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Abstract

As predicted by Moore’s law, computational power was increasing rapidly within the last years,

roughly doubling every 14.5 months throughout the history of the TOP500 [KKL16, p. 75],

whilst storage capacity and speed showed far less significant growing factors. This results in an

increasing gap, and, especially for High Performance Computing, Input and Output became a

performance bottleneck. Furthermore, for the storage of data with up to multiple petabytes using

distributed file systems like Lustre, another bottleneck evolves from the need to transfer the data

over the network.

For the compensation of this bottlenecks, investigating compression techniques is more urgent

than ever, basically aiming to exploit computational power to reduce the amount of data trans-

ferred and stored. One approach for the Lustre file system was presented by Anna Fuchs in her

thesis “Client-side Data Transformation in Lustre” [Fuc16]. For the efficient storage within the

underlying ZFS file system, Niklas Behrmann extended ZFS to allow storing externally com-

pressed data as if it was compressed by ZFS itself, which allows to make use of the already

existing infrastructure [Beh17].

This thesis interconnects both works. First, modifications to the read and write path are made to

handle compressed data, that is, receiving it from Lustre and handing it to ZFS and vice versa.

Moreover, metadata regarding the compression (such as the used algorithm) is stored together

with the data as a header and given back to the client for decompression on the read path. The

ultimate goal is to tailor new functionality as tightly as possible to the existing structures for best

performance. First benchmarks showed, that the amount of data transferred over the network

could be reduced by a fair amount, while the new functionality did not introduce performance

regressions. Rather, reading compressed data turns out to be indeed faster.
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1 | Introduction

This chapter gives an introduction into the importance of High Performance Computing (HPC)

for the problems of our time. Furthermore, the economical challenges in question of the increas-

ing gap between computational speed and different storage factors for HPC are described. A

prototype for client-side compression in Lustre as one possible solution is introduced. However,

further work regarding the interaction with the underlying ZFS file system is required, being

the goal of this thesis.

Nowadays, scientific research more and more relies on algorithms with a heavy demand

for computational power. The ultimate goal is to solve the most important problems of our

time by calculating and processing amounts of data on a scale so large it might have been

unimaginable only a few years ago. For example, in bioinformatics, next generation sequencing

technology allows to “produce enormous amounts of sequence data inexpensively, with up to a

billion reads1 produced per run” leading to petabytes of data representing genomic information

of whole species [SM14]. The analysis of this data, for instance the calculation of phylogenetic

trees (that is, tree-of-life relationships), can help us understand the origin of species. On the

one hand, this satisfies human curiosity, but, more importantly, it enables us to cure diseases

more efficiently by “predicting the natural ligands for cell surface receptors which are potential

drug targets” [BM01]. However, for such analysis, even more computational power is needed.

For instance, the maximum likelyhood method for calculating phylogenetic trees was proven to

be NP-hard [CT05].

1.1 Motivation

Besides this example, modern scientific computations almost always involve heavy computa-

tion and Input and Output (I/O) needs. Following Moore’s law, the number of transistors

per square-inch on integrated circuits doubles roughly every 18 months, making computation

cheaper, hence more powerful over time. When looking at the TOP500 list, the total computa-

tional power increased from 567.4 PetaFLOPS2 in 2016 to 748.4 PetaFLOPS as of this writing

[Edi]. Throughout the entire history of the TOP500, computational power nearly doubled every

14.5 months [KKL16, p. 75]. However, increasing computational power also involves larger

storage capacity needs; following the initial example, in order to process genomic data, it must

either be kept in the computers main memory, or it must be stored on secondary storage. Due

to the limitations in size regarding a computers fast main memory, this mostly involves devices

like traditional Hard Drive Disks (HDDs) or Solid State Drives (SSDs). This points out a second

1A read is a short genomic sequence of up to a few hundred base pairs
2567.4 · 1015 Floating Point Operations per Second

1



1.1. MOTIVATION CHAPTER 1. INTRODUCTION

need for modern HPC: Fast storage devices.

As of today, many computers in the HPC area rely on distributed as well as parallel file systems

like Lustre which allow to access data on multiple storage devices in parallel. For such file

systems, another important factor must be considered, namely the network throughput. Similar

to Moore’s law, Jakob Nielsen made observations according to network throughput, predicting

a growth rate of 50% per year (“Nielsen’s law”) [Nie98].

Ultimately, this results in different growth rates for the most important factors when it comes to

HPC: Per 10 years, computational speed, storage capacity, storage speed and internet through-

put show growing factors of 300, 100, 20 and 57, respectively [KKL16; Nie98]. The different

growth factors are illustrated in Figure 1.1.
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Figure 1.1: Development of computational speed, internet bandwidth, storage capacity and storage speed (based
on [KKL16] and [Nie98])

While in the short-term it is possible to compensate for the increasing gap, for example by

buying more storage hardware, in the long term this would not be possible. “Overall, the storage

subsystems can be responsible for a significant portion of a system’s total cost of ownership. In

the case of Mistral3, it accounts for roughly 20 % of the overall costs.” [KKL16, p. 76] Hence,

strategies for data reduction are increasingly being investigated.

One approach for Lustre was presented by Anna Fuchs in her thesis “Client-Side Data Trans-

formation in Lustre” [Fuc16], ultimately aiming to perform adaptive client-side data compression

before sending the data through the network. Benchmarks “[...] showed, compression can in-

crease throughput by up to a factor of 1.2 while decreasing the required storage space by half”

[Fuc16, p. 3]. For an efficient permanent storage within the underlying file system (which is

either Lustre’s own ldiskfs or ZFS), the internal structures of that system must be considered as

well. However, the current work focuses on ZFS due to its existing compression pipeline, which

can be exploited to save pre-compressed data as if it was compressed within ZFS itself. Such

support for pre-compressed data was introduced by Niklas Behrmann in his thesis “Support for

3The HPC system of the Deutsches Klimarechenzentrum (https://www.dkrz.de/Klimarechner/hpc), placing
38th on the TOP500 June 2017
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CHAPTER 1. INTRODUCTION 1.2. THESIS GOALS

external data transformation in ZFS” [Beh17].

1.2 Thesis goals

An efficient interaction between the involved systems, Lustre and ZFS, regarding the client-

side compression is subject to this thesis. This involves the fact that Lustre is only aware of

one size, while compression and the involved functions within the Lustre client and the ZFS

backend make a distinction between the physical (compressed) and the logical (uncompressed)

size. Hence, new functionality must be introduced to Lustre’s backend to interconnect both

systems. Most importantly, when compressing the data, metadata regarding the nature of

the compression must be stored along with the data. Without, for instance, the knowledge

of the specific algorithm, decompression can not be done. The primary directive, however,

should be not to cause additional costs which could nullify the benefit gained from compression,

particularly when reading data. Hence, new features should be connected as tightly as possible

with the available structure.

1.3 Outline

The remainder of the thesis is structured as follows:

1. In the Background, the technical fundamentals will be presented. This includes an

overview of ZFS as well as Lustre. Therefore, the architecture of both systems is illustrated

and the most important layers concerning the Lustre-ZFS interaction are described. Also,

the basic idea for client-side compression within the Lustre client and the changes regarding

pre-compressed data made to the ZFS backend are briefly depicted.

2. In the chapter Design, theoretical considerations regarding the interconnection of Lustre

and ZFS for pre-compressed data are made. This includes the requirements evolving

from the previous work as well as limitations and edge-cases. Eventually, the idea for

implementing the neccessary changes is presented.

3. The chapter Implementation describes how the designed solution was integrated into

the existing Lustre source code. In this chapter, detailed insights in the code are given

and the most important changes are presented in all details.

4. In the end, an Evaluation of the work is given, especially aiming to show that the transfer

of the data is correct and no performance regressions compared to the unmodified Lustre

exist.

5. Eventually, a Conclusion is given and ideas for Future Work are described.

3
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2 | Background

This chapter describes the abstract internal details of ZFS and Lustre. It is divided into three

sections: First, an overview about the basics and architecture of ZFS is given. Then, an overview

about Lustre is provided accordingly. Finally, the interaction between those systems within the

Lustre I/O stack is discussed in terms of the most important layers involved. Also, the read and

write paths are briefly demonstrated and the previous work is presented.

2.1 ZFS Overview

ZFS is a transactional file system, whose development was started in 2001 by Matthew Ahrens,

Bill Moore and Jeff Bonwick, before the source code was eventually opened as a part of Open-

Solaris in 2005 [Ope14]. While ZFS does not stand for anything since 2006 [Bon06], it originally

was an abbreviation for Zettabyte file system because Zetta was “the largest SI prefix we [the

developers] liked” [Ope11] and the name was a reference to the fact that ZFS “can store 256

quadrillion zettabytes” [Ope11]1. Since 2013, ZFS is natively supported in Linux [Ope14].

Besides the large theoretical storage capacity of ZFS, according to Matthew Ahrens [Ahr16],

its key features most notably include:

• Pooled Storage: Traditionally, a file system is designed to reside on a single physical

device, thus when it is neccessary to create storage spanning multiple storage devices a

volume manager is needed. ZFS, however, is a file system as well as a volume manager,

being able to present a single storage pool from multiple devices and to manage the free

space within pools.

• End-to-end data integrity: ZFS is able to detect and correct silent data corruption

throughout the entire storage stack using checksums.

• Copy-on-write: Whenever ZFS writes data to the disk, it does write that data to an

area of the disk not currently in use first and makes sure the data is consistent before

eventually changing pointers to make the data persistent.

• Native compression: ZFS features compressing data before writing it to the disk.

Among others, featured algorithms are GZip, LZ4 (default) and LZE.

5



2.1. ZFS OVERVIEW CHAPTER 2. BACKGROUND

Figure 2.1: Relationship between ZFS’ modules (based on graphics from [McK+14] (original) and [Beh17])

2.1.1 Architecture

Figure 2.1 shows the different modules of ZFS and the relationship to each other. ZFS itself

is completely residing within kernel space. Its modules can be grouped into three layers: The

interface layer, the transactional object layer and the pooled storage layer.

The former, the interface layer, can be seen as the surface of ZFS, which is the only part of

ZFS userspace can directly interact with. ZFS is a file system compliant to the Portable Oper-

ating System Interface (POSIX), which means it presents a unified interface to the user in order

to perform storage operations by calling functions such as read, write or open whose names

are consistent among all file systems implementing POSIX. In consequence, storage operations

can be performed without requiring further knowledge of the underlying structures or physical

devices. In Linux, this unified interface is achieved through the Virtual File System (VFS).

Within ZFS, the ZFS POSIX Layer (ZPL) is the layer implementing the VFS. Thus, when, for

instance, the write syscall is used, ZPL performs adequate operations on the underlying layers

to write the data to the disk.

Besides ZPL, a second interface exists in ZFS, namely ZFS Volumes (ZVOLs), which are

logical volumes appearing as traditional, fixed-size disk partitions (e.g. /dev/zvol/) and can

be used like regular block devices.

1One Zettabyte equals 1 · 1021 bytes

6



CHAPTER 2. BACKGROUND 2.1. ZFS OVERVIEW

On the other end of ZFS, there is one or multiple physical disks abstracted as a pool of

storage. With each single device, it is communicated through a Linux Device Interface (LDI),

which represents a special file in unix-like Operating Systems (OSes) implementing an interface

for a device driver.

The in-between layers will be named and described in the following in the order they appear

in Figure 2.1.

2.1.1.1 ZFS Intent Log (ZIL)

The ZIL stores per-dataset transaction logs to replay operations in case of a system crash.

Although ZFS never leaves a consistent state and there’s no immanent need to store information

about how to restore the system to such a state, it is still required to store log information, for

example in order “to guarantee data is on disk when the write, read, fsync syscall returns”

[Dil10].

2.1.1.2 ZFS Attribute Processor (ZAP)

The ZAP is a property storage for the whole pool, allowing to store arbitrary {key, value} pairs

associated with an object. For example, this includes metadata like {owner, sven}, {mode,

0777} or {eof, 131072}. The second important use-case is the implementation of directories.

2.1.1.3 Data Management Unit (DMU)

The DMU is “responsible for presenting a transactional object model” [Dil10] to its consumers.

Interacting with the DMU involves objects, object sets and transactions (the term transactional

object layer for DMU, ZAP and ZIL is derived from that fact). The main task of the DMU

is to receive blocks of storage from the pooled storage layer and to export those blocks to its

consumers in the form of abstract objects consisting of one or multiple blocks. In the reverse

direction, it commits transactions from the above layers to the underlying storage. Transactions

are “series of operations that must be commited to disk as a group; it is central to the on-disk

consistency” [Dil10]. The importance of the DMU must be emphasized: Whenever data is read,

written or modified, the caller performs operations on objects received from the DMU and gives

those objects back to the DMU for persistent storage. Hence, data access always involves the

DMU.

2.1.1.4 Storage Pool Allocator (SPA)

As implied by the name, the modules referred to as SPA are responsible for allocating storage

from the pool, thus to manage free space on the underlying disks.

2.1.1.5 Adaptive Replacement Cache (ARC) and L2ARC

In general, an ARC is a “self-tuning cache [which] will adjust based on I/O workload” [Dil10].

ZFS in particular uses a modified ARC.

According to Matthew Ahrens, the ARC used by ZFS “is a caching layer [...] that’s separate

from the page cache which traditional file systems interact with” [Ahr16]. Following of that,

besides being a caching layer, it also is the central instance for memory management within ZFS

itself “which can be accessed with sub microsecond latency” [Gre08].

7



2.2. LUSTRE OVERVIEW CHAPTER 2. BACKGROUND

For reading and writing, the main tasks for the ARC differ:

• For writing data, the aspect of the memory manager is more important. Data which

is subject to be written to the disk, is first copied into memory pages owned by the file

system, which are requested from the ARC. Also, when such pages are given back to ZFS,

the ARC involves the underlying layers for persistent storage.

• For reading data, the ARC is primarily a caching layer. Therefore, the ARC tries to

allocate as much of the computers main memory as possible for caching objects. Usually,

this includes all memory available to ZFS except for 1 GiB2 [zfs15]. The large cache

size is essential for good read performance since a cache miss almost always results in

the involvement of the SPA, which must fetch the data from one or multiple disks first.

Because this eventually implies the movement of physical parts, especially for traditional

spinning discs, a cache miss can be very expensive.

The importance of the ARC as a caching layer for good read performance is emphasized by

the existence of one or multiple additional second level ARCs (L2ARC). While the ARC caches

data within the very limited main memory, a L2ARC “sits in-between [the ARC and the disk],

extending the main memory cache using faster storage devices - such as flash memory based

SSDs” [Gre08].

2.1.1.6 ZFS I/O (ZIO)

ZIO is the centralized I/O pipeline in ZFS. All physical disk I/O goes through ZIO. The pipeline

includes, among others, compression, checksum calculation and data redundancy.

2.1.1.7 Virtual Device (VDEV)

A VDEV, only mentioned for the sake of completeness here, is an abstraction of physical devices,

providing data replication and mirroring (RAID-Z, RAID-Z2) [Dil10].

2.2 Lustre Overview

Lustre is an “open-source distributed parallel file system” with an “extremly scalable architecture

[...] popular in scientific supercomputing, as well as in the oil and gas, manufacturing, rich media

and finance sectors” [Wan+09, p. 6]. As of this writing, it is the leading file system used in the

list of the TOP500 by running on 90% of the top 10 and 75% of the top 100 [Gor17].

2.2.1 Architecture

In traditional network file systems there exists a central server providing a single network path

between clients and server. This way, the network path turns out to be the performance bot-

tleneck. Moreover, in case this server crashes, so does the entire system. Mostly, it is also not

possible to add additional servers as a fallback. Both is not true for Lustre. It is distributed

in the sense that there exist multiple storage servers providing the clients with access to the

data. It is highly scalable in the sense that Lustre deployments with 4,000 storage systems were

2Here and in the following, when not noted otherwise, 1 KiB is 1024 bytes, 1 MiB is 1024 KiB etc.

8



CHAPTER 2. BACKGROUND 2.2. LUSTRE OVERVIEW

successfuly tested3 [Lus], so that in case of the failure of one server others can take over and new

servers can be added into a running system. The storage capacity of the whole file system is the

sum of the capacity of each single storage system. Finally, Lustre allows a true parallel access

to the data with clients being able to access the same data at the same time and to write data

in independent parts to multiple storage systems in parallel.

network

MGS

MGT

Client ClientClient Client

MDS

MDT

MDS

MDT

OSS

OST

OSS

OST

OSS

OST

Figure 2.2: Lustre architecture [Fuc16]

Therefore, the architecture of Lustre is significantly different from that of a traditional net-

work file system. First of all, Lustre consists of four main components: Object Storage Servers

(OSSes), Meta Data Servers (MDSes) and Clients as well as not more than one Management

Server (MGS). These components consist of several smaller layers with different, distinct func-

tions. The most important of those layers are presented in Subsection 2.3.1. The major compo-

nents are shown in Figure 2.2 and explained in the following.

2.2.1.1 Management Server

The MGS stores global information about the file system. This foremost includes global config-

uration valid for all components. Moreover, the MGS is the central authority for communication

within Lustre. It knows about every MDS, OSS and Client and stores network identifiers as

well as related information for them. The MGS can be seen as a registration unit where new

providers or consumers within the system must make themselves known to Lustre. Due to the

low storage needs of an MGS, it is mostly paired on one machine with an MDS.

2.2.1.2 Object Storage Servers

The OSSes are nodes handling requests for storage operations on actual data. Therefore, at least

one Object Storage Target (OST) is connected to it. An OST eventually is the layer capable of

storing the data on physical hardware, which, for instance, consists of HDDs with an own local

file system. Currently, ldiskfs (a patched ext4) and ZFS are supported. For such devices, an

other interface exists, called an Object Storage Device (OSD). Each local file system implements

this interface and provides unified operations such as allocating buffers and committing data

into the file system. Existing implementations are OSD-ldiskfs and OSD-ZFS. The latter is the

3Which turns out to be the reasonable limit
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2.2. LUSTRE OVERVIEW CHAPTER 2. BACKGROUND

most important layer in the course of this thesis because it is the direct link between Lustre and

ZFS.

2.2.1.3 Metadata Servers

Metadata requests in Lustre are managed by MDSes. MDSes are nodes that, among other

things, keep track about where data was stored and about the directory structure. Following of

that, when considering reading and writing data, two aspects are especially important:

• When writing data, the client does not communicate directly with a storage device. Rather,

first communication is done between the client and an MDS. The client requests storage

space for an amount of data. The MDS then assigns space on one or multiple storage

devices and grants permissions. Additionally, it tells the client with which OSSes it must

further communicate and tells the involved OSSes about the details agreed upon.

• When reading, the client does not know where the requested data resides. As for writing,

it is first communicated with an MDS which keeps track of the OSTs the data is stored.

2.2.1.4 Clients

Clients are the consumers of the file system, consisting of conventional personal computers like

notebooks. For mounting the actual file system, the utility mount.lustre is used. For exam-

ple, mount -t lustre mgs@tcp0:/lustre /mnt/lustre/client mounts the whole file system

consisting of all OSSes and MDSes to /mnt/lustre/client. The data can then be accessed

through the network like it were stored locally. Nevertheless, access to the data is only granted

through the Lustre I/O stack. For that, a POSIX interface is provided.

2.2.1.5 Servers and Targets

MGSes, MDSes and OSSes represent nodes within the network. That is, servers providing

services for metadata or data respectively. Each server holds at least one target as seen in

Figure 2.2. A target represents a specific, physical device capable of actually storing data.

10
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2.3 Interaction

Figure 2.3: Lustre entering the ZFS I/O stack (based on graphics from [McK+14] (original) and [Beh17])

In the following, the interaction between Lustre and ZFS is illustrated. This includes an

overview of the whole path of the data from userspace until it is eventually stored on disk.

When it comes to the common Lustre-ZFS I/O stack, compared to the unmodified ZFS module

relationship in Figure 2.1, Lustre is introduced within the interface layer. Here, it replaces ZPL

as well as ZVOL (shown grayed) since neither is required by Lustre.

As illustrated in Figure 2.3, Lustre also implements the VFS interface. Hence, in the common

software stack, userspace directly interacts with Lustre instead of ZFS.

On the other end, Lustre is set up atop the transactional object layer of ZFS. To perform file

operations, Lustre therefore communicates with the ZAP and the DMU, respectively. While the

Figure implies that Lustre is only a small part of the stack, rather the opposite is true as seen

in the following.

2.3.1 Important Layers

Figure 2.4 provides an extended view on the Lustre-ZFS I/O stack by emphasizing the most

important layers involved. However, it must be noted that several layers are missing. In partic-

ular, this involves metadata communication and locking, which are responsible for a large share

of Lustre’s overall communication. For the interaction, “direct” means the layers are connected

11
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by means of functions which the upper layer calls on the lower one, while “indirect” includes

either functions called on structs or a connection via omitted in-between layers.

Figure 2.4: I/O stack including Lustre client, Lustre server and ZFS backend

2.3.1.1 llite

Lustre also being a POSIX-compliant file system, implements the unified interface described by

the VFS as well as described before. llite is “a shim layer [...] that is hooked with VFS to present

that interface. The file operation requests that reach llite will then go through the whole Lustre

software stack to access the Lustre file system.” [Wan+09] Thus, llite is the top-most layer of

Lustre handling all calls made and represents the actual file system logic. Moreover, llite is the

only layer directly visible to userspace through mountpoints.

2.3.1.2 Clients

In Subsection 2.2.1 the Client was introduced as one major component of Lustre. However, client

rather summarizes different components. Internally, Lustre distinguishes between clients as con-

sumers for its other components by providing individual implementations of a common inter-

face called client obdo. Foremost, the implementations include Object Storage Clients (OSCs),

Metadata Clients (MDCs) and Management Clients (MGCs) as consumers of OSTs, Meta Data

Targets (MDTs) and Management Targets (MGTs), respectively.

12
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The OSC is the most important client layer in the course of this thesis. Whenever a client

computer wants to communicate with an OST, an instance of an OSC is created accordingly.

Thus, there is an one-to-one relationship between those components for each request. Within

the OSC layer, the request is prepared and eventually sent over the wire. Also, the introduced

compression feature resides in the OSC.

2.3.1.3 Lustre Object Volume (LOV) and data striping

The parallelism is one of Lustre’s key features. It is achieved, amongst others, by file striping.

That is, a linear byte sequence, the data, is split into independent parts and then distributed

between multiple OSTs, allowing to parallelize operations. For instance, let stripe size be 1 MiB

and stripe count (number of OSTs to stripe over) be 3. Then, offsets (in MiB) [0, 1) , [4, 5) , ...

are stored as an object on OST-1, [1, 2) , [5, 6) , ... on OST-2 and [2, 3) , [6, 7) , ... on OST-3, re-

spectively [Wan+09, p. 8]. Ultimately, the MDS keeps track of the mappings between stripe

offsets and OSTs.

The striping is performed by the LOV layer, which is “responsible to assign the data pages

to the corresponding OSCs. It determines the OSTs to talk with and presents them as a single

volume to the client.” [Fuc16, p. 15].

2.3.1.4 Remote Procedural Calls (RPCs), PTLRPC and bulk transfer

RPCs implement the basic request and reply mechanisms within Lustre. It “is a concept which

allows local operations or calls to be executed on remote components” [Fuc16]. The basic struc-

ture can have multiple forms, consisting of different fields for each type of request. For instance,

an RPC mostly contains a body with the actual request, the operation to perform (read / write),

as well as flags and checksums.

When it comes to data transfer, most data is sent using bulk transport, used for “data of a

variable amount which is too large to be sent within an RPC request itself” [Fuc16, p. 19]. Bulk

transports are tightly connected to RPCs, nevertheless being a separate concept. In order to

perform bulk transfer, there’s two basic structures of importance: A bulk descriptor and at least

one Network I/O Buffer (niobuf). The former describes the actual data to transfer regarding

number of pages, size and offsets, the latter is a specialized structure for transferring data over

the network.

A Portal can be compared to a port within the Transmission Control Protocol (TCP).

There exist different portals for different operations, with one portal dedicated specifically to

bulk transfer. The basic tasks performed by PTLRPC are sending requests and receiving replies,

performing bulk data transfer and doing error recovery.

2.3.1.5 LNET

LNET is an abstraction layer allowing to communicate in a unified way independent of the

underlying networking hardware. It has support for different networking types such as Infiniband

or TCP/IP.

13
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2.3.1.6 Target Handler

In Lustre’s backend, the first layer of importance is the Target Handler which handles all incom-

ing requests and offers another layer of indirection atop the actual target. Consequently, its first

notable task is to determine with which kind of target actually is communicated with (MDT,

MGT or OST). Furthermore, it receives all incoming RPCs and performs pre-processing. For

example, the Target Handler checks the availability of all fields needed to handle a request and

rejects those requests which are invalid. Hence, it is also a guard protecting the underlying local

file system.

Besides preprocessing, the Target Handler also takes care of the remaining request from the

moment the first RPC arrives until the data was handled by the target. In that timespan,

the Target Handler is never left; it breaks an operation like writing data down into smaller

problems, e.g. allocating buffers, for which the underlying layers provide solutions and calls the

appropriate functions.

2.3.1.7 Object Filter Devices (OFDs)

When the Target Handler traverses, for example, through its write or read pipeline, it will

eventually call operations on OFD Devices with some layers of indirection. OFDs are software

layers handling actual file I/O by providing an unified interface for the needed operations. For

instance, when preparing the write operation, it invokes dbo bufs get, which is implemented

in OSD-ZFS as well as OSD-ldiskfs and takes care of allocating buffers from the targets main

memory.

2.3.1.8 OSD-ZFS, DMU and ARC

OSD-ZFS eventually is the layer which actually communicates with both, Lustre as well as

ZFS. OSD-ZFS acts as a translation unit, mapping functions owned by Lustre to operations

known to ZFS and vice versa with the objective of interconnecting both systems. Therefore

it directly invokes functions owned by the DMU. Since the DMU works by means of objects

and transactions, OSD-ZFS owns an implementation tightly connected to the object structures

known to the DMU. When it comes to involving the lower layers of ZFS, the DMU will interact

with the ARC.

2.3.2 Read/Write path

In the following, the read and write path involving the important layers in Lustre and ZFS,

respectively, are described briefly. However, metadata communication is omitted.

2.3.2.1 Writing data

1. The userspace application invokes, for instance, the syscall write(struct file fd, const

char user *buf, size t count), the POSIX function to write count bytes pointed to

by buf into the file specified by the file descriptor fd. Here, buf points to memory owned

by a userspace process.

2. The Kernel then invokes the according function implemented from the VFS. For that it

looks into struct file operations wrapped in fd->f op and calls fd->f ops->write,

which is ll file write within llite.
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3. Depending on the settings, LOV splits the data into stripes.

4. Eventually, the memory pages are inserted into the associated page cache(s) of one or

many (if striping was performed) OSCs and flagged as dirty.

5. In order to send the data to a server, suitable space must be available on the targets.

Upon each OSC initialization, an OSS grants the client some space. “A grant is just a

number promised by the server that this client can flush out this much data and knowing

the server can deal with it.” [Wan+09, p. 18]

6. On a regular basis, depending on how many pages are contained within the page cache

and how large the actual grant is, pages are flushed out. By invoking osc check rpcs, an

RPC is build. This involves preparing a bulk transfer by providing the neccessary data

to a bulk descriptor and by assemblying niobufs.

7. Before the actual data is transferred, the RPC is sent to the server. Among other infor-

mation, it contains the bulk descriptor.

8. The target handler, after pre-processing the incoming RPC and sending an acknowl-

edgement back to the client, invokes tgt brw write. This function contains the whole

processing of the write request. Among others, the most important tasks are:

• Acquire locks on the involved file and return them later

• Let the OFD layer prepare the write. The object is created if it does not exist

and grant information is handled. Most importantly, the information provided by

struct niobuf remote wrapped in the RPC is processed. This is, parsing remote

information (size and offsets) into local buffers, struct niobuf local, containing

enough memory for LNET to write the data into. Here, one niobuf local equals

one memory page of data.

• For allocating memory, the OFD communicates with either, ZFS or ldiskfs through

OSD-ZFS or OSD-ldiskfs.

• In ZFS, sufficient memory is allocated through the DMU. The DMU, however,

involves the ARC, since the ARC is the dedicated instance for memory management

within ZFS.

• The information about the local buffers is handed to LNET before eventually trans-

ferring the data.

• During the whole process, the data is associated with an object and a transaction

within ZFS. Thus, the transaction must be commited into the DMU, which then

invokes the remaining ZFS I/O pipeline until the data is written persistently on a

storage device.

2.3.2.2 Reading data

Reading data functions similar to writing data. After the appropriate system call is made, the

call is handed over to the OSC. However, when reading, the read pages are cached within the

page cache for subsequent readings. If the requested pages are still cached, they’re returned

immediately without involving the server backend. Otherwise, a read RPC is assembled and

sent over the network, handled again by the Target Handler.
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• OSD-ZFS indirectly requests buffers associated with the object from the ARC by com-

municating with the DMU. At this point, when neither the ARC nor L2ARC have the

data cached and can immediately return it, the ARC has to involve the underlying layers

to read the data from disk. In either case, the buffers are larger in size than requested

in order to efficiently perform read-aheads. Those buffers are then parsed as page-sized

chunks into niobufs.

• In contrast to the write path, which does not involve sending a reply to the client, the

read data must be transferred back to the client. An RPC always contains two areas, one

being dedicated to the client and the other to the server, respectively. In this case, the

request from the client regarding file information, offsets and sizes, are contained in the

client’s section. The server now fills its reply into the server area, again describing offsets

and lengths to make the client prepare for the bulk transfer.

• Eventually, the data is received by the OSC and runs through the whole Lustre software

stack again until it is passed to userspace.

2.3.3 Compression within the Lustre client

In her thesis “Client-Side Data Transformation in Lustre” [Fuc16] Anna Fuchs presented a

prototype to introduce client-side compression to Lustre by adapting the I/O paths on the

client4. In remembrance of the Introduction, the ultimate goal is to reduce the increasing gap

between computational power on the one side and internet bandwidth, storage capacity as well as

storage speed on the other side (compare Figure 1.1). The basic idea is to exploit computational

power for compressing data on the client before sending it over the wire. Although operations

related to compression such as copying memory between buffers come at a price, transferring

large files over the network is far more expensive.

Figure 2.5: Basic idea of the currently implemented compression feature within Lustre’s OSC layer

The principle of client-side compression is illustrated in Figure 2.5. The compression feature

resides in the OSC layer and is done before the RPC is built. Thus, the RPC is filled with the

correct (compressed) lengths and offsets within the file before sending it over the network.

4The compression feature is enabled via an autoconf parameter, --enable-compression
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The data is passed as a pointer to page-aligned memory in userspace, void user *. Con-

sequently, the data must first be copyied from pages into large buffers for compression. Instead

of using one buffer large enough for the whole data, smaller (but same-sized) buffers are used

and, hence, the data is indirectly split into chunks. A chunk is a newly introduced unit for the

client-side compression in Lustre. Basically, it is smaller than a file or a stripe, whilst still being

larger than a page. The chunk size is a trade-off between different factors involved. Especially,

the following points are important:

• Parallel processing: Each chunk is associated with an offset within the file, so that

compressing and sending the data over the wire can be done in parallel for multiple chunks.

• Adaption to the file systems record size: The chunksize is chosen according to the

record size of the underlying file system. This allows the file system to perform further

optimizations if applicable.

• Smaller chunks for read-modify-write: The smaller the chunksize, the lower the costs

for read-modify-write. This results from the fact that for modifying data within compressed

data, read-modify-write becomes a read-decompress-modify-compress-write. Chunking the

data allows to only modify the affected chunk and not the whole data stripe.

• Larger chunks for good compression ratios: Especially for dictionary-based com-

pression algorithms like LZ4, too small chunks might result in bad compression ratios due

to the accordingly smaller size of the dictionary. Research shows, that a chunk size equal

to the ZFS record size (128 KiB) provides a ratio still suitable for efficient compression

[Fuc+16].

For each compressed chunk, the data is then copied into pre-allocated struct page. This is

neccessary since network transfer works on a per-page basis. Eventually, the data is sent over

the wire and stored on a physical device by ZFS.

2.3.4 Support for external data compression in ZFS

As mentioned in Section 2.1, ZFS supports compression on a per-pool basis, which is ultimately

processed as a part of the ZIO pipeline. Following of that, ZFS already provides an internal

structure to store information about the compressed data, that is, the used algorithm, and, most

importantly, psize as well as lsize. However, when compression is not turned off, ZFS will

decompress the data while reading. When it comes to storing data passed from Lustre, it is

usually desired to compress the data when written into ZFS to save storage space. This is not

necessarily true for for pre-compressed data. Especially, two problems arise:

1. For already compressed data, the benefit from compressing it again are negligible. Rather,

in particular for reading data, the costs of ZFS decompressing such double-compressed data

before handing it to Lustre, might have a negative impact on the overall read performance.

2. ZFS compression is not done on a per-file basis but on each record. Since the compression

in Lustre is based on stripes, when the involved units (especially chunks and records) are

not coherent, Lustre might be forced to wait for ZFS to decompress a single record missing

within a stripe. Following of that, it is intended to keep those values aligned.

17



2.3. INTERACTION CHAPTER 2. BACKGROUND

Clearly, a conflict evolves when considering that in future Lustre setups clients with and

without client-side compression might access the same storage servers on the same time. For the

former, compression within ZFS is desired, while this is not true for the latter. Because of the

significance of any decision for a good read performance, relying on the particular ZFS setup is

not wanted.

Following of that, the most suitable solution is to enable Lustre to commit already compressed

data to ZFS as if it was compressed by ZFS. For this task, Niklas Behrmann made changes to

ZFS, introducing such support for pre-compressed data, as described in his thesis “Support for

external data transformation in ZFS” [Beh17]. Basically, the functions called on the link between

Lustre and ZFS (OSD-ZFS) were supplemented by similar functions performing reads and writes

on the raw data in ZFS, hence skipping the compression and decompression, respectively. The

specific functions will be presented in the following chapters as applicable.
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This chapter explains how storing and reading compressed data along with their metadata is

meant to be integrated into Lustre and how the modified ZFS functions are intended to make

use of. The first section explains the detailed structure of the metadata. In the second section,

preconsiderations are taken regarding edge cases and the most competent layer for handling the

metadata. In the third section, different approaches for storing the data are illustrated with

their respective limitations and benefits. Finally, a decision is made for the write path. The

opposite direction, extracting the metadata when reading, is predetermined by this decision. A

basic idea for reading data is presented in the fourth section accordingly.

3.1 Metadata for compressed chunks

3.1.1 Adaptive compression

Although ZFS only supports the algorithms LZJB, GZIP(1 - 9), ZLE and LZ4 for lossless com-

pression (see enum zio compress1), the introduction of the value ZIO COMPRESS EXTERNAL in

[Beh17] does not limit Lustre to specific algorithms since it is identified as externally compressed.

Nevertheless, following that Lustre resides in kernel space, it might be most practicable to fore-

most rely on those algorithms available in the Linux Kernel. Among others, these are LZ4,

LZ4HC2, Lempel-Ziv-Oberhumer (LZO) and Deflate. Since Kernel 4.11, there’s also an imple-

mentation of LZ4Fast [Sch17]. The very same code was integrated into Lustre and is built when

it is missing within the Kernel3. This approach is also conceivable for other algorithms. For

Kernel 4.13, patches for the introduction of zstd are currently discussed [Lar17].

The variety of possible algorithms is important because the compression is meant to eventu-

ally be adaptive, which adds up “to somehow automatically and dynamically decide what is the

best approach depending on the current situation and demands” [Fuc16, p. 57]. In particular,

the decision for the best-suited algorithm and its parameters are based on factors like available

memory and the utilization of the Central Processing Unit (CPU) as well as the nature of the

data. For example, there exist algorithms specifically tailored to compression of images [Lin]

or floating point data [LI06]. For this, the user will be able to provide Lustre with hints via a

command-line interface (CLI). Possible decisions are:

• Focus on compression ratio when enough resources are available

1zfs/include/sys/zio compress.h
2LZ4 specifically tailored to high compression ratios
3For instance, Kernel 3.10 used in CentOS 7 lacks LZ4 support
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• Use a faster algorithm when a higher compression ratio might nullify the benefits for

network transfer

• Skip compression, for example when the client finds that the benefit gained from compres-

sion does not compensate its costs

From this it follows that the specific algorithm with its parameters must be remembered for

decompression.

3.1.2 struct chunk desc

1 struct chunk_desc {

2 __u32 ppages; /* number of pages (compressed) */

3 __u32 psize; /* size in bytes (compressed) */

4 __u32 lpages; /* number of pages (uncompressed) */

5 __u32 lsize; /* size in byte (uncompressed) */

6 __u32 cksum; /* chunk checksum */

7 __u32 algo; /* algorithm , enum value */

8 };

Listing 3.1: The unmodified, but commented struct chunk desc as introduced in [Fuc16]

Listing 3.1 shows the structure introduced to define metadata for compressed chunks in

[Fuc16], struct chunk desc. Its fields mainly result from the requirements of different algo-

rithms regarding decompression on the one hand and the signatures of the functions within

the DMU handling external compression on the other hand. Besides the used algorithm, the

following fields exist:

• cksum is meant to ensure the chunk was transferred without corruption, therefore it is

intended to complement the already available checksum for the RPC.

• lsize and psize: The former is the logical (uncompressed) size; the latter the physical

(hence compressed) size. ZFS internally already distinguishes between lsize and psize

because of ZFS’ own compression within ZIO. For externally compressed data, both sizes

must be passed from within Lustre. That is to the fact, that ZFS rounds the psize to the

next power of two which is not suitable for using it for decompression.

Moreover, some decompressors rely on the lsize, which, for instance, is true for LZ4Fast.

• ppages and lpages: The number of original pages and compressed pages is currently

stored as well. However, this is likely to be omitted since, on the one hand, the information

is useless when PAGE SIZE differs for the decompressing machine. On the other hand, the

same information results when dividing lsize and psize respectively through PAGE SIZE.

Currently, as of this thesis, the stored metadata is meant to equal the chunk descriptor.

However, this is not a requirement. In the future, it is conceivable to send more data with the

chunk descriptor than actually stored, e.g. for providing additional information to the backend.
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3.2 Preconsiderations

During compression, an array struct chunk desc *cdesc is assembled within the client. To

send it via the network, it must be introduced to PTLRPC. An RPC can take several forms,

depending on the actual request, e.g. metadata, locking or, in this case, bulk read/write4. The

generic structure for a bulk read or write request can be seen in Listing 3.2.

1 static const struct req_msg_field *ost_brw_client [] = {

2 &RMF_PTLRPC_BODY ,

3 &RMF_OST_BODY ,

4 &RMF_OBD_IOOBJ ,

5 &RMF_NIOBUF_REMOTE ,

6 #ifdef COMPRESSION_ENABLED

7 &RMF_CHUNK_DESC , /* array of chunk descriptors */

8 #endif

9 &RMF_CAPA1

10 };

Listing 3.2: Layout of an RPC for bulk read or writes (brw)

The layout of an RPC is defined as an array of pointers to message fields, that is struct

req msg field *. A message field describes the size, type and flags as well as the offset within

the message to directly address the field. RMF CHUNK DESC was introduced to hold the array of

chunk descriptors, hence its type is RMF F STRUCT ARRAY, a flag describing an array of struct,

and its base size is defined as sizeof(struct chunk desc). The actual size of the field is set

separately as soon as it’s known (that is, when creating the request) and is required to be a

multiple of the base size5. PTLRPC provides functions to set the size and to read as well as

modify the contents of a message field, for example: cdesc = req capsule client get(pill,

&RMF CHUNK DESC), where pill is a struct req capsule, which is a wrapper to hold, among

others, the actual request (struct ptlrpc request) and the format of the RPC (const struct

req format).

3.2.1 The metadata as a header

Since this struct ultimately represents metadata, it would be consequential to store it accord-

ingly, that is, communicating with an MDT, eventually involving the ZAP. However, a key

requirement for the adaptive compression in this context is not only to involve Lustre, but to

eventually give ZFS access to this metadata in the future to be able to apply optimizations if

applicable. With that in mind, storing the data on an MDT is not sufficient since ZFS does not

have access to the internal structures of Lustre.

Besides Lustre, ZFS also stores metadata . For instance, within the blockpointer, some re-

quired fields are already stored by ZFS. This includes the (rounded) psize as well as the lsize.

Following of that, it would be possible to extend the blockpointer to store the chunk descrip-

tor. When reading the data, ZFS would provide Lustre with the metadata (for instance, by

4All available layouts are defined in lustre/lustre/ptlrpc/layout.c
5When this is not true, it won’t be capable of being used as an array
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filling pointers). However, this would affect the on-disk layout of the data and break backwards-

compatibility. Since ZFS is not only used together with Lustre, this is not appropriate.

In conclusion, the best-suited approach is to make the description of the data a part of the

data itself, which comes down to adding a header. The data can be accessed from both, Lustre

and ZFS without requiring extensive, structural changes in neither. Consequently, the only

requirement for reading or modifying the header is to be aware of its presence. For writing, it

must be known where it is expected to be (that is, preceding a chunk). In Figure 3.1, this idea

is illustrated.

Figure 3.1: Basic idea for making the metadata a part of the data

This approach ultimately involves to ensure there is enough space for the header. When

compressing the data, this results in space being freed in the end of each chunk (assuming lsize

!= psize). However, this does not mean sufficient space remains when dividing the chunk into

pages. As an example, let a file be 12 KiB of size and assume it takes 8,190 bytes compressed,

then it would be divided into two pages6. Following that, this results in 2 · 4096 = 8192 leaving

2 bytes for the header, which is not sufficient. Consequently, reserving additional space must be

taken into concern.

3.2.2 Adjusting blocksize and chunksize

An important point for the write and read path respectively is the blocksize within Lustre.

Initially, when an object is created from within Lustre, the blocksize is set to PAGE SIZE and

later grown according to the filesize. However, for the handling of pre-compressed data in ZFS,

this is not appropriate. For the best integration within the existing structures of ZFS, it was

concluded that “for pre-compressed blocks the logical size should always equal the recordsize”

[Beh17, p. 62], which is 128 KiB. This follows from the fact, that the write path for pre-

compressed data is meant to store compressed data as if it was compressed by ZFS, which is

done in the means of records and, hence, a pre-compressed block must have the size of such.

This is especially important for reading data, since when a chunk is tied to a record in ZFS, a

more efficient read-ahead is possible.

Currently, the chunksize is already set to 128 KiB using a magic number. However, in the course

of this thesis, a common constant for server and client must be added and the blocksize will be

set accordingly.

6Assuming PAGE SIZE == 4096
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3.2.3 Handling compressed, uncompressed and insufficiently compressed data

When the compression feature is enabled, the client may provide the server with data fitting

in one of the following three categories, assuming the chunksize is set to the ZFS recordsize as

described in the previous subsection:

• psize == lsize == chunksize: As described before, the adaptive behavior includes the

possibility to skip compression per chunk if no benefits are expected. If this condition

holds, given that blocksize, ZFS recordsize and chunksize are set equal, the header can not

be stored on the same block as the data.

• chunksize - psize < sizeof(struct chunk desc): Compression was performed, but

less than the header size was saved. For example, assume psize = 131030. Then, with

a chunksize of 128 KiB, this leads to a reduction factor of 1 − 131030
131072 ≈ 0.00032. Due to

the insignificant savings, compression might as well be omitted. Nevertheless, this always

leads to the uncompressed case.

• chunksize - psize ≥ sizeof(struct chunk desc): This is the desired7 case. The

data was compressed and a fair amount of space was saved.

Apart from the third case, for which storing the header is always possible without further

effort, the following solutions are considerable for the other two:

1. Not storing the header

2. Adding additional blocks

3. Adjusting the chunksize

The first case, however, results in problems when a header is assumed to be available during

read and it is missing. This is in particular true when the flag db compressed of the dnode for

indicating pre-compressed data is set (compare [Beh17, p. 64]). Eventually, one can not be sure

why the header is missing:

• By intent, that is, it was not stored due to insufficient space

• Due to errors, e.g. data corruption.

Nevertheless, following the fact that the client sent a chunk descriptor on the write path, the

same descriptor is expected when reading. When it was not stored, it must be assembled.

For the second solution, the chunk with header is larger than 128 KiB, therefore the data at

offsets (128KiB, 128KiB + sizeof(structchunk desc)] is stored on a second block within ZFS.

For subsequent data, two possibilities follow:

1. Store the next chunk dense, that is on the same block the other chunk ends. This requires

re-calculations of offsets and re-alignments of the whole data.

2. Start the next chunk on the next offset dividable by the chunksize, ultimately wasting

131072 - sizeof(struct chunk desc) bytes for each such uncompressed block.

7It is meant to give the administrator the possibility to define a threshold for the right-hand side of the
expression, that is, when compression is beneficiary
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In conclusion, while both previous approaches require several, additional changes and as-

sumptions, which are error-prone, this is not true for adjusting the chunksize. Ultimately, this

adds up to setting the chunksize to 131072 - sizeof(struct chunk desc). Hence, this ap-

proach was followed. However, it should be noted that the other solutions can be implemented

as well but they require additional assumptions (for instance, that a header is only missing when

it was not stored).

3.2.4 Competent layers for writing the metadata

For adding the header to the data, several layers are competent: The client8, the target handler,

OFD, OSD-ZFS or an in-between layer (compare Figure 2.4). However, especially the layers

succeeding the target handler, before involving OSD-ZFS, add several abstractions for a generic

interface. Given that, adding the header should either be performed as early or as late as

possible, ultimately reducing the space of feasible solutions to the following:

1. Within the client, while doing the actual compression without involving the server backend

2. On the server, before the data is committed

3. On the server, before the data is actually transferred

3.2.4.1 The client approach

Writing the chunk descriptors within the client is the earliest moment possible. Consequently,

no extensive changes in the backend seem to be needed. At the same time, not involving the

backend has several disadvantages:

• The functions within ZFS handling pre-compressed data require psize as well as lsize

since they are stored by ZFS. Therefore, the server backend must either extract the de-

scriptors or the sizes must be sent with the RPC. However, this requires the backend to

check whether the fields are available in the RPC and an additional flag must be sent

indicating if the functions for pre-compressed data must be chosen.

• When modifying the data, this would always require to communicate in the matter of

chunks, e.g. sending the file to the client, modifying the data and sending the modified,

re-compressed chunk back. Another possibility would be to only send the modified data

back, let the backend decompress the appropriate chunk, change the data and re-compress.

This can only be done efficiently if the server is involved in handling the metadata.

• Accordingly, assuming a client which does not support or use the compression feature,

requests compressed data. In that case, when the backend has appropriate functions to

handle compressed data, it might process decompression and send uncompressed data to

that client.

• When introducing compressed chunks to the backend building an appropriate, generic

interface, an implementation within ldiskfs or future local filesystems can be done with

less effort.

Altogether, no further efforts were made to write the metadata within the client layers.

8here and in the following, when not noted otherwise, client refers to the OSC
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3.3 Storing pre-compressed data in ZFS

As described in Subsection 2.3.1, the data transfer follows two steps: First, the RPC containing

metadata such as the chunk descriptors is preceeding the actual data transfer. After preparations

are done, bulk I/O is performed. For the server’s write path, tgt brw write is the function

responsible. For either task. The most important steps are shown in Listing 3.3.

1 rc = obd_preprw(tsi ->tsi_env , OBD_BRW_WRITE , exp , &repbody ->oa,

2 objcount , ioo , remote_nb , &npages , local_nb); /* parsing from

remote to local buffers */

3 ...

4 for (i = 0; i < npages; i++) /* provide local buffers to PTLRPC */

5 desc ->bd_frag_ops ->add_kiov_frag(desc ,

6 local_nb[i].lnb_page ,

7 local_nb[i]. lnb_page_offset ,

8 local_nb[i]. lnb_len);

9 ...

10 rc = target_bulk_io(exp , desc , &lwi); /* perform bulk I/O */

11 ...

12 rc = obd_commitrw(tsi ->tsi_env , OBD_BRW_WRITE , exp , &repbody ->oa,

13 objcount , ioo , remote_nb , npages , local_nb , rc); /* commit */

Listing 3.3: tgt brw write (commented): Most important steps

Namely, these are:

1. Allocating local memory (obd prep rw, which invokes osd bufs get write)

2. Providing local memory pointers to PTLRPC (for loop, lines 4 to 8)

3. Performing bulk I/O (target bulk io)

4. Commiting data into the local file system (obd commitrw)

The first and the last step, that is before and after data transfer, are subject to be adapted

due to the new functions introduced for handling pre-compressed data in [Beh17]. Besides that,

for writing the header to the data, these are the only steps to be considered as well. This is to

the fact that the logic of transferring data is handled by LNet, in particular lib move9, whose

interfaces are tailored to all kinds of networking within Lustre.

In the following, steps 1 and 4 are discussed in terms of the changes to be made for pre-

compressed data on the one hand and their suitability for adding the header on the other hand.

3.3.1 Parsing remote into local buffers

The function obd preprw (lines 1 and 2) handles the parsing of remote into local buffers

(niobufs), that is remote niobufs (rnbs) into local niobufs (lnbs). The associated structs are

shown in Listing 3.410.

An array of struct niobuf remote is wrapped in the RPC (compare Listing 3.2, namely

RMF NIOBUF REMOTE). Consequently, no data is contained. Instead, the set of rnbs announce

9lnet/lnet/lib-move.c
10It is to mention that both structs are defined in different headers, lustre idl.h (rnb) and obd.h (lnb)
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1 struct niobuf_remote {

2 __u64 rnb_offset;

3 __u32 rnb_len;

4 __u32 rnb_flags;

5 };

6 struct niobuf_local {

7 __u64 lnb_file_offset;

8 __u32 lnb_page_offset;

9 __u32 lnb_len;

10 __u32 lnb_flags;

11 int lnb_rc;

12 struct page *lnb_page;

13 void *lnb_data;

14 };

Listing 3.4: struct niobuf local and struct niobuf remote

the actual data and inform the server, how much space it must prepare according to the grant.

Therefore, an rnb only consists of three fields: The offset within the file, the length of associated

data and flags. It must be noted, however, that file in this context refers to the object actually

stored on the precise target. With that in mind, when the data is striped, a distinction between

the object stored locally and the global file it belongs to is immanent. Furthermore, an OST

has no knowledge about global offsets since keeping track of that is subject to the MDSes.

The main task for obd preprw is to parse remote information about the data (rnbs) into local

memory to hold the data after transmission (lnbs). Therefore, each lnb is associated with a page-

sized part of the data at a precise offset and owns a pointer to struct page for PTLRPC to

copy data into. Within OSD-ZFS, osd bufs get write11 is invoked. The function can allocate

memory for lnbs using either zerocopy or anonymous pages.

3.3.1.1 Anonymous pages

An anonymous page simply refers to a single memory page obtained from the Memory Manage-

ment Unit (MMU).

3.3.1.2 Zerocopy

The basic idea of zerocopy is loaning buffers from the ARC instead of the Kernel. Requests are

done by invoking arc buf t *dmu request arcbuf(dmu buf t *handle, int size), which re-

quests size bytes from the ARC, so that an arcbuf can be larger than a page. This approach

has the advantage that an additional memcpy from buffers owned by Lustre into buffers owned

by ZFS is omitted since Lustre is allowed to directly use buffers from ZFS (thus zerocopy).

Consequently, zerocopy is preferred whenever feasible. However, assigning an arcbuf to an off-

set within the file is limited by two constraints: offset == db->db.db offset && blksz ==

db->db.db size. This sums up to being only able to assign arcbufs which have the blocksize

and are aligned accordingly. As a matter of fact, db->db.db offset is not increased for every

write. Rather, it is set only to multiples of the blocksize.

11osd bufs get write(const struct lu env *env, struct osd object *obj, loff t off, ssize t len,

struct niobuf local *lnb)
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3.3.1.3 osd bufs get write

1 i← 0 ;
2 while len >0 do
3 if off is aligned to blocksize then
4 arcbuf←dmu request arcbuf(obj, size) ;
5 buf size←arcbuf->size ;
6 while buf size >0 do
7 if this is the first page then
8 lnb[i].lnb data←arcbuf ;
9 lnb[i].lnb page←kmem to page(arcbuf->b data + off in buf) ;

10 off in block←off in block + min(PAGE SIZE, len) ;
11 off←off + min(PAGE SIZE, len) ;
12 i←i + 1

13 else
14 lnb[i].lnb page←alloc page() ;
15 off←off + min(PAGE SIZE, len) ;
16 i←i + 1

Figure 3.2: Pseudocode for the main loop in osd bufs get write

Figure 3.2 shows the most important parts of the main loop in osd bufs get write. The

function is called once for every rnb. Therefore, off as well as len refer to rnb offset and

rnb len respectively. As long as there is information to parse, it is checked whether the current

offset is aligned to the blocksize. If not, an anonymous page is allocated (line 14). Otherweise,

an arcbuf of the appropriate size is requested for zerocopy (line 4) and then split into lnbs page-

wise (loop lines 6 to 12). kmem to page ultimately invokes vmalloc to page, which “converts a

kernel virtual address obtained from vmalloc to its corresponding struct page pointer” [CRK05,

p. 460]. Eventually, the zerocopy case comes down to splitting one large buffer into several page-

aligned pointers, which is required by PTLRPC. When assigning the arcbuf into ZFS, however,

this is not done page-wise. Instead, the arcbuf t * is remembered within the lnb data field of

the first lnb (line 8) and used for committment into ZFS.

Eventually, these methods do not exclude one another. For example, the last page normally

relies on an anonymous page (assuming it is not entirely filled).

3.3.1.4 Allocating memory for pre-compressed data

Since for pre-compressed data the logical size always equals the record size (compare Subsection

3.2.2), the assignment constraints for zerocopy always hold. Hence, memory allocation will be

handled entirely by the new function dmu request compressed arcbuf(dmu buf t *handle,

int psize, int lsize). For the unmodified write path within ZFS, a record is compressed

within ZIO and psize and lsize stored accordingly. When an already compressed block of

size psize is passed from within Lustre, the lsize must be passed as well. The informa-

tion is then associated with the arcbuf, which is the main task of the function compared to

dmu request arcbuf, and later used when giving it back to ZFS (compare [Beh17, p. 65]).
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3.3.2 Committing data into ZFS

After parsing remote into local buffers, each lnb is provided to the bulk descriptor (see Listing

3.3, lines 4 to 8) before bulk transfer is eventually initialized using target bulk io (ibid., line

10). The remaining step is actually committing the received data into ZFS. This is performed

by osd write commit, whose main loop is seen in Figure 3.3.

1 grow blocksize(first lnb, last lnb) ;
2 foreach lnb do
3 if lnb data is not NULL then
4 dmu assign arcbuf(handle, lnb file offset, lnb data, tx) ;
5 /* Skip other lnb for this arcbuf */

6 else
7 dmu write(os, obj, lnb file offset, lnb len, lnb page, tx) ;

Figure 3.3: Pseudocode for the main loop in osd bufs get write

The first notable aspect is, that the blocksize is grown according to the file size, which is

calculated using the first and last lnb respectively. After that, for each lnb one of two tasks are

performed:

1. If the lnb data field contains an arcbuf, it is given back to the ARC using dmu assign arcbuf(dmu buf t

*handle, uint64 t offset, arc buf t *buf, dmu tx t *tx)

2. Otherwise, dmu write(objset t *os, uint64 t object, uint64 t offset, uint64 t

size, const void *buf, dmu tx t *tx) is used, which copies size bytes from buf into

ZFS-internal buffers before assigning these to the ARC. The data is then written to offset

within the file.

3.3.2.1 Committing pre-compressed data

For pre-compressed data, the blocksize will not be calculated but set to the chunksize plus the

header size, which sums up to the ZFS record size of e.g. 128 KiB (compare Subsection 3.2.3).

The task of committing pre-compressed blocks into ZFS then comes down to a call to

dmu assign compressed arcbuf. It was designed to give back an arcbuf to ZFS as its uncom-

pressed counterpart would do, only it skips the compression within ZIO and just stores the block

as is. The handling of pre-compressed data can ultimately be represented as a third branch of

the if as seen in Figure 3.3.

3.3.3 Writing the header

For writing the header, two options follow from the preceding discussions: While allocating

buffers (osd bufs get write) or before commitment (osd write commit).

3.3.3.1 Before commitment

The most suitable solution for writing the header after receiving data is illustrated in Figure 3.4.

However, only the first chunk is taken into concern here for simplicity; subsequent chunks have

an offset according to the chunksize. First, the header is written using dmu write, which allows
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1 if lnb data is not NULL then
2 dmu write(os, obj, 0, sizeof(struct chunk desc), cdesc) ;
3 dmu assign compressed arcbuf(handle, offset + sizeof(struct chunk desc), lnb data,

transaction) ;
4 /* Skip other lnb for this arcbuf */

Figure 3.4: Writing the struct chunk desc before committing using dmu write

writing data of arbitrary size to arbitrary offsets within the file. Following that, the arcbuf is

given back with an offset beyond the header. For this solution, however, the constraints for

assigning an arcbuf evaluate to sizeof(struct chunk desc) == 0 ..., which is never true,

and leads to misalignments for subsequent buffers, too, ultimately never being able to assign

the arcbuf.

Other as the new function, the original implementation offers a fallback in such case, that is,

copying the arcbufs content into new buffers first and then using dmu write. However, since all

pre-compressed blocks have the same size as the record, subsequent blocks are misaligned too,

which means the fallback becomes the normal case, although it is far more expensive. Eventually,

all conceivable solutions would require the data to be shifted, resulting in performance regressions

compared to the original implementation.

3.3.3.2 Before data transfer

Hence and in conclusion, the approach to assign the header before data is received, was followed.

Figure 3.5 provides a summarized illustration of this approach.

Figure 3.5: Assigning the header following the approach to modify arcbufs before receiving data

Ultimately, osd bufs get write (compare Figure 3.2) is subject to be adapted, such that

PTLRPC writes the data with an offset honoring the header size for each chunk into the buffers

obtained using zerocopy. For that, the header size is added to the psize when requesting the

buffer and, hence, a memcpy is sufficient for writing the header to offset 0 within the buffer. In

osd write commit, the buffer including the header is committed as is.
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3.4 Reading compressed data from ZFS

3.4.1 The main reader osd bufs get read

Reading data is mostly handled by tgt brw read within the target handler. Compared to

writing data, the committment step is missing, thus reading only involves parsing buffers in

obd preprw, which eventually calls osd bufs get read. Its prototype can be seen in listing 3.5.

1 static int osd_bufs_get_read(const struct lu_env *env , struct osd_object

*obj , loff_t off , ssize_t len , struct niobuf_local *lnb)

Listing 3.5: Prototype of osd bufs get read

Basically, the function transforms len bytes from buffers associated with the object obj,

starting at offset off into local niobuf. In contrast to the write path, the niobufs assem-

bled during read, are clearly already associated with data via their respective struct page

pointer. The data is not copied into Lustre-internal buffers, though. Similar to the equivalent

write operation, a zerocopy solution exists. Moreover, reading always follows zerocopy. There-

fore, dmu bufs hold array by bonus is called, which “retrieves all dbufs directly that hold the

wanted data directly from the DMU” [Beh17, p. 60].

The function’s main task consists of a triple nested loop, which is illustrated in Figure 3.6.

The three loops are explained briefly in the following:

1 i← 0 ;
2 while len >0 do
3 dmu buf hold array by bonus(obj, off, len, ..., &dbp);
4 foreach buf in dbp do
5 tocopy←min(remaining in buf, len) ;
6 buffer offset←off - buf->offset ;
7 while tocopy >0 do
8 thispage← min(PAGE SIZE, remaining in buf);
9 local niobuf[i].lnb page ← kmem to page(buf + buffer offset) ;

10 local niobuf[i].lnb page offset = ... ;
11 local niobuf[i].lnb file offset = ... ;
12 local niobuf[i].lnb len = ... ;
13 buffer offset←buffer offset + tocopy ;
14 tocopy←tocopy - thispage ;
15 i←i + 1 ;

Figure 3.6: Pseudocode for the main loop in osd bufs get read

1. while len > 0: The outer loop iterates as long as there is data to read according to the

requested size. For each iteration, dbufs are requested via dmu bufs hold array by bonus.

After the call returns, dbp points to an array of struct dmu buf t.

2. foreaech buf in dbp: The second loop makes sure every buffer is handled, that is, it-

erating over the array. Because it is not likely that always multiples of the blocksize are
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read, the second loop initializes tocopy with the minimum of the length within the buffer

and the remaining length, so that the whole function returns as soon as len bytes are read.

3. while tocopy > 0: The inner-most loop continues as long as buf contains data. Here,

the main reading logic is handled. Line 8 as well as 13 and 14 make sure that no data is

read across buffer boundaries. In line 9, the actual reading is performed. As for the write

path, lnb page is set to a page-aligned pointer to the data. Subsequently, the other fields

of the lnb, which were already discussed for the write path, are set accordingly.

It is to mention that osd bufs get read performs additional read-ahead. Per default, this

means Lustre parses 1 MiB of buffers from ZFS into local niobufs. Later in the read pipeline,

osd read prep rejects buffers whose lnb file offset is beyond eof12.

3.4.1.1 Reading compressed data

Normally, ZIO would decompress the data obtained in the outer loop.

Therefore, dmu buf hold array by bonus compressed was introduced, which “works analogous

to the original function except [...] a flag indicating that the dbufs should be returned in a

compressed state.” [Beh17, p. 67]. Hence, the respective function must be chosen depending if

the data is compressed.

3.4.2 Extracting the chunk headers

When it comes to extracting the metadata from the compressed data, the principle results from

the modified write path. Figure 3.7 shows the layout of the stored, compressed data with headers

in ZFS.

Figure 3.7: Layout of the compressed data with headers in ZFS

When considering the main loop as shown in Figure 3.6, the most suitable approach would be

to increase offsets to skip the descriptors after receiving them. The basic principle is illustrated

in the modified pseudocode in figure 3.8. However, only the inner loop is shown as the outer

loops are not modified.

The basic idea is to change the reading of the data to do it chunk-wise. As shown in Figure

3.7, a chunk descriptor (cdesc) is expected at offset 0. The next chunk descriptor then must exist

at offset cdesc->psize etc. Hence, another loop is introduced in the pseudocode to indicate that

data is read as long as the end of the chunk is not reached. The chunk descriptor is eventually

copied into a pre-allocated array and the offset within the buffer increased by the chunksize.

However, two points must be noted:

12end of f ile; this offset is stored in the files extended attributes during write
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1 struct chunk desc *current chunk←NULL ;
2 while tocopy >0 do
3 thispage← min(PAGE SIZE, remaining in buf);
4 if cdesc is NULL then
5 current chunk←pointer to current position ;
6 copy(cdesc array, cdesc) ;
7 buffer offset←buffer offset + sizeof(struct chunk desc) ;

8 while chunk has data do
9 local niobuf[i]->lnb page ← kmem to page(buf + buffer offset) ;

10 buffer offset←buffer offset + tocopy ;
11 tocopy←tocopy - thispage i←i + 1 ;

12 cdesc←NULL ;

Figure 3.8: Pseudocode for the modified main loop for reading compressed data

1. It is not guaranteed that the memory at the designated header address represents such.

This is, for instance, true when the data is corrupted. Since chunk-wise means reading as

much as indicated by the psize, an arbitrary integer instead of the actual psize might be

read, causing a read beyond buffer boundaries. Hence, in the implementation, a way for

safely identifying a header will be introduced.

2. The array used in line 6 to copy the chunk descriptor into, must be pre-allocated with

sufficient space. However, it is not known in advance how many chunks are expected. For

this the best solution is to allocate the maximum, which results from the chunksize and

the limit regarding size for an RPC.
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4 | Related work

This chapter provides a brief overview over existing work. The focus is the (adaptive) compres-

sion of network traffic to reduce network throughput on the one hand and attempts for enhanced

interaction between Lustre and ZFS on the other hand.

4.1 Compression of network traffic

When it comes to HPC, communication between multiple computers makes up a good deal of

the overall system. However, as seen in Figure 1.1 in the introduction, internet data rates are not

growing as fast as storage capacity or computational power. Hence, data reduction techniques

are researched not only for Lustre.

This also includes approaches which analyze the on-going network traffic. An example is

the US patent titled “Network characteristic-based compression of network traffic” [VGK11].

Compression as done, among others, by the Lempel-Ziv (LZ) family of algorithms is known

as dictionary-based, which basically means to represent frequent occurences of a string with a

shorter key for a dictionary entry containing that data. The basic idea of that patent is to

introduce network optimization devices which take care of compression and decompression and

own such dictionaries. For example, when a device wants to communicate, it may send its data

to such a device (A) within the local network first. On the other end of the wire also exists

such device (C). “If network optimization device A locates a previously stored string that is

also stored at network optimization device C (as part of a compression dictionary shared or

independently created [...]), [...] A may transmit the codeword [...] instead of the actual or

literal string, to [...] C” [VGK11]. Consequently, when sending a key for a dictionary instead

of the actual data, network traffic is ultimately reduced. However, to “efficiently implement a

dictionary-based compression scheme, it is desirable to be able to efficiently identify data that

was previously seen or sent” [VGK11].

Another approach harnesses the resources of an idling CPU to perform compression before

transmitting the data [Wel+11]. The results showed that “compression is useful on slower net-

works, such as 1 Gbit Ethernet” and it is best to “avoid computationally expensive compression

algorithms, such as bzip2 and [...] zlib” [Wel+11, p. 6]. Also, it was found that skipping de-

compression on the server-side benefits performance, as already discussed in this thesis.

As discussed before, the choice of a compression algorithm based on analysis of the data ulti-

mately results in the best performance gain. Krintz and Sucu [KS06] presented a system called

the adaptive compression environment that applies compression on-the-fly based on estimation
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techniques “to make short-term forecasts of compressed and uncompressed transfer time at the

32 Kb block level”. Eventually, transfer performance could be enhanced by 8 to 93 percent,

depending on different factors.

4.2 Enhanced interaction between Lustre and ZFS

4.2.1 End-to-End data integrity for Lustre and ZFS

As mentioned before, one of ZFS’ key features include end-to-end data integrity. However, this

only relates to ZFS’ interface layer on the one end and the underlying disk on the other. Lustre

also includes data integrity checks using checksums to make sure the data was transferred cor-

rectly over the network.

As part of the High Productivity Computing Systems program in 2009, whose goal was

“developing a new generation of economically viable high productivity computing systems for

national security and industry” [Wik17] in order to meet the programs objective, “Lustre needs

to have end-to-end resiliency” [DDD09, p. 3] with one end being the Lustre client and the

other end the underlying disk. It was meant to be implemented as “efficient end-to-end data

integrity verification by combining the Lustre data checksumming with the ZFS on-disk data

checksumming” [DDD09, p. 3]. For example, the ZFS backend could skip verifying the data

while reading and let the Lustre client deal with it.

4.2.2 Ongoing work

Regarding the interaction between Lustre and the underlying ZFS file system, there is also

ongoing work which is worth to mention. This includes [Str17]:

• 80 times faster RAIDZ3 reconstruction: The different levels of RAIDZ numbered

one to three describe the number of hard drive failures within a ZFS pool for which it

is still possible to recover the data using parity calculations. Gvozden Nes̆ković [Nes16]

proposed a patch for ZFS to fasten the reconstruction. “What this means [...] is that

we can dedicate fewer cores to parity and reconstruction processing, and that saves costs

building and running of Lustre clusters with a ZFS back end file system using RAIDZ for

high availability and reliability” [Str17].

• Lustre snapshots: Fan Yong of Intel’s High Performance Data Division (HPDD) [YJ17]

is adding the capability to create mountable snapshots of Lustre setups with ZFS backend

for any moment in time via a CLI.

• Enhanced performance for metadata: For metadata, Lustre’s own ldiskfs has been a

little faster than ZFS. Alexey Zhuravlev (also Intel HPDD) [Zhu16], contributed improve-

ments for metadata performance on ZFS to get rid of known bottlenecks.
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5 | Implementation

In this chapter, it is described how the changes following the discussions in the Design were

implemented into the existing Lustre sourcecode. It is divided into three sections. First, prepa-

rations for both, reading and writing, are described. Then, the modified write and read path

are depicted each.

5.1 Preparations

5.1.1 Indicating compressed I/O

Future Lustre setups may involve communication between clients understanding compression

and those who do not with the same OSS. Hence, in multiple situations, a way to determine

in which group the client fits is neccessary. The most basic approach seems to check for the

presence or absence of struct chunk desc * on the RPC. However, in remembrance of Section

3.2.3, it is not possible to distinguish between a header missing by intent or by error.

Therefore, an additional flag was added to enum obdo flags: OBD COMPRESSED IO, which is

set on the body flags of the RPC within compressed osc brw prep request using body->oa.o flags

|= OBD COMPRESSED IO. Hence, within tgt io data unpack the presence of the flag is checked

and the absence of the chunk descriptors handled appropriately, as seen in Listing 5.1.

1 if (tsi ->tsi_ost_body ->oa.o_flags & OBD_COMPRESSED_IO) {

2 cdesc = req_capsule_client_get(tsi ->tsi_pill , &RMF_CHUNK_DESC);

3

4 if (unlikely(cdesc == NULL)) {

5 /* (lines omitted): throw error and return protocol error */

6 RETURN(-EPROTO);

7 }

8

9 nchunks = req_capsule_get_size(tsi ->tsi_pill , &RMF_CHUNK_DESC ,

10 RCL_CLIENT) / sizeof(struct chunk_desc);

11

12 LASSERT(nchunks > 0);

13 }

Listing 5.1: Check for OBD COMPRESSED IO flag within tgt io data unpack

A

dditionally, the software is enabled to handle the absence of the flag accordingly. For in-

stance, assume the data is compressed and a client sends a read RPC for that data, without
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OBD COMPRESSED IO being set. This is an indication for either compression turned off or a lack

of the client-side compression feature. In both cases, the server can use the chunk descriptor

extracted during read and decompress the data in the backend, eventually sending uncompressed

data back to the client.

5.1.2 Introduce chunk sizes to PTLRPC

Following Sections 3.2.2 and 3.2.3, the chunksize is required to be set according to the record

size of ZFS honoring the case of uncompressed data. For both, client and server to commit to

the common chunksize, constants were added to PTLRPC1 (see Figure 5.2). The constant is

used for all further calculations done in both, server and client.

1 #define PTLRPC_MIN_CHUNK_SIZE (131072 - sizeof(struct chunk_desc)) /*

ZFS record size for now */

2 #define PTLRPC_MAX_CHUNK_SIZE (PTLRPC_MAX_BRW_SIZE - sizeof(struct

chunk_desc))

3 #define PTLRPC_MAX_BRW_CHUNKS (PTLRPC_MAX_BRW_SIZE /

PTLRPC_MIN_CHUNK_SIZE)

Listing 5.2: Introduction of chunk size constants for PTLRPC

5.1.2.1 Adapting the client to use PTLRPC MIN CHUNK SIZE

Shortly to be noted, the client had to be adapted to use PTLRPC MIN CHUNK SIZE instead of a

magic number. Moreover, in the original prototype, the chunksize was required to be a multiple

of PAGE SIZE. Instead of iterating over pages, the pages sizes are first added together and then

the total sum is used accordingly. The basic changes are illustrated in Figure 5.1.

1 tocpy←sum all page sizes ;
2 while tocpy > 0 do
3 parse next page into chunk of size PTLRPC MIN CHUNK SIZE ;
4 if page has remaining data then
5 carry for next chunk ;
6 tocpy←tocpy - PTLRPC MIN CHUNK SIZE ;

7 foreach chunk do
8 dst←LZ4 compress default(chunk) ;
9 split dst into pages ;

Figure 5.1: compress chunks (client): New function to assemble chunks based on the chunksize not dividable by
PAGE SIZE

5.1.3 Passing chunk descriptors from the target handler to OSD-ZFS

As discussed in Section 3.3, the target handler handles the incoming RPC, unwraps the body and

pre-processes the data. Then, in particular tgt brw write and tgt brw read, invoke functions

within the underlying layers and pass the parameters they need. For obd preprw, additionally

1lustre/include/lustre net.h
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the chunk descriptors as well as the number of chunks are required. They were introduced

as int *nr chunks (pointer to int) and struct chunk desc **cdesc (pointer to pointer to

struct chunk desc) respectively. Later, dt bufs get, an operation on the specific struct

dt object *d, is called. It was changed to accept an additional int compressed to call ei-

ther d->do body ops->dbo bufs get or d->do body ops->dbo bufs get compressed. This de-

cision was made due to the fact, that OSD-ZFS as well as OSD-ldiskfs both implement struct

dt body operations pointed to by do body ops. Following of that, for OSD-ZFS the inter-

face now provides .dbo bufs get compressed = osd bufs get compressed while OSD-ldiskfs

passes .dbo bufs get compressed = NULL. This way, an implementation of similar features for

OSDs other than ZFS is possible with less effort.

Figure 5.2: Invoked functions during read and write with new parameters

Figure 5.2 depicts the relationship of the invoked functions with their new parameters (for

the meaning of the arrows, compare Figure 2.4). The need for passing pointers evolves from the

different roles for reading and writing respectively:

• For writing, the data is passed from the client, so that nr chunks and cdesc are already

known. Hence, in ofd preprw write (cdesc) and osd bufs get compressed (nr chunks)

the pointers are dereferenced.

• For reading, memory for cdesc must be allocated (which will be discussed in Subsection

5.3.2). Later, when extracting the chunk headers, nr chunks is incremented according to

the headers pushed into cdesc in osd bufs get compressed read.

5.1.4 Identifying a chunk header

A suitable method for determining if the void * pointer represents a chunk header is needed dur-

ing read, especially when it comes to error handling and recovery (compare Subsection 3.4.2).
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Hence, a new field was introduced for struct chunk desc, u32 flags (compare Appendix

B.1). Two of them are used for checking if a pointer is a struct chunk desc *: CHUNK HAS HDR

= 0x11110000 and CHUNK DESC MASK = 0xffff0000. The check is performed by checking if

((struct chunk desc *)buffer)->flags & CHUNK DESC MASK == CHUNK HAS HDR. The propa-

bility that the value leads to a false-positive is only 1
164

, which should be sufficient.

Additionally, as an example, CHUNK COMPRESSED LZ4 = 0x00000010 was defined. It is suggested

to replace u32 algo with the usage of flags in the long-term.

5.2 The modified write path

5.2.1 Determine which chunk is written

When osd bufs get write is invoked, it must be known which chunk actually is written to.

Currently, the client sends each chunk in a disctinct rnb. However, no immanent association be-

tween a chunk descriptor and an rnb exists. For this task poff (phhysical offset) and loff (logical

offset) were added to struct chunk desc (see Appendix B.3). The function cdesc for off,

whose implementation can be seen in Appendix B.1, was introduced to link chunk descriptor

and rnb by using the offsets as unique identifiers. The one-to-one relationship between rnb and

chunk, however, is not neccessary for the implementation. The only constraint is that a chunk

does not span multiple rnbs.

5.2.2 Extracting the largest psize

While implementing the described approach, a kernel panic was triggered when the first chunk

written was not the largest regarding psize. This happened because dmu request compressed arcbuf(obj,

psize, lsize) always returns the same size, that is, the size of the first use, ultimately writing

beyond buffer boundaries when a subsequent chunk is larger. In the course of this thesis, it was

not identified whether this is a bug within the work of [Beh17] or within ZFS.

As a temporary workaround, a function cdesc max psize was introduced, returning the maxi-

mum psize among all chunks (Appendix B.2). Hence: dmu request compressed arcbuf(obj,

max psize, lsize).

5.2.3 osd bufs get compressed write

To apply the header to each chunk during the allocation of buffers, a new function,

osd bufs get compressed write, was introduced which is called when OBD COMPRESSED IO is

set. Its prototype is shown in Listing 5.3. The full sourcecode is found in Appendix B.4.

1 static int osd_bufs_get_compressed_write(const struct lu_env *env ,

struct osd_object *obj , loff_t off , ssize_t len , struct niobuf_local

*lnb , int nr_chunks , struct chunk_desc *cdesc)

Listing 5.3: Prototype of osd bufs get compressed write

In the following, the functioning of osd bufs get compressed write is illustrated by means

of the sourcecode.
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1 while (len > 0) {

2 curr_cdesc = cdesc_for_off(off , cdesc , nr_chunks); /* get current

chunk descriptor */

3 ...

4 abuf = dmu_request_compressed_arcbuf(obj ->oo_db , max_psize + hdr_sz ,

max_t(int , PTLRPC_MIN_CHUNK_SIZE + hdr_sz , curr_cdesc ->lsize +

hdr_sz)); /* requst arcbuf of the appropriate size */

5 ...

6 chunk_remaining = curr_cdesc ->psize + hdr_sz;

Listing 5.4: osd bufs get compressed write: Request arcbufs and prepare parsing buffers

The outer-most loop as seen in Listing 5.4 is designed under the assumption that an rnb only

consists of full chunks. Hence, it would run with len ∈ {n · chunksize, (n− 1) · chunksize, ..., 1 ·
chunksize} and off ∈ {0, chunksize, 2 · chunksize, ..., n · chunksize} respectively. In line 2, the

current chunk descriptor is retrieved using the offset as described above, that is, for off = 0

the chunk descriptor with loff = 0 is returned. Following that, an arcbuf is requested by

dmu request compressed arcbuf(obj, psize, lsize). Two things must be noted: First,

max t is only relevant when the chunk is smaller than the chunksize to ensure equal-sized blocks.

Second, the additional space seen in Figure 5.3 is added to the maximum psize.

1 while (chunk_remaining > 0) {

2 plen = min_t(int , chunk_remaining , PAGE_SIZE);

3 if (off_in_buf == 0) {

4 lnb[i]. lnb_data = abuf; /* remember arcbuf for commit */

5

6 plen -= hdr_sz; /* page is smaller due to header */

7 lnb[i]. lnb_page_offset = hdr_sz; /* adapt offset for header */

8

9 memcpy(abuf ->b_data , curr_cdesc , hdr_sz); /* copy header into buffer

*/

10 } else

11 ...

12 lnb[i]. lnb_file_offset = off;

13 lnb[i]. lnb_len = plen;

14 len -= min_t(int , len , plen);

15 off += min_t(int , chunk_remaining , PAGE_SIZE);

16 chunk_remaining -= min_t(int , chunk_remaining , PAGE_SIZE);

17 off_in_buf += PAGE_SIZE;

18 i++;

19 npages ++;

20 }

Listing 5.5: osd bufs get compressed write: Process received arcbuf into lnbs

In contrast to the original implementation, the inner loop as seen in Listing 5.5 iterates as

long as chunk remaining > 0, which turned out to be more reliable than using the arcbufs size.

Most lines (2, 14 - 17)) are important to ensure the correct sizes and offsets are used for each

local niobuf. The most notable task is performed in the true branch (lines 4 to 9). For the first

page of each chunk,
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1. the arcbuf is remembered for commitment, as done within the original function (compare

Figure 3.2),

2. the offset is set to the header size,

3. the header size is subtracted from the length and

4. the header is memcpyied to offset 0 of the arcbuf

Alltogether, when PTLRPC eventually writes data into these niobufs, it honors the presence

of the header. An illustration for writing data for a single chunk, is given in Figure 5.3.

Figure 5.3: Force PTLRPC to write the data beyond the header using lnb page offset and lnb len

5.2.4 Committing data into ZFS

Commiting the arcbuf into ZFS within the modified path comes down to two tasks:

• Set the blocksize to the chunksize

• Use dmu assign compressed arcbuf

Both can be performed in osd write commit with minor changes, therefore no additional

function was introduced.

5.2.4.1 Setting the blocksize

For the latter, the original osd grow blocksize was split into osd grow blocksize and osd set blocksize

(see Appendix B.5). When OBD COMPRESSED IO is not set, the former simply calls the latter and,

therefore, performs the original logic. Otherwise, it is invoked as (void)osd set blocksize(obj,

oh, PTLRPC MIN CHUNK SIZE + sizeof(struct chunk desc)), respectively.

5.2.4.2 dmu assign compressed arcbuf

Actually committing the arcbuf into ZFS comes down to adding a third case (compressed ar-

cbuf) to the existing ones (arcbuf, anonymous page; see Figure 3.3 in Section 3.3.2). The branch

can be seen in Listing 5.6.

Since the chunksize does not equal the blocksize yet because it was decremented by sizeof(struct

chunk desc) to ensure enough space for the header on the same block as the data (compare

Subsection 3.2.3), it is now adjusted accordingly. However, adding the header size to each chunk
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1 if (compressed) {

2 lnb_cdesc = cdesc_for_off(lnb[i]. lnb_file_offset ,

3 cdesc , nchunks);

4 LASSERT(lnb_cdesc != NULL);

5 ...

6 dmu_assign_compressed_arcbuf(obj ->oo_db ,

7 lnb_cdesc ->loff + ((lnb_cdesc ->loff / cdesc ->lsize) * sizeof(

struct chunk_desc)),

8 lnb_cdesc ->psize + sizeof(struct chunk_desc),

9 lnb[i].lnb_data , oh ->ot_tx);

Listing 5.6: osd write commit: A third branch for committing compressed arcbufs was added

is not sufficient. Whilst the offset of the first chunk aligns with the block boundaries within ZFS,

the second block is shift by the header size, the third block is shift two times the header size (with

one shift resulting from the previous chunk) etc. Hence, ((lnb cdesc->loff / cdesc->lsize)

* sizeof(struct chunk desc)) is added to the respective logical offset, which is

{0, sizeof(struct chunk desc), ..., nchunks− 1 · sizeof(struct chunk desc)}

(sum of space taken by all preceding headers) respectively.

5.3 The modified Read path

5.3.1 Preparing the reply

Other as for the write path, reading data demands a reply from the server to the client. The

reply is prepared in tgt handle request0. However, read-RPCs have a fixed format, which

means the sizes of the fields must already be set. For the chunk descriptors, however, it is not

known yet. Hence, the maximum is assumed and set (see Listing 5.7). This way, it is ensured

enough space is reserved, no matter how many chunk descriptors follow.

1 if (req_capsule_has_field(tsi ->tsi_pill , &RMF_CHUNK_DESC , RCL_SERVER))

2 req_capsule_set_size(tsi ->tsi_pill , &RMF_CHUNK_DESC , RCL_SERVER ,

3 PTLRPC_MAX_BRW_CHUNKS * sizeof(struct chunk_desc));

4

5 rc = req_capsule_server_pack(tsi ->tsi_pill);

Listing 5.7: tgt handle request0: The field &RMF CHUNK DESC is set to the maximum size for the reply

Later, when the exact size is known (that is, after obd preprw returns), the field is shrunk

to the exact size (see Listing 5.8).

5.3.2 Allocating memory for the headers

In the write path, the headers are provided by the client via an RPC. In the opposite direction,

the client awaits the descriptors wrapped in the reply. For the sake of extracting the headers,

sufficient memory must be allocated. Hence, the tgt handler declares struct chunk desc
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1 rc = obd_preprw(tsi ->tsi_env , OBD_BRW_READ , exp , &repbody ->oa, 1, ioo ,

remote_nb , &npages , local_nb , &nchunks , &cdesc);

2 ...

3 LASSERT(ergo(nchunks > 0, cdesc != NULL));

4 ...

5 req_capsule_shrink(tsi ->tsi_pill , &RMF_CHUNK_DESC , nchunks * sizeof(

struct chunk_desc), RCL_SERVER);

Listing 5.8: tgt brw write: The field &RMF CHUNK DESC is set to the exact size

*cdesc = NULL first and passes &cdesc to obd preprw (compare Figure 5.2). Eventually, in

ofd preprw read, the NULL pointer is replaced via a memory allocation (see Listing 5.9). Similar

to the preparation of the reply, it is not yet known how many chunk descriptors are expected,

therefore, again, the maximum is allocated.

1 if (compressed) {

2 OBD_ALLOC_LARGE (*cdesc , PTLRPC_MAX_BRW_CHUNKS * sizeof(struct

chunk_desc));

3

4 LASSERT (* cdesc != NULL);

5 }

Listing 5.9: ofd preprw read: Allocating memory for extracting the chunk headers

Since the memory is needed until the read pipeline finished, the target handler is responsi-

ble of freeing the memory after it is done (OBD FREE LARGE(cdesc, PTLRPC MAX BRW CHUNKS *

sizeof(struct chunk desc))).

5.3.3 osd bufs get compressed read

The main reading logic is performed in a new function, osd bufs get compressed read. Its

prototype is depicted in Listing 5.10. In the following, the most important parts of the sourcecode

are presented. The complete code is shown in Appendix B.6.

1 static int osd_bufs_get_compressed_read(const struct lu_env *env , struct

osd_object *obj , loff_t off , ssize_t len , struct niobuf_local *lnb ,

int *nr_chunks , struct chunk_desc ** cdesc)

Listing 5.10: Prototype of osd bufs get compressed read

The function is invoked in place of osd bufs get read when OBD COMPRESSED IO is set.

However, other as for the write path, determining whether the data is compressed or not is

subject to the backend. Therefore, the flag here just indicates that the client understands

compressed data and, hence, is able to decompress it. As suggested before, it is possible to

decompress the data on the server when the data is compressed but OBD COMPRESSED IO = 0.

The actual compression of the data is indicated by the field db compressed of the dbuf [Beh17,

p. 64] and checked as seen in Listing 5.11. However, it is currently always false and, following

of that, the fallback is disabled until the cause is known.
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1 compressed = obj ->oo_db ->db_compressed;

2

3 if (0 /* !compressed TODO */)

4 RETURN(osd_bufs_get_read(env , obj , off , len , lnb));

Listing 5.11: osd bufs get compressed read: Fallback to osd bufs get read when the data is not

actually compressed

The basic idea of the reading of pre-compressed data is the same as for the unmodified code

shown in Figure 3.6. The main difference is that the data is processed chunk-wise.

The outer-most loop while (len > 0) remains unmodified. However, it calls the equivalent

function for retrieving dbufs in their raw state, dmu buf hold array by bonus compressed.

The inner-most loop, that is the third level of nesting, holds the main logic.

1 while (tocpy > 0) {

2 if (curr_chunk == NULL) {

3 curr_chunk = (struct chunk_desc *)(dbp[i]->db_data); /* try to read

header */

4 if ((( curr_chunk ->flags & CHUNK_DESC_MASK) == CHUNK_HAS_HDR)) {

5 chunk_bn = 1; /* chunk begin */

6 chunk_rmng = curr_chunk ->psize;

7 chunk_rmng_l = curr_chunk ->lsize;

8 memcpy (&((* cdesc)[nchunks ++]), curr_chunk , hdr_sz);

9 } else

10 ...

11 }

Listing 5.12: osd bufs get compressed read: Reading data chunk-wise and extracting the header

when a chunk begins

During each iteration, the true branch of the if statement (Listing 5.12, line 2) refers to

the fact that currently no chunk is associated with the data. Hence, it is tried to interpret the

current position within the buffer as a pointer to struct chunk desc (compare Figure 3.7). It

is then validated using the flag introduced in Subsection 5.1.4. In line 8, when the read data

actually represents a header, it is pushed into the pre-allocated array.

1 if (chunk_rmng > 0) {

2 if (chunk_bn) { /* begin of chunk */

3 lnb ->lnb_page_offset = hdr_sz;

4 thispage -= hdr_sz;

5 }

6 /* fill lnb */

7 else

8 /* fill empty lnb */

Listing 5.13: osd bufs get compressed read: Adjusting the fields of the local niobuf after reading the

header

As done for the write path, the local niobufs page offset as well as the current pages size

are adapted accordingly for the first page within the chunk (see Listing 5.13). One might argue

that, instead of adjusting the offset within the page, the header size can be added to the offset
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to skip the more complex logic. However, the Kernel ANDs the offset with PAGE MASK, leaving

only the higher bits representing the pages address unchanged while zeroing the offset.

Lines 5 and 7, respectively, are omitted. Nevertheless, they represent an important requirement.

Since the dbuf is of size chunksize + header size, which is the lsize of the chunk plus the

header, it is only desired to parse memory into local buffers when offset in buf < psize.

It seems likely that the remaining iterations can be skipped when all data was read. However,

it is required to return exactly as much niobufs as indicated by len for subsequent read path.

Therefore, empty lnbs are assembled.

The last two aspects are adjusting the working variables for the next iteration to start with

the correct values on the one hand and the adjustment of the offsets on the other hand. The

latter is seen in Listing 5.14. It turned out that the usage of poff and loff associated with

a chunk header is more reliable than handling different edge cases for incrementing the offset.

Hence, after the end of the chunk was read, the offset is set to the next address where a chunk

is expected.

1 if (curr_chunk != NULL && chunk_rmng_l == 0) {

2 off = max_t(int , curr_chunk ->loff

3 + curr_chunk ->lsize

4 + ((curr_chunk ->loff / curr_chunk ->lsize) * hdr_sz),

5 PTLRPC_MIN_CHUNK_SIZE + hdr_sz);

6 curr_chunk = NULL;

7 len -= tocpy;

8 tocpy = 0;

9 }

Listing 5.14: osd bufs get compressed read: Adjusting offsets after the chunks end
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In this chapter, it is presented how the implementation was tested. In the first section, the correct

transmission of the data is proved and it is shown, that the chunk descriptors are available after

reading. In the second section, benchmarks regarding network transfer and read performance

are presented.

6.1 Correctness

For proving the correctness of the data transfer, the following points must be considered:

1. The data received from the server on the read path must be equal to the data originally

written.

2. The reply of the server must contain the struct chunk desc * and each descriptor must

equal the counterpart transferred during write.

In general, the Lustre-internal macro CERROR was added to relevant lines of code for tracing

the function calls and the values of variables at given moments. CERROR is a wrapper for printk

and logs messages to the standard error stream stderr of the kernel.

6.1.1 Transmission of data

When data is written to the mountpoint and the client performs compression, the resulting

data fits into one of three categories: Uncompressed or insufficiently compressed as well as

compressed data (compare Subsection 3.2.3). For the former two, a modification to the client

code was made as shown in Listing 6.1. The if statement acts as a switch to replace the

copression with memcpying the data to the destination buffer. The tests in this subsection were

performed using two clients, using the true and false branche respectively.

1 comprsd = LZ4_compress_default(src , dst , tmp_cdesc[c].lsize , tmp_cdesc[c

].lsize , wrkmem);

2 if (1) {

3 memcpy(dst , src , tmp_cdesc[c].lsize);

4 comprsd = tmp_cdesc[c]. lsize;

5 } else

6 comprsd = LZ4_compress_default(src , dst , tmp_cdesc[c].lsize ,

tmp_cdesc[c].lsize , wrkmem);

Listing 6.1: compress chunks: Modified to return uncompressed data
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6.1.1.1 Uncompressed data

For this test case, it turned out human-readable data is most convenient. Thus, in this example,

parts of Faust by Johann Wolfgang von Goethe were used for debugging purposes. A test for a

16 KiB excerpt is shown in Listing 6.2.

# diff -s /mnt/lustre/client2/faust files/faust

Files /mnt/lustre/client2/faust and files/faust are identical

Listing 6.2: Test of the correctness for uncompressed data (first chunk)

Overall, the writing of uncompressed data works as intended. However, due to the chunksize

not being dividable by PAGE SIZE, additional pages must sometimes be added because of the

fact that the space reserved for the header is carried to the next page, which might require an

additional page at the end of the chunk. Due to the limit of 256 pages per RPC, further work

within the client is required to properly deal with uncompressed data, since those additional

pages make the RPC exceed this limit.

6.1.1.2 Compressed data

In the current implementation, the client returns the data in its compressed form. Eventually,

an implementation detail was exploited for testing the data anyway: The client overwrites the

original pages. As an example for the idea of the test, assume data of 12 KiB (lsize) and 8 KiB

(psize). Then, for instance, cat /mnt/lustre/client/file returns a file consisting of:

• Compressed data at offset [0, 8192]

• Uncompressed data at offset (8192, 12288]

That means, since in that example the file is smaller than the chunk size, the bytes within

[0, 8192] must equal the read data, that is, the first chunk.

# cd /root

# hexdump /mnt/lustre/client/faust > orig

# hexdump /mnt/lustre/client2/faust > now

# diff -ay --left -column orig now | grep -v "("

Listing 6.3: Test of the correctness for the first chunk

Listing 6.3 demonstrates the commands performed after writing the data. For the first

hexdump, the modified original pages are read while the second usage with a distinct mountpoint

forces Lustre to request the file from the server. The usage of diff piped through grep skips

equal lines. In summary, addresses 016 up to 2CCD16 = 1146910 are equal. The correctness

follows from the output of the compressed size via CERROR, which is also 11469.

For subsequent chunks, the same approach can be adapted but requires manually parsing the

output since each chunk is followed by uncompressed data up to its lsize, respectively.
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6.1.2 Transmission of the chunk descriptors

For testing if the chunk descriptors were correctly transferred within the reply on the read path,

the function osc brw fini request was modified as depicted in Listing 6.4.

1 struct chunk_desc *cdesc;

2 int nchunks = 0, c = 0;

3

4 if (req_capsule_has_field (&req ->rq_pill , &RMF_CHUNK_DESC , RCL_SERVER))

{

5 cdesc = req_capsule_server_get (&req ->rq_pill , &RMF_CHUNK_DESC);

6 nchunks = req_capsule_get_size (&req ->rq_pill , &RMF_CHUNK_DESC ,

RCL_SERVER) / sizeof(struct chunk_desc);

7

8 for (; c < nchunks; cdesc++, c++)

9 CERROR("chunk[%d]: lsize =%d, psize =%d, flags =%d, cksum =%x\n", c,

cdesc ->lsize , cdesc ->psize , cdesc ->flags , cdesc ->cksum);

10 }

Listing 6.4: osc brw fini request: Reading the chunk descriptors during read

The function is invoked at some point after the reply reaches the client. It is checked if the

reply contains the field for the chunk descriptors (line 4), then it is unwrapped and the number

of chunks is calculated from the size of that field (lines 5 and 6). Eventually, for each chunk,

the members of the struct are written to stderr. Similar code blocks were inserted within the

target handler and in osc brw prep request.

In conclusion, at each given moment, the output is equal.

6.2 Benchmarks

Since this thesis aims to interconnect the previous work in [Fuc16] and [Beh17], in the following

a first clue for the overall performance for client-side compression is given. However, since the

implementation is still a prototype in an early phase, the informative value with respect to the

final implementation is limited.

Each benchmark was performed for 1, 7 and 10 MiB of data respectively. These sizes result

from the fact, that for some data sizes the implementation still causes the kernel to panic, which

is for instance true for 5 MiB but not for 7 MiB. However, when no errors occur, the filesystem

works as intended. It is to be investigated what causes the errors for certain sizes.

Each measurement was repeated 5 times and averaged for eliminating spikes.

6.2.1 Network transfer size

The following test measures the network transfer size from the client to any other device after

writing the data. Since no outgoing internet connection was established, only communication

from and to the MGS/MDT and OST was taken into concern. However, this includes actual
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bulk data transfer as well as any other communication. For gathering the data, the bash script

shown in Listing 6.5 was used. The result is shown in Figure 6.1.

# stat="cat /proc/net/dev | grep enp0s3"; before=$( e v a l $stat | awk ’{

print $10}’); cp t e s t /10M /mnt/lustre/client/t10; sleep 60; after=$(

e v a l $stat | awk ’{print $10}’); echo "$after -$before" | bc

Listing 6.5: Script used to extract network statistics from /proc/net/dev
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Figure 6.1: Network throughput for 1 MiB, 7 MiB and 10 MiB of climate data for the unmodified Lustre and
after performing compression in the modified Lustre

For 10 MiB of data, the original Lustre client transferred 11,042,937 bytes, which includes

a huge amount of communication overhead. For the same data, the modified client was able to

reduce the transferred size by almost 66 % using compression:

1− 37744306

110429372
≈ 0.6582

Overall, the results show that the client-side compression saves a fair amount of data for the

transfer over the network. This is promising with respect to the future work introducing the

actual adaptiveness of the compression.

6.2.2 Read performance

In this test, the read performance was measured using dd (see Listing 6.6). After each read,

the cache was cleared before performing the next read. Also, for the modified Lustre, CERROR

was re-defined to expand to (void)(0) since writing to the kernel logs comes with significant

expenses which would falsify the outcome. The results are shown in Figure 6.2.

# rm /tmp/ t e s t ; dd i f =/mnt/lustre/client/ t e s t of=/tmp/ t e s t oflag=direct

Listing 6.6: Command used for measuring the read performance
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Figure 6.2: Read time for 1 MiB, 7 MiB and 10 MiB of climate data for the unmodified and modified Lustre
respectively

Two aspects should be noted:

1. First, when comparing the unmodified Lustre to the modified read path for uncompressed

data, no performance regressions occured. Rather, the modified version is a little faster

in all test cases. While for 7 and 10 MiB the difference is minor, for 1 MiB it is unex-

pecpectedly significant. However, it is not clear whether this is due to the different reading

approach or some unknown factor.

2. The read path with compressed data is significantly faster than the unmodified one. How-

ever, it must be noted that in the current implementation, no decompression is done. Since

decompression also comes at a cost, it must be considered that the read path involving

decompression will take longer. Nevertheless, decompression will not nullify the gap. It is

likely, that the major factor for the difference is the transfer of less data over the network

(compare Figure 6.1).
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7 | Conclusion and future work

This chapter concludes the thesis. In the first section, a summary of the implemented new

features with respect to the overall goal is given. Furthermore, ideas for future work which were

out of the scope of this thesis are depicted.

Conclusion

This thesis ultimately aimed to interconnect the previos work regarding the introduction of

client-side compression within Lustre:

• The fundamentals were presented by Anna Fuchs in her thesis “Client-side Data Transfor-

mation in Lustre” ([Fuc16]). The idea is to split data stripes into smaller chunks, which

are compressed independently and, hence, allow to exploit the parallelism of Lustre as best

as possible. Foremost she described the requirements and evaluated the space of feasible

solutions. Also, a prototype for compression using LZ4 was presented.

• For storing pre-compressed data, it was concluded that the existing structures of the

underlying file systems (ZFS, ldiskfs) must be connected as tightly as possible with the

new features. An approach for ZFS was introduced by Niklas Behrmann in his thesis

“Support for external data transformation in ZFS” ([Beh17]), ultimately aiming to allow

Lustre to store compressed chunks as if they were compressed by ZFS.

The need for compression evolves mainly from I/O as performance bottleneck, the high cost

of (fast) storage systems and – for distributed file systems such as Lustre – from the need to

transfer data over the network. Following of that, the communication between Lustre and ZFS

regarding pre-compressed data must be as efficient as possible.

In this thesis, the requirements evolving from the previous work were presented. This in-

cludes the storage of metadata (describing the compression) for each chunk as well as adapting

the read and write paths, respectively, to handle pre-compressed data, that is receiving it from

the client on the one side, adding the metadata to the data and handing it to ZFS on the

other hand and vice versa. In the main part, the best-suited layer for introducing the new

functionality was evaluated. Eventually, it showed that writing the metadata as a header while

allocating buffers on the target, before receiving the data, was the best approach for the write

path. While reading, the headers are extracted on-the-fly. The new functionality was tailored to

integrate as tightly as possible with the existing structures, allowing to implement the storage

of pre-compressed data for other local file systems as well.
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In the end it was shown, that the size of data transferred over the network could be reduced by

a fair amount in this early prototype. What is more, no performance regressions were measured

compared to the original implementation. Rather, reading compressed data is faster, even when

taking the lack of decompression into account.

Future work

As Anna Fuchs conclued in her thesis, “Introducing such extensive mechanisms like compression

into a stable complex distributed system is an ambitious project” [Fuc16, p. 76]. In the course

of this thesis it turned out, that the introduction of handling pre-compressed data includes lots

of edge cases which must be taken into account. As of this thesis, subsequent tasks include:

• It must be evaluated why for pre-compressed data blocks the appropriate flag db compressed

within ZFS is always false and the temporary work-around (always assuming compressed

data) has to be removed.

• For some data sizes such as 5 MiB, the file system still causes the kernel to panic. However,

this is not true, for instance, for 1, 7 or 10 MiB. It must be tracked down, which part of

Lustre triggers the panic.

• It should be evaluated which fields of the header are really needed, since it is added to the

existing data and can sum up to a fair amount of space for large files.

• Tests for writing multiple stripes must be done, which was not possible in the course of

this thesis due to the fact that the client is not yet able to properly compress multiple

stripes.

• The current handling of uncompressed data, that is, adding a header nonetheless, can

require additional pages, which exceeds the limit of 256 pages per RPC. It might be

evaluated, if rather changes to the client or to the backend are more reliable. The former

means allowing more pages when compression is enabled, the latter comes down to not

adding the header after all and assuming that a missing header always refers to this case

(and not, for instance, to data corruption)

Besides these tasks, the work done in this thesis results in the client to be able to write as

well as read compressed data chunks with an ZFS backend. This ultimately is an important

step on the way to fully integrate client-side data compression in Lustre. As of now, the full

I/O stack for pre-compressed data is basically functioning and can be considered as a a whole

when implementing further functionality. For instance, when reading data, decompressing is

still missing, which can now be implemented. For this, the chunk descriptors are received and

can be used to chose the appropriate decompressor. Also, the proper storage of the metadata

allows to do first tests regarding the actual adaptiveness of the compression.
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A | Infrastructure

As a basis for implementing the new functionality described in this thesis as well as the tests

and benchmarks, several virtual machines managed by VirtualBox were used. For both, the

modified and unmodified Lustre, a setup with at least three machines, respectively, was created:

An OST, a shared MDT/MGS and at least one client. After setting up the first machine with

either of the Lustre versions, the others were created as clones. The basic attributes are outlined

in the following:

• OS: CentOS 7 (64 Bit, Linux Kernel 3.10)

• 4 GiB main memory

• Dynamically allocated secondary memory

• Connection via host-only adapter with static IP addresses

• Lustre: Version 2.9.0 with the modifications done in [Fuc16]

• ZFS: Version 0.7.0 RC3 with the modifications described in [Beh17]

• SPL (on which ZFS depends): Version 0.7.0 RC3 (upstream version)

The setup of Lustre mostly followed the description in [Fuc16, p. 91 - 96]. However, the de-

scribed version did not yet include the build parameter for compression, hence --enable-compression

was additionally passed to ./configure.

For ZFS, the version of [Beh17] was used instead of the version available upstream. For the

installation of ZFS from scratch, the steps depicted in Listing A.1 must be executed for both,

SPL and ZFS respectively, starting with SPL.

# cd <spl|zfs >

# sh autogen.sh

# ./ configure --with -spec=redhat

# make pkg -utils pkg -kmod # generate rpms

# yum localinstall *.$(arch).rpm

Listing A.1: Installation of ZFS from scratch
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B.1 cdesc for off

1 static inline struct chunk_desc *cdesc_for_off(loff_t const off ,

2 struct chunk_desc *cdesc , size_t nchunks)

3 {

4 for (nchunks --; nchunks >= 0; cdesc++, nchunks --)

5 if (cdesc ->poff == off || cdesc ->loff == off || cdesc ->poff == (off

- sizeof(struct chunk_desc)))

6 return cdesc;

7

8 return NULL;

9 }

Listing B.1: Prototype of cdesc for off

B.2 chunks max psize

1 static size_t chunks_max_psize(struct chunk_desc *cdesc , int nchunks)

2 {

3 size_t max = 0;

4

5 for (nchunks --; nchunks >= 0; nchunks --)

6 if (cdesc[nchunks ]. psize > max)

7 max = cdesc[nchunks ]. psize;

8

9 return max;

10 }

Listing B.2: Prototype of chunks max psize

B.3 Modified struct chunk desc

1 struct chunk_desc {
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2 __u32 ppages;

3 __u32 psize;

4 __u32 lpages;

5 __u32 lsize;

6 __u32 cksum;

7 __u32 algo;

8 __u32 flags;

9 __u32 pad_1; /* We won’t need padding as soon as we remove algo in

favor of flags */

10 __u64 poff;

11 __u64 loff;

12 };

Listing B.3: Modified struct chunk desc

B.4 osd bufs get compressed write

1 static int osd_bufs_get_compressed_write(const struct lu_env *env ,

struct osd_object *obj ,

2 loff_t off , ssize_t len , struct niobuf_local *lnb ,

3 int nr_chunks , struct chunk_desc *cdesc)

4 {

5 struct osd_device *osd = osd_obj2dev(obj);

6 struct chunk_desc *curr_cdesc = NULL;

7 int plen , off_in_buf;

8 int rc , i = 0, npages = 0;

9 arc_buf_t *abuf;

10 uint64_t chunk_remaining;

11 size_t const hdr_sz = sizeof(struct chunk_desc),

12 max_psize = chunks_max_psize(cdesc , nr_chunks);

13

14 ENTRY;

15

16 /* this is _COMPRESSED_write */

17 LASSERT(nr_chunks > 0);

18 LASSERT(cdesc != NULL);

19 LASSERT(max_psize > 0);

20

21 /* It is thinkable to have multiple chunks per rnb ,

22 * therefore the double loop.

23 * Ideally , if rnb = chunk , the outer loop iterates exactly once */

24 while (len > 0) {

25 /* get current chunk descriptor

26 * if we’re at position 0, there must exist one anyway

27 * (since this is bufs_get_COMPRESSED_write),

28 * else , when one chunk ends but len is still > 0,

29 * another chunk is supposed to start or something went wrong */

30 curr_cdesc = cdesc_for_off(off , cdesc , nr_chunks);

31

32 LASSERT(curr_cdesc != NULL);

33

34 /* requst arcbuf of the appropriate size */
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35 abuf = dmu_request_compressed_arcbuf(obj ->oo_db ,

36 max_psize + hdr_sz ,

37 max_t(int , PTLRPC_MIN_CHUNK_SIZE + hdr_sz ,

38 curr_cdesc ->lsize + hdr_sz));

39

40 if (unlikely(abuf == NULL))

41 GOTO(out_err , rc = -ENOMEM);

42

43 atomic_inc (&osd ->od_zerocopy_loan);

44

45 off_in_buf = 0;

46 chunk_remaining = curr_cdesc ->psize + hdr_sz;

47

48 /* go over pages arcbuf contains , put them as

49 * local niobufs for ptlrpc ’s bulks */

50 while (chunk_remaining > 0) {

51 plen = min_t(int , chunk_remaining , PAGE_SIZE);

52

53 if (off_in_buf == 0) {

54 /* beginning of chunk , reserve space for the chunk header

55 * and assign it */

56

57 /* remember arcbuf for commit */

58 lnb[i]. lnb_data = abuf;

59

60 /* adapt offset for header */

61 plen -= hdr_sz;

62 lnb[i]. lnb_page_offset = hdr_sz;

63

64 memcpy(abuf ->b_data , curr_cdesc , hdr_sz);

65 } else {

66 lnb[i]. lnb_data = NULL;

67 lnb[i]. lnb_page_offset = 0;

68 }

69

70 /* this one is not supposed to fail */

71 lnb[i]. lnb_page = kmem_to_page(abuf ->b_data + off_in_buf);

72 LASSERT(lnb[i]. lnb_page);

73

74 lprocfs_counter_add(osd ->od_stats ,

75 LPROC_OSD_ZEROCOPY_IO , 1);

76

77 lnb[i]. lnb_file_offset = off + hdr_sz;

78 lnb[i]. lnb_len = plen;

79 lnb[i]. lnb_rc = 0;

80

81 len -= min_t(int , len , plen);

82 off += min_t(int , chunk_remaining , PAGE_SIZE);

83 chunk_remaining -= min_t(int , chunk_remaining , PAGE_SIZE);

84 off_in_buf += PAGE_SIZE;

85 i++;

86 npages ++;

87 }

88 }

89

90 LASSERT(npages < PTLRPC_MAX_BRW_PAGES);
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91

92 RETURN(npages);

93

94 out_err:

95 osd_bufs_put(env , &obj ->oo_dt , lnb , npages);

96 RETURN(rc);

97 }

Listing B.4: The newly introduced function osd bufs get compressed write

B.5 Changing the blocksize

1 static int osd_set_blocksize(struct osd_object *obj , struct osd_thandle

*oh,

2 uint32_t blksz)

3 {

4 struct osd_device *osd = osd_obj2dev(obj);

5 dmu_buf_impl_t *db = (dmu_buf_impl_t *)obj ->oo_db;

6 dnode_t *dn;

7 int rc = 0;

8

9 ENTRY;

10

11 DB_DNODE_ENTER(db);

12 dn = DB_DNODE(db);

13

14 if (dn ->dn_maxblkid > 0) /* can’t change block size */

15 GOTO(out , rc);

16

17 if (dn ->dn_datablksz >= osd ->od_max_blksz || dn->dn_datablksz == blksz

)

18 GOTO(out , rc);

19

20 down_write (&obj ->oo_guard);

21

22 if (dn ->dn_datablksz >= osd ->od_max_blksz || dn->dn_datablksz ==

blksz)

23 /* check again after grabbing lock */

24 GOTO(out_unlock , rc);

25

26 if (! is_power_of_2(blksz))

27 blksz = size_roundup_power2(blksz);

28

29 if (blksz > dn ->dn_datablksz) {

30 rc = -dmu_object_set_blocksize(osd ->od_os , dn->dn_object ,

31 blksz , 0, oh->ot_tx);

32 LASSERT(ergo(rc == 0, dn ->dn_datablksz >= blksz));

33 if (rc < 0)

34 CDEBUG(D_INODE , "object "DFID": change block size"

35 "%u -> %u error rc = %d\n",

36 PFID(lu_object_fid (&obj ->oo_dt.do_lu)),

37 dn->dn_datablksz , blksz , rc);
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38 }

39 EXIT;

40 out_unlock:

41 up_write (&obj ->oo_guard);

42 out:

43 DB_DNODE_EXIT(db);

44 return rc;

45 }

46

47 static int osd_grow_blocksize(struct osd_object *obj , struct osd_thandle

*oh,

48 uint64_t start , uint64_t end)

49 {

50 struct osd_device *osd = osd_obj2dev(obj);

51 dmu_buf_impl_t *db = (dmu_buf_impl_t *)obj ->oo_db;

52 dnode_t *dn;

53 uint32_t blksz = 0;

54

55 ENTRY;

56

57 DB_DNODE_ENTER(db);

58 dn = DB_DNODE(db);

59 blksz = dn ->dn_datablksz;

60 DB_DNODE_EXIT(db);

61

62 /* now ZFS can support up to 16MB block size , and if the write

63 * is sequential , it just increases the block size gradually */

64 if (start <= blksz) { /* sequential */

65 blksz = (uint32_t)min_t(uint64_t , osd ->od_max_blksz , end);

66 } else { /* sparse , pick a block size by write region */

67 blksz = (uint32_t)min_t(uint64_t , osd ->od_max_blksz ,

68 end - start);

69 }

70

71 return osd_set_blocksize(obj , oh, blksz);

72 }

Listing B.5: osd grow blocksize was split into two functions, osd grow blocksize and

osd set blocksize for the compressed case and the unmodified case

B.6 osd bufs get compressed read

1 static int osd_bufs_get_compressed_read(const struct lu_env *env , struct

osd_object *obj ,

2 loff_t off , ssize_t len , struct niobuf_local *lnb ,

3 int *nr_chunks , struct chunk_desc ** cdesc)

4 {

5 struct chunk_desc *curr_chunk = NULL;

6 struct osd_device *osd = osd_obj2dev(obj);

7 dmu_buf_t **dbp;

8 unsigned long start = cfs_time_current ();

9 int rc , i, numbufs , npages = 0, nchunks = 0, compressed

;
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10 size_t const hdr_sz = sizeof(struct chunk_desc);

11 ENTRY;

12

13 compressed = obj ->oo_db ->db_compressed;

14

15 /* fallback to uncompressed read if dbuf was not stored pre -compressed

*/

16 if (0 /* !compressed TODO */)

17 /* TODO Sv: HOW do we know if it is compressed? db_compressed is

always 0! */

18 RETURN(osd_bufs_get_read(env , obj , off , len , lnb));

19

20 *nr_chunks = 0;

21

22 record_start_io(osd , READ , 0);

23

24 while (len > 0) {

25 rc = -dmu_buf_hold_array_by_bonus_compressed(

26 obj ->oo_db , off , len , TRUE ,

27 osd_zerocopy_tag , &numbufs ,

28 &dbp);

29

30 if (unlikely(rc))

31 GOTO(err , rc);

32

33 for (i = 0; i < numbufs; i++) {

34 void *dbf = dbp[i];

35 int bufoff , tocpy , thispage , chunk_rmng = 0, chunk_rmng_l = 0,

chunk_bn = 0;

36

37 if (len == 0)

38 break;

39

40 atomic_inc (&osd ->od_zerocopy_pin);

41

42 bufoff = 0;

43

44 tocpy = min_t(int , dbp[i]->db_size , len);

45

46 /* kind of trick to differentiate dbuf vs. arcbuf */

47 LASSERT ((( unsigned long)dbp[i] & 1) == 0);

48 dbf = (void *) (( unsigned long)dbp[i] | 1);

49

50 while (tocpy > 0) {

51 /* when we’re reading compressed (chunked)

52 * data , each chunk is preceeded by a header

53 * describing the chunk. Since we can only make

54 * guesses based on the assumptions we made

55 * during write , we try to read a header at each

56 * iteration to be sure and be independent of

57 * that assumptions.

58 */

59 if (curr_chunk == NULL) {

60 /* try to read header */

61 curr_chunk = (struct chunk_desc *)(dbp[i]->db_data);

62
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63 /* as stated above:

64 * we can’t be sure this is an actual

65 * chunk header -> do some checks */

66 if ((( curr_chunk ->flags & CHUNK_DESC_MASK) == CHUNK_HAS_HDR)

67 && (int)curr_chunk ->psize > 0

68 && (int)curr_chunk ->lsize > 0) {

69 chunk_bn = 1;

70

71 /* valid header! From this point ,

72 * we know how large the chunk

73 * is and will read until its end */

74 chunk_rmng = curr_chunk ->psize;

75 chunk_rmng_l = curr_chunk ->lsize;

76

77 /* headers are sent back to client

78 * for decompression; extract it */

79 memcpy (&((* cdesc)[nchunks ++]), curr_chunk , hdr_sz);

80 } else {

81 /* not a valid chunk header ,

82 * try again later */

83 curr_chunk = NULL;

84 chunk_rmng = chunk_rmng_l = 0;

85 }

86 }

87

88 thispage = min_t(int , tocpy , PAGE_SIZE);

89

90 if (chunk_rmng > 0) {

91 /* we’re within the actual data of the

92 * chunk and want to take each page */

93

94 thispage = min(chunk_rmng , thispage);

95

96 if (chunk_bn) {

97 /* this is the "did not read any

98 * chunk data" case

99 * at this point , we’re removing

100 * the header since it is no

101 * longer needed */

102 lnb ->lnb_page_offset = hdr_sz;

103 thispage -= hdr_sz;

104 } else

105 lnb ->lnb_page_offset = 0;

106

107 chunk_bn = 0;

108

109 lnb ->lnb_len = thispage;

110 lnb ->lnb_rc = 0;

111 lnb ->lnb_page = kmem_to_page(dbp[i]->db_data +

112 bufoff);

113 lnb ->lnb_file_offset = max_t(int , curr_chunk ->loff + bufoff -

hdr_sz , 0);

114

115 /* mark just a single slot: we need this

116 * reference to dbuf to be released once */

117 lnb ->lnb_data = dbf;
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118 dbf = NULL;

119 } else {

120 /* this is data not related to a chunk ,

121 * hence just continue */

122

123 lnb ->lnb_rc = 0;

124 lnb ->lnb_file_offset = 0;

125 lnb ->lnb_page_offset = 0;

126 lnb ->lnb_len = 0;

127 lnb ->lnb_page = NULL;

128 }

129

130 npages ++;

131 lnb ++;

132

133 chunk_rmng = max_t(int , chunk_rmng - thispage , 0);

134 chunk_rmng_l = max_t(int , chunk_rmng_l - thispage , 0);

135 tocpy -= PAGE_SIZE;

136 len -= PAGE_SIZE;

137 bufoff += PAGE_SIZE;

138

139 if (curr_chunk != NULL && chunk_rmng_l == 0) {

140 /* we reached the physical and logical

141 * end of the chunk , hence we’re done */

142 off = max_t(int , curr_chunk ->loff

143 + curr_chunk ->lsize

144 + (( curr_chunk ->loff / curr_chunk ->lsize) * hdr_sz),

145 PTLRPC_MIN_CHUNK_SIZE + hdr_sz);

146 curr_chunk = NULL;

147 len -= tocpy;

148 tocpy = 0;

149 }

150 }

151

152 /* steal dbuf so dmu_buf_rele_array () can’t release

153 * it */

154 dbp[i] = NULL;

155 }

156

157 dmu_buf_rele_array(dbp , numbufs , osd_zerocopy_tag);

158 }

159

160 record_end_io(osd , READ , cfs_time_current () - start ,

161 npages * PAGE_SIZE , npages);

162

163 *nr_chunks = nchunks;

164

165 RETURN(npages);

166

167 err:

168 LASSERT(rc < 0);

169 osd_bufs_put(env , &obj ->oo_dt , lnb - npages , npages);

170 RETURN(rc);

171 }

Listing B.6: The newly introduced function osd bufs get compressed read
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oder sinngemäß aus Veröffentlichungen entnommen wurden, sind als solche kenntlich gemacht.

Ich versichere weiterhin, dass ich die Arbeit vorher nicht in einem anderen Prüfungsverfahren
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