
Ruprecht-Karls-Universität Heidelberg
Institut für Informatik

Arbeitsgruppe Parallele und Verteilte Systeme

Bachelorarbeit

Tracing Internal Behavior in PVFS

Name: Tien Duc Dinh
Matrikelnummer: 2592222
Betreuer: Julian M. Kunkel, Prof. Thomas Ludwig
Abgabe Datum: 5 October, 2009

Ich versichere, dass ich diese Bachelor-Arbeit selbstständig verfasst und nur die angegebenen Quellen
und Hilfsmittel verwendet habe.

..

Datum: 05.10.2009

Abstract

Nowadays scientific computations are often performed on large cluster systems because of the high
performance they deliver. In such systems there are many reasons for bottlenecks which are related
to both hardware and software. This thesis defines and implements metrics and information used for
tracing events in MPI applications in conjunction with the parallel file system PVFS in order to localize
bottlenecks and determine system behavior. They are useful for the optimizations of the system or
applications. After tracing, data is stored in trace files and can be analyzed via the visualization tool
Sunshot.

There are two experiments made in this thesis. The first experiment is made on a balanced system.
In this case Sunshot shows a balanced visualization between nodes, i.e. the load between nodes looks
similar. Moreover, in connection with this experiment the new metrics and tracing information or
characteristics are discussed in detail in Sunshot. In contrast, the second experiment is made on an
unbalanced system. In this case Sunshot shows where bottlenecks occurred and components which are
related.

3

Acknowledgments

So my first thanks go to Prof. Dr. Thomas Ludwig and Julian M. Kunkel for the guidance and support
during the whole project period. I am also especially grateful to my friends - Christian Takacs and Vu,
Duy Viet - for checking some english mistakes.

Last but not least, I want to appreciate the valuable support of my parents Cuong and Hang.

Contents

1 Introduction 7
1.1 Problem Statement . 7
1.2 Related Work and State of the Art . 7

1.2.1 Vampir . 7
1.2.2 PIOViz . 8

1.3 Goal of the Thesis . 10
1.4 Structure of the Thesis . 10

2 System Overview 11
2.1 The Parallel Virtual File System PVFS . 11

2.1.1 Software Architecture . 12
2.2 MPICH-2 . 15

3 Internal View of PVFS 17
3.1 Client and Server Interaction . 17

3.1.1 System Interface Call . 17
3.1.2 PVFS Hint . 18
3.1.3 Statemachines . 19
3.1.4 Client Statemachine . 20
3.1.5 Server Statemachine . 21

3.2 Request Scheduler . 22
3.3 Layer Internal Processing . 23

3.3.1 Post and Test of Operations . 23
3.3.2 Trove . 23

4 Design 26
4.1 Overview . 26
4.2 General Tracing Considerations . 27
4.3 Tracing Metrics and Information . 27

4.3.1 Hardware Statistics . 27
4.3.2 Number of Concurrent Operations . 28
4.3.3 Statemachine Tracing . 29
4.3.4 Correlation Creation . 31

4.4 Generating Trace Files and Postprocessing . 33

5 Implementation 35
5.1 Integration of HDTrace . 35

5.1.1 Build Process . 35
5.1.2 New Files . 36
5.1.3 Controlling Tracing . 37
5.1.4 Reduce Modifications to PVFS Source Code 38

5.2 Tracing I/O Details and Creation Correlation . 39

5

Contents

5.2.1 Total Size for I/O . 39
5.2.2 Correlation between Server and Trove . 40

6 Evaluation 44
6.1 Basic Features of Sunshot . 44
6.2 Cluster Configuration . 45
6.3 Experiments . 45

6.3.1 Demonstrating New Traced Information . 46
6.3.2 Analyzing Unbalanced Server Condition . 51

7 Summary, Conclusion and Future Work 54
7.1 Summary and Conclusion . 54
7.2 Future Work . 55

Bibliography 56

A Appendix 57
A.1 PVFS Installation . 57
A.2 PVFS File System Configuration Files . 57

A.2.1 One Metadata and Four data servers . 57
A.2.2 Server Configuration . 58

A.3 Start PVFS . 59
A.4 Stop PVFS . 59

A.4.1 An Example of a Server Project File . 59
A.5 Tools used for the Thesis . 60

List of Figures 61

6

1 Introduction

1.1 Problem Statement

The Message Passing Interface (MPI) is an application programming interface that facilitates the devel-
opment of parallel applications and libraries. MPI is designed to provide access to parallel hardware,
e.g. clusters, heterogeneous networks or parallel computers with the goals of high performance, scala-
bility and portability. Today it is widely used for high-performance computing.

MPI supports both point-to-point and collective communication, and so far there are now two models of
MPI: MPI-1 and MPI-2. While the principal MPI-1 model defines only active communication routines,
MPI-2, an extension of MPI-1, has a limited distributed shared memory concept and I/O concepts
in form of MPI-IO which can be built on top of parallel file systems such as PVFS. In general MPI
applications have parallel access to nodes across the cluster via a parallel file system. The system is very
complex. Therefore, it is difficult for the users or developers to determine the problems or inefficient
operating components if the system did not work properly. A solution is to determine the program
behavior by tracing the parallel file system together with the (MPI) program to localize bottlenecks.

1.2 Related Work and State of the Art

For tracing data there are two concepts which are used for different purposes. First is the online
tracing. In this concept we use a monitoring system to get data of the application and/or instrument
this application. Data is not stored, instead it is immediately used for several purposes: either we can
display it for run-time performance analysis, or control applications (e.g. with a load balancer). A well-
known representative of this concept is Paradyn [Pagb]. Second is the offline concept. In comparison
to the first concept, data will be stored as trace files consisting of program activities. After program
completion (or with a considerable delay during program run) data is processed for further analysis.
Representatives are TAU, the Intel Trace Analyzer, Vampir and PIOViz [LKK+07].

1.2.1 Vampir

Vampir is a tool developed at the University of Dresden. Its goal is to trace client I/O applications.
It consists of a tool set which supports many trace aspects including MPI calls, POSIX IO semantics,
POSIX Threads and OpenMPI on many platforms like Linux, Sun Solaris, IBM AIX (PPC), SGI IRIX
(MIPS), Mac OS and Windows. This tool instruments (modifies) a given application in order to invoke
additional measurement calls during runtime.

7

1 Introduction

Vampir supports tracing of hardware performance counters and MPI calls. For performance counters it
collects information of hardware via the PAPI library 1 (Unix/Linux), CPC library (Solaris). On NEC
SX machines it uses special register calls to query the processor’s hardware counters. Moreover, it uses
the library getrusage to collect information about consumed resources and operating system events of
processes (e.g. user/system time, received signals and context switches) and LIBC for memory allo-
cation and free functions (e.g. malloc, realloc, free). For MPI calls Vampir traces some important
information and communications (e.g. participating processes, transferred bytes, tag and communi-
cators). For I/O Vampir traces LIBC I/O calls including file name and amount of transferred data
[Pagc].

Another possible tracing environment is to use PIOViz which supports the tracing of MPI applications
and PVFS. It is introduced in the next section.

1.2.2 PIOViz

The working group Parallel and distributed systems (PVS) provides PIOViz [LKK+06], an environ-
ment with MPICH2 and PVFS which allows to visualize activities on the parallel file system servers in
conjunction with the client events triggering these activities. Provided features should support develop-
ers to optimize their MPI applications and to improve the parallel file system. In brief, the environment
contains a set of user-space tools, modifications to the low level layer ADIO (part of the MPICH2’s
MPI-IO implementation) [TGL96], MPE 2 and logging enhancements to PVFS [Kun07].

PIOViz 1.0 Characteristics

PIOViz 1.0 uses MPICH, which includes MPE, an implementation for tracing client/server applications
by linking the program with tracing libraries which intercept MPI calls. There is a single trace file on
each client/server side after program completion. These two single files will be then merged into a
single trace file via several intermediate tools and can be then visualized via Jumpshot (part of MPE).
Jumpshot provides useful information of the system, arrows are shown for the correlation between
client and server activities.

An example for correlations between client and server with independent/collective MPI calls on
contiguous/non-contiguous data in PIOViz 1.0 is shown in figure 1.1. Note detail information about
I/O size is provided upon mouse over of I/O operations. Some notes have been made directly on the
screenshots.

1Performance Application Programming Interface
2MPI Parallel Environment, also known as Multi-Processing Environment

8

1 Introduction

4

s
e
r
v
e
r
s

/

4

c
l
i
e
n
t
s

/

i
n
d
-
c
t
g

/

w
r
i
t
e

4
*
5
0
M
B

4

s
e
r
v
e
r
s

/

4

c
l
i
e
n
t
s

/

c
o
l
-
c
t
g

/

w
r
i
t
e

4
*
5
0
M
B

4

s
e
r
v
e
r
s

/

4

c
l
i
e
n
t
s

/

i
n
d
-
n
c
t
g

/

w
r
i
t
e

4
*
5
0
M
B

4

s
e
r
v
e
r
s

/

4

c
l
i
e
n
t
s

/

c
o
l
-
n
c
t
g

/

w
r
i
t
e

4
*
5
0
M
B

A
r
r
o
w
s

i
n
d
i
c
a
t
e

t
r
i
g
g
e
r
e
d

c
l
i
e
n
t

a
c
t
i
v
i
t
i
e
s

C
l
i
e
n
t
s

S
e
r
v
e
r
s

M
e
t
a
d
a
t
a

S
e
r
v
e
s

O
n
e

r
e
q
u
e
s
t

t
o

m
e
t
a
d
a
t
a

s
e
r
v
e
r
s

I
d
l
e

t
i
m
e

d
u
e

t
o

t
w
o

p
h
a
s
e

p
r
o
t
o
c
o
l

Figure 1.1: Correlation between client and server in PIOViz 1.0

9

1 Introduction

Furthermore, PIOViz has provided some statistics assisting analysis. An excerpt is shown in ta-
ble 1.1.

Name Statistic provider
Average load for one minute Linux kernel
Total memory [Bytes] Linux kernel
Free memory [Bytes] Linux kernel
Memory used for I/O caches [Bytes] Linux kernel
CPU usage [percent] Linux kernel
I/O subsystem average-load-index Trove-module
I/O subsystem idle-time [percent] Trove-module
Network average-load-index BMI-module

Table 1.1: Provider of the introduced performance monitor statistics 3

Limitations: Due to the trace format data had to be handled multiple times via several intermediate
tools for post processing. Furthermore, the statistics for performance counters are not sufficient for the
analysis. Therefore, a new tracing environment got developed. It includes HDTrace, a XML based
tracing format and the visualization tool Sunshot, a major rewrite of Jumpshot to deal with the new
format, are made to support the new PVFS. Moreover, PIOViz provides many additional advantages.
They will be discussed later in chapter 4.

1.3 Goal of the Thesis

The goals of this thesis are to add new statistics, extra information of internal process states and embed
the new API HDTrace into PVFS2. The number of pending operations of internal layers should be
traced. Thus, extended tracing of IO calls within PVFS should be possible. Also, the new tracing
environment should be easier extensible.

1.4 Structure of the Thesis

Chapter 2 describes the architecture of PVFS, MPICH2 and the main project PIOViz. In chapter 3
the internal interactions and relations of the PVFS layers are described. Chapter 4 provides design
considerations of the project. Chapter 5 describes some non-trivial modifications of the implementa-
tion. Chapter 6 evaluates the approach, experiments on the working group’s cluster are conducted and
shows the effectiveness of the new PIOViz environment. Chapter 7 summarizes and concludes of this
project.

3These statistics are taken from [Kun07] with the author’s permission

10

2 System Overview

This section gives a general overview of the software environment relevant for this thesis including
PVFS server and client components, the MPI-2 implementation MPICH2 and PIOViz, a visualization
environment which allows tracing client and server activities. 1

2.1 The Parallel Virtual File System PVFS

Nowadays there are many scientific computations using very large computer clusters due to the demand
for high performance. These clusters have many disks located in different nodes and managed by a
software which is called distributed file system. In addition to a distributed file system a parallel file
systems allows concurrent access to distributed storage by splitting single files into multiple subfiles
located on distinct nodes.

The Parallel Virtual File System PVFS is one open source parallel file system which provides high per-
formance for parallel applications, where concurrent accesses to large I/O and many files are common.
PVFS provides distribution of I/O and metadata, avoiding single points of contention, and should allow
to scale high-end terascale and petascale systems [Proa].

In the context of the file system the following terms are important:

PVFS server: In PVFS (version 1) there were two types of servers: data and metadata servers. Data
servers store data in a round robin manner, typically striped over multiple nodes. Each server uses a
local file system to store data. Metadata servers store object attributes. This is all the information about
files in the UNIX sense, i.e. object type, ownership, permissions, timestamps, and filesize. Additional
information like extended attributes and the directory hierarchy is stored on metadata servers, too. In
PVFS2 there is only one type of server, the pvfs2-server. Each pvfs2-server runs normally on a different
node and can act as data or metadata server according to an external configuration file. If desired, a
node can have more than one pvfs-server instance.

PVFS client: In the following the term client is used for processes (or nodes) that access the virtual file
systems provided by the PVFS servers. Applications can use one of the available userlevel-interfaces
to interact with the file system.

File system objects: Objects which can be stored in a PVFS file system are files, directories and sym-
bolic links. Internally PVFS knows additional system level objects: metafiles, which contain metadata
for a file system object, datafiles 2, which contain a part of a logical file’s data and directory data ob-
jects, which store the mapping of a filename to a handle. PVFS stores a file system object as one or

1This chapter is based on [Kun07] with the author’s permission
2In the context of other parallel file systems often the term subfile is used as a synonym

11

2 System Overview

multiple system level objects.
As a concrete example a logical file is stored as a metafile and the file data is split into one or more
datafiles, which can be distributed over multiple or even all available data servers. The metafile con-
taining the object’s attributes and other metadata for a single PVFS file system object is located on
exactly one of the available metadata servers.

Handle: A handle is a number identifying a specific internal object of a PVFS filesystem and is similar
to the ext2 inode number. The mapping between a handle to the servers responsible for this particular
object is specified in an external configuration file.

2.1.1 Software Architecture

PVFS uses the layer model illustrated in figure 2.1. Interfaces for the layers use a non-blocking seman-
tics. Desired operations are first posted and then their completion status is tested. A unique identifier
is created for every post, which is used as an input for test calls. Also there are test calls which test on
multiple or all operations of a context. In case the operation is not very complex and time consuming,
it is possible that the operation completes immediately during the post call. This has to be checked by
the caller. For a more detailed description refer to [Tea03].

Application

BMI

System Interface
acache ncache

User Level Interface

Flow

Main

BMI Trove

Flow

...Kernel-VFS

Job

Job

S
e
rv

e
r

C
lie

n
t

MPI-IO

DiskNetwork

Server
Client

Client

Figure 2.1: PVFS software architecture

Userlevel-interface

The userlevel-interface provides a higher abstraction to the PVFS file system. There are currently
two userlevel-interfaces available: a kernel interface and an MPI3 interface. The kernel interface is
realized by a kernel-module integrating PVFS into the kernel’s Virtual File System Switch (VFS) and
a user-space daemon which communicates with the servers. PVFS is especially designed to provide an
efficient integration into any implementation of the Message-Passing Interface specification MPI-2.

3Message Passing Interface

12

2 System Overview

System interface

The system interface API provides functions for the direct manipulation of file system objects and
hides internal details from the user. Applications can use the libpvfs functions to access the PVFS file
systems. A program using this interface is considered as client. Invoking a system interface function
starts a statemachine which processes the operation in small steps.

Client-side caches: Several caches are part of the system interface and try to minimize the number
of requests to server processes. The attribute cache (acache) manages metadata like timestamps and
handle number.
The name cache (ncache) stores a file system object’s filename and related handle number. To prevent
the caches from storing invalid information, data is valid only within a defined timeframe 4 and gets
invalidated when the server signals the client that the object it tries to operate, does not exist.

Job

The job layer consolidates the lower layers BMI, Flow, and Trove into one interface. It also maintains
threads and callback functions, which will be given as input to called functions. On completion of an
operation the lower layers can simply run the callback function, which knows the next working step
necessary to finish the request. This can be used in the persistency layer, for example, to initiate a
transmission when data was read. Furthermore, a request scheduler, which decides when incoming
requests get scheduled, can be considered as part of the Job layer. Main function of the scheduler is to
prevent conflicting operations on metadata.

Flow

A flow is a data stream between two endpoints. An endpoint is one of memory, BMI, or Trove. The
user can choose between different flow protocols defining the behavior of the data transmission. For
example, buffer strategy and number of messages transferred in parallel may be different for two flow
protocols. To initiate a data transfer, flow has to know the data definition (size, position in memory, ...)
and the endpoints. Flow then takes care of the data transmission. Complex memory and file datatypes
are automatically converted to a simpler data format, convenient for the lower level I/O interfaces.

BMI

The Buffered Message Interface provides a network independent interface for message exchange be-
tween two nodes. Clients communicate with the servers by using the request protocol, which defines
the layout of the messages for every file system operation. BMI can use different communication
methods, currently TCP, Myricom’s GM and Infiniband are included in the source package. Similar to
MPI, BMI requires to announce the receiving of a message before the message is expected to arrive.
An announcement includes the sender of the message, expected size of the message and identification
tag.

4Timeout corresponds to the storage hint HandleRecycleTimeoutSecs

13

2 System Overview

Sometimes it is not possible to know the origin of the message. Then, this message is called unexpected
message. A client starts a file system operation by sending an operation specific request message to
the server. However, the server cannot know that there will be a request or might not be aware of the
client’s existence. So the server buffers a pool of unexpected messages, which have the maximum
possible size of an initial request.

Trove

Trove provides and administrates the persistent storage space for system level objects. Data is either
stored as a keyword/value (keyval) pair or as a bytestream. Keyword value pairs are used to store arbi-
trary metadata information while byte streams store a logical file’s data. Bytestream data is accessed
in contiguous blocks using a size and an offset, while keyval data can be accessed by resolving the key.
Also for each internal storage object there is a set of common attributes stored.

Like BMI and Flow, Trove can switch between different modules, which are actually different imple-
mentations of the whole interface. For more information refer to section 3.3.2.

Server main loop

The server main loop checks the completion of the statemachines processed by threads. If a statema-
chine’s current state is finished, the next state is assigned for work and a particular state function is
called. This either completes the current state’s operation or enqueues the operation for the threads. In
case the function completes immediately, the next state of the statemachine is called directly. There
are BMI, Flow and Trove threads, which take care of the unfinished operations depending on the oper-
ations’ type.

In addition, unexpected messages from BMI are decoded. For each message the appropriate statema-
chine is started and a buffer for a new unexpected message is provided.

Performance Monitor

Each server has a central performance monitor (internally also referred as performance counter) or-
thogonal to the layered architecture, which allows a key based access to a set of 64 bit long statistics.
These statistics are maintained and stored for intervals of a configurable length (default: 1000 ms, con-
figuration option: PerfUpdateInterval). A history keeps the statistics a number of intervals (default: 5
intervals). Operations offered by the performance monitor interface are addition, subtraction or setting
of a value specified by a key. Flow for example uses this interface to store the number of bytes read
within the interval.

14

2 System Overview

2.2 MPICH-2

MPICH-2 is a high-performance and widely portable implementation of the Message Passing Interface
(both MPI-1 and MPI-2). The goals of MPICH2 are:

• to provide an MPI implementation that efficiently supports different computation and communi-
cation platforms including commodity clusters (desktop systems, shared-memory systems, mul-
ticore architectures), high-speed networks (10 Gigabit Ethernet, Infiniband, Myrinet, Quadrics)
and proprietary high-end computing systems (Blue Gene, Cray, SiCotex).

• to enable cutting-edge research in MPI through an easy-to-extend modular framework for other
derived implementations [Paga].

A part of MPI-2 is the definition of an I/O interface, which is often referred as MPI-I/O. ROMIO is a
portable implementation of this interface. It is built on top of an abstract-device interface for sequential
and parallel I/O (ADIO [TGL96]). ADIO abstracts from the actual used file system and supports many
file systems like POSIX conform file systems, NFS, or inherently parallel file systems like PVFS.
MPI-I/O calls are directly processed by ROMIO, which invokes the appropriate ADIO methods.

An excerpt of independent software components and the relevant software stacks are shown in fig-
ure 2.2. MPE is described in the next section.

MPE2

MPICH-2

ROMIO

ADIO

a
d
_p
v
fs
2

a
d
_n
fs

a
d
_.
..
..
.

Slog2SDK

Wrappers MPI-IO

Figure 2.2: MPICH-2 software components

There are two optimization mechanisms incorporated in ADIO, data-sieving and collective I/O [TGL99].
Data-sieving is used when a process independently accesses a non-contiguous piece of data in a file.

If the holes between the accessed data regions and the data fits into a buffer with a user specific size
(default: 4 MByte for read and 512 KByte for writes) only this contiguous block is fetched. For writes
read-modify-write phases are necessary. This requires to first read the old data which should be pre-
served by PVFS, then modifications of the buffered data are made and at last the data is written back
in a single contiguous block. Consequently, file locking is necessary to ensure consistency, which not
yet supported.

Collective I/O is optimized by a two-phase-protocol. First the requested data portions are broad-
casted to all processes and analyzed. The processes decide if the accesses should be merged, if not each
process does individual I/O operations with data-sieving. In case I/O should be done collectively, file
regions are assigned to a set of aggregator nodes (normally all available clients) in a granularity of the
collective buffer size (default: 4 MByte). For collective reads, the aggregators then repeat the following

15

2 System Overview

two phases with data portions fitting in their collective buffer. In the first phase the aggregators read
their current file portion, and then in phase two the data is distributed to the clients which requested the
data. Communication phase and I/O phase are switched for write operations. These optimizations are
described in [TGL99].

Summary: This chapter described the software environment consisting of MPICH-2 with MPE and
ROMIO, and the parallel file system PVFS2. Furthermore, the software architecture and the tasks of
the different layers in PVFS2 are outlined.

16

3 Internal View of PVFS

This chapter highlights some internal details of PVFS components, which are important to understand
the PVFS structure and the implementation 1.

3.1 Client and Server Interaction

This section highlights various aspects of internal request processing. Internal processes, which are
triggered by a system interface call on the client and server are shown. The new PVFS hint, used to
exchange process information, is also introduced. In addition, the basic concept of statemachines, and
both client and server statemachines used in PVFS are described. Moreover, we will discuss the request
scheduler, which manages request jobs.

3.1.1 System Interface Call

In order to export a new request to the user level interface one has to add new system interface calls to
the system interface. The prototypes have to be put either in the file include/pvfs-sysint.h or for man-
agement function in include/pvfs-mgmt.h. Management functions typically include more knowledge
about the parallel file system interns, for example, they are useful for file system checking tool and thus
not intended to be used by regular users directly.

Most available system interface calls have non-blocking versions available to allow concurrent execu-
tion in the application. As a natural way to get both variants the blocking versions call internally the
asynchronous version followed by a PVFS_wait call. Similar to the MPI_wait call this function drives
the asynchronous operations and blocks until the specified operation completes. In order to connect
both calls the asynchronous operation returns an operation id which is a unique identifier on the client.
The asynchronous system call also includes a so called user pointer, which may be filled with arbitrary
data associated with the particular call in order to allow a simple mapping between operation and op-
eration ID without storing the mapping explicitly. The prototypes for the file creation call are shown
with extended comments in listing 3.1.

Listing 3.1: Create system calls

PVFS_error P V F S _ i s y s _ c r e a t e (
/∗ l o g i c a l o b j e c t s name ∗ /
c o n s t char ∗ ent ry_name ,
/∗ p a r e n t d i r e c t o r y r e f e r e n c e ∗ /
P V F S _ o b j e c t _ r e f r e f ,

1This chapter is partly based on [Kun07] with the author’s permission

17

3 Internal View of PVFS

/∗ a t t r i b u t e s which s h o u l d be s e t on t h e new o b j e c t ∗ /
P V F S _ s y s _ a t t r a t t r ,
/∗ i d e n t i f i c a t i o n o f s y s t e m i n t e r f a c e u s e r ∗ /
c o n s t P V F S _ c r e d e n t i a l s ∗ c r e d e n t i a l s ,
/∗ d i s t r i b u t i o n o f t h e new f i l e ∗ /
PVFS_sys_d i s t ∗ d i s t ,
/∗ p o i n t e r t o t h e o u t p u t o f t h e f u n c t i o n c a l l ∗ /
P V F S _ s y s r e s p _ c r e a t e ∗ r e sp ,
/∗ o p e r a t i o n id , n e c e s s a r y f o r w a i t ∗ /
PVFS_sys_op_id ∗ op_id ,
/∗ h i n t , n e c e s s a r y f o r p r o c e s s i n t e r a c t i o n ∗ /
PVFS_hint h i n t s ,
/∗ can be f i l l e d w i t h a r b i t r a r y da ta from t h e c a l l e r ∗ /
void ∗ u s e r _ p t r) ;

PVFS_error PVFS_sys_c rea t e (/∗ c a l l s t h e non−b l o c k i n g f u n c t i o n ∗ /
char ∗ ent ry_name ,
P V F S _ o b j e c t _ r e f r e f ,
P V F S _ s y s _ a t t r a t t r ,
P V F S _ c r e d e n t i a l s ∗ c r e d e n t i a l s ,
PVFS_sys_d i s t ∗ d i s t ,
P V F S _ s y s r e s p _ c r e a t e ∗ r e s p
PVFS_hint h i n t s) ;

3.1.2 PVFS Hint

In PVFS, hints are used for saving additional attributes or information. This information can be trans-
ported between client and server or just being used internally. Hints use the key/value concept to store
data. Hints are encoded and added to a hint list, e.g. via the function PVFS_hint_add. Similarly, hints
can be decoded and taken from the hint list, e.g. via the function PINT_hint_get_value_by_name. At
the system interface hints can be committed to most system calls, and new hints can be added internally.
The prototypes of PVFS hints are shown in listing 3.2.

Listing 3.2: Prototypes and internal structure of PVFS hints

t y p e d e f s t r u c t PVFS_hint_s
{
. . .

char ∗ t y p e _ s t r i n g ; /∗ name o f h i n t ∗ /
char ∗ v a l u e ; /∗ v a l u e o f h i n t ∗ /
i n t 3 2 _ t l e n g t h ; /∗ l e n g t h o f h i n t ∗ /
/∗ f u n c t i o n i n t e r f a c e s f o r e n c o d i n g / d e c o d i n g h i n t ∗ /
void (∗ encode) (char ∗∗ p p t r , void ∗ v a l u e) ;
void (∗ decode) (char ∗∗ p p t r , void ∗ v a l u e) ;

. . .
s t r u c t PVFS_hint_s ∗ n e x t ; /∗ n e x t h i n t o f t h e h i n t l i s t ∗ /

} PINT_hin t ;

18

3 Internal View of PVFS

i n t PVFS_hint_add (
PVFS_hint ∗ h i n t ,
c o n s t char ∗ type ,
i n t l e n g t h ,
void ∗ v a l u e)

void ∗ PINT_h in t_ge t_va lue_by_name (
s t r u c t PVFS_hint_s ∗ h i n t ,
c o n s t char ∗name ,
i n t ∗ l e n g t h) ;

3.1.3 Statemachines

In PVFS a statemachine consists of a unique name, multiple states, each with a state name and transi-
tions between them. Basically, in each state a statemachine can do one of the following operations:

• Invoke a specified funtion.
• Invoke another statemachine.
• Invoke the default transition.

The next state transition is determinated by the return value of this function or nested statemachine.
Besides, state functions require two qualities: they should need little time and must not influence the
results of different statemachines running concurrently. Therefore, it is allowed to start one possible
blocking (BMI or Trove) operation in a non-blocking fashion per state. Using such a model allows sim-
ulating complex operations possible, which means statemachines can be nested to model and simplify
the handling of common subprocesses.

Integration of new statemachines: The specification of a statemachine is easy and done in a separate
statemachine file (.sm). State machine files differ from normal C code by an additional section for the
statemachine, which begins and ends with two per cent (%) signs. This section is transformed by the
parser src/common/statecomp into the corresponding C source code during the build process.

The example 3.3 shows an example of the internal statemachine structure.

Listing 3.3: An example of PVFS state machine definition

%%
machine example_sm
{

s t a t e i n i t
{

run f u n c _ i n i t ;
s u c c e s s => n e x t _ s t a t e ;
d e f a u l t => c l e a n u p ;

}

s t a t e n e x t _ s t a t e

19

3 Internal View of PVFS

{
jump next_sm ;
s u c c e s s => a n o t h e r _ n e x t _ s t a t e ;
d e f a u l t => c l e a n u p ;

}
. . .

s t a t e c l e a n u p
{

run f u n c _ c l e a n u p ;
d e f a u l t => t e r m i n a t e ;

}
}
%%

A statemachine’s name is given after the keyword machine. A set of states follows, each introduced
by state. The first line of each state indicates which function or nested statemachine is executed.
While run indicates a function is executed, jump indicates a nested statemachine. Each function or
nested statemachine has a return value to determine the next state. In case the function is terminated
successfully, the next state is called, otherwise the default state is called. A statemachine begins with
the init state and ends with the terminate state [Kuh07].

3.1.4 Client Statemachine

The asynchronous system interface call instantiates a new statemachine with the type of the call on
the client and posts it. Depending on the call requests are sent to one or multiple servers during the
processing of the statemachine. In order to exchange information between the states (otherwise they are
stateless) needed data of each statemachine is stored in the union u of the structure PINT_client_sm2.
See listing 3.4 for an excerpt of the structures. The system interface calls use this union to put the input
parameters in the struct of the appropriate function call.

Listing 3.4: Client statemachine structures

s t r u c t P I N T _ c l i e n t _ c r e a t e _ s m
{

char ∗ ob jec t_name ; /∗ i n p u t parame te r ∗ /
P V F S _ o b j e c t _ a t t r a t t r ; /∗ i n p u t parame te r ∗ /
P V F S _ s y s r e s p _ c r e a t e ∗ c r e a t e _ r e s p ; /∗ i n / o u t parame te r ∗ /

i n t r e t r y _ c o u n t ; /∗ number o f c r e a t e r e t r y a t t e m p t s ∗ /
i n t n u m _ d a t a _ f i l e s ; /∗ number o f d a t a f i l e s o f t h e new f i l e ∗ /
/∗ number o f r e q u e s t e d d a t a f i l e s o f u s e r ∗ /
i n t u s e r _ r e q u e s t e d _ n u m _ d a t a _ f i l e s ;
i n t s t o r e d _ e r r o r _ c o d e ;

P INT_d i s t ∗ d i s t ; /∗ d i s t r i b u t i o n o f new l o g i c a l f i l e ∗ /
PVFS_sys_ layout l a y o u t ;

2The structure is located in the file src/client/sysint/client-state-machine.h

20

3 Internal View of PVFS

PVFS_handle m e t a f i l e _ h a n d l e ;
i n t d a t a f i l e _ c o u n t ;
PVFS_handle ∗ d a t a f i l e _ h a n d l e s ; /∗ a r r a y o f c r e a t e d d a t a f i l e s ∗ /
i n t s t u f f e d ;

. . .
} ;

t y p e d e f s t r u c t PINT_c l i en t_sm
{
. . .

/∗ used i n t e r n a l l y by c l i e n t −s t a t e−machine . c ∗ /
PVFS_sys_op_id s y s _ o p _ i d ;
void ∗ u s e r _ p t r ;

/∗ u s e r and group ∗ /
P V F S _ c r e d e n t i a l s ∗ c r e d_ p ;

PVFS_hint h i n t s ;
union
{

s t r u c t PINT_cl ien t_remove_sm remove ;
s t r u c t P I N T _ c l i e n t _ c r e a t e _ s m c r e a t e ;

. . .
} u ;

} PINT_c l i en t_sm ;

3.1.5 Server Statemachine

The server waits for incoming messages. New requests are first decoded and then depending on the
operation type, a new statemachine is started. The mapping between operation type and statemachine
is done in the file src/server/pvfs2-server-req.c. In addition a name for better debugging is specified.
Furthermore, required attributes of the object working on is indicated and if the permissions should be
checked.

Listing 3.5: PVFS server request mapping table

/∗ t a b l e o f incoming r e q u e s t t y p e s and a s s o c i a t e d p a r a m e t e r s ∗ /
s t r u c t P I N T _ s e r v e r _ r e q _ e n t r y P I N T _ s e r v e r _ r e q _ t a b l e [] =
{

/∗ 0 ∗ / {PVFS_SERV_INVALID , NULL} ,
/∗ 1 ∗ / {PVFS_SERV_CREATE , &p v f s 2 _ c r e a t e _ p a r a m s } ,
/∗ 2 ∗ / {PVFS_SERV_REMOVE, &pvfs2_remove_params } ,
/∗ 3 ∗ / {PVFS_SERV_IO , &p v f s 2 _ i o _ p a r a m s } ,

. . .
/∗ 16 ∗ / {PVFS_SERV_MGMT_SETPARAM, &p v f s 2 _ s e t p a r a m _ p a r a m s } ,

. . .
}

21

3 Internal View of PVFS

In order to make the statemachine available the name has to be put into the header file
src/server/pvfs2-server.h like for the create statemachine:

e x t er n s t r u c t P I N T _ s t a t e _ m a c h i n e _ s p v f s 2 _ c r e a t e _ s m ;

3.2 Request Scheduler

Beside the components already described in section 2.1, PVFS offers a request scheduler on the server
side for management of request jobs. This scheduler uses a hash table, which contains a linked list for
saving requests. Moreover, it provides two function interfaces for adding new requests and searching a
specified request.

s t r u c t q h a s h _ t a b l e
{

s t r u c t qhash_head ∗ a r r a y ;
i n t t a b l e _ s i z e ;
i n t (∗ compare) (void ∗key , s t r u c t qhash_head ∗ l i n k) ;
i n t (∗ hash) (void ∗key , i n t t a b l e _ s i z e) ;

. . .
} ;

Internally, each request has many attributes for execution and a request state which tells the server if
the request can be performed directly, later, at a particular time, or if it is already finished.

s t r u c t r e q _ s c h e d _ e l e m e n t
{

enum PVFS_server_op op ; /∗ s e r v e r o p e r a t i o n t y p e ∗ /
s t r u c t q l i s t _ h e a d l i s t _ l i n k ; /∗ t i e s i t t o a queue ∗ /
s t r u c t q l i s t _ h e a d r e a d y _ l i n k ; /∗ t i e s t o ready queue ∗ /
void ∗ u s e r _ p t r ; /∗ u s e r p o i n t e r ∗ /
r e q _ s c h e d _ i d i d ; /∗ un iq ue i d e n t i f i e r ∗ /
s t r u c t r e q _ s c h e d _ l i s t ∗ l i s t _ h e a d ; /∗ p o i n t s t o head o f queue ∗ /
enum r e q _ s c h e d _ s t a t e s s t a t e ; /∗ s t a t e o f t h i s e l e m e n t ∗ /
PVFS_handle h a n d l e ;
s t r u c t t i m e v a l t v ; /∗ used f o r t i m e r e v e n t s ∗ /
/∗ i n d i c a t e s t y p e o f a c c e s s needed by t h i s op ∗ /
enum P I N T _ s e r v e r _ r e q _ a c c e s s _ t y p e a c c e s s _ t y p e ;

} ;

enum r e q _ s c h e d _ s t a t e s
{

/∗ r e q u e s t i s queued up , can no t be p r o c e s s e d y e t ∗ /
REQ_QUEUED,
/∗ r e q u e s t i s b e i n g p r o c e s s e d ∗ /
REQ_SCHEDULED,
/∗ r e q u e s t c o u l d be p r o c e s s e d , b u t c a l l e r has n o t
asked f o r i t y e t ∗ /

22

3 Internal View of PVFS

REQ_READY_TO_SCHEDULE,
/∗ f o r t i m e r e v e n t s ∗ /
REQ_TIMING ,

} ;

3.3 Layer Internal Processing

This section provides more detailed information about the internal I/O layers.

3.3.1 Post and Test of Operations

As discussed in section 2.1.1, the model for internal I/O is that a desired operation is first posted, then
it is tested until the operation has completed, and finally the return value of the operation is checked to
determine if it was successful. Every post results in the creation of a unique ID, that is used as an input
to the test call. Currently, there are three possible classes of return values for posting operations:

• 1 indicates that the operation is already completed.

• 0 indicates that the post was successful, but has not completed yet and still runs in the back-
ground. The caller needs to test for its completion.

• Another value indicates that the post failed due to an error.

PVFS provides three test fuctions to check the completion states of operations. Each internal layer
supports the following variants of the test function (where PREFIX depends on the API)[Prob]:

• PREFIX_test(): checks for completion of an individual operation based on the ID given by the
caller.

• PREFIX_testsome(): This is an expansion of the above test function. The difference is that it
uses an array of IDs and a number of elements as input, and provides an array of status values
and a number of completed operations as output. Any non-zero ID in the array will be checked
for completion. With this mechanism one can improve efficiency by checking for completion of
many operations.

• PREFIX_testcontext(): This function is similar to PREFIX_testsome(). Instead of using an
array of IDs as input, it tests for completion of any operations that have previously been posted,
regardless of the ID. These operations belong to a context, which must be created and then posted
to a particular interface. This context is then used as an input argument to every subsequent post
and test call. It is useful to ensure that it does not return information about operations, that were
posted by different callers.

3.3.2 Trove

This section provides more information about I/O methods and types of I/O requests in Trove.

23

3 Internal View of PVFS

I/O Methods

In PVFS there are four methods of I/O which specify how data and metadata are stored and managed
by PVFS servers.

• alt-aio: This is the default method. It uses a thread-based implementation of asynchronous I/O.
It is recommended for local storages, including RAID setups. In this method each I/O operation
spawns a thread. The maximum number of concurrent threads is limited. Further operations get
queued.

• directio: It uses a direct I/O implementation to perform I/O operations to datafiles. This method
may lead to significant performance improvement if PVFS servers are running over shared stor-
ages, especially for large I/O accesses.

• null-io: This method is an implementation that does no disk I/O at all and is only useful for
development or debugging purposes. It can be used to test the performance of the network
without doing I/O to disks.

• dbpf: This method uses the system’s Linux AIO implementation. It is not recommended in
production environments any more.

The I/O method can be selected in the PVFS server config file. An excerpt is shown in listing 3.6.

Listing 3.6: Excerpt from a pvfs config file

< F i l e s y s t e m >
Name pvfs2−f s

. . .
< S t o r a g e H i n t s >

TroveSyncMeta yes
TroveSyncData no
TroveMethod a l t−a i o

</ S t o r a g e H i n t s >
</ F i l e s y s t e m >

I/O Requests

There are two types of I/O requests defined by the request protocol (see listing 3.7):

I/O: This is the normal request I/O used for large amounts of data. In the data structure of PVFS this
type will be handled via Flow. It requires to first announce I/O, then data is transferred.

Small I/O: This is used for very small access which server can process directly without Flow. In contrast
to the I/O request, the overhead is reduced.

24

3 Internal View of PVFS

Listing 3.7: I/O types

t y p e d e f s t r u c t PINT_server_op
{
. . .

union
{

. . .
s t r u c t PI NT _se rv e r_ io _op i o ;
s t r u c t P I N T _ s e r v e r _ s m a l l _ i o _ o p s m a l l _ i o ;

} u ;
. . .
} PINT_server_op ;

/∗ s m a l l I /O ∗ /
s t r u c t PI NT _se rv e r_ io _op
{

/∗ c o n t a i n I /O i n f o r m a t i o n o f Flow ∗ /
f l o w _ d e s c r i p t o r ∗ f low_d ;

} ;

/∗ s m a l l I /O ∗ /
s t r u c t P V F S _ s e r v r e s p _ s m a l l _ i o
{

enum PVFS_io_type i o _ t y p e ;

/∗ t h e i o s t a t e machine needs t h e t o t a l bs t r eam s i z e t o
∗ c a l c u l a t e t h e c o r r e c t r e t u r n s i z e ∗ /

PVFS_size b s t r e a m _ s i z e ;

/∗ f o r w r i t e s , t h i s i s t h e amount w r i t t e n .
∗ f o r reads , t h i s i s t h e number o f b y t e s read ∗ /

PVFS_size r e s u l t _ s i z e ;
char ∗ b u f f e r ;

} ;

Note that PVFS provides support for non-contiguous I/O requests, i.e. it is possible to access multiple
regions in a file with one request.

Summary: Some internal structures of PVFS client, server and Trove have been discussed to show
interaction between these components. Statemachines are a key concept in PVFS and used for man-
agement of requests. Furthermore, hints, a new data structure of PVFS, were also introduced. Hints
are used for storing meta information between processes.

Next, new metrics and information used for tracing will be discussed.

25

4 Design

In this chapter considerations are presented, that arose during the design phase of the project. At first,
information and metrics are assessed which allow users to analyze the activities within the system.
Furthermore, alternatives for the realization of these metrics and the overall tracing architecture are
discussed.

4.1 Overview

To tune a complex system it is important to know which components are related to bottlenecks. There
are many reasons for bottlenecks, the most important of which can be listed as follows:

• Hardware: Normally, client and server nodes in the cluster have different types of hardware,
including RAM, CPU, network, disk and especially cache which is used for I/O operations.
Hardware difference might lead to system unbalanced. For example, a node with 2 GHz CPU
works faster than a node with 1 GHz CPU. Besides on one particular node the hardware can be
intermediately broken, or used heavily in comparison to other nodes because of any background
processes which stress it a lot. In the parallel system environment in which every node is a
part of parallel jobs, this node can lead to bottlenecks. As the consequence, tracing hardware is
important for the analysis.

• Software: Usually, in the cluster different file systems can be found as well as multiple MPI
client programs. This can lead to bottlenecks due to the different I/O demand. Moreover, bot-
tlenecks can even appear in PVFS which manages the distribution of I/O operations. There are
many internal layers within PVFS, and we have to find out what information or metrics are useful
for the analysis. In this thesis included information is as follows:

– Number of concurrent operations: This metric is defined as the number of pending opera-
tions running in a particular layer of PVFS. It can be useful for comparison of load between
different nodes in the cluster.

– Statemachine: This is the fundamental concept in PVFS as discussed in section 3.1.3.
Therefore, it is important to understand the processing sequences of statemachines. Based
on this information we can analyze why some operations were slow or behaved abnormally.
In addition, tracing related to I/O are also needed and described later.

– Correlations: Knowing how layers in PVFS work is good, but rather not enough. We also
need to understand their connections and interactions, for example, how operations are
processed, which client operations call which server operations, etc.

26

4 Design

4.2 General Tracing Considerations

Important considerations regarding tracing can be listed as follows:

Code integration: We might ask ourselves whether the tracing API should be embedded into PVFS or
run independently. One thing we could keep in mind is that we can modify PVFS but must not change
its semantics. Also, code modifications should be minimized to reduce porting effort of PVFS updates.
We have decided to embed the tracing API into PVFS because it is easier to implement, and in addition
we can use some internal metrics of PVFS to enhance tracing aspects. To reduce porting complexity,
some files will be added.

Controlling tracing: Tracing causes overhead, so we have to think how to reduce or minimize it.
Users should be able to control the tracing on servers remotely via a tool. Servers might run 24/7
and it is not acceptable to define tracing behavior only during startup, or to create traces only during
shutdown of the server processes. There should be at least three parameters for this tool, one for the
tracing activation, one for deactivation, and another one for choosing events which are traced. We use
the program pvfs2-set-eventmask 1 to generate a management request to control server tracing. For
more information refer to section 5.1.3. After deactivation trace data is saved in trace files and can be
visualized via Sunshot.

Tracing accuracy:
Periodic update: In PIOViz 1.0 events were traced and updated in a fixed time period. Hence, not all
information in trace files was needed (in idle periods), or detailed enough (in active phases). If requests
change rapidly the results are inaccurate.
On demand: Events are traced on demand, which means information is only traced if the situation
changes. However, if traced information changes rapidly the overhead increases compared to periodic
updates, information is accurate. See section 4.3.2 for more information.

Thread safety: Another thing to consider while tracing in PVFS is thread safety. In such an environ-
ment like PVFS where parallel accesses are permitted, one must check for thread-safety, otherwise the
results might be wrong if they are not handled correctly.

4.3 Tracing Metrics and Information

This section provides more detailed information about factors of bottlenecks which are mentioned in
section 4.1.

4.3.1 Hardware Statistics

PIOViz 1.0 provides some hardware statistics which are already explained in section 1.2.2. They
are mostly taken from the kernel to let us know what is going on in the system. HDTrace provides
Resources Utilization Tracing Library (RUTL), a performance trace library which collects statistics

1The source file is located in src/apps/admin/pvfs2-set-eventmask.c

27

4 Design

from the /proc interface in a periodic time by utilizing libGtop. These statistics will be saved in the
new format of HDTrace. In detail, PTL provides the following statistics 2:

• aggregated load of all CPUs.

• CPU load for each single CPU.

• amount of main memory used.

• amount of free main memory.

• amount of shared main memory.

• amount of main memory used as buffer.

• amount of main memory cached.

• incoming traffic of each network interface.

• outgoing traffic of each network interface.

• aggregated incoming traffic of external network interfaces.

• aggregated outgoing traffic of external network interfaces.

• aggregated incoming traffic of all network interfaces.

• aggregated outgoing traffic of all network interfaces.

• amount of data read from hard disk drives.

• amount of data written to hard disk drives.

Compared to the PIOViz 1.0 approach, the new approach supports better portability and extendability.
Also, the same statistics are available in clients as well.

4.3.2 Number of Concurrent Operations

This metric is defined for BMI, Flow, Trove, requests (number of statemachines) and blocked requests.
For each of these the number of operations is traced accurately, i.e. on modification the value is
updated. Requests and blocked requests differ from their states which are managed by the request
scheduler (see section 3.2). For instance, if there are multiple metadata requests accessing the same
directory, only one of them is permitted to access the file while the others are blocked by the request
scheduler to protect data consistency. In general, we need two functions for counting (increase/de-
crease) the number of concurrent operations. These functions use the tracing API of HDTrace to save
the current counter results in trace files. Basically, they are placed around operations of PVFS layers
and information mentioned above (see listing 4.1). Via this metric we know how many operations
actually run in the meantime and how long they were processed, etc.

Listing 4.1: An pseudo-code example for counting the number of concurrent operations
/∗ X can be BMI , Flow , Trove , r e q u e s t s and b l o c k e d r e q u e s t s ∗ /
i n c r e a s e _ c o u n t e r _ f o r _ X
o p e r a t i o n _ o f _ X
d e c r e a s e _ c o u n t e r _ f o r _ X

Note that the nonblocking semantics of the internal layer require to check multiple possible states.
2The source file is ResourcesUtilizationTracingLibrary/include/RUT.h

28

4 Design

4.3.3 Statemachine Tracing

This section describes the structure of a client/server statemachine in PVFS.

Statemachine Processing

In PVFS for each client request there is a corresponding client statemachine started. One goal is
to trace statemachine transitions. In principle, two functions of the tracing API are used. Simi-
lar to section 4.3.2, they are placed around needed functions in states. One function writes names
and needed attributes of states while the other closes the transition. For more information re-
fer to section 4.3.3. In brief, a statemachine begins with PINT_state_machine_start, runs with
PINT_state_machine_invoke, PINT_state_machine_continue and PINT_state_machine_next, and ends
with PINT_state_machine_terminate. Besides it is interesting that both client and server use the same
statemachine structure. Therefore, we can use this advantage to reduce tracing codes. The states during
lifetime of a statemachine are shown in figure 4.1 and described as below:

Figure 4.1: State chart of processing of a statemachine

S1 Client or server allocate space for a statemachine, and invoke code to the statemachine stack
which manages the statemachines.

S2 On the top of the stack the current (nested) statemachine is started.

S3 While the statemachine runs, the state PINT_state_machine_invoke tries to invoke the state’s ac-
tion function. There are four return values of a state action function: SM_ACTION_DEFERRED,
SM_ACTION_COMPLETE, SM_ACTION_TERMINATE and SM_ACTION_ERROR, each is as-
sociated with a corresponding operation. In case of SM_ACTION_DEFERRED, the statemachine
will be registered back in the statemachine stack, so that it can be handled later by client. In case
of SM_ACTION_ERROR, the client statemachine will log needed information and then release
resources associated with the statemachine.

29

4 Design

S4 The next state PINT_state_machine_continue is reached which means the return value is either
SM_ACTION_COMPLETE or SM_ACTION_TERMINATE. In case of SM_ACTION_TERMINATE
the state PINT_state_machine_terminate is reached, otherwise PINT_state_machine_next.

S5 The state PINT_state_machine_next manages a stack of nested states. The first state of the stack
will be removed and handled by PINT_state_machine_invoke (like in S3). This procedure repeats
in a loop manner, and is only finished if the stack is empty or the return value of any state action
function is set to SM_ACTION_TERMINATE. Then the state PINT_state_machine_terminate is
reached.

S6 The state PINT_state_machine_terminate cleans up the environment, and terminates the statema-
chine.

Modifications for Tracing States

In principle, there are two kind of functions for tracing states of HDTraceWritingLibrary 3. Let us
assume, they are called START and STOP. Basically, the START traces events of a transition, and the
STOP closes the transition.

In state PINT_state_machine_start we use START to trace the statemachine’s name before
PINT_state_machine_invoke is run. In PINT_state_machine_invoke we place START and STOP round
the state action function to trace the state name of this function. Similarly, in PINT_state_machine_next
they are also placed around each nested state of the nested state stack to trace its state name. In
PINT_state_machine_terminate STOP is placed to close the statemachine transition.

State Overlapping

It can happen that two or more statemachines are interleaved because states can do work concurrently.
If states return with SM_ACTION_DEFERRED, in this case, it is impossible to know how many con-
current operations will be performed, maybe multiple per client.

Fortunately, Sunshot has solved this problem by allowing us to expand the process time line from one
to multiple. In case of the state overlapping problem, we will see a sign X, and can expand the time
line to see the nested states, or statemachines inside. In other words, we don’t need to think about other
solutions to overcome this problem. The solution is shown in figure 4.2.

S1 S2 E1 E2

S1 S2 E1 E2

Figure 4.2: Multiple time lines for state overlapping

3The source file is in HDTraceWritingLibrary/include/hdRelation.h

30

4 Design

4.3.4 Correlation Creation

The correlations in PVFS are introduced in section 4.1. In this thesis apart from the correlation between
client and server, we will create the correlation between request and the layer Trove due to I/O issues.
The correlation between server and other PVFS layers could be done as future work.

First we will discuss the data structure used in the tracing API before going into the details on how to
create correlations. In HDTrace each process is associated with an unique ID. To create connections
between two processes we have to relate their IDs by creating a ‘relation’ containing the process IDs
in a particular format. This relation is transported via hints (see section 3.1.2). Because there are two
types of correlations, two new types of keys are added; one for client/server (c_key), and another one
for server/trove (s_key).

The details are shown in figure 4.3, and described as below:

IO operations

PVFS system
interface call

client SM start

request protocol server SM
start

start

 relation exists?

create relation
(client/server)

 create relation
(server)

yes

no
add hint

(key : c_key
value : client process ID)

get hint
(key : c_key)

add hint to SM
(key : s_key

value : SM's ID)

job

Flow
(save TotalSize)

trace TotalSize

get hint

end

create relation
([client]/server/Trove)

process client SM

process server SM

create relation
(client)

client server Trove

IO operations

small IO

no

yes

trace IO operations start
(including Size and Offset)

trace IO
operations end

Trove

trace client SM's name

trace server SM's name

Figure 4.3: Create correlations in PVFS

31

4 Design

Client side:

• At the beginning, I/O applications use system interface calls to access the file system.

• As described in section 4.3.3, for each client request there is a corresponding client statemachine
started in PVFS. The statemachine creates a relation containing the client process ID.

• The relation is saved in a hint with c_key. The hint is then added to the hint list of each client
request.

• The client statemachine uses the client request to trace statemachine events and sends the hint
list to the server via the request protocol. After the client statemachine is finished, the hint list is
removed from the memory.

Server:

• The server checks unexpected messages for new requests. If any exist, corresponding server
statemachines will be started to handle them. Let us assume we have one server statemachine
started.

• In the hint list from the client request the server statemachine searches for the relation via c_key.

• If this hint exists, the server statemachine creates another relation containing the client ID via
the old relation and the ID of this server statemachine request. Otherwise it creates a relation for
this request.

• If the relation is saved in a hint with s_key, then the hint is added to the hint list of the server
statemachine.

• The hint list is transported to Trove.

Trove:

• In Trove a corresponding Trove non-blocking operation is started which searches for the relation
via s_key in the hint list.

• If the relation exists, Trove creates another relation containing the request ID from the old re-
lation and the Trove ID request. Now we can identify the parent statemachine and implicit the
calling client as well.

• I/O operations are performed and traced at the same time.

Tracing I/O Details

For the analysis of I/O the following information is useful:

• Total Size: The total amount of data which will be transferred. It needs to be traced only once
for a normal I/O request (in Flow) or small I/O (see section 3.3.2).

• Size: The amount of data transferred with each operation. It is traced for each Trove operation.

• Offset: File position of each single I/O operation.

32

4 Design

4.4 Generating Trace Files and Postprocessing

This section highlights the tracing workflow of in this project. The creation of trace files and their
relations are described. Files generated during client and server tracing and postprocessing to generate
project files is shown in figure 4.4.

Sunshot

sName.proj

cName_host_layer.stat sName_host_layer.stat

sName_host_layer.rel

server

cName.proj

project-description-merger.py

cName_host_layer_rank.rel

...

client

create manually

Figure 4.4: Generating trace files and post processing

In principle, tracing client and server is independent from each other and configured by the user. To
enable the tracing, users have to specify event names which should be traced. To enable tracing of spe-
cific events the program pvfs2-set-eventmask 4 with the parameter ‘enable’ is used (see ‘Controlling
tracing’ in section 4.2). To specify event names of client a particular environment variable is set. So
the tracing of client/server is started, and trace files are created. The tracing of a client application is
stopped automatically when the process finishes. By contrast, users have to stop the tracing of servers
via the parameter ‘disable’ by help of the program pvfs2-set-eventmask manually.

Currently, there are two main types of trace files created by HDTrace: statistic (.stat) and relation
files (.rel). While statistic files contain statistic information about PVFS2 layers, relation files contain
information about statemachines and process correlations. We use two project files (one for client
and one for server), which have the file extension .proj and XML contents, to define what should be
viewed in Sunshot. In case of clients there are multiple files parsed by the merger project-description-
merger.py for creating the client project file.

Server:

• Trace files: Both types of trace files have the same prefix name, except for the file extension.
They look like ‘sName_host_layer.[stat|rel]’, with the file extension .stat for statistics and .rel for
states. The prefix parts are described as follows:

– sName: This name can be set via a parameter of src/apps/admin/pvfs2-set-eventmask.c
(see section 5.1.3).

– host: Server host name.

4The source file is located in src/apps/admin/pvfs2-set-eventmask.c

33

4 Design

– layer: Name of the PVFS layer.

• Project file: The name looks like ‘sName.proj’. It is mandatory that the prefix ‘sName’ is iden-
tical to the first prefix of server trace files. In HDTrace files belonging to one project share the
file prefix. The server project file must be generated once manually (see appendix A.4.1). In this
thesis we will not look into details on how to create project files (for client and server).

Client:

• Trace files: The statistic files look like ‘cName_host_layer.stat’, similar to server statistic files.
In addition, the relation file names contain the rank, i.e. ‘sName_host_layer_rank.rel’. This rank
is used for client communications. Note the naming depends on the topology.

• Project file: The name is ‘cName.proj’. Similar to the server project file, the prefix ‘cName’
must be identical to the first prefix of client trace files. The client project file is generated with
the merger project-description-merger.py after each tracing because the names of client trace
files are always different due to the extra ‘rank’. Currently, there is no support for PVFS internal
tracing of the merger, instead we have to adjust the project file manually. In the future the merger
project-description-merger.py should be adjusted to overcome this problem.

Summary: Origins of bottlenecks are important to be understood and it is sensible to define new
metrics and tracing information as done in this thesis. They are hardware statistics, the number of
concurrent operations, statemachine tracing and the correlations between client, server and Trove. In
addition, some design considerations for the implementation are discussed and explained. Moreover,
a part of the tracing workflow has been shown, so that users can have a good overview of the project.
However, so far the server project file must be created manually. In addition, the client project file must
be manually adjusted for PVFS internal tracing as well.

Next, more complex or tricky issues while doing the implementation will be explained.

34

5 Implementation

The internal structure of PVFS and major design decisions of the extensions have been discussed
in chapters 3 and 4. This chapter focuses on some techniques and special design approaches while
implementing tracing in PVFS based on the new HDTrace API.

5.1 Integration of HDTrace

This section describes the adaption of some HDTrace packages in the build process of PVFS. Changes
are kept apart from PVFS updates by creating new source files to control the tracing with parameters.
Furthermore, some techniques used to elaborate the new modifications are described.

5.1.1 Build Process

In order to integrate the new API, first we have to modify the file configure.in. Currently, we integrate
two HDTrace packages HDTraceWritingCLibrary and RUTL, which are responsible for adding statis-
tics, correlations and performance counters into PVFS. In general, each package needs a corresponding
module in configure.in, that includes the paths to required libraries and header files. Via parameters
(–with-hdtrace and –with-rutl) of configure.in the corresponding modules will be enabled in PVFS.
Moreover, the output must be adapted to give feedback of integrated modules as well. The package
HDTraceWritingCLibrary is needed for RUTL, so we have to make sure that HDTraceWritingCLibrary
is included, when using RUTL. An excerpt of configure.in is shown in listing 5.1.

Listing 5.1: Modifications of configure.in

. . .
/ / b u i l d HDTraceWri t ingCLibra ry i f t h e p a r a m e t e r −−with−h d t r a c e

i s g i v e n
BUILD_HDTRACE=
d n l use t h e h d t r a c e l i b r a r y
AC_ARG_WITH(h d t r a c e ,
[−−with−h d t r a c e = p a t h Use HDTrace l i b r a r y i n s t a l l e d i n " p a t h "] ,

i f t e s t " x $ w i t h v a l " = " xyes " ; t h e n
AC_MSG_ERROR(−−with−h d t r a c e must be g i v e n a pathname)

e l s e
CFLAGS="$CFLAGS −I $ w i t h v a l / i n c l u d e

$ (pkg−c o n f i g −−c f l a g s g l i b −2 .0) "
LDFLAGS="$LDFLAGS −L $ w i t h v a l / l i b

$ (pkg−c o n f i g −−c f l a g s g l i b −2 .0) "
LIBS=" $LIBS − l h d S t a t s −l h d T r a c e − l h d R e l a t i o n

35

5 Implementation

$ (pkg−c o n f i g −− l i b s g l i b −2 .0) "
AC_DEFINE (HAVE_HDTRACE, 1 ,

[D e f in e i f HDTrace l i b r a r y i s used])
BUILD_HDTRACE=1

AC_TRY_LINK ([# i n c l u d e " hdTopo . h "] , [] ,
,

AC_MSG_ERROR(h d t r a c e l i b r a r y i s n o t u s a b l e))
f i

)
. . .
/ / o u t p u t c o n f i g u r a t i o n s t a t e o f HDTraceWri t ingCLibra ry
i f t e s t "x$BUILD_HDTRACE" = " x " ; t h e n

AC_MSG_RESULT ([PVFS2 c o n f i g u r e d f o r h d t r a c e module : no])
e l s e

AC_MSG_RESULT ([PVFS2 c o n f i g u r e d f o r h d t r a c e module : yes])
f i

/ / o u t p u t o f RUTL
i f t e s t "x$BUILD_HDTRACERUTL" = " x " ; t h e n

AC_MSG_RESULT ([use RUTL t o g e t h e r wi th h d t r a c e module : no])
e l s e

AC_MSG_RESULT ([use RUTL t o g e t h e r wi th h d t r a c e module : yes])
/∗ t e s t i f HDTraceWri t ingCLibra ry i s a l r e a d y i n c l u d e d ? ∗ /
i f t e s t "x$BUILD_HDTRACE" = " x " ; t h e n

AC_MSG_ERROR(E r r o r h d t r a c e module i s r e q u i r e d f o r RUTL)
f i

f i
. . .

5.1.2 New Files

There is one new source file – pint-event-hd.c – and two header files – pint-event-hd.h, pint-event-
hd-client.h – integrated into PVFS. With new files the modifications are less dependent on PVFS
updates. Files are put into the folder src/common/misc/ because this folder is used for both client
and server processes. The file pint-event-hd.c contains all function prototypes; pint-event-hd.h is
its header file. While these files are used to handle internal client/server processes of PVFS, pint-
event-hd-client.h is used for external control of the tracing. For a more detailed discussion refer to
section 5.1.4.

PVFS uses a tree of folders, which are used for different purposes (e.g. apps, client, server, common,
io, kernel and proto). In each folder there is a file, namely module.mk.in, referring to source files used
for the build mechanism. Therefore, we have to modify this file to include the C file pint-event-hd.c.
An excerpt of the module file is shown in listing 5.2.

36

5 Implementation

Listing 5.2: Add new files in PVFS

DIR := s r c / common / misc
LIBSRC += $ (DIR) / s e r v e r−c o n f i g . c \
. . .

$ (DIR) / p i n t−even t−hd . c \
. . .

SERVERSRC += $ (DIR) / s e r v e r−c o n f i g . c \
. . .

$ (DIR) / p i n t−even t−hd . c \
. . .

LIBBMISRC += $ (DIR) / s t r−u t i l s . c \
. . .

$ (DIR) / p i n t−even t−hd . c \
. . .

5.1.3 Controlling Tracing

In PVFS we use the program src/apps/admin/pvfs2-set-eventmask.c to trigger (enable/disable) the
tracing mechanism. The program delivers two parameters -m and -e. Some additional parameters -d
and -l are added for this thesis. They are characterized as follows:

• -m : The mount point of PVFS2.

• -e : Enable tracing of particular events, as a comma separate list for multiple event sources.

• -d : Disable

• -l : File prefix of trace files.

We use the function PVFS_mgmt_setparam_all with the corresponding type
(PVFS_SERV_PARAM_EVENT_ENABLE or PVFS_SERV_PARAM_EVENT_DISABLE) to transfer
the parameters to the server statemachine src/server/setparam.sm. According to the type, new func-
tions which use the HDTrace API in src/common/misc/pint-event-hd.c will be called. An excerpt is
shown in listing 5.3.

Listing 5.3: Controlling tracing

/∗ s r c / apps / admin / pvfs2−s e t−eventmask . c ∗ /
i n t main (a rgs , a rgv)
{
. . .
r e t = PVFS_mgmt_setparam_al l (

c u r _ f s , &c r e d s ,
PVFS_SERV_PARAM_EVENT_ENABLE,
¶m_value , NULL, NULL) ;

. . .
}

/∗ s r c / s e r v e r / s e t p a r a m . sm ∗ /
s t a t i c PINT_sm_act ion se tpa ram_work (

37

5 Implementation

s t r u c t PINT_smcb ∗smcb , j o b _ s t a t u s _ s ∗ j s _ p)
{
. . .

c a s e PVFS_SERV_PARAM_EVENT_ENABLE :
r e t = 0 ;
P I N T _ H D _ e v e n t _ i n i t i a l i z e (

s_op−>req−>u . mgmt_setparam . v a l u e . u . s t r i n g _ v a l u e , name) ;
j s_p−>e r r o r _ c o d e = r e t ;
r e t u r n SM_ACTION_COMPLETE;

c a s e PVFS_SERV_PARAM_EVENT_DISABLE :
PINT_HD_even t_ f i na l i z e () ;
j s_p−>e r r o r _ c o d e = 0 ;
r e t u r n SM_ACTION_COMPLETE;

. . .
}
/∗ s r c / common / misc / p i n t−even t−hd . h ∗ /
i n t P I N T _ H D _ e v e n t _ i n i t i a l i z e (c o n s t c h a r ∗ t r aceWhat ,

c o n s t c h a r ∗ p r o j e c t F i l e) ;
i n t P INT_HD_even t_ f i na l i z e (vo id) ;

5.1.4 Reduce Modifications to PVFS Source Code

In order to make our code less dependent on PVFS, we use macros to intercept PVFS internal parts. The
common macros used in this thesis are HAVE_HDTRACE, HAVE_HDRUTL as defined in configure.in
(see listing 5.1). Macros like __PVFS2_SERVER__ and __PVFS2_CLIENT__ indicate whether the
code is part of the client or server API. External clients (e.g MPI programs) can not include header files
of PVFS which have complex dependencies, including PVFS macros, otherwise many internal header
files must be installed as well. Instead, we have to use extra header files, so that the external clients can
use the new tracing functions.

Moreover, using macros allows us to be able to use the same code structure and reduce code dimensions
or duplicates. In PVFS the logic of tracing functions for client and server differs just slightly, therefore
we can use the same variables or functions with different macros. An excerpt is shown in listing 5.4.

Listing 5.4: Macros providing traceable internals on client and server

/∗ p i n t−even t−hd . c ∗ /
s t a t i c h d S t a t s G r o u p ∗ h d _ f a c i l i t y T r a c e [ALL_FACILITIES] ;

/∗ s r c / common / misc / p i n t−even t−hd . h ∗ /
i f d e f __PVFS2_SERVER__
t y p e d e f enum {

BMI , TROVE, FLOW, REQ, BREQ,
. . .

ALL_FACILITIES
} H D _ T r a c e _ F a c i l i t y ;
e l s e /∗ __PVFS2_CLIENT__ ∗ /
t y p e d e f enum {

38

5 Implementation

BMI , FLOW, CLIENT , / / w i t h o u t TROVE, REQ and BREQ
. . .

ALL_FACILITIES
} H D _ T r a c e _ F a c i l i t y ;
e n d i f /∗ __PVFS2_SERVER__ ∗ /

5.2 Tracing I/O Details and Creation Correlation

In order to trace details of I/O operations the following attributes are needed: Total Size, Size and Offset
(see section 4.3.4). For Total Size the relevant server statemachines are I/O and small I/O statemachines.
In this section we discuss how to trace Total Size for normal I/O because we need some tricks to transfer
the value of Total Size from the I/O statemachine to the corresponding trace function in comparison
to small I/O. Size and Offset are traced in conjunction with the correlation between Server and Trove.
Tracing Size and Offset of a low level I/O operation is not so difficult since these attributes are given
at the I/O operations in Trove. In addition, the creation of correlations by using hints is described (see
section 4.3.4 for design overview).

5.2.1 Total Size for I/O

Total Size can be found in the function io_cleanup of src/server/io.sm. This function cleans up the
environment. In order to use this attribute for the statemachine structure in scr/common/misc/state-
machine-fns.c , we have to save it in the data structure PINT_server_io_op of src/server/pvfs2-
server.h before the information about Flow is freed from memory. Therefore, we create a new variable
in the structure and set its value to the Total Size. An excerpt of the modifications is shown in list-
ing 5.5.

Listing 5.5: Total Size

/∗ s r c / s e r v e r / pvfs2−s e r v e r . h ∗ /
s t r u c t P IN T_ se r ve r_ i o_ op
{

f l o w _ d e s c r i p t o r ∗ f low_d ;
i f d e f HAVE_HDTRACE

PVFS_size i o _ s i z e ;
e n d i f
} ;

/∗ s r c / s e r v e r / i o . sm ∗ /
s t a t i c PINT_sm_act ion i o _ c l e a n u p (

s t r u c t PINT_smcb ∗smcb , j o b _ s t a t u s _ s ∗ j s _ p)
{
. . .

i f (s_op−>u . i o . f low_d)
{

i f d e f HAVE_HDTRACE
s_op−>u . i o . i o _ s i z e = s_op−>u . i o . f low_d−> f i l e _ d a t a . f s i z e ;

39

5 Implementation

e n d i f
P INT_f low_f ree (s_op−>u . i o . f low_d) ;

}
. . .
}

5.2.2 Correlation between Server and Trove

In this thesis the following two Trove methods are instrumented for showing the correlation between
request and low level I/O: alt-aio and directio. In the method directio the hint is already given to the
functions which do I/O operations (p_read/p_write). In comparison to alt-aio this method can be easily
instrumented. Hence, in this section we will discuss how to transfer the hint in alt-aio.

Trove method: alt-aio

The method alt-aio uses the standardized POSIX AIO interface for submitting I/O operations. The
structure is defined in system header files and not part of PVFS. Therefore, it is not easy to transport
the additional hint to the alternative implementation. States of processing I/O are shown in figure 5.1.
Atomic steps and design considerations are described as below:

Figure 5.1: Excerpt and modifications of atomic operations for the Trove method alt-aio

S1 To transfer the hint from alt_aio_bstream_read_list or alt_aio_bstream_write_list to
p_read/p_write, in brief we need to transfer it via alt_lio_listio and alt_lio_thread. There is an
array, which consists of metadata of I/O operations like Size and Offset, and is used in many
steps between alt_aio_bstream_read_list or alt_aio_bstream_write_list to alt_lio_listio. The
array uses a macro for its size (AIOCB_ARRAY_SZ), hence we can increase the array by one
(AIOCB_ARRAY_SZ + 1) and put a pointer to the hint into it. Note we have to make the changes
wherever the array is declared.

40

5 Implementation

/∗ s r c / i o / t r o v e / t r o v e−dbpf / dbpf−a l t−a i o . c ∗ /
s t a t i c i n t a l t _ l i o _ l i s t i o (i n t mode , s t r u c t a i o c b ∗ c o n s t l i s t [] ,

i n t nen t , s t r u c t s i g e v e n t ∗ s i g) ;

/∗ s r c / i o / t r o v e / t r o v e−dbpf / dbpf−b s t r e a m . c ∗ /
/ / i n c r e a s e t h e a r r a y s i z e
i f d e f HAVE_HDTRACE
s t r u c t a i o c b ∗ a i o c b _ p t r _ a r r a y [AIOCB_ARRAY_SZ+ 1] ;
e l s e
s t r u c t a i o c b ∗ a i o c b _ p t r _ a r r a y [AIOCB_ARRAY_SZ] ;
e n d i f
/ / p u t t h e h i n t i n t o t h e a r r a y
i f d e f HAVE_HDTRACE
a i o c b _ p t r _ a r r a y [a i o c b _ i n u s e _ c o u n t] = (s t r u c t a i o c b ∗)

cur_op−>op . h i n t s ;
e n d i f

S2 To transfer the hint from alt_lio_listio to alt_lio_thread, we need to create a new variable for the
hint in the data structure alt_aio_item and save the hint from the array discussed above.

/∗ s r c / i o / t r o v e / t r o v e−dbpf / dbpf−a l t−a i o . c ∗ /
s t r u c t a l t _ a i o _ i t e m
{
. . .

/ / c r e a t e a new e n t r y f o r h i n t
i f d e f HAVE_HDTRACE

PVFS_hint h i n t s ;
e n d i f
} ;

/ / s e t t h e h i n t v a l u e i n a l t _ a i o _ i t e m
s t a t i c i n t a l t _ l i o _ l i s t i o (i n t mode , s t r u c t a i o c b ∗ c o n s t l i s t [] ,

i n t nen t , s t r u c t s i g e v e n t ∗ s i g) ;
{
. . .
/ / t a k e t h e h i dd en h i n t
i f d e f HAVE_HDTRACE
PVFS_hint h i n t s = (PVFS_hint) l i s t [n e n t] ;
tmp_item−> h i n t s = h i n t s
e n d i f ;
. . .
r e t = p t h r e a d _ c r e a t e (& m a s t e r _ t i d , &a t t r , a l t _ l i o _ t h r e a d ,

tmp_i tem) ;
. . .
}

S3 The function alt_lio_listio calls the function alt_lio_thread with the parameter tmp_item con-
taining the hint. Now we take the hint out and use it to trace the function call to p-read/p-write,
so the work is done.

41

5 Implementation

/∗ s r c / i o / t r o v e / t r o v e−dbpf / dbpf−a l t−a i o . c ∗ /
s t a t i c vo id ∗ a l t _ l i o _ t h r e a d (vo id ∗ foo)
{

s t r u c t a l t _ a i o _ i t e m ∗ tmp_i tem = (s t r u c t a l t _ a i o _ i t e m ∗) foo ;
i f (tmp_item−>cb_p−>a i o _ l i o _ o p c o d e == LIO_READ)
{

HD_SERVER_TROVE_RELATION(tmp_item−>h i n t s , " a l t−io−r e a d " ,
r e t = p r e a d (tmp_item−>cb_p−> a i o _ f i l d e s ,

(vo id ∗) tmp_item−>cb_p−>a i o _ b u f ,
tmp_item−>cb_p−>a i o _ n b y t e s ,
tmp_item−>cb_p−> a i o _ o f f s e t) ; ,
"%d " , tmp_item−>cb_p−>a i o _ n b y t e s ,
"% l l d " , l l d (tmp_item−>cb_p−> a i o _ o f f s e t)

)
}

. . .
}

/∗ s r c / common / misc / p i n t−even t−hd . h ∗ /
d e f i n e HD_SERVER_TROVE_RELATION(h i n t s , name , CMD, p _ s i z e , s i z e ,

p _ o f f s e t , o f f s e t) \
c o n s t c h a r ∗ i o _ k e y s [] = {" s i z e " , " o f f s e t " } ; \
c h a r a t t r 1 [1 5] , a t t r 2 [1 5] ; \
c h a r ∗ i o _ v a l u e s [] = { a t t r 1 , a t t r 2 } ; \
c o n s t c h a r ∗ c _ i o _ v a l u e s [2] ; \
i n t run = 1 ; \
HD_SERVER_TROVE_RELATION(SERVER, \

hdR_token r e l a t e T o k e n = NULL; \
hdR_token p a r e n t T o k e n = ∗ (hdR_token ∗) \
P INT_h in t_ge t_va lue_by_name (h i n t s , \

PVFS_HINT_RELATION_TOKEN_NAME , NULL) ; \
\
i f (p a r e n t T o k e n && topoTokenArray [TROVE]) \
{ \

gen_mutex_ lock (& t r o v e _ r e l a t i o n) ; \
r e l a t e T o k e n = h d R _ r e l a t e P r o c e s s L o c a l T o k e n \
(topoTokenArray [TROVE] , p a r e n t T o k e n) ; \
gen_mutex_unlock (& t r o v e _ r e l a t i o n) ; \

} \
\
i f (r e l a t e T o k e n) \
{ \

gen_mutex_ lock (& t r o v e _ r e l a t i o n) ; \
h d R _ s t a r t S (r e l a t e T o k e n , name) ; \
gen_mutex_unlock (& t r o v e _ r e l a t i o n) ; \
run = 0 ; \
\

CMD \
\

42

5 Implementation

s n p r i n t f (i o _ v a l u e s [0] , 15 , p _ s i z e , s i z e) ; \
s n p r i n t f (i o _ v a l u e s [1] , 15 , p _ o f f s e t , o f f s e t) ; \
c _ i o _ v a l u e s [0] = i o _ v a l u e s [0] ; \
c _ i o _ v a l u e s [1] = i o _ v a l u e s [1] ; \
\
gen_mutex_ lock (& t r o v e _ r e l a t i o n) ; \
hdR_end (r e l a t e T o k e n , 2 , io_keys , c _ i o _ v a l u e s) ; \
h d R _ d e s t r o y R e l a t i o n (& r e l a t e T o k e n) ; \
gen_mutex_unlock (& t r o v e _ r e l a t i o n) ; \

} \
) \
i f (run) { \

CMD \
} \

d e f i n e HD_SERVER_RELATION(f a c i l i t y , s t m t) \
do { i f (topoTokenArray [f a c i l i t y]) { s t m t } } w h i l e (0) ;

Summary: According to design considerations in chapter 4, some complex modifications for the im-
plementation have been explained. Moreover, the whole build process of PVFS was explained for the
code integration. The macros are defined in the file configure.in and used to instrument PVFS inter-
nals. In other words, the changes are kept optional by triggering the tracing only via parameters during
source configuration.

Next, experiments made with these modifications are discussed.

43

6 Evaluation

In this chapter some basic features of Sunshot are introduced. Information of the cluster configuration
is also provided. There are two experiments made in this thesis. The first experiment is made on a
balanced system. In conjunction with this experiment new metrics and tracing information in Sunshot
are discussed in detail, so that the users can understand the visualization. In contrast, the second
experiment is made on an unbalanced system. In this experiment we will analyze factors which are
related to bottlenecks.

6.1 Basic Features of Sunshot

This section highlights some basic features in Sunshot for the understanding of results made in this
thesis. An example is shown in figure 6.1 and described as follows:

import project files

main frame
legend frame

part 1

part 3

part 2

Figure 6.1: Basic Sunshot feature

Import multiple project files: Due to the new trace format of HDTrace Sunshot permits a visualization
of client and server processes by importing different project files.

44

6 Evaluation

Main frame:

• Part 1: The info panel contains meta information of the event located under the mouse pointer,
including start time, end time, duration, zoom factor, value, etc.

• Part 2: contains the potentially modified topology tree viewed in Sunshot according to project
files.

• Part 3: contains the visualization of the topology events/statistics with many time lines according
to the components.

Legend frame: In this frame users can choose the events and statistics to be viewed in the main frame.
Additional parameters for the visualization of statistics can be specified. Right now relations can be
added in this frame as well.

6.2 Cluster Configuration

The experiments were performed on the working group’s cluster with nine nodes. Each node is
equipped with two Intel Xeon 2 GHz processors with 512 KB Cache, 1 GB RAM, 80 GB IBM HDD,
an Intel 82545EM Gbit Ethernet and Network Interface. The Ubuntu server edition 8.04 is installed
on the cluster. PVFS (version 2.8.2) was installed on four nodes (as servers). One server is used as a
metadata and data server; the others as data servers only. The remaining five nodes are used for MPI
client programs with MPICH2 (version 1.08p1) installed.

6.3 Experiments

In this section we show two experiments and discuss the results with the benchmark program mpi-io-
test shipped with ROMIO. The test case was to write 10 times 100 MB with 9 client processes:

ssh node05 $HOME/pioviz/bin/mpiexec -np 9 -env PVFS2TAB_FILE $PVFS2TAB_FILE
-env PVFS2_HD_TRACE_CLIENT $PVFS2_HD_TRACE_CLIENT $HOME/MPI-IO/mpi-io-test
-p $HOME/pioviz/pvfs2tab -i 10 -v -w -b $((10*1024*1024))
-f pvfs2://pvfs2/example

The first experiment is conducted in a balanced environment consisting of identical hardware and
software condition. In this experiment we will discuss the new tracing metrics and information in detail.
In the second experiment background processes which stress the system are started on a particular
server. We will discuss and analyze whether we can localize the bottlenecks.

45

6 Evaluation

6.3.1 Demonstrating New Traced Information

The screenshot of Sunshot is shown in figure 6.2. For a good view, we keep one server (node01) with
one client (node05) like in figure 6.3. Based on this figure the results will be discussed in detail.

Figure 6.2: Five clients and four servers

Figure 6.3: One client and one server

46

6 Evaluation

Hardware Statistics and Number of concurrent Operations

The two metrics, hardware statistics and the number of concurrent operations, are highlighted in figure
6.4. We will discuss and analyze a few regions of the trace. Therefore, the marked areas are made and
the discussion is based on these areas. Number in statistics timelines (in black) indicate the maximum
value observed in the region.

hardware statistics

number of concurrent operations

0

9

100%
100%
100%

9
72

9

Figure 6.4: Hardware statistics and number of concurrent operations

Hardware Statistics: In case of the write operation with 1 GB, we can verify the correctness of the
hardware statistics, for instance HDD_READ is fast zero and HDD_WRITE is not. In the marked area
the trend of HDD_WRITE (values) increases, that’s why CPU_TOTAL is high, MEM_USED increases
and MEM_FREE decreases. Because no data is transferred to the clients, NET_OUT is very low. It
is difficult to compare NET_IN with HDD_WRITE because data is cached before being written to the
hard disks, thus we see that these two areas look different. In comparison to the other metric, the values
of this metric stay constant for some time because these values are updated in a fixed time interval.

Number of concurrent Operations: The values of the marked areas for BMI, Flow and REQ do not
look exactly the same but similar because normally a operation in REQ will trigger operations in Flow,
a operation in Flow triggers operations in BMI and Trove, and on the other hand a operation in BMI
triggers operations in Flow (see figure 2.1.1). It is reasonable that the values of Breq are zero because
no metadata operations occur during write requests. We may think, an error occurred in Trove because
at the beginning only a few operations are visible. That is not the case, due to write behind data is
cached in the fast memory and therefore operations finish quickly. Write-back from memory to disks is
deferred. Later, the cache get filled, then the OS must block further write operations issued by Trove.
Therefore, the observed values in Trove increase with decreased cache. For the whole time line of each
layer we can see that the value of this metric begins with zero, then changes (increases or decreases)
and will be again zero at the end.

Observation: For the special case where all the CPUs are maximum 100% loaded in node01 (marked
with numeric values), we see that the values of BMI are zero, the maximum values of Flow and REQ are
nine. In PVFS, the data of each process will be split and transferred in eight small parts successively,

47

6 Evaluation

each with 256 KB. After a part is done (read/written) in Trove, the next part can be transferred by BMI.
In this case all eight buffers are received, i.e. BMI does not need to receive further data. For each part
there is a corresponding I/O thread started in Trove. In other words, each Flow request issues eight
Trove operations. So in this case the number of concurrent Trove operations is 72 (8 x 9 = 72).

Statemachine Tracing

Figure 6.5 shows how nested states of a statemachine can be viewed in Sunshot. Thus, we can under-
stand internal processing of particular operations in detail. In this figure, the arrows indicate the names
of states viewed under the mouse pointer.

write_sm

pvfs2_prelude_sm

setup

prelude_work_sm

req_sched

getattr_if_needed

Figure 6.5: Nested states and statemachines

Figure 6.6 shows an pattern of state overlapping in Sunshot when multiple operations run concurrently.
Figure 6.7 is an screenshot of expanded time lines from figure 6.6.

48

6 Evaluation

Figure 6.6: State overlapping with one time line

Figure 6.7: Expanded time lines with multiple time lines

Correlation Creation

In figure 6.8 arrows indicate which client operations triggered which server operations and similarly
which server operations triggered which Trove operations. Thereby, their correlations are created.
However, information in this figure is overwhelming for the users because the information is not well
presented in Sunshot. For instance, if there are many operations traced, it is really hard or even impos-
sible to keep track the call history, i.e. which operations called which operations, although the arrows
for the correlations are created. Therefore, Sunshot should and will be extended to support the users in
filtering the context specific information.

49

6 Evaluation

Figure 6.8: Correlations

Tracing I/O Statistics:

In figure 6.9 we can see the value of Total Size of each operation of a server process and in addition its
thread operations in Trove via Size and Offset. Moreover, the type of I/O method and other meta data
are collected as well.

Figure 6.9: I/O statistics

50

6 Evaluation

6.3.2 Analyzing Unbalanced Server Condition

In this experiment one server (node02) gets stressed (both CPU 100% load, reducing free memory to
200MB) by starting two background process. The screenshot is shown in figure 6.10. At first sight we
see that the results on node02 differ from those on other servers. Results on other nodes are similar, for
simplicity we will discuss the differences between node01 and node02.

Figure 6.10: Five clients and four servers

Hardware Statistics and Number of concurrent Operations

An excerpt of figure 6.10 is shown in figure 6.11.

51

6 Evaluation

Figure 6.11: Hardware statistics and concurrent operations

It is easy to recognize the significant difference between components of these two nodes. In com-
parison to node01 the values of HDD_WRITE in node02 are high all the time, and at the beginning
MEM_FREE is lower. This means the values are as expected by this experiment. Now we will analyze
how these differences influence performance of other components in PVFS.

Due to the low resource of node02 there are many pending operations. The comparison with integrated
average values is shown in table 6.1.

Components Node01 Node02
BMI 0.462 0.771
Flow 0.677 7.652
REQ 0.680 7.656
Trove 1.456 54.433
NET_IN 3185 (KB) 3589 (KB)
HDD_WRITE 6695 (Blocks) 6411 (Blocks)

Table 6.1: Comparison of BMI, Flow, REQ, Trove, NET_IN and HDD_WRITE

According to the comparison the values of other information, especially Trove of node02 are signifi-
cantly higher than of node01. In other words, the environment in this experiment is unbalanced.

Figure 6.12 indicates that there are many concurrent operations in Trove and they run longer due to the
low resource availability in node02.

52

6 Evaluation

Figure 6.12: States in Trove

The reasons are: in this experiment the method alt-aio is used. This method spawns I/O threads.
Thus, it is CPU intensive. Probably, it slows the real I/O. In node02 the I/O cache is much smaller
than in node01. Thereby, on node02 the merging of the write operation is ineffective, and the threads
blocked by the operating system take time much longer, as we can see in the figure 6.12. For example,
on node02 there are many threads with the time duration over 9 seconds. It is too long for a write
operation and indicates a bottleneck due to write block.

Summary: Basically, there were two experiments presented in this chapter. The first experiment was
made on a balanced environment. In this experiment, results including new metrics and tracing infor-
mation were discussed in detail via Sunshot. In contrast, the second test was made on an unbalanced
environment. Overall we see that the new metrics and tracing information are useful to track bottle-
necks down. However, the information is not presented optimal by Sunshot so far. Thereby, in the
future, Sunshot should provide more features to help the users to deal with the information.

53

7 Summary, Conclusion and Future Work

7.1 Summary and Conclusion

In this thesis relevant performance metrics and information is defined to localize bottlenecks. These
metrics are implemented into the parallel file system PVFS to trace client and server performance
behavior. In detail modifications are as follows:

• Hardware Statistics: In comparison to the statistics provided by PIOViz 1.0, some new statistics
are added. They are more powerful and contain many needed information for the analysis. In
PIOViz 1.0 we got only one statistic for CPU. Now it is fine grained, which means each CPU has
a statistic, and it is much more useful for the analysis.

• Number of concurrent operations: To have an overview of the system it is important to know
how many operations in PVFS internal layers and statemachines are running. This metric also
can be used to compare the load between different nodes.

• Statemachine tracing: Statemachines are the fundamental concept in PVFS. Each statemachine
consists of many states, each has a state action function, and can be nested with other statema-
chines. Tracing this information is useful to understand and manage operations within the pro-
cess.

• Correlations creation: Beside of factors related to bottlenecks, it is also important to understand
the correlations between layers in PVFS in order to determine the reason for the system behavior,
e.g. which client caused the inefficient I/O operations in Trove.

Modifications made to PVFS use the new tracing API HDTrace of PIOViz to store system events in
trace files. Then they can be viewed and analyzed via the visualization tool Sunshot to assist perfor-
mance analysis.

Furthermore, the changes made in PVFS are activated by the build process via parameters during
configuration. This allows to check the overhead imposed by the modifications.

With the new PIOViz environment including HDTrace and Sunshot as well as metrics or tracing infor-
mation made in this thesis it is easier for users to analyze the system and detect bottlenecks. We have
seen one experiment where one server is stressed a lot by a particular program. Sunshot showed where
bottlenecks had occurred and which layers or components were related.

54

7 Summary, Conclusion and Future Work

7.2 Future Work

Currently, the correlations between client/server and server/Trove are created. However, it also might
be useful to trace the correlations between other layers in PVFS (see section 4.3.4).

However, the interpretation of information is a bit difficult for the users because it is not arranged very
well in Sunshot. Therefore, the information should be arranged in a simple way, for example, a context
based guide to help the users. These extensions are already planned for Sunshot and possible due to
the new trace capabilities.

Right now, the server project file (see section 4.4) must be created manually. Besides the client project
file must be manually adjusted for PVFS internal tracing. In the future, the project description merger
should be extended to overcome this problem.

In this thesis there are two simple experiments made. We need to perform more experiments to assess
metrics defined and continue to find new interesting metrics and trace information related to bottle-
necks.

55

Bibliography

[Kuh07] Michael Kuhn. Directory-Based Metadata Optimizations for Small Files in PVFS. Bach-
elor’s thesis, Ruprecht-Karls-Universität Heidelberg, Institute of Computer Science, Re-
search Group Parallel and Distributed Systems, September 2007.

[Kun07] Julian Martin Kunkel. Towards Automatic Load Balancing of a Parallel File System
with Subfile Based Migration. Master’s thesis, Ruprecht-Karls-Universität Heidelberg,
Institute of Computer Science, Research Group Parallel and Distributed Systems, August
2007.

[LKK+06] Thomas Ludwig, Stephan Krempel, Julian M. Kunkel, Frank Panse, and Dulip With-
anage. Tracing the MPI-IO Calls’ Disk Accesses. In Mohr et al. [MTWD06], pages
322–330.

[LKK+07] Thomas Ludwig, Stephan Krempel, Michael Kuhn, Julian Kunkel, and Christian Lohse.
Analysis of the MPI-IO Optimization Levels with the PIOViz Jumpshot Enhancement.
page 2, 2007.

[MTWD06] Bernd Mohr, Jesper Larsson Träff, Joachim Worringen, and Jack Dongarra, editors. Re-
cent Advances in Parallel Virtual Machine and Message Passing Interface, 13th European
PVM/MPI User’s Group Meeting, Bonn, Germany, September 17-20, 2006, Proceedings,
volume 4192 of Lecture Notes in Computer Science. Springer, 2006.

[Paga] MPICH2 Home Page. MPICH2. Homepage http://www.mcs.anl.gov/
research/projects/mpich2.

[Pagb] Paradyn Home Page. Paradyn. Homepage http://www.cs.wisc.edu/paradyn.

[Pagc] Vampir Home Page. Vampir. Homepage http://www.vampir.eu/index.html.

[Proa] The PVFS2 Project. Parallel Virtual File System. Homepage http://pvfs.org.

[Prob] The PVFS2 Project. Parallel Virtual File System Documentation. Homepage http:
//pvfs.org/cvs/pvfs-2-8-branch-docs/doc//pvfs2-guide.pdf.

[Tea03] PVFS Development Team. Parallel Virtual File System Version 2. PVFS2 Internal Doc-
umentation included in the source code package, 2003.

[TGL96] R. Thakur, W. Gropp, and E. Lusk. An Abstract-Device Interface for Implementing
Portable Parallel-I/O Interfaces. In FRONTIERS ’96: Proceedings of the 6th Sympo-
sium on the Frontiers of Massively Parallel Computation, page 180, Washington, DC,
USA, 1996. IEEE Computer Society.

[TGL99] Rajeev Thakur, William Gropp, and Ewing Lusk. Data Sieving and Collective I/O in
ROMIO. In Proceedings of the Seventh Symposium on the Frontiers of Massively Parallel
Computation, pages 182–189. IEEE Computer Society Press, 1999.

56

http://www.mcs.anl.gov/research/projects/mpich2
http://www.mcs.anl.gov/research/projects/mpich2
http://www.cs.wisc.edu/paradyn
http://www.vampir.eu/index.html
http://pvfs.org
http://pvfs.org/cvs/pvfs-2-8-branch-docs/doc//pvfs2-guide.pdf
http://pvfs.org/cvs/pvfs-2-8-branch-docs/doc//pvfs2-guide.pdf

A Appendix

A.1 PVFS Installation

This section describes how to install PVFS on four nodes like the experiment made in section 6.2.

Configure and install the packages
$ tar xvf pvfs-2.8.1.tar.gz
$ mkdir $PWD/installed
$ mkdir $PWD/storage
$ cd pvfs-2.8.1
$ configure --prefix=$PWD/installed
$ export INSTALL=$PWD/installed
$ export STORAGE=/tmp/pvfs2-storage
$ make
$ make install

Create the configuration file
$ pvfs2-genconfig fs.conf --protocol=tcp --tcpport=5001 --ioservers=
node01,node02,node03,node04 --metaservers=node01 --storage=$STORAGE
--logfile=$STORAGE/log

Create storage
$ $INSTALL/sbin/pvfs2-server fs.conf -f

Create the file pvfs2tab with the content and set the environment
for PVFS2TAB_FILE
echo "tcp://node01:5001/pvfs2-fs /pvfs2 pvfs2 defaults,noauto 0 0" \
> $PWD/pvfs2tab
export PVFS2TAB_FILE=$PWD/pvfs2tab

A.2 PVFS File System Configuration Files

A.2.1 One Metadata and Four data servers

<Defaults>
UnexpectedRequests 50
EventLogging none
EnableTracing no
LogStamp datetime

57

A Appendix

BMIModules bmi_tcp
FlowModules flowproto_multiqueue
PerfUpdateInterval 1000
ServerJobBMITimeoutSecs 30
ServerJobFlowTimeoutSecs 30
ClientJobBMITimeoutSecs 300
ClientJobFlowTimeoutSecs 300
ClientRetryLimit 5
ClientRetryDelayMilliSecs 2000
PrecreateBatchSize 512
PrecreateLowThreshold 256

StorageSpace /tmp/pvfs2-storage
LogFile /tmp/pvfs2-storage/log

</Defaults>

<Aliases>
Alias node01 tcp://node01:5001
Alias node02 tcp://node02:5001
Alias node03 tcp://node03:5001
Alias node04 tcp://node04:5001

</Aliases>

<Filesystem>
Name pvfs2-fs
ID 911008748
RootHandle 1048576
FileStuffing no
<MetaHandleRanges>

Range node01 3-1844674407370955162
</MetaHandleRanges>
<DataHandleRanges>

Range node01 1844674407370955163-3689348814741910322
Range node02 3689348814741910323-5534023222112865482
Range node03 5534023222112865483-7378697629483820642
Range node04 7378697629483820643-9223372036854775802

</DataHandleRanges>
<StorageHints>

TroveSyncMeta yes
TroveSyncData no
TroveMethod alt-aio

</StorageHints>
</Filesystem>

A.2.2 Server Configuration

The configuration for each server (node01-node04) looks similar - only the hostname is changed, e.g.
node02 instead of node01.

StorageSpace /tmp/pvfs2-storage/
HostID "tcp://node01:5001"
LogFile /tmp/pvfs2-storage/log

58

A Appendix

A.3 Start PVFS

$ for I in ‘seq 1 4‘; do \
ssh node0$I "$INSTALL/sbin/pvfs2-server fs.conf" \
done

A.4 Stop PVFS

$ for I in ‘seq 1 4‘; do \
ssh node0$I "killall pvfs2-server" \
done

A.4.1 An Example of a Server Project File

<?xml version="1.0" encoding="UTF-8"?>
<Application name="result" processCount="3">
<Description>normal description </Description>

<FileList>
<File name="pvfs2://pvfs2//visualization.dat">

<InitialSize>0</InitialSize>
<Distribution class="de.hd.pvs.piosim.model.inputOutput.
distribution.SimpleStripe">

<ChunkSize>64K</ChunkSize>
</Distribution>

</File>
<File name="pvfs2://pvfs2//checkpoint.1">

<InitialSize>0</InitialSize>
<Distribution class="de.hd.pvs.piosim.model.inputOutput.
distribution.SimpleStripe">

<ChunkSize>64K</ChunkSize>
</Distribution>

</File>
<File name="pvfs2://pvfs2//checkpoint.2">

<InitialSize>0</InitialSize>
<Distribution class="de.hd.pvs.piosim.model.inputOutput.
distribution.SimpleStripe">

<ChunkSize>64K</ChunkSize>
</Distribution>

</File>
</FileList>

<Topology>
<Level type="Hostname1">
<Level type="Rank1">
<Level type="Thread1">
</Level>
</Level>
</Level>

59

A Appendix

<Node name="node01">
<Node name="SERVER" />
<Node name="TROVE" />
<Node name="CLIENT" />

</Node>
<Node name="node02">

<Node name="SERVER" />
<Node name="TROVE" />

</Node>
<Node name="node03">

<Node name="SERVER" />
<Node name="TROVE" />

</Node>
<Node name="node04">

<Node name="SERVER" />
<Node name="TROVE" />

</Node>

</Topology>

<CommunicatorList>
<Communicator name="WORLD">
<Rank global="0" local="0" cid="1"/>
</Communicator>
</CommunicatorList>

<ExternalStatistics>
<BMI/>
<FLOW/>
<TROVE/>
<REQ/>
<BREQ/>
<Performance/>
</ExternalStatistics>

</Application>

A.5 Tools used for the Thesis

Operating system: Ubuntu 9.04
Pdf Editor: Kile, Latex
Image and Diagram: Open Office, Jude, ksnapshot
IDE: Eclipse 3.4

60

List of Figures

1.1 Correlation between client and server in PIOViz 1.0 9

2.1 PVFS software architecture . 12
2.2 MPICH-2 software components . 15

4.1 State chart of processing of a statemachine . 29
4.2 Multiple time lines for state overlapping . 30
4.3 Create correlations in PVFS . 31
4.4 Generating trace files and post processing . 33

5.1 Excerpt and modifications of atomic operations for the Trove method alt-aio 40

6.1 Basic Sunshot feature . 44
6.2 Five clients and four servers . 46
6.3 One client and one server . 46
6.4 Hardware statistics and number of concurrent operations 47
6.5 Nested states and statemachines . 48
6.6 State overlapping with one time line . 49
6.7 Expanded time lines with multiple time lines . 49
6.8 Correlations . 50
6.9 I/O statistics . 50
6.10 Five clients and four servers . 51
6.11 Hardware statistics and concurrent operations . 52
6.12 States in Trove . 53

61

	Introduction
	Problem Statement
	Related Work and State of the Art
	Vampir
	PIOViz

	Goal of the Thesis
	Structure of the Thesis

	System Overview
	The Parallel Virtual File System PVFS
	Software Architecture

	MPICH-2

	Internal View of PVFS
	Client and Server Interaction
	System Interface Call
	PVFS Hint
	Statemachines
	Client Statemachine
	Server Statemachine

	Request Scheduler
	Layer Internal Processing
	Post and Test of Operations
	Trove

	Design
	Overview
	General Tracing Considerations
	Tracing Metrics and Information
	Hardware Statistics
	Number of Concurrent Operations
	Statemachine Tracing
	Correlation Creation

	Generating Trace Files and Postprocessing

	Implementation
	Integration of HDTrace
	Build Process
	New Files
	Controlling Tracing
	Reduce Modifications to PVFS Source Code

	Tracing I/O Details and Creation Correlation
	Total Size for I/O
	Correlation between Server and Trove

	Evaluation
	Basic Features of Sunshot
	Cluster Configuration
	Experiments
	Demonstrating New Traced Information
	Analyzing Unbalanced Server Condition

	Summary, Conclusion and Future Work
	Summary and Conclusion
	Future Work

	Bibliography
	Appendix
	PVFS Installation
	PVFS File System Configuration Files
	One Metadata and Four data servers
	Server Configuration

	Start PVFS
	Stop PVFS
	An Example of a Server Project File

	Tools used for the Thesis

	List of Figures

