7 tool.

Figure 5.1 shows a “flamegraph”8 which displays the relative time spent by the program in
different functions. The program run was the proof-of-concept IR evaluator, described in

6https://crates.io/crates/pyo3, accessed July 23, 2023
7https://perf.wiki.kernel.org/index.php/Main_Page, accessed July 23, 2023
8The flamegraph was constructed using https://github.com/flamegraph-rs/flamegraph, accessed July 23,

2023
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5 Implementation

Section 5.3. The particular IR evaluated produced a state graph of order 226, i.e., with
226 different states. It clearly shows that the program spends the majority of its time inside
libpython3. Section 6.4 on page 68 will address this and show how performance can be
improved.

5.3 Proof-of-concept IR Evaluator

Combining the modelling approach and the proposal for an intermediate representation, a
proof-of-concept program called “mpi-cpn-ir-parser” was written, which parses an IR file,
constructs a CPN, computes its state graph, and thereby attempts to find errors. This is
not a fully-featured program; it only supports the MPI operations MPI_Bsend, MPI_Ssend,
MPI_Recv, and MPI_Allreduce, along with the obviously necessary MPI_Init and MPI_Finalize.
Its source code is available on GitLab, at https://gitlab.com/tronje/mpi-cpn-ir-parser.

Parsing of the IR is implemented using “pest”9. The pest grammar of the IR is shown in
Listing 5.9 on the facing page. During its operation, the program constructs a CPN from
the IR. For each operation, a transition, along with a corresponding guard and input/output
arcs, is added. To avoid naming collisions transitions are named after the MPI operation they
represent, with a short random string added to the end. The number of processes must be
passed as an argument to the program, and a place is added to the net for each process. A
possible future improvement would be to infer the number of processes automatically from
the IR.

After the net has been constructed, the state graph is computed, and information is simply
printed to the standard output of the program. Specifically, the program prints:

• the order (number of vertices) and size (number of edges) of the state graph

• whether there are any terminal states

• the marking or markings of terminal states, if any

• any “dead” transitions, i.e., transitions that never fire

5.3.1 Inferring Error Locations in Code

Inferring the exact location of an error in the source code can be accomplished by finding the
transition involved in the error and giving the location of the MPI operation it was generated
from in the C source code. For a deadlock, this is less straight-forward, but perhaps the last
transition that fired before the deadlock occurred can be provided.

The implementation does not support this yet, but the Transition struct of the cpnets crate
does allow adding arbitrary information to it via its meta member, as shown in Listing 5.3 on

9https://pest.rs/, accessed July 23, 2023
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5.3 Proof-of-concept IR Evaluator

WHITESPACE = _{ " " }

char = { ASCII_ALPHANUMERIC | "_" }
name = @{ char+ }

string = ${ "'" ~ string_contents ~ "'" }
string_contents = @{ (!"'" ~ ANY)* }

int = @{ "-"? ~ ("0" | ( ASCII_NONZERO_DIGIT ~ ASCII_DIGIT* )) }
unique_id = @{ "0x" ~ ASCII_HEX_DIGIT+ }

value = _{ unique_id | string | int }

param = { name ~ "=" ~ value }
params = { param ~ ("," ~ param)* }

op = { name ~ "(" ~ params? ~ ")" }

record = { unique_id ~ op }
file = { SOI ~ (record ~ NEWLINE)* ~ EOI }

Listing 5.9: “pest” grammar for the CPN IR defined in Chapter 4 on page 41.

page 48. This could be used to add a code location struct to each transition as the net is
generated; such a struct might look like the following example:

struct CodeLocation {
file: String,
line: u32,

}

The IR could be expanded to contain the required information, e.g., like in this example
snippet:

0x0002 MPI_Send(process=0, to=1, type='MPI_INT', tag=0, file='main.c',
line=42, next=0x0005)↪→

The evaluator would then have all the necessary information to provide the user with the MPI
operation that caused, or at least that was involved in, a detected error.
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6 Evaluation

This chapter will evaluate the modelling approach described in Chapter 3 on page 19 by
using the implementation described in Chapter 5 on page 47. To this end, multiple models
of various MPI programs will be evaluated, to determine whether they accurately identify any
and all mistakes from Section 2.1.1 on page 7. Models should also avoid producing false
positives; they must not find errors where there are none.

6.1 Error Examples

This section will show that the models of erroneous programs presented in Section 3.4 on
page 31 can indeed be used to detect the contained errors. It will thus answer the fourth and
final leading question posed in Section 1.3 on page 2. The Rust code to construct the nets
in this section is omitted. It follows the same principles as shown in Chapter 5 on page 47.

6.1.1 Deadlocks

Listing 6.1 shows the intermediate representation of the deadlock example. Running the
proof-of-concept evaluator produces the output displayed in Listing 6.2 on the next page.
This shows that no transitions besides MPI_Init fire, and the only terminal state has no
markers in the “End” place. The error is detected.

6.1.2 Unmatched Send

The IR of the elementary example shown in Listing 2.4 on page 9 is displayed in Listing 6.3 on
the next page. Provided with this IR, the evaluator produces the output shown in Listing 6.4
on the following page. Since there are two involved processes, but one process performs no

0x0000 MPI_Init()
0x0001 MPI_Recv(process=0, from=1, type='MPI_INT', tag=1, next=0x0002)
0x0002 MPI_Ssend(process=0, to=1, type='MPI_INT', tag=0, next=0x0005)
0x0003 MPI_Recv(process=1, from=0, type='MPI_INT', tag=0, next=0x0004)
0x0004 MPI_Ssend(process=1, to=0, type='MPI_INT', tag=1, next=0x0005)
0x0005 MPI_Finalize()

Listing 6.1: IR of the deadlock example shown in Listing 2.3 on page 8.
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Net produced a state graph of order 2 and size 1
Net terminates.
The following transitions never fire: {

"MPI_Ssend eqd4XX",
"MPI_Recv HI3y1O",
"MPI_Recv tWeirX",
"MPI_Finalize",
"MPI_Ssend LbL5yN",

}
Markings of terminal states:

End: [ ], I: [ ], P0: [ RECV(MPI_INT, from=1, to=0, tag=1) ], P1:
[ RECV(MPI_INT, from=0, to=1, tag=0) ], Start: [ ]↪→

Listing 6.2: Output of the evaluator when given the IR shown in Listing 6.1 on the previous
page.

0x0000 MPI_Init()
0x0001 MPI_Ssend(process=0, to=1, tag=0, type='MPI_INT', next=0x0002)
0x0002 MPI_Finalize()

Listing 6.3: IR of a very simple unmatched MPI_Ssend program.

Error: Failed to parse IR!

Caused by:
0: failed to add operation: Operation { name: "MPI_Init", params:

None }↪→

1: Process 1 has no operations!

Listing 6.4: Output produced by the evaluator when given the IR shown in Listing 6.3
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0x0000 MPI_Init()
0x0001 MPI_Allreduce(process=0, next=0x0003)
0x0002 MPI_Allreduce(process=1, next=0x0004)
0x0003 MPI_Bsend(process=0, to=1, tag=0, type='MPI_INT', next=0x0004)
0x0004 MPI_Finalize()

Listing 6.5: IR of an unmatched MPI_Bsend example program.

Net produced a state graph of order 5 and size 4
Net terminates.
Markings of terminal states:

End: [ DONE ], I: [ SEND(MPI_INT, from=0, to=1, tag=0) ], P0: [
], P1: [ ], Start: [ ]↪→

Listing 6.6: Evaluator output when given the IR from Listing 6.5.

operations besides MPI_Init and MPI_Finalize, an error is produced immediately before
the CPN is even assembled. One could argue that this behavior is not correct. After all,
a program that calls only MPI_Init and MPI_Finalize is free of logic errors, regardless of
the number of participating processes. However, this program also contains no actual MPI
communication. It is, therefore, pointless to check using a tool like the evaluator used here.
In this particular case, the produced error message indicates a logic error in the program.

In order to force the evaluator to actually produce and evaluate a CPN, an MPI_Allreduce
operation will be inserted for the examples evaluated in the following sections.

Unmatched MPI_Bsend

The IR for this example is shown in Listing 6.5. The output of the evaluator is shown in
Listing 6.6. No dead transitions are detected. This makes sense because a buffered send
will conclude immediately, causing process 0 to finish. Process 1 does nothing, and so also
finishes. However, the logic error is still detected: a “send” token remains in the intermediate
place, which is not consistent with a successful evaluation of the program.

Unmatched MPI_Ssend

The IR for this example is almost identical to the one in Listing 6.5. Only the send operation
is changed from MPI_Bsend to MPI_Ssend. Listing 6.7 on the following page shows the
output of the evaluator. The error is found: MPI_Finalize never fires, and an unexpected
token remains in the intermediate place.

6.1.3 Unmatched Receive
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Net produced a state graph of order 4 and size 3
Net terminates.
The following transitions never fire: {

"MPI_Finalize",
}
Markings of terminal states:

End: [ ], I: [ SEND(MPI_INT, from=0, to=1, tag=0) ], P0: [ ], P1:
[ DONE ], Start: [ ]↪→

Listing 6.7: Evaluator output when given the unmatched MPI_Ssend IR.

0x0000 MPI_Init()
0x0001 MPI_Allreduce(process=0, next=0x0003)
0x0002 MPI_Allreduce(process=1, next=0x0004)
0x0003 MPI_Recv(process=0, from=1, tag=0, type='MPI_INT', next=0x0004)
0x0004 MPI_Finalize()

Listing 6.8: IR of an unmatched MPI_Recv example program.

Net produced a state graph of order 3 and size 2
Net terminates.
The following transitions never fire: {

"MPI_Finalize",
"MPI_Recv 8KjLR5",

}
Markings of terminal states:

End: [ ], I: [ ], P0: [ RECV(MPI_INT, from=1, to=0, tag=0) ], P1:
[ DONE ], Start: [ ]↪→

Listing 6.9: Evaluator output when given the IR from Listing 6.8.
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0x0000 MPI_Init()
0x0001 MPI_Bsend(process=0, to=1, tag=0, type='MPI_INT', next=0x0003)
0x0002 MPI_Recv(process=1, from=0, tag=42, type='MPI_INT', next=0x0003)
0x0003 MPI_Finalize()

Listing 6.10: IR of a send operation with a tag mismatch.

Net produced a state graph of order 3 and size 2
Net terminates.
The following transitions never fire: {

"MPI_Recv sNJMFe",
"MPI_Finalize",

}
Markings of terminal states:

End: [ ], I: [ SEND(MPI_INT, from=0, to=1, tag=0) ], P0: [ DONE
], P1: [ RECV(MPI_INT, from=0, to=1, tag=42) ], Start: [ ]↪→

Listing 6.11: Evaluator output when given the IR from Listing 6.10.

The IR for this example is shown in Listing 6.8 on the preceding page. The evaluator output,
shown in Listing 6.9 on the facing page, shows that MPI_Finalize and MPI_Recv never fire,
indicating that the error is found.

6.1.4 Rank, Tag or Type Mismatch

All these examples produce essentially the same output. The marking of the terminal state
varies slightly, depending on whether a synchronous or buffered send is used. For the sake of
brevity, only a tag mismatch example is shown here.

Listing 6.10 shows the evaluated IR, and Listing 6.11 shows the output of the evaluator.
Neither MPI_Recv nor MPI_Finalize fire, and tokens remain in places other than “End”.
Clearly, the error is detected.

6.1.5 Conclusions

This section has shown that all errors shown in Section 3.4 on page 31 can be detected. It
has not shown that these errors can be detected in all circumstances; it may be the case
that, in larger programs with more operations, some of these errors could go undetected.
To investigate this further, it would be prudent to evaluate a large number of both correct
and erroneous programs. This is left for future work, as it will be much easier once a full
translation from C code to CPN is implemented and can be done automatically.

The following is speculation on whether the individual error types can be detected in larger,
more complex programs:
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• Deadlock: the modelling approach is designed to model the communication of MPI
programs accurately; if a communication pattern can cause a deadlock, the state graph
should contain a corresponding terminal state, and the deadlock should be found re-
gardless of program size and complexity.

• Unmatched send: again, program complexity should be irrelevant; if a send operation
is performed without a matching receive, any terminal state of the model will have a
remaining send token left in an intermediate place, indicating the error.

• Unmatched receive: an unmatched receive operation will cause the executing process
to stop since the operation can never complete. This, again, is independent of program
complexity, and the error should always be detectable.

• Rank, tag, or type mismatch: as this type of error should also cause a transition to
never be able to fire, it should be detectable regardless of program size or complexity.

It is conceivable that a program contains a subtle bug caused by two tag mismatches, which
cancel each other. So two full send and receive operations are performed, but the intended
destinations are swapped. This specific issue would not be detected by the modelling ap-
proach.

6.2 Jacobi Method

The Jacobi method is a popular1 algorithm to be implemented using MPI. This section will
consider the implementation for a static number of processes (four) provided by MCS Division,
n.d. This implementation can be trivially altered to work with other numbers of processes by
simply removing the check of the communicator size. This section will work with this program
using 2, 4, 6, 8, and 10 processes. Altering the number of participating processes alters the
values computed by the program, but the communication pattern remains the same. This
will be sufficient for evaluating the modelling approach and implementation.

As this program contains conditional code, i.e., a loop, multiple models must be produced and
evaluated. The MPI operations guarded by if-statements are trivial, though. They are simple
computations made with constant values and should be simple to evaluate when compiling
the C-code to the IR.

Four different IRs must be generated to fully check the program. The loop is modelled twice.
Once as running for infinite iterations, to cover the jump from the last operation of the loop to
the first. And once as running exactly one iteration to cover the jump from the last operation
of the loop to the first operation after the loop. Additionally, the send operations can either
be synchronous or buffered. Since all operations send the same kind of data, it is assumed
that they are either all synchronous or all buffered. Therefore, the four IRs are:

• infinite loop, buffered send, shown in Listing 6.12 on the facing page
1A rudimentary search on GitHub finds more than one hundred repositories and hundreds of commits, using

the query https://github.com/search?q=jacobi%20mpi
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0x0000 MPI_Init()
0x0001 MPI_Bsend(process=0, to=1, type='MPI_DOUBLE', tag=0, next=0x0004)
0x0002 MPI_Recv(process=1, from=0, type='MPI_DOUBLE', tag=0, next=0x0003)
0x0003 MPI_Bsend(process=1, to=0, type='MPI_DOUBLE', tag=1, next=0x0006)
0x0004 MPI_Recv(process=0, from=1, type='MPI_DOUBLE', tag=1, next=0x0005)
0x0005 MPI_Allreduce(process=0, type='MPI_DOUBLE', next=0x0001)
0x0006 MPI_Allreduce(process=1, type='MPI_DOUBLE', next=0x0002)

Listing 6.12: IR of the Jacobi program, using an infinite loop.

0x0000 MPI_Init()
0x0001 MPI_Bsend(process=0, to=1, type='MPI_DOUBLE', tag=0, next=0x0004)
0x0002 MPI_Recv(process=1, from=0, type='MPI_DOUBLE', tag=0, next=0x0003)
0x0003 MPI_Bsend(process=1, to=0, type='MPI_DOUBLE', tag=1, next=0x0006)
0x0004 MPI_Recv(process=0, from=1, type='MPI_DOUBLE', tag=1, next=0x0005)
0x0005 MPI_Allreduce(process=0, type='MPI_DOUBLE', next=0x0007)
0x0006 MPI_Allreduce(process=1, type='MPI_DOUBLE', next=0x0007)
0x0007 MPI_Finalize()

Listing 6.13: IR of the Jacobi program, using a single-iteration loop.

• infinite loop, synchronous send

• single-iteration loop, buffered send, shown in Listing 6.13

• single-iteration loop, synchronous send

For the sake of brevity, only IRs for two participating processes and using a buffered send
operation are included here. Analogous IRs using buffered sends or more processes may be
trivially derived.

6.2.1 State Graph Size

Table 6.1 on the following page shows the order (number of vertices) and size (number of
edges) of the state graph for each of the four different kinds of IR evaluated in this chapter.
The state graphs were computed for two, four, six, eight, and ten processes. The order of
the state graph is the number of possible states the CPN can be in, while the size is the
number of possible state transitions. The order of the state graph primarily depends on the
type of send operation used and the number of processes. Whether or not the main loop
of the program is modelled as having one iteration or infinitely many has little effect on the
order.

The significant difference in state space size between buffered and synchronous send oper-
ations is caused by the fact that with a buffered send, the sending process can continue
immediately. This means that whatever state the net is in after the send is performed has
more following states than with a synchronous send. This effect compounds when there are
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Table 6.1: Order and size of state graphs for the four different CPN variants.

infinite loop, MPI_Ssend

processes order size

2 6 6
4 40 74
6 224 642
8 1152 4482

10 5632 27 650

single iteration, MPI_Ssend

processes order size

2 8 7
4 42 75
6 226 643
8 1154 4483

10 5634 27 651

infinite loop, MPI_Bsend

processes order size

2 6 6
4 72 152
6 990 3346
8 13 776 64 044

10 191 862 1 135 262

single iteration, MPI_Bsend

processes order size

2 8 7
4 74 153
6 992 3347
8 13 778 64 045

10 191 864 1 135 263

multiple processes, all of which perform send operations. Therefore, the models assuming
buffered sends have much larger state spaces.

Figure 6.1 on the next page visualizes the relationship between state graph size and process
number and compares these to mathematical functions. For the model using synchronous
sends, the state graph grows faster than x3, but slower than x4 or the exponential function
ex. However, for the model using buffered sends, the state graph grows faster than all these
functions, even ex.

It follows that the simulation complexity depends on the number of processes simulated, which
was to be expected. Trivially, the more processes participate, the more possible states the
whole program can be in. However, that the simulation complexity also depends significantly
on the type of communication used. Using buffered sends causes the state graph to grow
substantially faster than synchronous sends.

6.2.2 Conclusions

This section has shown how the Jacobi implementation can be modelled using the modelling
approach and implementation. It has further demonstrated the state space size for different
instances of the program. The state space grows significantly faster when using buffered
sends, as explained above. This is an interesting takeaway by itself; MPI programmers may
wish to use synchronous sends explicitly in order to be more able to reason about the runtime
characteristics of their programs.
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Figure 6.1: State graph order, by number of processes, compared to mathematical functions.
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The rapid growth in state space for programs using buffered sends may be problematic. Larger
programs will most likely produce even faster-growing state spaces, likely making it impractical
to model them for more than ten processes or possibly even fewer.

6.3 Performance

This section will give an overview of the performance of the implementation, showing both
execution speed and memory usage. The data was gathered while computing the various
state graphs described in the previous section.

All measurements were taken on a system running a Linux operating system using Rust 1.70.0,
and an AMD Ryzen 5 3600X CPU2. Table 6.2 on the facing page shows the execution time
of the evaluator when given the corresponding IR, along with the maximum memory use of
the program. The memory use was determined by using the “massif”3 tool of the Valgrind
framework.

6.3.1 Conclusions

Program execution time and memory use scale above linearly with the state graph order.
Table 6.3 on the next page shows the total state graph order together with the relative
execution time and memory use per state. To speculate, a larger state graph likely also
means more cache misses and allocations. Additionally, modern CPUs can run at a “boosted”
clock speed for short amounts of time, which means a short-running program can be run at
a higher average clock speed, while a long-running program will be run at a slower average
clock speed. The CPU used for these evaluations has a base clock speed of 3.8 GHz, and a
boost clock speed of 4.4 GHz, an increase of 15%.

Memory use per state grows less quickly and is likely caused by the fact that a state graph
of a higher order also has a higher size, i.e., more edges connecting the nodes of the graph.
Each additional edge costs a few additional bytes of memory.

2https://www.amd.com/en/support/cpu/amd-ryzen-processors/amd-ryzen-5-desktop-processors/
amd-ryzen-5-3600x, accessed July 17, 2023

3https://valgrind.org/info/tools.html#massif, accessed July 23, 2023
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6.3 Performance

Table 6.2: Evaluation speeds and peak memory usage.

infinite loop, MPI_Ssend

processes order time memory

2 6 0.07 s 1.1 MiB
4 40 0.07 s 1.2 MiB
6 224 0.14 s 1.8 MiB
8 1152 0.74 s 6.5 MiB

10 5632 5.42 s 39.6 MiB

single iteration, MPI_Ssend

processes order time memory

2 8 0.07 s 1.1 MiB
4 42 0.07 s 1.2 MiB
6 226 0.14 s 1.8 MiB
8 1154 0.75 s 6.6 MiB

10 5634 5.45 s 39.7 MiB

infinite loop, MPI_Bsend

processes order time memory

2 6 0.07 s 1.1 MiB
4 72 0.08 s 1.2 MiB
6 990 0.73 s 4.5 MiB
8 13 776 17.50 s 79.9 MiB

10 191 862 392.38 s 1.6 GiB

single iteration, MPI_Bsend

processes order time memory

2 8 0.07 s 1.1 MiB
4 74 0.08 s 1.2 MiB
6 992 0.76 s 4.6 MiB
8 13 778 17.85 s 79.8 MiB

10 191 864 397.22 s 1.6 GiB

Table 6.3: Performance per state, relative to total state graph size.

state graph order time per state memory per state

1152 642 µs 5916 bytes
5632 962 µs 7373 bytes

13 776 1270 µs 6082 bytes
191 864 2070 µs 8954 bytes

67



6 Evaluation

6.4 Revised Implementation

The performance metrics shown in Section 6.3 on page 66 indicate that it is mostly infeasible
to simulate even a moderate number of processes for relatively simple programs. A revised
implementation was devised to address this. As displayed in Figure 5.1 on page 53, the
implementation spends most of its running time inside libpython3. It is thus reasonable to
assume that eliminating the Python dependency would enhance performance. This section will
present a revised implementation of the “cpnets” crate, which removes the Python dependency,
but also sacrifices its general-purpose applicability.

6.4.1 Removing Python as the Modelling Language

Arc expressions and transition guards in CPNs can be arbitrarily complex. However, the
modelling approach used in this thesis actually uses relatively simple expressions for both
types of expression.

Arc expressions either pass along their input token unmodified or they ignore their input token
and generate a new token. Consider, for example, the CPN shown in Figure 3.12 on page 32.
All arcs have one of two different kinds of expression: either a simple name binding, which
causes the token to be passed on unmodified or a Python constructor that constructs a new
token.

Transition guards ensure that the type of token matches the transition, and that the token
parameters match those of the transition, as well. For example, for an MPI_Ssend transition,
the incoming token must be of type SendMarker, and its type, source, destination, and tag
must match those of the MPI_Ssend operation in the source program.

These simple types of expression do not require a complex modelling language and can be
realized in pure Rust. While the struct Expression of the general purpose cpnets crate was
a simple wrapper around a String containing a Python expression, the revised implementation
uses a Rust enum. Listing 6.14 on the next page shows the definition of the new expression
struct.

Guard expressions depend on the type of transition that they guard, so a specific guard im-
plementation must be written for each MPI operation supported by the software. Listing 6.15
on the facing page shows the new guard definition, which currently only supports the same
operations as the proof-of-concept IR parser and evaluator. Like Expression, Guard is now
a Rust enum type rather than a struct.

Finally, the struct Token previously wrapped a Python object. For the revised implemen-
tation, an enum type is used once again. The token can be one of the supported types of
marker. The definition is shown in Listing 6.16 on page 70. As with transition guards, new
variants will need to be added to support more MPI operations.
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use crate::token::Token;

pub struct PassThroughExpression {
pub binding_name: String,

}

pub struct GeneratorExpression {
pub token: Token,

}

pub enum Expression {
PassThrough(PassThroughExpression),
Generator(GeneratorExpression),

}

Listing 6.14: Revised Expression definition. Code comments and derive macros are omit-
ted for brevity.

use crate::token::Token;

pub struct SendRecvGuard {
pub src: i32,
pub dest: i32,
pub tag: i32,
pub datatype: String,

}

pub enum Guard {
Init,
Send(SendRecvGuard),
Recv(SendRecvGuard),
Allreduce,
Finalize,

}

Listing 6.15: Revised Guard definition. Code comments and derive macros are omitted for
brevity.
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pub struct SendRecvMarker {
pub src: i32,
pub dest: i32,
pub tag: i32,
pub datatype: String,

}

pub enum Token {
InitMarker,
SendMarker(SendRecvMarker),
RecvMarker(SendRecvMarker),
AllreduceMarker,
FinishedMarker,

}

Listing 6.16: Revised struct Token definition. Code comments and derive macros are
omitted for brevity.

Table 6.4: Revised implementation speeds and peak memory usage.

infinite loop, MPI_Ssend

processes order time memory

2 6 0.05 s 18.0 KiB
4 40 0.05 s 88.6 KiB
6 224 0.05 s 837.2 KiB
8 1152 0.08 s 6.8 MiB

10 5632 0.33 s 50.3 MiB

single iteration, MPI_Ssend

processes order time memory

2 8 0.05 s 19.3 KiB
4 42 0.05 s 90.6 KiB
6 226 0.05 s 836.2 KiB
8 1154 0.08 s 6.8 MiB

10 5634 0.33 s 50.3 MiB

infinite loop, MPI_Bsend

processes order time memory

2 6 0.05 s 18.0 KiB
4 72 0.05 s 168.5 KiB
6 990 0.07 s 4.4 MiB
8 13 776 0.88 s 107.5 MiB

10 191 862 19.80 s 2.3 GiB

single iteration, MPI_Bsend

processes order time memory

2 8 0.05 s 19.3 KiB
4 74 0.05 s 169.3 KiB
6 992 0.09 s 4.4 MiB
8 13 778 0.90 s 107.5 MiB

10 191 864 22.67 s 2.3 GiB
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Figure 6.2: Execution times of revised implementation compared to general purpose imple-
mentation.

6.4.2 Improved Performance

Table 6.4 on the facing page shows the execution speed and peak memory use of the proof-of-
concept evaluator, when it is rebuilt with the special-purpose revised implementation of the
cpnets crate. For large state graphs, peak memory use is slightly higher, making the revised
implementation worse in that respect. However, peak memory use for smaller state graphs is
improved, and execution speed is vastly improved for state graphs of all orders.

Figure 6.2 visualizes the difference in performance between the general purpose implemen-
tation and the revised implementation. The revised implementation is faster by a factor of
about 20.

It should be noted that since the implementation is not parallelized, it would be possible to
evaluate multiple IRs at once, if the CPU that runs the evaluation has a sufficient number of
cores. This would allow, for example, evaluating all four IR variants of the ten-process Jacobi
program in the same time it would take to evaluate just the slowest one.

6.4.3 Accessing the Source Code

The revised implementation of the cpnets crate is not published on crates.io. It is available on
GitLab at https://gitlab.com/tronje/mpi-cpnets. The version used in this thesis, v0.1.0, is
available here: https://gitlab.com/tronje/mpi-cpnets/-/tree/v0.1.0. A release package ready
for download is available here: https://gitlab.com/tronje/mpi-cpnets/-/releases/v0.1.0. An
adapted version of the “mpi-cpn-ir-parser” software that uses the revised implementation of
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6 Evaluation

cpnets is available on the “mpi-cpnets” branch of its repository, here: https://gitlab.com/
tronje/mpi-cpn-ir-parser/-/tree/mpi-cpnets.
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7 Related Work

This chapter will present previous work related to the topic of modelling or evaluating MPI
software.

7.1 CIVL

There are several publications by Stephen F. Siegel et al., culminating in the creation of “CIVL:
The Concurrency Intermediate Verification Language”: Siegel, 2007; Siegel and Avrunin, 2004,
2005; Siegel and Zirkel, 2011; Siegel et al., 2015. CIVL includes a language based on C, CIVL-
C, to which multiple different types of parallel C programs may be compiled, including MPI
software. The project additionally includes an intermediate representation from which a model
is built. This model is then checked using model checking and symbolic execution. CIVL is
available via a web application1 and can be used easily via the web browser.

CIVL can check “the absence of deadlocks, race conditions, assertion violations, illegal pointer
dereferences and arithmetic, memory leaks, divisions by zero, and out-of-bound array indexing”
(Siegel et al., 2015).

Dwyer et al., 2021 explain the central role played by scopes and processes in CIVL models.
Static scopes are analogous to the lexical scope of a program, i.e., they roughly correspond to
blocks indicated by curly braces ({ and }) in C. A dynamic scope or dyscope is an instantiation
of a scope and keeps track of the values of variables that live in the scope. A process keeps
track of a call stack, which contains references to dyscopes, which tracks the current location
of the process within the program.

During an evaluation, CIVL manages a tree of static scopes, a graph of dyscopes, each with
a mapping of variables to values, and a set processes which contain references to dyscopes.
Dyscopes are instances of static scopes, and there can be more than one dyscope for a given
static scope. A state in CIVL is thus much more complicated than a state of a CPN, which
is just a mapping of tokens to places.

CIVL relies on the “Symbolic Algebra and Reasoning Library” (Verified Software Laboratory,
University of Delaware, 2015) for symbolic execution, and optionally depends on the auto-
mated theorem provers CVC32, CVC43, and Z34. CIVL will work without these theorem

1http://civl.cis.udel.edu/app/, accessed November 10, 2022
2https://cs.nyu.edu/acsys/cvc3/, accessed July 10, 2023
3https://cvc4.github.io/, accessed July 10, 2023
4https://github.com/Z3Prover/z3, accessed July 10, 2023
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$ civl verify examples/concurrency/locksBad.cvl
CIVL v1.21 of 2021-11-04 -- http://vsl.cis.udel.edu/civl
Error: Type cycle detected in $int_iter. Field sequence:

at civlc.cvl:11.0-15.0
struct $int_iter {
^^^^^^^^^^^^^^^^^^^^

...
};
^

Listing 7.1: CIVL 1.21 invocation and output with an included example file, already in the
CIVL language.

provers, “but the results will not be very precise” (Dwyer et al., 2021).

Symbolic execution (cf. King, 1976) is, in simple terms, the idea that instead of evaluating a
program for all possible inputs, it is evaluated for classes of inputs. To give a brief example,
consider a simple “if” statement, which checks if an integer input is greater than some other
constant integer, e.g.:

if (input > 1000) {
do_something();

} else {
do_something_else();

}

Obviously, input may contain one of a great number of integer values, but there are only
two code paths. So the program is evaluated not based on the value of input, but the value
of the expression input > 1000. It is thus symbolically executed for the class of values that
causes the condition of the if statement to be true and the class of values that causes the
condition to be false. This is similar to the approach taken by the thesis project, where IR is
intended to be generated for each possible path through a program.

7.1.1 Evaluation

Two versions of CIVL have been tested. The latest stable release, CIVL 1.21 Revision 5476,
does not seem to work on C programs or even on provided example files already in CIVL
language. Attempting to verify a locking example, included with the source code release of
CIVL 1.21, produces an error, shown in Listing 7.1

Attempting to verify an MPI program in C produces a similar error, as shown in Listing 7.1.
The same error appears to occur for any MPI C program and is not specific to the deadlock
example. Indeed, the CIVL tool appears to translate the entire C program, including included
header files, into the CIVL language and produces an error at the definition of the MPI_Status
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$ civl verify -input_mpi_nprocs=2 deadlock.c
CIVL v1.21 of 2021-11-04 -- http://vsl.cis.udel.edu/civl
Error: Type cycle detected in MPI_Status. Field sequence:

at mpi.h:208.8-213.0
typedef struct MPI_Status{

^^^^^^^^^^^^^^^^^^^^
...

} MPI_Status;
^

Listing 7.2: CIVL 1.21 invocation and output with the example program shown in Listing 2.3
on page 8.

$ civl verify -input_mpi_nprocs=2 unmatched_bsend.c
CIVL v1.20 of 2019-09-27 -- http://vsl.cis.udel.edu/civl
Syntax error: Function MPI_Bsend doesn't have a definition.
at mpi.h:251.4-12 "MPI_Bsend" included from unmatched_bsend.c:1.

Listing 7.3: CIVL 1.20 invocation and output with a program that uses MPI_Bsend.

struct. This makes it impossible to verify any MPI program, as they all must include the
“mpi.h” header file. A different MPI implementation may yield different results. For the
evaluations in this section, OpenMPI 4.1.5 was used.

The previous stable CIVL release, CIVL 1.20 Revision 5259, does work and successfully iden-
tifies the deadlock in the provided “locksBad.cvl” example. It also successfully identifies the
deadlock produced by the program shown in Listing 2.3 on page 8. Additionally, it success-
fully finds the issue with example programs for rank mismatch, tag mismatch, an unmatched
MPI_Recv, and an unmatched MPI_Send. However, programs containing either MPI_Ssend
or MPI_Bsend produce the error displayed in Listing 7.3. The same error is also produced by
the web app, which appears to be running CIVL version 1.18. Siegel et al., 2015 mention
that “standard mode blocking point-to-point operations and all collective operations are sup-
ported; support for non-blocking operations and more advanced MPI features is in progress”,
which likely means that the rarely used (cf. Table 2.2 on page 12) explicit send operations
are among the “in progress” operations, and not yet implemented.

7.1.2 Performance

Turning again to the implementation of the Jacobi method by MCS Division, n.d., the per-
formance of the CIVL tool can be measured and compared to the proof-of-concept tool
developed for this thesis. It should be noted, of course, that the two tools do not do the
same thing. CIVL can operate directly on the C program, while the IR evaluator must operate
on IR generated by hand. The future implementation of a compiler from C code to the IR
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Table 7.1: Performance comparison between CIVL and the IR evaluator written for this thesis.

processes tool
CIVL IR evaluator

4 112 s 0.20 s
10 701 s 43.13 s

proposed in Chapter 4 on page 41 will likely be very fast; it is reasonable to assume that
it would not take longer than compilation into, say, LLVM IR. Its performance impact will,
therefore, likely be negligible. Still, it must be pointed out that any comparison made at this
time will be incomplete.

The following presents two performance comparisons. One which assumes four participating
processes and one which assumes ten. For CIVL, one invocation is timed, whereas the IR
evaluator will be invoked four times to cover all possible IR variants.

Table 7.1 displays the results of the performance comparison. Clearly, the IR evaluator is
much faster. For four processes, it is faster by a factor of over 500, while for ten processes,
the advantage decreases. However, it is still faster by a factor of more than 16.

7.1.3 Conclusion

CIVL can detect more errors than even the modelling approach described in Chapter 3 on
page 19 is conceptually able to, such as assertion violations and illegal pointer dereferences.
CIVL can also analyze other types of parallel software, such as OpenMP, and combinations,
like a program that utilizes both MPI and OpenMP.

The software written for this thesis also exists in a proof-of-concept state, greatly limiting the
real-world applications it can evaluate. Still, CIVL appears to be flaky in terms of supported
MPI operations, too, as Section 7.1.1 on page 74 shows. And, assuming translation of C
code to the proposed IR does not incur significant overhead, the evaluation tool proposed in
this thesis will likely be much faster than CIVL for most inputs.

Due to the better performance, a fully featured tool based on the work in this thesis may be
used often during the development of an MPI program, and CIVL could then be used as a
final test after the programmer deems the program completed.

7.2 MPI-SV

MPI-SV, by Yu et al., 2020, is a symbolic verification tool for checking MPI software. MPI-SV
uses Cloud9 (cf. Ciortea et al., 2010), a parallel symbolic execution engine, which is based
on Klee (cf. Cadar et al., 2008), and PAT, “a toolkit for flexible and efficient system analysis
under fairness” (Sun et al., 2009).
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$ export KLEE_ROOT=$(pwd)
$ export KLEE_LIBMPI=$(pwd)/libs/Azequialib/lib/
$ export KLEE_UCLIBC_ROOT=$(pwd)/libs/libc/
$ export KLEEROOT=$(pwd)
$ export AZQROOT=$(pwd)/libs/Azequialib
$ export LD_LIBRARY_PATH=$(pwd)/syslibs
$ ./mpisvcc jacobi.c
$ ./mpisv 4 jacobi.bc
F0711 09:41:18.780552 73060 Init.cpp:743] error loading program

jacobi.bc:↪→

*** Check failure stack trace: ***
@ 0x7f4db7a0b9fd google::LogMessage::Fail()
@ 0x7f4db7a0d89d google::LogMessage::SendToLog()
@ 0x7f4db7a0b5ec google::LogMessage::Flush()
@ 0x7f4db7a0e1be google::LogMessageFatal::~LogMessageFatal()
@ 0x63ebd9 klee::loadByteCode()
@ 0x5bec9e main
@ 0x7f4db6839850 (unknown)
@ 0x7f4db683990a (unknown)
@ 0x5be596 (unknown)

./mpisv: line 14: 73060 Aborted (core dumped) ./klee
-lib-MPI -threaded-all-globals $*↪→

Listing 7.4: Setup, invocation, and output of the current “master” branch state of the pre-
compiled distribution of MPI-SV.

MPI-SV uses Cloud9 for symbolic execution to find code paths through the input program. It is
possible that violations, such as deadlocks, are detected at this stage. If not, a Communicating
Sequential Processes (Hoare, 1978) model is constructed for each path through the project
and checked using PAT.

Yu et al., 2020 compare their work to CIVL. The primary differences are that CIVL builds
a model for the whole program, while MPI-SV builds models for each path through the
program, found via symbolic execution. MPI-SV also supports more MPI operations than
CIVL; in particular, it supports non-blocking MPI operations.

7.2.1 Evaluation

MPI-SV is available as a pre-built program at https://github.com/mpi-sv/mpi-sv and its
source code is available at https://github.com/mpi-sv/mpi-sv-src (both accessed July 11,
2023).

The project appears to be abandoned. Even though the paper by Yu et al., 2020 was published
in 2020, the source code repository has seen only three commits in that year, and the most
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recent commit before then is from 2013. As shown in Listing 7.4 on the previous page, pre-
compiled distribution fails to execute. It is possible that building the program from source
would fix the issue, but the build fails. One of the primary dependencies, Cloud95, also
appears abandoned, and fails to build. There is a depot_tool manifest, which contains a
dependency that is no longer reachable via the specified URL6 The code repository for Cloud9
contains no build instructions and invocations of make or the included configure script both
fail. It is likely possible to fix the build errors, but this effort was not made due to time
constraints. Evaluating MPI-SV is thus deemed out of scope for this thesis.

7.3 MPI-Checker

MPI-Checker, by Droste et al., 2015, is a static analysis tool for checking the correct use of
the MPI API. Its checks include checks related to using valid arguments in MPI functions.
This means it can check that the specified datatype in, say, an MPI_Send invocation matches
the type of the specified buffer. These checks are not part of the communication pattern of
an MPI program and thus, explicitly, not covered by this thesis. MPI-Checker further claims
to be able to detect deadlocks in blocking communication and issues with non-blocking MPI
functions. The latter include “double request usage of non-blocking calls without intermediate
wait”, “waiting for a request that was never used by a non-blocking call”, and “nonblocking
call without matching wait”.

Following the instructions7 in the source code repository with the error examples outlined in
Section 2.1.1 on page 7, though, produces no error messages, as shown in Listing 7.5 on the
next page.

MPI-Checker could be a promising project to integrate a completed IR evaluator with. Its
static analysis capabilities may allow it to generate the IR specified in Chapter 4 on page 41,
and then the checks supported by the modelling approach could be integrated into MPI-
Checker.

5https://github.com/dslab-epfl/cloud9, accessed July 11, 2023
6The manifest is available at https://github.com/dslab-epfl/cloud9-depot/blob/master/DEPS, and the

“gyp” dependency is not available at the specified URL.
7https://github.com/0ax1/MPI-Checker/blob/main/examples/Readme.md, accessed July 11, 2023
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$ intercept-build make
$ # output of `make`` omitted for brevity
$ analyze-build --enable-checker optin.mpi.MPI-Checker
analyze-build: Removing directory

'/tmp/tronje/scan-build-2023-07-11-16-15-43-688305-k8bu1lcw' because
it contains no report.

↪→

↪→

$ run-clang-tidy -p=`pwd` -clang-tidy-binary=`which clang-tidy`
-checks='-*,mpi-type-mismatch,mpi-buffer-deref'↪→

Enabled checks:
mpi-buffer-deref
mpi-type-mismatch

/usr/bin/clang-tidy -checks=-*,mpi-type-mismatch,mpi-buffer-deref
-p=/home/tronje/uni/msc-thesis/mpi-errors
/home/tronje/uni/msc-thesis/mpi-errors/unmatched_bsend.c

↪→

↪→

/usr/bin/clang-tidy -checks=-*,mpi-type-mismatch,mpi-buffer-deref
-p=/home/tronje/uni/msc-thesis/mpi-errors
/home/tronje/uni/msc-thesis/mpi-errors/unmatched_send.c

↪→

↪→

/usr/bin/clang-tidy -checks=-*,mpi-type-mismatch,mpi-buffer-deref
-p=/home/tronje/uni/msc-thesis/mpi-errors
/home/tronje/uni/msc-thesis/mpi-errors/deadlock.c

↪→

↪→

/usr/bin/clang-tidy -checks=-*,mpi-type-mismatch,mpi-buffer-deref
-p=/home/tronje/uni/msc-thesis/mpi-errors
/home/tronje/uni/msc-thesis/mpi-errors/unmatched_recv.c

↪→

↪→

/usr/bin/clang-tidy -checks=-*,mpi-type-mismatch,mpi-buffer-deref
-p=/home/tronje/uni/msc-thesis/mpi-errors
/home/tronje/uni/msc-thesis/mpi-errors/rank_mismatch.c

↪→

↪→

/usr/bin/clang-tidy -checks=-*,mpi-type-mismatch,mpi-buffer-deref
-p=/home/tronje/uni/msc-thesis/mpi-errors
/home/tronje/uni/msc-thesis/mpi-errors/tag_mismatch.c

↪→

↪→

/usr/bin/clang-tidy -checks=-*,mpi-type-mismatch,mpi-buffer-deref
-p=/home/tronje/uni/msc-thesis/mpi-errors
/home/tronje/uni/msc-thesis/mpi-errors/unmatched_ssend.c

↪→

↪→

Listing 7.5: Running MPI-Checker on the repository of MPI error examples described in Sec-
tion 2.1.1 on page 7. Note that no errors are reported.

79



7 Related Work

7.4 In-Situ Partial Order

Vo et al., 2009 use a method to verify MPI software without building a model at all. Their
approach, In-Situ Partial Order (ISP), involves running the MPI program within a scheduler
application. One of its advantages is that no model needs to be generated; ISP analyses MPI
code directly and can find deadlocks or verify their absence.

The website noted in the paper, http://www.cs.utah.edu/formal_verification/ISP (accessed
July 11, 2023) returns an HTTP 404 error. A search on GitHub returns a source code repos-
itory, https://github.com/cogumbreiro/isp (accessed July 11, 2023), but the code fails to
compile. Listing 7.6 on the next page shows the produced error message. Note the state-
ment MPI_Type_lb was removed in MPI-3.0 which indicates that ISP is not compatible
with the MPI 3.0 standard, much less the latest MPI standard (cf. Message Passing Interface
Forum, 2021). Neither Vo et al., 2009 nor the source code repository specifies instructions
on building or running ISP, either. The project is therefore considered abandoned and will
not be evaluated here.
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7.5 Kaira

In file included from isp.h:24,
from Profiler.c:21:

Profiler.c: In function ‘void copyBufferNonBlockingSend(void*, void**,
int, MPI_Datatype, int*)’:↪→

Profiler.c:832:5: error: static assertion failed: MPI_Type_lb was removed
in MPI-3.0. Use MPI_Type_get_extent instead.↪→

832 | MPI_Type_lb(datatype, (MPI_Aint*)&lowerbound);
| ^~~~~~~~~~~

Profiler.c:838:5: error: static assertion failed: MPI_Type_extent was
removed in MPI-3.0. Use MPI_Type_get_extent instead.↪→

838 | MPI_Type_extent(datatype, (MPI_Aint*)&extent);
| ^~~~~~~~~~~~~~~

Listing 7.6: Excerpt of the compiler output when attempting to build the In-Situ Partial
Order (ISP) software. The compilation was triggered by first running the included
configure script, followed by an invocation of make.

7.5 Kaira

Böhm and Běhálek, 2012 have come up with what is essentially the opposite of this thesis
project. Their software “Kaira” can be used to create CPNs and to convert them into MPI
programs.

Unfortunately, the official Kaira website8 fails to load, and the source code repository9 has
seen only one single-line change since 2016. The tool fails to build on a modern Linux
installation.

7.6 SNAKES

SNAKES, by Pommereau, 2015, is a Python library that implements CPNs, also using Python
as the modelling language of the nets. SNAKES differs from cpnets in that it does not keep
its marking independent from its net object. Each net contains places, and places contain
their tokens. Markings can be extracted from this configuration of the net. To build the state
graph, the net is put into a given state, and then a transition is fired. This puts the net into
its follow-up state, at which point a marking can be extracted. The net will then need to be
reset into its previous state in order to compute any other follow-up states that may exist.

Table 7.2 on the following page shows a brief performance comparison. The table shows the
time it takes each library to compute the state graphs of the CPN for the Jacobi model,
assuming a single-iteration loop and a synchronous send operation. SNAKES is slower than
cpnets for small state graphs and slightly faster for larger graphs. The revised implementation

8http://verif.cs.vsb.cz/kaira/, accessed July 5, 2023
9https://github.com/spirali/kaira, accessed July 5, 2023
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7 Related Work

Table 7.2: Comparison of state graph build time between SNAKES and cpnets.

state graph order SNAKES cpnets

8 838 µs 289 µs
42 9.07 ms 5.96 ms

226 88.08 ms 72.51 ms
1154 668.53 ms 675.13 ms
5632 4.58 s 5.28 s

is much faster (cf. Table 6.4 on page 70), though this is not quite a fair comparison since it
is no longer a general-purpose CPN implementation, like SNAKES is.

A related project, “neco” (Fronc, n.d.), can compile SNAKES nets into Cython10 code. This
promises better performance when evaluating the net. However, the project appears to be
abandoned. The last commit was made in 2013, and the source code is written in Python 2,
which has been “sunset” on January 1, 202011.

10https://cython.org/, accessed July 17, 2023
11https://www.python.org/doc/sunset-python-2/, accessed July 16, 2023
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8 Outlook

This thesis has proposed a way of modelling MPI communication as CPNs and implemented
a proof-of-concept software of this modelling approach. This chapter will summarize the
shortcomings and future work of the theoretical modelling approach and the practical software.

8.1 Modelling

8.1.1 Missing MPI Operations

Chapter 3 on page 19 has proposed ways of modelling the most popular MPI operations in
Colored Petri Nets. However, that still leaves a large number of operations unexplored. The
mere size of the MPI standard made proposing a model for all these impractical. Additionally,
not all proposed models of individual operations were integrated into a model of a full program.
Finally, one-sided operations were not explored, as briefly discussed in Section 3.5 on page 39.
All of this is left for future work.

8.1.2 Symbolic Execution

The modelling approach focuses on modelling MPI communication. Dealing with language-
level program constructs like if-statements and loops is solved by constructing a model for each
path through the code. Applying the approach to complex problems may prove impractical
due to the likely vast state space. Perhaps future work can extend the CPN models to model
control flow in addition to MPI communication.

The currently proposed approach is similar to symbolic execution, a concept used by related
work as outlined in Chapter 7 on page 73. Perhaps a better way of dealing with branching
code paths would be to pursue this approach, for example, by using a symbolic execution
engine and then constructing a CPN for every possible path through the program. This is
about equivalent to the proposal in Section 3.4.1 on page 31 and to the approach taken by
Yu et al., 2020.
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8 Outlook

8.2 Implementation

8.2.1 Missing MPI Operations

The implemented IR parser and evaluator software includes support for only a minimal subset
of MPI operations, namely MPI_Bsend, MPI_Ssend, MPI_Recv, MPI_Allgather, and the
always necessary MPI_Init and MPI_Finalize. More operations must be supported to make
this a practical tool for analyzing MPI code. It is left to future work to extend the modelling
approach accordingly and add the corresponding functionality to the implementation.

8.2.2 Compilation

The implementation outlined in Chapter 5 on page 47 includes a parser of the IR proposed in
Chapter 4 on page 41, which can construct a CPN. However, the link between a C-language
MPI program and the IR is missing. A fully-featured implementation would need to have
the ability to compile such a program to the IR. This will pose further challenges, such as
determining which operation is executed by which process and which MPI operation will be
performed next by the given process. It is possible that symbolic execution and static analysis
can be used to solve these issues, as is done by similar projects as outlined in Chapter 7 on
page 73.

8.2.3 Performance Optimizations

Early Termination

The current implementation constructs the entire state graph of a model, which is wasteful.
Only terminal states, that is, states in which the net is dead and for which no following state
exists, are evaluated for error detection. A terminal state indicates an error if, for example, a
token exists in some place other than the “End” place, or the “End” place does not contain
any “Finished” tokens. Therefore, if it finds such an error-indicating state, the computation
of the state graph can terminate early. This may occur long before all possible states have
been computed, thus saving time by not visiting uninteresting states.

Parallelization

Both the cpnets library and the IR evaluator are sequential programs. No parallelism is used
when parsing the IR, generating the CPN, or computing and evaluating the state space.
Parallelizing the state space computation may improve performance, especially for large state
spaces. However, threads running in parallel need to synchronize in order to know about
already visited states, so that no redundant work is done. This will likely lead to extensive use
of locking, e.g., via mutexes, incurring significant overhead. Evaluating how well the software
can be parallelized is left for future work.
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8.2 Implementation

8.2.4 Large-scale Evaluation

The software written for this thesis project was evaluated only on small, hand-crafted error
examples and a relatively simple implementation of the Jacobi method. To truly assess the
modelling approach and its implementation, an automated evaluation of a large number of
open-source MPI software can be performed. This, of course, requires the ability to compile
a C-program to a CPN, which does not exist yet. In the current state, it is impractical to
evaluate many projects because of the necessity to create hand-written IR as input for the
evaluator.

Evaluating Partial Programs

To reduce the size of the state space that the implementation needs to compute, discrete
sections of an MPI program could be compiled to IR and evaluated, rather than entire pro-
grams. For example, if a program contains an MPI_Barrier operation, which all processes
execute, then this would be roughly equivalent to an MPI_Finalize since all processes will
eventually perform this operation. The program could therefore be split in two at the barrier
operation. Splitting programs and evaluating the parts in parallel would be another way to
parallelize evaluation and improve performance.

Whether or not evaluating partial programs is feasible, and what modifications to the mod-
elling approach, if any, this necessitates, is left for future work.

8.2.5 Integration into other Tools

In its current state, the implementation is not very useful. IR needs to be generated by hand
to evaluate a program. The envisioned fully-featured implementation would be able to analyze
whole MPI programs automatically and could perhaps be used integrated into other software.
Like MPI-Checker (Droste et al., 2015), a finished implementation could be integrated into
the analysis tools of LLVM.
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9 Conclusion

The goal of this thesis was to explore the feasibility of using Colored Petri Nets to model
Message Passing Interface communication. When compiling a C-language program that uses
MPI, no checks about whether or not the implemented communication pattern is sound are
made. It would therefore be useful to have some analysis tool that can assist in developing
correct message passing applications. One future goal kept in mind throughout the thesis
was to eventually build a tool that can build a CPN out of a C-language MPI program and
perform analyses on the resulting net. Section 1.3 on page 2 proposed four leading questions
to guide the thesis, repeated here:

1. Which individual MPI operations can be modelled, and how?

2. Can more complex MPI programs with multiple MPI operations be modelled, and if so,
how?

3. What information from an MPI program is relevant for creating a CPN representation?

4. What kinds of errors can be detected using the CPN-based modelling approach, and
how?

The modelling approach proposed in Chapter 3 on page 19 partially answered the first two
questions, showing both how to model the semantics of individual MPI operations, as well
as how to model the interaction of multiple operations in whole MPI programs. To keep the
scope of the thesis manageable, though, only some of the most widely used operations were
considered.

To answer the third question, an intermediate representation was designed and described in
Chapter 4 on page 41. Since the IR needs to contain all information needed to construct
a CPN, its design necessarily answers the question of what information is required to be
extracted from a source C program.

The thesis project contains a practical aspect. Two major programs were written. First,
“cpnets”, a general-purpose CPN library. Second, a proof-of-concept IR evaluator, which
takes as input an IR file, translates it into a CPN following the proposed modelling approach
and evaluates it by computing its state space. The implementation was evaluated in Chapter 6
on page 57, and it was shown that the errors gathered in Section 2.1.1 on page 7 can be
detected. It was therefore demonstrated that the modelling approach works in principle. The
evaluation has also revealed undesirable performance characteristics of the “cpnets” library,
and so a special-purpose variant was conceived and implemented, which greatly improved
performance.
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9 Conclusion

Chapter 7 on page 73 has shown that several other projects with a similar purpose exist,
but most are incomplete, unmaintained, or challenging to build and use. This justifies the
development of a new MPI analysis tool, such as the one partly created in this thesis.

The modelling approach and its implementation are not yet fully-featured or fully evaluated.
As Chapter 8 on page 83 outlined, much work needs to be done to arrive at a tool that can
check an arbitrary MPI program. Not nearly all operations were considered in the theoretical
part of the thesis, and fewer operations still have been implemented in software. The approach
has also only been evaluated on a small number of small programs.

Thus, while the work shown in this thesis is only a first step towards a fully-featured MPI
analyser and evaluator tool, both the theoretical approach and the software implementation
look promising. With a lot of future work, a very useful tool could be created.
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