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Abstract

Energy Efficiency is important since the ever rising energy consumption of information
technology becomes increasingly expensive and a large share in earth pollution. Espe-
cially in High Performance Computing power saving mechanisms are not available, yet.
For developing and verifying such mechanisms it would be conducive to know how the
power consumption of a system is related to the utilization of its single components. To
analyze this relationship a profiling environment is needed, which is capable of tracing
the power consumption of the nodes in a computer cluster together with the cluster
components utilization. In this thesis such an environment is developed. We enhance
our own XML-based tracing format HDTrace with a binary extension for efficient sup-
port of statistics traces and adapt the trace writing library. Then two entirely new
libraries are implemented using the extended format, one for power and one for utiliza-
tion tracing. The power consumption of the nodes is measured by an external power
analyzer controlled over the serial interface. Utilization values are provided directly by
the Linux operating system. Afterwards the libraries are evaluated for correctness and
performance. Finally an analysis of two benchmarks concerning their impact to the sys-
tem’s power consumption demonstrates the use of the libraries. In conclusion an useful
environment is now available that will help in further developments of software driven
power saving solutions for computer clusters.

3



Contents

1 Introduction 7

2 Foundations 10
2.1 PIOsim and HDTrace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Competing Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 ZIH: VampirTrace and Vampir using OTF . . . . . . . . . . . . . 12
2.2.2 JSC: KOJAK in SCALASCA . . . . . . . . . . . . . . . . . . . . 13
2.2.3 ParTec: ParaStation . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Development Environment . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Design 15
3.1 Choosing a Tracing Format . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Extending HDTrace Format . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.1 Programs are Trees . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.2 HDTopology - A Structure to Bind Them . . . . . . . . . . . . . 17
3.2.3 HDStats - Statistics Traces . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Summary: The new HDTrace Format . . . . . . . . . . . . . . . . . . . . 19
3.3.1 The Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.2 The Project File . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.3 Trace Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3.4 Statistics Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 The HDTrace Writing C Library API . . . . . . . . . . . . . . . . . . . . 25
3.5 An Environment for Resources Utilization and Power Tracing . . . . . . 29

3.5.1 Resources Utilization Tracing Library API . . . . . . . . . . . . . 30
3.5.2 Power Tracer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Implementation 36
4.1 General Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1.1 A Whiff of Objects . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.1.2 Build System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.1.3 Documentation System . . . . . . . . . . . . . . . . . . . . . . . . 38
4.1.4 Library Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 HDTrace Writing C Library . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2.1 Code Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2.2 Error Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4



Contents

4.2.3 API Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3 Power Tracer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3.1 Serial Port Communication . . . . . . . . . . . . . . . . . . . . . 41
4.3.2 LMG450 Control and Communication . . . . . . . . . . . . . . . 43
4.3.3 Main Power Tracing . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3.4 The external API . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3.5 Error Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4 Resources Utilization Tracing Library . . . . . . . . . . . . . . . . . . . . 49
4.4.1 Getting the System Information . . . . . . . . . . . . . . . . . . . 49
4.4.2 Tracing control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.4.3 Error Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.4.4 API Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5 Evaluation 54
5.1 Visual Inspection for Correctness . . . . . . . . . . . . . . . . . . . . . . 54

5.1.1 PowerTracer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.1.2 Resources Utilization Tracing . . . . . . . . . . . . . . . . . . . . 55

5.2 Performance Impact by Tracing . . . . . . . . . . . . . . . . . . . . . . . 57
5.2.1 Power Tracer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.2.2 Resources Utilization Tracing . . . . . . . . . . . . . . . . . . . . 59

6 Analyzing Existing Benchmarks 62
6.1 SPECpower_ssj2008 Benchmark . . . . . . . . . . . . . . . . . . . . . . . 62

6.1.1 Description of the Benchmark . . . . . . . . . . . . . . . . . . . . 62
6.1.2 Test Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.1.3 Test Results and Interpretation . . . . . . . . . . . . . . . . . . . 66

6.2 HPCC Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.2.1 Description of the Benchmark . . . . . . . . . . . . . . . . . . . . 70
6.2.2 Test Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.2.3 Test Results and Interpretation . . . . . . . . . . . . . . . . . . . 72

7 Summary and Conclusion 75

8 Future Work 76
8.1 Work in Progress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
8.2 Ideas for Enhancing the Libraries . . . . . . . . . . . . . . . . . . . . . . 77
8.3 Interesting Further Investigations . . . . . . . . . . . . . . . . . . . . . . 77
8.4 An Idea for the Farther Future . . . . . . . . . . . . . . . . . . . . . . . 78

A API Documentation of the HDTrace Writing C Library 79
A.1 Module Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

A.1.1 HDTrace Topology . . . . . . . . . . . . . . . . . . . . . . . . . . 79
A.1.2 HDTrace Statistics Writing Library . . . . . . . . . . . . . . . . . 84
A.1.3 HDTrace Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5



Contents

B API Documentation of the Power Tracer and Library 95
B.1 Module Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

B.1.1 Power Tracer Library . . . . . . . . . . . . . . . . . . . . . . . . . 95

C API Documentation of the Resources Utilization Tracing Library 100
C.1 Module Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

C.1.1 Resources Utilization Tracing Library . . . . . . . . . . . . . . . . 100
C.2 Data Structure Documentation . . . . . . . . . . . . . . . . . . . . . . . 105

C.2.1 rutSources_s Struct Reference . . . . . . . . . . . . . . . . . . . . 105

D Sources of the Shell Script verifyRUT 107

Listings 109

List of Figures 110

List of Tables 111

References 112

6



1 Introduction

Today, "Green Thinking" is not only popular in itself, it is popular for very good reasons.
Most parts of the world are already highly engineered and the period until the rest will
follow is just a matter of time. By now all the machines and devices we are using every
day need very high amount of power to run their jobs, power that is mostly produced
in a way causing pollution of several kinds. Beside this, the production, shipping and
disposal causes further pollution.[1]

In the past few years some benchmarks for measuring electrical energy consumption
were developed. However almost all of them are focusing on personal computers,
workstations[2, 3], or single components like the CPU[4]. Even the SPEC1, known
for its benchmark suites for industrial use, started to make a power benchmark called
SPECpower_ssj2008. This one initially focused on single servers while some multi node
support was added lately. More power benchmarks are being developed but not yet
available, like the TCP-Energy2.

But in our days there are not only the personal computers, gaming consoles, mobile
phones and similar devices that we use every day, not only the hidden computer sys-
tems that control traffic signals, street lighting and even coffee machine. There is a
growing number of much bigger computer installations that most people are not aware
of when using services provided by them or products developed with their intensive help.
Searching for a word with Google3 or looking up an article in Wikipedia4 is done by
huge server farms. Developing cars with complex security features available today is
only possible by doing simulations on large computer clusters. Also the daily weather
forecast is based on simulations for which computer clusters are running 24 hours a day,
7 days a week.

These large computer installations need enormous amounts of electrical power. In fact
this is not only a matter of earth pollution, it is also an economical and technical one.
First, the electrical power is expensive. On of the biggest parts of the cost of operation
for computer clusters is the money to be spent for electrical energy. In big installations

1SPEC is the Standard Performance Evaluation Corporation (http://www.spec.org/)
2TCP-Energy by the Transaction Processing Performance Council (http://www.tpc.org/tpc_
energy/default.asp)

3Google Search Engine (http://www.google.com)
4Wikipedia – The Free Encyclopedia (http://www.wikipedia.org)
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it is not only the energy needed to run the computers with CPU, memory, network and
storage themselves. It is also the effort needed for large cooling systems to dissipate the
waste heat. When we take a look at the cost of ownership for such an installation, we
can see, that in spite of the very expensive price for facilities, installation, computers,
cooling and maintenance, the energy costs still are a very big part.[5]
Second, we have already reached a point, where getting more power to one single place
for a computer cluster installation is a real technical problem. The top was reached in
2002 when an own power plant was built to power up the supercomputer Earth Simulator
in Yokohama, Japan.[6]

Due to the effort of long battery life for laptops and other mobile devices, the research
and development of power saving technologies in this area already started more than
ten years ago. The resulting knowledge could be easily transported to normal Desktop
PCs when green thinking came up. Even for servers a limited transportation of known
technology is possible and realized these days. Most energy saving in this area is achieved
by automatically putting the system or at least parts of it into lower power states after
a defined period without activity. By using this relatively simple strategy, only the
hardware support is crucial. The system is slowed down by itself since waking up
components from lower power states on demand can never happen in zero time.

Unfortunately, the situation is entirely different in high performance computing with
computer clusters. In a perfect world, a computer cluster would never run out of work
and every resource would be used all the time. Of course, in this perfect world there
would be no chance to save any power. Even if we are not living in a perfect world, the
ambition with computer clusters is always to have no idling resources at all. No program
can use all resources at all times, in particular it will never use them all concurrently.
Hence, we can presume a power saving capability in the field of cluster computing, too.

As the name implies, in high performance computing the strict focus is on high perfor-
mance. If we use the same mechanisms as with desktop systems meaning that every
node would go to sleep while idling for a short time, this can easily grow from a small
to a very large performance impact. This concept of using the past for making decisions
effecting the future could in worst case do more bad than good. So what we really
need is a crystal ball to look into the future and know when a program will not use a
specific component for a certain amount of time and when it will need it again. With
this knowledge we could perfectly schedule the power states without any performance
impact to the running program.

Of course there is no way to really take a look into the future, but there is someone who
can even know the needed information. It’s the developer of the program. He knows
when the program will perform only calculations not using the network interface, and
he knows when the program will do only communication for collecting data or do only
I/O for check-pointing and so on. Hence, it would be nice to have the developer telling
this information to the system, so it can schedule power saving actions based upon it.

8



1 Introduction

There are several ways this could be done, but all of them need lots of work. First a
new infrastructure must be provided or an existing one must be extended to give the
programmer the possibility of providing the information to the system. Then the system
must be modified to use the information in order to control power saving mechanisms.
Finally, the existing programs must be adapted to use the new infrastructure which
is perhaps the greatest afford. Before starting such an ambitious project, we have to
investigate whether this approach can at least theoretically lead to significant power
saving. To do this, a program is needed that can stress different components of typical
cluster nodes and measure the power consumption at the same time. For verification of
such a program we will need to trace the programs resource usage in conjunction with
the consumed power. Therefore, we need a power benchmark that is capable of making
conclusions about power consumption of single components.

The goal of this thesis is to develop or enhance, respectively, a tracing environment that
meets the requirements mentioned above. The results should be used for a first analysis
and in order to evaluate the usability of existing benchmarks for the described task.

First the development of a concept for the work is needed. Therefore, some foundations
are introduced in chapter 2. Chapter 3 deals with the design of the new environment
as well as the decision to use our own tracing format HDTrace. Important aspects
of the enhancement and extension of the implementation of the HDTrace Writing C
Library and the implementations of the new Resources Utilization Tracing Library and
the Power Tracer are described in chapter 4. After the implementation work is done,
some evaluation is presented in chapter 5. Finally, the new environment is used to
analyze the existing Benchmarks SPECpower and HPCC in chapter 6. At the end of
the thesis, some conclusions are made in chapter 7 and some ideas for future works are
given in the last chapter 8.
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2 Foundations

This chapter describes already existing developments used as foundation for the following
work. Then a short overview of competing approaches is given. Finally a few words about
the development environment are written.

2.1 PIOsim and HDTrace

In our research group for parallel and distributed systems, Julian Kunkel is developing
the PIOsim Cluster Simulator in the scope of his doctor thesis. This is a software
simulator written in Java that simulates a complete computer cluster with focus on
parallel I/O. Its mean purpose is intended to be the simulation of parallel applications
using MPI and MPIIO for analyzing various different communication and I/O schemes.
One of the key ideas for PIOsim is to be able to use traces of real programs as input for
the simulator. With this capability it will be possible to replay the program execution
within the simulator. On one hand this will allow to verify the simulator, on the other
hand hardware characteristics can be changed for instance to get insight how the program
would run on a different network topology. In order to achieve this goal, a new trace
file format along with the corresponding tracing infrastructure had to be created. The
general concept for the new tracing format has already been developed and a Java access
library has been implemented. A first version of a C library for creating traces in the
new format is already implemented, too.

The new tracing format is called HDTrace, where the HD stands for Heidelberg and also
Highly Descriptive. It is completely XML based and therefore well-defined and easy to
extend. Even if it is designed as input format for PIOsim, it can be used as general
purpose tracing format.

There have been various reasons for not using one of the many existing tracing formats,
mainly the insight that they all come with some restrictions that would have made it
unnecessarily complex to use them. A detailed discussion of this decision is not within
the scope of this thesis.
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2 Foundations

The Existing HDTrace Format

The initial draft of HDTrace format is specific to tracing parallel programs using MPI
and replay them in the simulator. For each thread of each process or MPI rank of a
parallel program, respectively, one trace file and one info file is generated locally on the
node the process is running on. The trace file is simply an XML text file. For every
event possible exists an XML element type and each recorded event is represented as one
XML element of this type. The elements can have several attributes containing further
information about the event, for example the mandatory timestamp. Events can be
either single events represented by a single tag or state events having a start and end
tag. Furthermore, there are some special element types to allow complex structures such
as nested and overlapping operations. The info file is used to store structural information
that is not necessarily available at program start time. An example for such information
are MPI data types that could be created dynamically during the program execution.
The info file is later used to merge the traces of the whole program together without the
need of parsing all the trace files which can become very large. The position of the single
trace and info files is given by the naming of the file. A trace file is always named in
the scheme <PROJECT>_<HOSTNAME>_<RANK>_<THREAD>.trc, the respective
info file with the extension .info.

For creating the files there is an MPI wrapper using the PMPI interface provided by
the MPI library. This wrapper is capable of tracing an MPI program by just linking
it before the regular libmpi. To finalize a trace project and prepare it for visualization,
the info files are merged by a script named project-description-merger.py into one project
file called <PROJECT>.proj. This project file can then be loaded with the Sunshot1

viewer.

2.2 Competing Approaches

There are several other groups engaged in tracing parallel programs. Four German
groups working in that field, together started the eeClust project (Energy-Efficient Clus-
ter Computing) in this year. The project is funded under the BMBF2 call "HPC-Software
für skalierbare Parallelrechner" and its goal is to determine relationships between the be-
havior of parallel programs and the energy consumption of their execution on a compute
cluster. Our group is one partner in this project. The others are Dresden University
of Technology (TUD/ZIH), ParTec Cluster Competence Center GmbH, and JSC of
Forschungszentrum Jülich GmbH.

1Sunshot is a viewer for the HDTrace format written in Java by Julian Kunkel. It is a major rewrite
of Jumpshot-4.

2BMBF (Bundesministerium für Bildung und Forschung) is the German Federal Ministry of Education
and Research (http://www.bmbf.de/en/index.php)
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Fig. 2.1: Relevant projects of our eeClust Partners

2.2.1 ZIH: VampirTrace and Vampir using OTF

The Center for Information Services and High Performance Computing (ZIH) in Dresden
is working in the field of HPC tracing for many years. Since 1996 they develop the
commercial visualization software for very large traces called Vampir.

”Vampir is a graphical analysis framework that provides a large set of different chart
representations of event based performance data generated through source code instru-
mentation. These graphical displays, including state diagrams, statistics, and timelines,
can be used by developers to obtain a better understanding of their parallel program’s
inner working and to subsequently optimize it.”[7]

Vampir supports the visualization of several trace formats, amongst others their own
old VTF3 (VampirTraceFormat) and the new OTF, the Open Trace Format. OTF is an
open format developed by the ZIH ”to improve scalability for very large and massively
parallel traces”[8]

The ZIH also develops a toolkit and library for trace creation called VampirTrace[9].
It was originally using its own format VTF3. Now it supports OTF, too. Hence, the
scientists on the ZIH have available a complete environment for creating and visualizing
traces of function calls and performance statistics for large-scale parallel platforms.

At the moment, they are also working at the integration of power consumption data
into their traces. This development is currently independent from ours, but they should
become coordinated in the scope of the eeClust project.

12
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2.2.2 JSC: KOJAK in SCALASCA

At the Jülich Supercomputing Centre (JSC) from 1998 until 2006 the KOJAK project
was running in cooperation with the Innovative Computing Laboratory (ICL) at the
University of Tennessee in Knoxville. ”KOJAK is a performance-analysis tool for par-
allel applications supporting the programming models MPI, OpenMP, SHMEM, and
combinations thereof. Its functionality addresses the entire analysis process including
instrumentation, post-processing of performance data, and result presentation. It is
based on the idea of automatically searching event traces of parallel applications for
execution patterns indicating inefficient behavior. The patterns are classified by cate-
gory and their significance is quantified for every program phase and system resource
involved. The results are made available to the user in a flexible graphical user interface,
where they can be investigated on varying levels of granularity.”[10, 11]

In the meanwhile KOJAK is integrated in SCALASCA developed by the same groups.

”SCALASCA is an open-source toolset that can be used to analyze the performance
behavior of parallel applications and to identify opportunities for optimization. It has
been specifically designed for use on large-scale systems [...], but is also well-suited
for small- and medium-scale HPC platforms.”[12] ”SCALASCA builds on the idea of
searching event traces of parallel applications for execution patterns indicating inefficient
behavior. During the search process, SCALASCA classifies detected pattern instances
by category and quantifies their significance for every program phase and system resource
involved. The results are made available to the user in a flexible graphical user interface,
where they can be investigated on varying levels of granularity.”[13, Overview]

The experience in automatic trace analysis can also be useful for the subject increasing
energy efficiency. As well as different execution pattern indicate inefficient behavior
concerning the performance, they can also indicate inefficient behavior concerning the
power consumption of the system.

2.2.3 ParTec: ParaStation

”ParTec Cluster Competence Center GmbH is a global leader in cluster management
software and support services for High Performance Computing. [...] ParaStationV5
is ParTec’s core software product. [...] The ParaStation software architecture includes
a runtime environment for parallel jobs coupled with an optimized MPI library that
supports a variety of standards-based interconnects. It also includes an extensible mon-
itoring tool, the GridMonitor, which gives administrators a unique insight into all aspect
of a cluster’s state.”[15]
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2.3 Development Environment

All the development in our group is primarily made for the GNU/Linux operation sys-
tem. Even if we are exerted to achieve compatibility with other UNIX like platforms, it
is not confirmed for our software to run on another operating system.

In the PIOsim project, to which this thesis is linked, subversion3 is in use as revision
control system. I personally used the Eclipse IDE4 in combination with Vim5 for the
development within the scope of this thesis.

This document is created using the high-quality typesetting system LATEX with several
additional packages and cooperating software like BibTEX bundled together in the TEX
Live Distribution6.

All the graphics and diagrams are created or edited using Inkscape7 or The GIMP8. The
flow charts are created using the yEd Graph Editor9

3Subversion (SVN) is an open source revision control system (http://subversion.tigris.org/)
4Eclipse is a free IDE supporting several programming languages (http://www.eclipse.org/)
5VImproved is an improved version of the well known vi editor (http://www.vim.org)
6TEX Live a LATEX Distribution by the TEX user groups (http://www.tug.org/texlive/)
7Inkscape is an an Open Source vector graphics editor. (http://www.inkscape.org/)
8The GIMP is the GNU Image Manipulation Program. (http://www.gimp.org/)
9yEd is a freely available powerful graph editor. (http://www.yworks.com/en/index.html)
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3 Design

In this chapter the design of the implementation is described, starting with the decision
for our own appropriate tracing format. This is followed by a discussion of the enhanced
format fitting the new needs. Finally, the design of the two new libraries that build the
key element of the thesis is presented.

3.1 Choosing a Tracing Format

The first step when creating a new profiling environment is to choose a suitable trace
format. Important criteria beside the capabilities of the format itself is the availability
of tools, the usability of the libraries used to write the traces, interoperability issues,
and available know-how.

For obvious reasons we want to achieve best interoperability between all current devel-
opments in our group. Therefore, extending HDTrace format for the needs of this thesis
is the natural choice. In our former trace visualization project PIOviz[16, 17, 18, 19, 20]
we had already added statistics to the traces and learned that this provides additional
insight in many situations. So having support for tracing of statistical values will be a
desirable feature for the new trace format, too. Furthermore the PIOsim program can
be extended later to include statistics values in its simulations.

3.2 Extending HDTrace Format

The final goal is to have an environment that allows developers of MPI programs to give
hints about future usage of resources to enable the operating system to make better
power saving decisions. Moreover, it will be great for evaluation purposes to have traces
of MPI function calls and resources utilization as well as power statistics together in
one trace project. But for the moment, getting resources utilization and power statistics
together is the more important point.
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With the existing HDTrace format, described in section 2.1, it is possible to record
measured resource utilization and power consumption values as events just as if they
were function calls. This has two big disadvantages. First, we would be forced to perform
all tracing from within the same program because there can only be one file with the same
name. There are some other technical limitations as well. Of course these restrictions
could be worked around, but having an own format gives us the great chance to do it
properly. The second disadvantage is the large overhead this approach would produce
in each trace file, unnecessarily. Statistical values are commonly recorded periodically.
Hence, we would write the same XML element over and over having different attribute
values only. Therefore we decided to rework and extend the format and developed some
modifications of the existing format and an extension for good support of statistics
traces.

3.2.1 Programs are Trees

On any modern computer the execution units are organized in a tree structure. When
looking on a single host, we have the host as the root node of the tree. The processes
running on the host are all children of the host and form the next tree level. The actual
execution objects are threads, each one being a child of one process. That is, the threads
present the second and deepest level of the tree. Figure 3.1 depicts this.

Fig. 3.1: Topology tree of a single computer

When transferring this idea to a computer cluster, there is one more tree level, the
cluster itself. The cluster becomes the new root of the tree and the trees of all nodes
become subtrees as shown in figure 3.2 on the next page. A parallel program running
on the cluster is then represented as the cluster’s tree with all subtrees removed that
belong to processes which are not part of the program. The shaded nodes in figure 3.2
shows an example tree of a parallel program running on two nodes.
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Fig. 3.2: Topology tree of a cluster

3.2.2 HDTopology - A Structure to Bind Them

In the old HDTrace format, all traces are assumed to be on the same level of the
tree. This is always the case if we want to trace function calls in a program since each
function call is performed by exactly one thread. For statistics, this assumption does
not necessarily hold. In fact, even in the most canonical cases it does not. When you
think of CPU utilization as the most common statistical value on computers, there is
only one such value for each CPU on a single host, not one for each process or thread.
So a statistics trace recording CPU utilization has to be created once for each cluster
node, not once for each thread as a trace recording function calls. The statistics trace
lives on another level of the described tree than the function call trace does.

To handle this difference conveniently, we introduce a very generic structuring method
to the HDTrace format called HDTopology. The topology of a complete trace project
describes a tree structure where each single trace can be assigned to a tree node. As we
have several singly assigned trace files that build one whole trace project, this structuring
method allows us to describe the associations between the single traces and statistics
traces easily. Each single trace simply needs to carry the information about its location
within the topology.

The root of the topology is defined always to be the project name. The types of the
deeper levels can be freely specified by the user. A topology’s structure is fully specified
by the topology level types. The level type should describe the semantics of the nodes
on the level. As a canonical topology structure we could define (Project, Host, Process,
Thread).

Each trace is assigned to exactly one node of the topology called the trace’s topology
node. Each such topology node has a label that must be unique at the node’s topology
level. A node is well-defined by the unique path that leads from the root of the topology
to this node. The path is the list of labels of each node in the order they are passed
when walking on the edges of the tree to the target node starting from the root node.
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An example for a leaf node in a topology with the canonical structure as defined in the
last paragraph could be (myProject, node01, rank3, thread0).

In old HDTrace format the information that we now refer to as the ”associated topology
node” was given by the file name. Since this is very convenient when looking at the
files of an HDTrace project, it is left mostly unchanged. For that reason one restriction
persists, each topology node can still have only one trace associated. Why this does not
hold for statistics traces is described later.

The topology structure represented by the topology level types is written into the project
file in order to be used as labels in trace visualization.

3.2.3 HDStats - Statistics Traces

The formal characteristic of statistics as we use the term here are

• all events have a common structure,
• events vary only in their data values,
• events commonly occur regularly and mostly periodically.

Our design goals for the extension are

• store data efficiently to save space and write time,
• no limitation of the number of statistics traces per topology node.

Efficient Data Storage In some circumstances the chosen period for the statistics can
be very small. Then the statistics trace has to store lots of entries in a short time. This
can make the trace file very large and is time-consuming to write. To reduce this risk
the data should be stored as efficient as possible. Another positive side-effect will be
that the performance impact of writing the trace will be lower the smaller the trace will
be.

Unlimited Statistics per Topology Node Each statistics trace shall have only one
entry structure. That means, all statistics a user may want to collect into one statistics
trace must be measured by the same program using the same period length. Since this is
an unacceptable restriction it should be possible to have more than one statistics trace
for the same topology node, ideally unlimited many traces. Thus one node can have
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multiple statistics traces associated with different entry structures, period lengths, and
even created by different programs.

We could use the existing event tracing capability to trace statistics, too. However,
remember that each event is recorded as full XML element and that all events of a
statistics trace have exactly the same structure that would be logged with every event.
This would produce lots of meaningless redundant bits and bytes, wasting lots of space
and definitely breaking the first design goal. So the main idea in order to meet the goal
is to define the structure for all entries once and then write only the varying data values
for each entry. For best space and time efficiency the values can then be stored in binary
format. Hence, we need a major extension of the HDTrace format named HDStats.

To meet the second design goal, another structuring method for statistics traces has to
be introduced for the case that more than one statistics trace should become assigned
to the same topology node. Each statistics entry can contain not only one value but
a group of values. For example the CPU utilization and memory usage can always be
logged together into one entry. Thus, each entry structure actually builds a group and
we talk about one statistics file to contain a statistics group. This group can be given
a name which can then be used to distinguish the statistics files associated to the same
topology node from each other.

The HDStats extension shall provide a better format for statistics event tracing and live
beside the already existing format for tracing irregular events. In order to save storage
space as well as time for writing, the structure of the entries shall be defined only once
and the data shall be written in binary format. Since this results in a completely different
file format, we define the new statistics file type with the extension .stat.

A statistics file has a describing header in XML format followed by binary data. For
interpreting the binary data the knowledge of the HDStats format and the information in
the header should be sufficient. The name of the statistics group has to be an additional
part of the filename to avoid naming conflicts. So the filename of a statistics file is built
with the scheme

<PROJECT>_<TOPOLEVEL1>_<TOPOLEVEL2>_..._<GROUPNAME>.stat.

3.3 Summary: The new HDTrace Format

First of all, this is still a work in progress and therefore the HDTrace format definition
described here is just a snapshot, not a final or official version. It is even not complete in
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this regard, that is, the parts described here are only those ones that are important for
this thesis. Some new parallel but independent developments are completely ignored.

An HDTrace project consists of multiple files that are placed in the same directory. The
files are associated with each other in such a manner that they contain traces belonging
together, mostly recorded at the same time in the same system.

3.3.1 The Topology

The topology is an abstraction of how the single trace files belong together. It can
always be drawn as a tree graph. The user has to define the topology structure
by defining the types of the tree levels. The type of the root level (level 0) is always
”Project” and cannot be changed. The type of any other level is an alphanumerical
string with ASCII characters only.

A node of the topology is called topology node. Each such node has a label given
by the user. The label must be unique at the topology level the node resides. Also
the label is an alphanumerical string with ASCII characters only. A topology node is
globally specified by its path. The path is the list of consecutive labels of the nodes to
cross when walking on the tree graph’s edges from the root to the target node. That is,
the first element of a node’s path is always the project name.
A unique identification string of a node, its path string, can be formed by concatenating
the node path’s elements and separating them by underscores.

3.3.2 The Project File

The central file of an HDTrace project is the project file, an XML file named with the
project name and the extension .proj. In the project file, a description of the project
can be given. The whole topology of the project is defined with all the topology nodes
where associated traces exist for in the project. For MPI traces there are informations
stored about used communicators and datatypes. For existing statistics traces within
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the project the used statistics group names are put into the file. In addition, there is a
list of files accessed by MPI applications needed for PIOsim. You can see an example
project file in listing 3.1. A formal definition for this file type will be given later in
another document.

<?xml version="1.0" encoding="UTF-8"?>
<Application name="partdiff-par">
<Description>PDE solver run (0 2 600 2 2 50)</Description>
<Topology>
<Level type="Hostname">
<Level type="Rank">
<Level type="Thread" />

</Level>
</Level>
<Node name="node08">
<Node name="0">
<Node name="0" />

</Node>
<Node name="2">
<Node name="0" />

</Node>
</Node>
<Node name="node09">
<Node name="1">
<Node name="0" />

</Node>
</Node>

</Topology>
<CommunicatorList>
<Communicator name="WORLD">
<Rank global="2" local="2" cid="0" />
<Rank global="1" local="1" cid="0" />
<Rank global="0" local="0" cid="0" />

</Communicator>
<Communicator name="MPI_ICOMM_WORLD">
<Rank global="2" local="2" cid="1" />
<Rank global="1" local="1" cid="1" />
<Rank global="0" local="0" cid="1" />

</Communicator>
</CommunicatorList>
<Datatypes>
<Rank name="2" thread="0">
<NAMED id="0" name="MPI_CHAR" />
<NAMED id="1" name="MPI_DOUBLE" />
<NAMED id="2" name="MPI_BYTE" />

</Rank>
<Rank name="1" thread="0">
<NAMED id="0" name="MPI_CHAR" />
<NAMED id="1" name="MPI_DOUBLE" />
<NAMED id="2" name="MPI_BYTE" />

</Rank>
<Rank name="0" thread="0">
<NAMED id="0" name="MPI_CHAR" />
<NAMED id="1" name="MPI_DOUBLE" />
<NAMED id="2" name="MPI_BYTE" />

</Rank>
</Datatypes>
<ExternalStatistics>
<Energy />
<Utilization />

</ExternalStatistics>
</Application>

Listing 3.1: Example HDTrace project file
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3.3.3 Trace Files

A trace file contains the trace of arbitrary events. It can contain virtually everything
as event that can be represented as valid XML element. There can be any number of
trace files in a trace project but at most one per topology node.

Each trace file is a well formated XML file containing the event trace for one topology
node. Each event is represented by an XML element and has at least the attribute time
representing the start time of this event. There are two event types supported, single
events with only one timestamp and state events with start and end time. Events can
be arbitrarily nested. There are special XML element types to handle that. A shortened
example of a trace file is given in listing 3.2. As for the project file the formal definition
will be given later in another document.

<Program timeAdjustment=’1247806573’>
[...]
<Sendrecv size=’38472’ toRank=’1’ toTag=’42’ fromRank=’1’ fromTag=’43’ cid=’0’ count=’4809’
sendTid=’1’ recvTid=’1’ time=’47.098971’ end=’47.100749’/>
<Recv fromRank=’1’ fromTag=’44’ cid=’0’ time=’47.869175’ end=’47.890586’/>
<Recv fromRank=’2’ fromTag=’44’ cid=’0’ time=’47.890595’ end=’47.942539’/>
<Recv fromRank=’3’ fromTag=’44’ cid=’0’ time=’47.942544’ end=’48.022254’/>
<Recv fromRank=’4’ fromTag=’44’ cid=’0’ time=’48.022262’ end=’48.022268’/>
<Recv fromRank=’5’ fromTag=’44’ cid=’0’ time=’48.022272’ end=’48.022275’/>
<Recv fromRank=’6’ fromTag=’44’ cid=’0’ time=’48.022278’ end=’48.022281’/>
<Recv fromRank=’7’ fromTag=’44’ cid=’0’ time=’48.022284’ end=’48.022286’/>
<Send size=’8’ count=’1’ tid=’1’ toRank=’1’ toTag=’45’ cid=’0’ time=’48.022290’ end=’48.022315’/>
<Send size=’8’ count=’1’ tid=’1’ toRank=’2’ toTag=’45’ cid=’0’ time=’48.022319’ end=’48.022334’/>
<Send size=’8’ count=’1’ tid=’1’ toRank=’3’ toTag=’45’ cid=’0’ time=’48.022338’ end=’48.022351’/>
<Send size=’8’ count=’1’ tid=’1’ toRank=’4’ toTag=’45’ cid=’0’ time=’48.022355’ end=’48.022399’/>
<Send size=’8’ count=’1’ tid=’1’ toRank=’5’ toTag=’45’ cid=’0’ time=’48.022403’ end=’48.022429’/>
<Send size=’8’ count=’1’ tid=’1’ toRank=’6’ toTag=’45’ cid=’0’ time=’48.022433’ end=’48.022447’/>
<Send size=’8’ count=’1’ tid=’1’ toRank=’7’ toTag=’45’ cid=’0’ time=’48.022451’ end=’48.022496’/>
<Recv fromRank=’1’ fromTag=’46’ cid=’0’ time=’48.022503’ end=’48.221360’/>
<Recv fromRank=’2’ fromTag=’46’ cid=’0’ time=’48.221372’ end=’48.419424’/>
<Recv fromRank=’3’ fromTag=’46’ cid=’0’ time=’48.419435’ end=’48.617851’/>
<Recv fromRank=’4’ fromTag=’46’ cid=’0’ time=’48.617861’ end=’48.735424’/>
<Recv fromRank=’5’ fromTag=’46’ cid=’0’ time=’48.735435’ end=’48.932930’/>
<Recv fromRank=’6’ fromTag=’46’ cid=’0’ time=’48.932961’ end=’49.133129’/>
<Recv fromRank=’7’ fromTag=’46’ cid=’0’ time=’49.133140’ end=’49.330113’/>
<Nested>
<Sendrecv size=’0’ toRank=’1’ toTag=’1’ fromRank=’7’ fromTag=’1’ cid=’1’ count=’0’
sendTid=’2’ recvTid=’2’ time=’49.451536’ end=’49.451801’/>
<Sendrecv size=’0’ toRank=’2’ toTag=’1’ fromRank=’6’ fromTag=’1’ cid=’1’ count=’0’
sendTid=’2’ recvTid=’2’ time=’49.451810’ end=’49.451831’/>
<Sendrecv size=’0’ toRank=’4’ toTag=’1’ fromRank=’4’ fromTag=’1’ cid=’1’ count=’0’
sendTid=’2’ recvTid=’2’ time=’49.451835’ end=’49.452391’/>

</Nested>
<Finalize time=’49.451500’ end=’49.455727’/>
</Program>

Listing 3.2: Shorted example HDTrace trace file
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3.3.4 Statistics Files

A statistics file contains only one entry type that arbitrarily repeats many times. It
is meant for tracing events that occur periodically to produce bar plots over the time.
The most common use is to record regularly measured data.

There can be any number of statistics files in a trace project and for each topology
node.

Statistics File Structure

File structure:

1. 5 bytes giving the header length in bytes as decimal ASCII integer number
2. a newline character (’\n’)
3. Header
4. Binary part

Header structure:

1. Start tag: <Statistics>
2. Associated topology node
3. Statistics group definition
4. End tag: </Statistics>

Topology node structure:

1. Start tag: <TopologyNode>
2. Path of the topology node in nested XML elements of type <Label> with the

attribute value containing the name of the path element.
3. End tag: </TopologyNode>

Statistics group definition structure:

1. Start tag: <Group> with the following attributes:
• name containing the name of the group
• timestampDatatype containing the type of the time-stamp (currently al-

ways the string ”EPOCH”)
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• timeAdjustment containing an adjustment value in seconds to add to each
time-stamp as decimal ASCII floating point number

2. Entry values in correct order given as XML elements of type <Value> with the
following attributes:

• name containing the name of the value
• type containing the value type
• unit containing the unit of the value
• grouping containing the grouping tag of the value

3. End tag: </Group>

Value type:

• INT32 32 bit integer in network byte order (big endian)
• INT64 64 bit integer in network byte order (big endian)
• FLOAT 32 bit floating point in network byte order (big endian)
• DOUBLE 64 bit floating point in network byte order (big endian)
• STRING zero-byte terminated string (not yet implemented)

Grouping tag:

The grouping attribute allows the user to specify a tag for each value and by this to
define subgroups of comparable values in the statistics group. These subgroups can
later be used when visualizing the trace project for example to calculate the absolute
minimum of all values with the same tag for better comparison.

Binary part:

The binary part contains the actual entries of the statistics group. Each entry has the
following structure:

1. 4 Bytes of timestamp: full seconds since epoch
2. 4 Bytes of timestamp: full nanoseconds since last full second since epoch
3. values of the entry as specified in the header

At the very beginning of the binary part and after each stopping and restarting of the
trace group, an extra initial timestamp is written for the visualization tool to know at
what time to start the first bar. When the trace group is stopped, the special timestamp
0xFFFF is written to indicate that the next 8 bytes are a new initial time-stamp.
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Statistics File Example

Listing 3.3 shows an example statistics file. In the binary data section each character
represents one byte. I is one byte of the initial timestamp and T is one of the entry
timestamp. The numbers specify the according part of the entry. Linebreaks in the
binary part are for readability only and do not exist in the real file.
00444
<Statistics>
<TopologyNode>
<Label value="node06" />

</TopologyNode>
<Group name="Utilization" timestampDatatype="EPOCH" timeAdjustment="-0000000000.000000000">
<Value name="CPU_TOTAL" type="FLOAT" unit="%" grouping="CPU" />
<Value name="MEM_USED" type="INT64" unit="B" grouping="MEM" />
<Value name="NET_IN" type="INT64" unit="B" grouping="NET" />
<Value name="NET_OUT" type="INT64" unit="B" grouping="NET" />

</Group>
</Statistics>
IIIIIIIIIIIIIIII
TTTTTTTTTTTTTTTT00000000111111111111111122222222222222223333333333333333
TTTTTTTTTTTTTTTT00000000111111111111111122222222222222223333333333333333
TTTTTTTTTTTTTTTT00000000111111111111111122222222222222223333333333333333
TTTTTTTTTTTTTTTT00000000111111111111111122222222222222223333333333333333
...

Listing 3.3: Example HDTrace statistics file

3.4 The HDTrace Writing C Library API

To use the reworked and extended HDTrace format in a convenient manner, the C library
has to be reworked, too. To give the new library a clear structure, we should inherit
the three modules from the format definition: HDTopology, HDTrace and HDStats.
Of course, separately the HDTopology module is useless so it has to be bundled with
each of the other two modules. At the end we will have the libraries libhdTrace and
libhdStats.

We use the function naming scheme presented in figure 3.3 on the following page. The
prefixes for the HDTrace Writing C Library shall be:

hdT_ Main part (topology and tracing)
hdS_ Statistics part

That way, when using the standard tracing, there is no difference between topology and
tracing functions concerning the function prefix. When using the statistics extension,
the user can easily differentiate between extension functions and core functions.
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Function Naming Scheme
The naming of all exported functions of the Libraries is done as suggested by
the Java Code Conventions: ”Methods should be verbs, in mixed case with the
first letter lowercase, with the first letter of each internal word capitalized.”[21,
Section 9 "Naming Conventions"]
Since we do not have classes or name spaces in C, we add a prefix specifying the
library or library part the function belongs to. That avoids naming conflicts
and helps a reader in assigning functions to a library.

Fig. 3.3: Function Naming Scheme

Topology Part

First, some functions are needed to create and destroy a topology and topology node:

• hdT_createTopology creates a new topology. It takes the project name to use
as root level name and the names of the remaining topology levels.

• hdT_destroyTopology destroys an existing topology and frees all memory
used.

• hdT_createTopoNode creates a topology node. It takes the topology object of
the topology the node should be created for and the path to the topology node to
be created.

• hdT_destroyTopoNode destroys a topology node and frees all memory used.

Furthermore, we should provide some functions to get useful informations:

• hdT_getTopoDepth provides the depth of an existing topology.
• hdT_getTopoNodeLevel returns the topology level in which a topology node

lives.
• hdT_getTopoPathString provides the path string of a topology node.
• hdT_getTopoPathLabel returns the label of a node on a given topology node’s

path. It takes the topology node to investigate and the topology level of the desired
node label.

Tracing Part

This part already existed before this thesis and is only slightly modified. Modifications
made are the names of public functions, now adapted to the new naming scheme and
support for the new topology concept.
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Statistics Part

Statistics are structured as so called groups. The values for each statistics group are
recorded in one file in binary format. In the header of the file the group is declared
together with the topology node that the group belongs to. This header is written in
XML format.

First, we need functions to create such a group and defining its structure:

• hdS_createGroup creates a new statistics group. It takes the name of the group
and the topology node the group shall belong to.

• hdS_addValue adds one value to the structure of a not yet committed statistics
group. It takes the group where the value shall be added to, the name, type and
unit of the new value and the optional grouping identifier for the value.

• hdS_commitGroup commits the group meaning it finalizes the group’s structure,
writes the header to the file and prepares it for writing the binary statistics values.

We also need some functions for writing the actual entries to the created and committed
statistics groups:

• hdS_writeEntry writes one completely formatted entry to the group with re-
duced validity checking. It takes the group and the entry to write. The correctness
of the given entry except for its length cannot be checked since it is specified as
binary object. So it is up to the caller to not break the trace format by invalid
entries.

• hdS_writeInt32Value writes an INT32 value to the trace. It takes the group
and the 32 bit integer value. Error checks are performed to avoid breaking the
format.

• hdS_writeInt64Value writes an INT64 value to the trace. It takes the group
and the 64 bit integer value. Error checks are performed to avoid breaking the
format.

• hdS_writeFloatValue writes an FLOAT value to the trace. It takes the group
and the single precision (32 bit) floating point value. Error checks are performed
to avoid breaking the format.

• hdS_writeDoubleValue writes an DOUBLE value to the trace. It takes the
group and the double precision (64 bit) floating point value. Error checks are
performed to avoid breaking the format.

Since we want to be able to do intermittent statistical tracing without creating a new
group each time, we need functions to enable or disable the data recording for a group
and to check its current state:
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• hdS_enableGroup enables the recording in a group. It takes the group to
enable.

• hdS_disableGroup disables the recording in a group. It takes the group to
disable.
When a group is disabled, all calls to the hdS_* for this group should be silently
ignored.

• hdS_isEnabled returns the recording state of a group. It takes the group to
test.

Finally, we need a function for finalizing the group and do the cleanup:

• hdS_finalize finalizes the group, destroys it and frees all memory. It takes the
group to finalize.

Table 3.1 summarizes the API.

hdT_createTopology Create topology.
hdT_destroyTopology Destroy topology.
hdT_createTopoNode Create topology node.
hdT_destroyTopoNode Destroy topology node.
hdT_getTopoDepth Get depth of topology.
hdT_getTopoNodeLevel Get topology level of topology node.
hdT_getTopoPathString Get path string of topology node.
hdT_getTopoPathLabel Get label of topology node (by path).
hdS_createGroup Create statistics group.
hdS_addValue Add value to uncommitted group.
hdS_commitGroup Commit group.
hdS_writeEntry Write complete formated entry to group.
hdS_writeInt32Value Write INT32 value to group.
hdS_writeInt64Value Write INT64 value to group.
hdS_writeFloatValue Write FLOAT value to group.
hdS_writeDoubleValue Write DOUBLE value to group.
hdS_disableGroup Disable group.
hdS_isEnabled Enable group.
hdS_finalize Finalize group.

Tab. 3.1: API of the HDStats Library Module (libhdStats)

28



3 Design

3.5 An Environment for Resources Utilization and
Power Tracing

Now a trace format is specified that has all capabilities that we need for tracing resources
utilization and power consumption, we can design the desired environment. Remem-
ber that our actual goal is to analyze the correlation between the utilization of single
components and the power consumption of the system.

All modern operating systems provide methods for getting the utilization of different
components in real-time. Many utilities like top use this capabilities. So getting this
information into a trace on a per host base should be possible with moderate effort. The
way of our choice is to build a library that can be linked to an arbitrary program making
some function calls to trace the resources utilization on the host the program is running
on. For example such a program could be a benchmark stressing the host’s components.
If this is a parallel program it should ensure by itself to create only one trace per host by
calling the library functions only once per host. The API of the Resources Utilization
Tracing Library is designed in section 3.5.1 on the next page.

Getting a power trace will be harder. A common computer does not have built in power
measuring capabilities, at least not for all components. So first of all, the question
is where and how to measure the power consumption. The finest picture we could
achieve, is to get the real consumption of each single component inside of a host. This
is not feasible since we would need special circuit boards for getting this information for
important components as CPU, memory and network. When we take a closer look at
the problem, it is not even assured, that this method would really give us the desired
results. All the components are working together and the impact they have to each other
is very complex. For example, the power that a common ethernet network interface card
alone needs for sending data is just a portion of the power needed by the system for
sending data. The ethernet card needs the main memory where the data is buffered, it
needs the bus to transfer the data and perhaps it needs the CPU or DMA controller to
control the transfer. So it will be the best to measure the power of each task unit that
is independent concerning its power consumption. The smallest unit that fits this needs
is commonly one host.

Measuring the power of a complete host is relatively easy. We just need a sophisticated
power analyzer which is capable to get the power consumption with high accuracy,
frequency and which is able to deliver them in machine readable format to one of our
hosts that is running the tracing program. Such power analyzers are available (e.g. ZES
ZIMMER LMG450 with four channels used in the tests later) and we can define the
measurement setup as shown in figure 3.4 on the following page.
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Fig. 3.4: Hardware setup for power measurement

Note that the power analyzer measures four nodes but is only connected to one node.
That is, not each host can get its own power consumption and so we cannot have each
host creating its own power trace and cannot create the power tracer as a library simply
linked to a program running on the host. We have to create an extra program that
knows about the power analyzer setup to create the power traces correctly. The Power
Tracer is designed in detail in section 3.5.2 on page 32.

3.5.1 Resources Utilization Tracing Library API

This library shall provide the capability to trace as many utilization values as the system
provides. In the first place there are the important components CPU, main memory,
network interface and hard disk drive. When there are multiple units of one kind,
measuring the utilization of each single unit shall be possible as well as getting the
aggregated utilization for all units of the same kind. The user shall be able to choose
the values included in the trace.

The API should by as simple as possible. First, we need a possibility for the user to
specify the desired resources to trace. So we need some kind of object that contains a
switch for each kind of data the library is able to trace. We call them sources and define
the sources listed in table 3.2 on the following page
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Source Description Unit

CPU_UTIL Aggregated CPU utilization of all CPUs Percent
CPU_UTIL_X CPU utilization of each single CPU Percent
MEM_USED Amount of used Memory Bytes
MEM_FREE Amount of free Memory Bytes
MEM_SHARED Amount of shared Memory Bytes
MEM_BUFFER Amount of buffered Memory Bytes
MEM_CACHED Amount of cached Memory Bytes
NET_IN Aggregated incoming network traffic for all network inter-

faces
Bytes

NET_OUT Aggregated outgoing network traffic for all network inter-
faces

Bytes

NET_IN_EXT Aggregated incoming network traffic for all external net-
work interfaces

Bytes

NET_OUT_EXT Aggregated outgoing network traffic for all external net-
work interfaces

Bytes

NET_IN_X Incoming network traffic for each single network interface Bytes
NET_OUT_X Outgoing network traffic for each single network interface Bytes
HDD_READ Amount of data read from harddisk Bytes
HDD_WRITE Amount of data written to harddisk Bytes

Tab. 3.2: Available sources of the Resources Utilization Tracing Library

We also need functions to create and finalize the trace:

• rut_createTrace creates a utilization trace. It takes the source configuration
to trace.

• rut_finalizeTrace finalizes a utilization trace and frees all memory. It takes
the trace to finalize.

To inherit the capability of intermittent tracing from the statistics library, we need
functions to start and stop tracing:

• rut_startTrace starts the tracing in a utilization trace. It takes the trace.
• rut_stopTrace stops the tracing in a utilization trace. It takes the trace.
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In conclusion, we get the API listed in table 3.3.

rut_createTrace Create trace.
rut_startTrace Start tracing.
rut_stopTrace Stop tracing.
rut_finalizeTrace Finalize trace.

Tab. 3.3: API of the Resources Utilization Tracing Library (libRUT)

3.5.2 Power Tracer

As described at the beginning of section 3.5, for tracing the power consumption it is
insufficient to provide just a library as we do for utilization tracing. We need a program
that knows about the setup, which channel of the power analyzer is connected to which
node’s power supply (see figure 3.4 on page 30).

Nevertheless, it is desirable to be able to use the power tracing functionality from other
programs than those provided here, too. For example when integrating power tracing
into the MPI wrapper for automatic generation of MPI traces mentioned in the last
paragraph of section 2.1, this could be needed1. Hence, putting all the core power
tracing functionality in a library and implementing the actual Power Tracer program as
a frontend using this library is a good choice. We distinguish between the Power Tracer
Library (libPT) and the Power Tracer.

Configuration

Since the configuration of the library can be very complex, realizing it with many func-
tion calls can be very inconvenient. Furthermore, for each program using the library
directly it would be necessary to either build a complex configuration system or to re-
compile the program for each change in the hardware setup. So the best way to handle
the configuration is a well-defined configuration file, passed to and read by the library
itself.

The configuration file has to contain the general hardware setup of the power analyzer
and all traces to create with all relevant information. Therefore the file is divided into
sections, one for the general setup and one for each trace to create.

1In fact, this work is already done in the meanwhile and works great.
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In the general section we need the following values:

• device specifying the type of the power analyzer in use.
• port specifying where the power analyzer is connected.
• cycle specifying the interval length for the tracing.
• project specifying the project name.
• topology specifying the topology for the project.

In each trace section we need the following values:

• type specifying the type of the trace.
• node specifying the node to associate with the trace.
• channel specifying the channel of the power analyzer to use for the trace.
• values specifying which values to trace

Instead of a complex formal definition, the self explaining example in listing 3.4 is given
with some comments following.

[General]
2 device=LMG450

port=node06:/dev/ttyUSB0
4 cycle=100

project=MeinProjekt
6 topology=Cluster_Host_Process_Thread

8 [Trace]
type=HDSTATS

10 node=pvs_node06
channel=1

12 values=Utrms,Itrms,P

14 [Trace]
type=HDSTATS

16 node=pvs_node07
channel=2

18 values=Utrms,Itrms,P

Listing 3.4: Example configuration file for the Power Tracer Library

The value of port in line 3 has the format NODE:DEVICE. NODE is the node which has
the power analyzer connected via the RS-232 port. DEVICE is the name of the serial
device file to use.

33



3 Design

The value of topology in line 6 is built using the topology level types concatenated
with underscores in the same way as the topology node path string is created.

The topology node in line 10 is given as the topology node path string and has to match
the topology defined. Of course, as in the example, the topology can have more levels
than the node uses. This is necessary if the traces should be part of a HDTrace project
with a larger topology.

values (line 12) is a comma separated list of strings, defining the values to trace. The
strings can be specific to the used power analyzer.

In this concept for each power analyzer in the system a separate configuration file has
to be created and one instance of the Power Tracer or Power Tracer Library is to be
started. There are already ideas for another concept more suited to daily use in a
computer cluster (compare chapter 8.2). But for initial studies this simple approach
should be sufficient.

Library API

With all configuration put into the configuration file, the API of the Power Tracer
Library can be small and very similar to the API of the Resources Utilization Tracing
Library. That’s nice because it make things easier for the user.

We need functions to create and finalize the trace:

• pt_createTrace creates a power trace. It takes the name of the configuration
file.

• pt_finalizeTrace finalizes a power trace and frees all memory. It takes the
trace to finalize.

At this point we also want to keep the capability of intermittent tracing provided by
the statistics library. Thus we need the functions to start and stop tracing:

• pt_startTrace starts the tracing in a power trace. It takes the trace.
• pt_stopTrace stops the tracing in a power trace. It takes the trace.
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We define one additional getter for the name of the host the power analyzer is connected
to. This function is needed by parallel programs to decide on which host respectively in
which process to call the power tracing functions:

• pt_getHostname provides the name of the host connected to the power ana-
lyzer’s data port. This information is read by the library from the configuration
file.

In conclusion, we get the API listed in table 3.4.

pt_createTrace Create a power trace object.
pt_getHostname Return the host with the measuring device connected.
pt_startTracing Start the power tracing.
pt_stopTracing Stop the power tracing.
pt_finalizeTrace Finalize and free a power trace object.

Tab. 3.4: API of the Power Tracer Library (libPT)

Power Tracer Frontend

The actual Power Tracer is a program called pt taking at least the configuration file as
parameter. It uses the Power Tracer Library to do the power tracing. The program
should run non-interactively and use signals for correct termination so it is possible to
run it as a daemon in the background if desired by the user.

If pt.cfg is the name of the configuration file, the program call syntax is:

./pt -c pt.cfg

We now have specified the concepts for the enhanced HDTrace format as an efficient
tracing format for statistics traces and the library to write them. Furthermore two other
libraries are designed, both using the new tracing statistics traces for different things.
One of them records the power consumed by hosts using data from an externally connected
power analyzer. The other one traces the utilization of various resources inside the host.
Combined we have the concept for an environment to trace resource utilization and
power consumption of a computer system together and so be able to identify relationships
between them. Now the implementation of the three libraries is pending.
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This chapter describes the implementation of the HDTrace Writing C Library, the Per-
formance Tracing Library and the Power Tracer. Here, only important and complex
issues of the implementation are discussed. The complete documentation of the APIs
can be found in the appendix and in detail description of the implementation are given
in the source code documentations.

4.1 General Concepts

4.1.1 A Whiff of Objects

The programming language C which we use here for all implementations does not na-
tively provide concepts like objects. But if we consider an object just as a set of data,
it can be easily represented in C by the language’s structure construct. Here, each time
when referring to objects, in fact a set of data stored in a C structure is meant. For
external usage the real nature of the object is irrelevant, the structure definition is al-
ways hidden by a typedef for convenience. Actually, an object pointer always means a
pointer to a type, defined to hide the underlying structure with the object’s data.

struct myObject_s {
int counter;
struct myObject_s *self;

};

typedef struct myObject_s myObject;

Listing 4.1: Example object definition of myObject

Mostly the structure is declared together with the typedef in the public header file but
defined in an internal header file.
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4.1.2 Build System

As it is widely used in the Linux world and beyond, well known and very flexible, we are
using GNU Make as build system. For preparing the Makefiles we decided to use the
GNU Autotools Suite[22] for all our C libraries, the tools autoconf, automake
and libtool in particular. Their handling is not very intuitive at the first look, but
with some time spent to learn and understand the concepts behind, they are mighty
helpers especially concerning portability and can do a lot of work for the developer.

autoconf[23] is the first tool to use. It creates the well known configure script that can
later be used to check a system for various dependencies before compiling the software.
As input it takes the file configure.ac containing macros that are translated into shell
script tests for the final configure script. configure later uses prepared files named Make-
file.in in each directory to create the Makefile files used by make to build the sources.

automake[24] prepares the Makefile.in files in all directories. It takes its input from
Makefile.am files that have to be prepared by hand in each build directory. Once you
have understood how such a file is created it is much easier than writing a Makefile
by hand. An example Makefile.am sufficient for a single binary program is given in
listing 4.2.

bin_PROGRAMS = example

example_SOURCES = example.c pt.c tracing.c trace.c conf.c
example_CFLAGS = -I$(INC_DIR) $(HDTWLIB_CFLAGS)
example_LDADD = $(HDTWLIB_LDADD)
example_LDFLAGS = $(HDTWLIB_LDFLAGS) $(HDTWLIB_LIBS) -lpthread

Listing 4.2: Example for a complete Makefile.am for a single binary program

libtool[25] is a great helper for creating libraries. It is fully integrated into Automake
and can do all the wired library packing tasks and can even build dynamical libraries for
you. However, one issue with libtool is that when building dynamical libraries and
executables that use these libraries, the built executables are replaced by wrapper scripts
that do all things needed to load libraries dynamically from non standard locations
(setting LD_LIBRARY_PATH and so on). This might by a nice idea in general, but uses
to confuse for example the Eclipse IDE. By only building static libraries this can easily
be avoided.
Please see an example Makefile.am for a library using libtool in listing 4.3

lib_LTLIBRARIES = libexp.la

libexp_la_SOURCES = exp.c tracing.c trace.c conf.c
libexp_la_CFLAGS = -I$(INC_DIR) $(HDTWLIB_CFLAGS)

Listing 4.3: Example for a complete Makefile.am for a library using libtool
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4.1.3 Documentation System

Documentation is a very important part of programming. First of all, it helps you and
others to understand the code better and faster and makes maintenance and extension
of existing code much easier or even possible at all. Furthermore, it helps yourself
to avoid conceptional errors while writing the code. During writing documentation
you automatically reflect about what exactly you want the code to do and so identify
conceptional entrapment in a time where changes are not yet very costly.

With doxygen[26] there exists a documentation system that can be used for source
code documentation and general documentation at once. Doxygen is able to extract
specially formated comments from the source code files and generate nicely formated
documentation in various formats. Thus, producing API documentation is much easier
than writing it by hand and even user documentation can be embedded directly into
the source files and does not have to be maintained separately.

Doxygen uses a configuration file for setting up the output format and various output
parameters that change the appearance of the generated documents. In addition, user
specified macros can be defined in that file. Different styles of special comments can
be used in the source code to specify documentation to be used by Doxygen. The style
chosen is very similar to Javadoc1, you can see an example in listing 4.4. All possible
styles and tags can be found in the Doxygen Manual[27].

/**
* Finalize and free a power trace

*
* @param trace Power trace object

*
* @return Error state

*
* @retval PT_SUCCESS Success

* @retval PT_EDEVICE Problem during communication with device

* @retval PT_EMEMORY Out of memory

*/
int pt_finalizeTrace(PowerTrace *trace) {
[...]
}

Listing 4.4: Example for a complete Makefile.am for a library using libtool

1Javadoc Tool Homepage: http://java.sun.com/j2se/javadoc/
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4.1.4 Library Tests

In order to test the correctness of the implementation, some tests are written that check
at least the correct usage of all public functions. Testing is one of the best methods to
avoid mistakes and helps a lot in debugging, too.

There is at least one test function for each function of the public API. The tests have
access to the internal API so they can do checks that are not possible without. Especially,
they can access the object structures directly since they know their constitution by
importing the internal headers containing the structure definitions.

The sources of all tests can always be found in the tests subdirectory. Testing is fully
integrated into the build system with the make target check.

4.2 HDTrace Writing C Library

4.2.1 Code Structure

The library can be divided into three parts, topology, tracing, and statistics. The
functions of each part are declared in one header file:

Topology part hdTopology.h
Tracing part hdTrace.h
Statistics part hdStats.h

The topology part is always needed, while the hdTrace and hdStats parts can be used
each alone or both together. Consequently, two library archives are built, one for the
tracing part (libhdTrace) and one for the statistics part (libhdStats), both including the
topology objects files. For those programs using all of the HDTrace parts a complete
library archive containing every part is provided as libhdTracing.

The error handling is declared globally, so we do not need to implement it multiple
times in the different parts. In hdError.h all errno values are defined together with the
hdT_strerror function and all the error strings. Of course, the error handling is
included in all library archives.
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4.2.2 Error Handling

In this library the errno concept is used for error handling. This is the same as in system
libraries. Each public function needs to have one return state, only, indicating an error.
The actual kind of error is given by the value of the thread global variable errno.
This variable is provided by the system header errno.h. This error reporting concept is
chosen for the HDTrace Writing C Library since we often have to pass object pointers
back to the user calling a library function and this is more convenient by using return
values than by adding an output parameter to each function’s parameter list. For such
functions returning a pointer, null is used as error indicator, for functions returning
an integer value, the value -1 is used.

For each valid errno value that could be set by a library function a macro is defined
for convenient error testing. Similar to the known system function strerror there is
a function hdT_strerror to provide an string describing the error to the user.

4.2.3 API Definition

The API functions are already described in the design section 3.4 “The HDTrace Writing
C Library API” on page 25. You can find the exact definition of the function signatures
in the API documentation of the library in appendix A “API Documentation of the
HDTrace Writing C Library” on page 79.

4.3 Power Tracer

The Power Tracer is a program as well as a library. Actually, the program uses the
library and can therefore be seen as frontend providing the libraries function directly
at the command line interface. It has additional access to few internal functions to be
able to partially override parameters read from the configuration file by the library with
command line arguments. The library is using the HDStats format to record power
measurements taken from a power analyzer. For this thesis, a ZES ZIMMER LMG450
connected to the RS-232 serial port is used as power analyzer. Currently this device and
connector are the only hardware supported by the library. To be prepared for the future,
all device specific logic as well as the connector specific logic is individually encapsulated
to make later modularization for support of other devices and connector types easy.
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The library is structured in four parts:

• Serial Port Communication providing an
internal programming interface

• LMG Control and Communication uses
the internal Serial Port Communication
Interface and proves another internal
programming interface

• Main Power Tracing uses the two in-
ternal interfaces and proves the internal
Power Trace Control Interface

• The actual public API uses the Power
Trace Control Interface

Fig. 4.1: Structure of the Power Trac-
ing Library Implementation

4.3.1 Serial Port Communication

Our power analyzer is connected to the RS-232 serial interface of the host running the
power tracer. With the TERMIOS API[28], the standard C library comes with support
for programming serial terminals, but it is still a low level interface. The serial port
can be configured in many ways and it took some time to figure out a working setup to
exchange messages with the power analyzer.

First the port of the power analyzer has to be configured with the correct parameters.
The values used for the LMG450 are:

ComA Custom
ComA 8N1
Baudrate 57600
EOS <lf>
Echo Off
Protocol RTS/CTS

In the absence of a real hardware RS-232 serial interface on the development computer,
an USB to RS-232 adapter is used. The Linux kernel (2.6.26) handles that adapter
connected to an USB port like a standard RS-232, so this should make no difference
except the name of the device file which is /dev/ttyUSB0.
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The code for configuring the serial port on the host side is shown in listing 4.5. Please
read the comments for the description of the single instructions.

Listing 4.5: Code for setting up the serial port (w/o error handling)
/*
* Get the current options for the port...

*/
ret = tcgetattr(fd, &options);

/*
* Set input flags

*
* IGNPAR Ignore framing errors and parity errors.

* ICRNL Translate carriage return to newline on input

*
* Disable all software flow control (IXON, IXOFF, IXANY)

*/
options.c_iflag = ( IGNPAR | ICRNL );
options.c_iflag &= ~( IXON | IXOFF | IXANY);

/*
* Set output flags

*
* OPOST Enable implementation-defined output processing.

*/
options.c_oflag = ( OPOST );

/*
* Enable the receiver and set local mode...

*/
options.c_cflag = (CLOCAL | CREAD);

/*
* Set data encoding to 8N1

*/
options.c_cflag &= ~CSIZE;
options.c_cflag |= CS8;
options.c_cflag &= ~PARENB;
options.c_cflag &= ~CSTOPB;

/*
* Enable hardware flow control

*/
#ifdef CNEW_RTSCTS

options.c_cflag |= CNEW_RTSCTS;
#else
#ifdef CRTSCTS

options.c_cflag |= CRTSCTS;
#endif
#endif
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/*
* Set to raw input

*/
options.c_lflag = 0;
options.c_lflag &= ~(ICANON | ECHO | ECHOE | ISIG);

/*
* Set the baud rates

*/
ret = cfsetispeed(&options, speed);
ret = cfsetospeed(&options, speed);

/*
* Set the new options for the port...

*/
ret = tcsetattr(fd, TCSANOW, &options);

}

After this setup, it is possible to read/write bytes from/to the serial port using the
standard POSIX read/write functions. Nevertheless, the calls to the POSIX functions
are encapsulated in own functions so we have a complete internal API to access the serial
port providing the functions listed in table 4.1. You can find a detailed description of
the functions in the Doxygen generated development documentation or in the source
code itself.

serial_openPort() Open serial port.
serial_setupPort() Setup serial port.
serial_resetPort() Reset the port. Discard all buffers.
serial_sendMessage() Send a Message.
serial_sendBreak() Send a BREAK.
serial_readBytes() Read the next n bytes using select with timeout.
serial_closePort() Close serial port.

Tab. 4.1: Internal Serial Port Communication Interface of the Power Tracer Library

4.3.2 LMG450 Control and Communication

The LMG450 supports full control over the serial interface using simple ASCII messages.
The encoding of the messages is specified by the configured serial protocol. Additionally,
the protocol specifies the character used to terminate a string, the EOS (=end of string)
symbol. In our case <lf> is configured as EOS symbol which is the linefeed character
’\n’ used as the default end-of-line symbol in Unix.
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The complete command set of the device can be found in the ZES ZIMMER Program-
mer’s Guide[29]. Actually, one can switch between two command sets or languages that
the device understands. The first one is the SCPI2. Since these commands are compar-
atively long, the ZES ZIMMER team defined an alternative language called SHORT.
”The main advantage of this SHORT language is that the commands are usually just
4 bytes long. So it is very fast to parse this commands and the execution is much
faster.”[29, sec. 2.2.7] Excepting the command for switching to SHORT language the
Power Tracer Library uses only SHORT commands.

Since we need only a small subset of the functionality provided by the LMG device, we
don’t need many of the commands, too. All device commands used in the library are
listed with a short description in table 4.2.

:SYSTem:LANGuage SHORT Set device to accept SHORT language.

*CLS Reset the event register and clear the error queue.

*RST Reset measuring device

*IDN? Make the device send its ID string
FRMT ASCII Set output format to ASCII mode
FRMT PACKED Set output format to binary mode
CYCL %f Define the measuring cycle length
INIM Forces the instrument to always copy all measuring

data into the interface buffer at the end of a cycle.
UTRMS?;ITRMS?;P? Make the device sending Voltage, Currency and

Power of all channels
ACTN;%s Define the action script for the continous mode
CONT ON Start continues mode
CONT OFF Stop continues mode
ERRALL? Make the device send all errors in its buffer
GTL Go to local control mode (activates control with the

buttons at the device)

Tab. 4.2: Used commands to control the LMG450

For the already mentioned modularization, all LMG specific commands are hidden be-
hind another set of functions, the internal LMG Control and Communication Interface.
These functions are listed in table 4.3.

2SCPI are the Standard Commands for Programmable Instruments specified by SCPI Consortium
(http://www.scpiconsortium.org/)
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LMG_reset() Resets everything in LMG.
LMG_setup() Setup the LMG.
LMG_getIdentity() Get identity string from LMG.
LMG_programAction() Program the LMG action script for continues

mode.
LMG_startContinuesMode() Start the continues mode.
LMG_stopContinuesMode() Read a message in text (ASCII) format.
LMG_readTextMessage() Read a message in text (ASCII) format.
LMG_readBinaryMessage() Read a message in binary format.
LMG_getAllErrors() Get all errors from LMG.
LMG_close() Close connection to LMG.

Tab. 4.3: LMG450 Control and Communication Interface Functions

4.3.3 Main Power Tracing

The library starts its own thread to run the tracing in the background. The internal
Power Trace Control Interface is actually a couple of switches and a conditional variable
protected by a mutex as you can see in listing 4.6

typedef struct {
int started : 1;
int terminate : 1;
pthread_cond_t cond;
pthread_mutex_t mutex;

} threadControlStruct;

Listing 4.6: Internal Power Trace Control Interface for controlling the tracing thread of the
library. This interface is used by the API functions.

Let control be our instance of threadControlStruct. The tracing thread runs in
a loop waiting for incoming measurement data at the serial port by using select and
checking the conditional variable control.cond indicating new control instructions
given by one of the API functions. When data arrives a new trace entry is created and
written using the HDStats API. Control instructions are handled as soon as possible,
that is, immediately if the loop is not running and at the beginning of the next loop if
it is currently running.

The control of the loop is the most complex but also one of the most important parts
of the Power Tracer. Its control flow is shown in figure 4.2 on the following page. The
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Fig. 4.2: Controlflow of the Power Tracing Loop
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Fig. 4.3: Controlflow of the Power Tracing Loop with different paths highlighted
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flow paths of some important cases are highlighted in figure 4.3 on the previous page:
4.3(a) shows a normal tracing loop when tracing is started. This is the consecutive
flow for control.started set. 4.3(b) shows the flow that terminates the loop when
control.terminate becomes set. 4.3(c) shows how the tracing is stopped when
control.started becomes unset. 4.3(d) illustrates how the tracing is started if
control.started becomes set again.

4.3.4 The external API

In the design section (3.5.2) we have already specified the API of the Power Tracer
Library (table 3.4). The user documentation with exact definition of the function sig-
natures can be found in appendix B “API Documentation of the Power Tracer and
Library” on page 95. The most detailed documentation also including internal func-
tions and data structures is the Doxygen generated development documentation coming
with the sources and the commented source code itself.

4.3.5 Error Handling

The error handling concept of the Power Tracer Library uses integer return values indi-
cating the occurrence and kind of an error. In general, error values are negative integers.
For each error there is a preprocessor macro defined to the integer return value of the
error in pt.h. In the API documentation the names of all macros for errors that a
function can return are given. A list of all errors reported with the return values, the
corresponding macro names, and a short description is presented in table 4.4 on the
next page.

The library can produce lots of debugging messages. They
are structured into four levels shown in the table at the right.
Which messages are printed out can be controlled using the en-
vironment variable PT_VERBOSITY. A message is only printed
if the verbosity is greater or equal to its level.

Level Value

DEBUG 3
INFO 2
WARN 1
ERROR 0
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Macro Value Description

PT_SUCCESS 0 No error
PT_ESYNTAX -1 Call syntax error (only for frontend).
PT_ECONFNOTFOUND -2 Configuration file could not be found.
PT_ECONFINVALID -3 Configuration read from file is invalid.
PT_EWRONGHOST -4 Configured hostname does not match actual host-

name.
PT_ENOTRACES -5 No traces found in configuration.
PT_EMEMORY -6 Out of memory.
PT_EHDLIB -7 Error in HDTrace library.
PT_EDEVICE -8 Problem during communication with measurement

device.
PT_ETHREAD -9 Cannot create tracing thread.

Tab. 4.4: Errors reported by the Power Tracer Library

4.4 Resources Utilization Tracing Library

The Resources Utilization Tracing Library is for recording consecutively various statisti-
cal system information as CPU, Memory, Network, and Harddisk utilization in statistics
traces using the HDStats format. Those can then be analyzed together with other traces
of for example function calls to gain a deeper look into what happens inside the system.

4.4.1 Getting the System Information

In order to trace the desired information we first have to acquire them. The Linux
kernel provides all of them, mostly exported by the kernel as virtual text files in the
proc pseudo file system. Instead of parsing the informations from these files, it would
be better to use an existing library doing this for us. Beside the saved work this would
have the advantage that we don’t have to care about possible changes of the form the
data is provided by future kernels or perhaps on different systems. Surprisingly, there
are not many such libraries, but there exists one that largely fits our requirements. It is
called Libgtop[30] and is part of the GNOME project3. Libgtop uses Glib[31], a library
designed to make platform independent development in C more comfortable and also

3GNOME: The Free Software Desktop Project (http://www.gnome.org/)
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part of the GNOME project. For consistency, the Glib functions and concepts are used
for the whole RUT library. The library versions used during development are Glib 2.16.6
and Libgtop 2.22.3.

LibGtop provides some structures for different system components. By using access
functions the user can fill these structures with the current values. Some of them contain
absolute values, as for example the current memory used, but most of them are only
counters and leave it up to the user to build differences if the value for just an interval
is needed. For example, the network traffic is just counted in bytes since the interface
came up.

CPU Utilization

For each CPU in the system Libgtop provides the time the CPU is idle since the last
system start in jiffies. A jiffy is a system dependent small time unit which is normally
1/100th of a second. Fortunately the actual length of a jiffy does not matter, since we
want to trace the CPU utilization in percent.

We calculate the CPU utilization in the time interval ]ti−1, ti] with the following formula
where xidle(ti) is the value of the idle counter in jiffies for the CPU at time ti and xtotal(ti)
is the total number of jiffies since the system start at time ti. Libgtop provides xtotal(ti),
too.

uCPU(]ti−1, ti]) = 1− xCPU(ti)− xCPU(ti−1)
xtotal(ti)− xtotal(ti−1)

uCPU(]ti−1, ti]) is the fraction of the time interval ]ti−1, ti] the CPU is not idle, also called
utilization. Using that formula for each single CPU and the CPUs aggregated we can
record all desired CPU utilization values.

There is a weakness with this concept, when one of the counters overflow in ]ti−1, ti] we
will get a wrong value for uCPU(]ti−1, ti]). The counters are provided by Libgtop in 64
bit unsigned integers. But even if we assume, that the system itself only provide the
values in 32 bit unsigned integers, the system can run about 500 days before the total
counter overflows the first time. Beside the total counter, we use one idle counter for
each CPU and the aggregated CPU idle counter. The last-mentioned is calculated by
Libgtop and should therefore have true 64 bit. Hence, we use #CPUs counters that
could overflow between the definite overflows of the total counter about every 500 days.
Performing an overflow protection within each iteration in order to avoid one wrong
value occurring that rarely would be disproportional.

Another problem arises, if holding xtotal(ti) = xtotal(ti−1). This can happen, if the time
period ti − ti−1 is shorter than one jiffy. Here we have a similar situation as above,
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to eliminate this problem would cost time in each iteration but we would only benefit
if the time period is configured that short that already no meaningful values can be
expected. Since the length of one jiffy is usually ≤ 10ms [32] we define that as the
shortest supported period time for the Resource Utilization Tracing Library.

Memory Utilization

The memory utilization is provided by Libgtop in bytes currently used, free, cached,
buffered, shared. So we can just write them into the trace as they are. The only thing
the user have to keep in mind is that each tracing entry is just a snapshot, ignoring all
changes between the reading points.

Network Utilization

Network utilization again is provided very similar to the CPU idle counting. Here, the
bytes transfered in and out are counted separately . We can get only values for each
single network interface, no aggregated values are provided, so we have to calculate them
by ourself. For usability considerations we calculate not only the aggregated in and out
traffic for all network interfaces but also those for the external interfaces only, that is,
without local loopback traffic.

The calculation is simpler than for CPU tracing since we want to trace the data in
the provided unit directly. For the calculation of network utilization we come to the
following formula:

inNIC(]ti−1, ti]) = inNIC(ti)− inNIC(ti−1)
outNIC(]ti−1, ti]) = outNIC(ti)− outNIC(ti−1)

Harddisk Utilization

The support of hard disk drive read/write amount in the Libgtop is based on mount
points. You can get the read and write data only for a mount point, not for a physical
device. During development, it turned out to be very complicated to get all mount
points and especially to decide which of them are from local disks and which are for
example NFS mounts that should be excluded when tracing hard disk drives. There-
fore, the user has to configure the mount point to trace using the environment variable
RUT_HDD_MOUNTPOINT. In most cases this should not be a restriction since the user
knows where the data, he is interested in, are read from or written to.
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The values are provided in the same fashion as for the network. Consequently, the
calculation is entirely the same:

readHDD(]ti−1, ti]) = readHDD(ti)− readHDD(ti−1)
writeHDD(]ti−1, ti]) = writeHDD(ti)− writeHDD(ti−1)

Efficiency

Of course the library asks only these values that are needed to perform the tracing as
configured. For example if the user has chosen not to trace any network statistics at all,
no network values are requested by the utilization library from Libgtop.

4.4.2 Tracing control

The tracing control is done exactly in the same way as in the Power Tracer (see sec-
tion 4.3.3 “Main Power Tracing” on page 45). The API functions start an own tracing
thread and control it using two switches started and terminate protected by a
conditional variable and a mutex. The difference is the time base of the tracing loop.
In the Power Tracer, the power analyzer is programmed to send data periodically in fix
intervals and so only a select is called to wait for the next data arriving.

/* create timer */
gulong currentTime, waitTime;
GTimer *timer = g_timer_new();

[...] /* thread control variables */

while(1)
{
[...] /* thread control */

/* wait for next multiple of interval time */
currentTime = (gulong) (1000.0 * g_timer_elapsed(timer, NULL));

waitTime = (gulong) tracingData->interval
- (currentTime % (gulong) tracingData->interval);

g_usleep (waitTime * 1000);

/* do tracing step */
doTracingStep(tracingData);

}

/* free timer */
g_timer_destroy(timer);

Listing 4.7: Timer for controlling the tracing intervals in RUT library
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For the resource tracing we rather following a polling strategy and have to take care
about the intervals ourself. Fortunately, the Glib provides a nice timer interface. At the
beginning of each step, the wait time until the next tracing step time is calculated. The
thread then waits until this time has passed before going on with the operation. Tracing
step times are all multiples of the defined time interval since the timer initialization,
performed only once before entering the loop. Listing 4.7 on the previous page contains
a code snippet of the timer controlled loop.

4.4.3 Error Handling

The error handling concept is exactly the same as of the Power Tracer Library (see
section 4.3.5 on page 48). The errors reported by the Resources Utilization Tracing
Library are listed in table 4.5. The environment variable to control the verbosity is
RUT_VERBOSITY.

Macro Value Description

RUT_SUCCESS 0 No error
RUT_EMEMORY -1 Out of memory.
RUT_EHDLIB -2 Error in HDTrace library.
RUT_ETHREAD -3 Cannot create tracing thread.

Tab. 4.5: Errors reported by the Resources Utilization Tracing Library

4.4.4 API Definition

The API functions have already been described in the design section 3.5.1 “Resources
Utilization Tracing Library API” on page 30. You can find the exact definition of
the function signatures in the API documentation of the library in appendix C “API
Documentation of the Resources Utilization Tracing Library” on page 100. Again, the
most detailed documentation also including internal functions and data structures is
the Doxygen generated development documentation coming with the sources and the
commented source code itself.

The implementation work is done an we now have a working environment for tracing
power and resource utilization statistics. Next the libraries are evaluated to show the
efficiency of the implementations.
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In this chapter the library implementation is evaluated. Several measurements are made
to analyze the correctness and efficiency of the Power Tracer Library, the Resources
Utilization Tracing Library, and implicitly the HDStats writing library.

5.1 Visual Inspection for Correctness

Now that we have a complete implementation of the environment for tracing power
consumption and resources utilization, it has to be verified that the entire environment
is working correctly. We will not formally proof that but do a visual inspection.

5.1.1 PowerTracer

Fig. 5.1: Display screenshot of the ZES
ZIMMER LMG450 [33]

Even a visual inspection of the traces created
by the power tracer is not easy to do. First
of all we have to rely on the correctness of the
data sent by the correctly programmed power
analyzer. Fortunately there is a display at the
front of the power analyzer (see figure 5.1 on
the right) which can show the currently mea-
sured values independently from what happens
on the serial interface. That means it is pos-
sible to just print the data received from the
device via the serial connection to the console
and manually compare them with the values
displayed at the power analyzer. Several such
tests revealed that the values are as expected.
Hence, we can assume the programming of the
device is done correctly.
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Fig. 5.2: Delay of the power trace

At first glance, when looking at the traces, you will see that the power consumption
is very dependent on the CPU utilization. When taking a closer look, you will realize
that the power consumption is often a bit delayed compared to the CPU utilization. In
other words, the power graph lags slightly behind the CPU graph. This phenomenon is
pointed up by the drawn lines in figure 5.2. The time of the delay is fluctuating from
several milliseconds to half a second. One reason might be the transfer time of the data
from the power analyzer to the Power Tracer. Another reason could be the internal
buffer of the power analyzer. The data sent are those from the last measuring cycle, not
from the current one. Furthermore, there could be some technical reasons, for example
the attenuation of the power supply unit. Further investigations in this field should be
clearly the subject of a future work.

5.1.2 Resources Utilization Tracing

To get an impression whether the utilization tracing is working correctly, we can trace
a simple program that stresses different resources of a system for defined time intervals
and intensity. The resulting trace should show the expected resources utilization.

The flow of the program we use is the following:

0s start stressing first CPU with 100%
10s start stressing second CPU with 100%
20s stop stressing first CPU
30s stop stressing second CPU
40s allocate 512MB of memory
50s allocate another 256MB of memory
60s free all memory
70s start stressing external network interface by sending 512MB
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80s start stressing external network interface by receiving 512MB
90s start stressing local hard disk drive by writing 512MB

100s allocating all memory for cleaning cached data
110s start stressing local hard disk drive by reading 512MB
120s terminate program

Since there are standard shell programs capable of producing most of the desired effects,
it is the easiest way to implement the program as a shell script. Our script is named
verifyRUT.sh. It uses the programs awk, cmalloc1, nc, and dd successively in order to
stress the CPU, memory, network and harddisk. You can find the script’s code in
appendix D on page 107.

Fig. 5.3: Utilization Trace of a verifyRUT.sh run

Please have a look at the trace in figure 5.3 showing the utilization trace of a run of
verifyRUT.sh on one node of the PVS Cluster (see figure 5.4 on the next page). As you
can see, the trace shows every resource utilization as expected. Note, it is absolutely

1cmalloc is a small C program just allocating a given amount of memory
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plausible that the CPU shows some utilization also while the other components are
stressed. As well, the free memory is reduced while writing to the disk due to the
operating systems data cache becomes filled. Actually we can recognize, that the disk
write operation could not finish within the estimated 10 seconds so it goes into the cache
cleaning phase.

With Sunshot, also the correctness of the data values for the network and hard disk
usage could be verified. In conclusion the utilization library seems to work as desired.

The PVS Cluster
PVS Cluster is the research cluster in our group. It consists of one control
node named master and nine worker nodes named node01 to node09. Five of
the worker nodes (node01-node05) are also I/O test nodes having a two-disk
raid system each. All worker nodes do have a local hard disk but they usually
are running their operating system via NFSv3. The user home directories are
mounted using NFSv3, too.
For this thesis, only the non-I/O nodes node06 to node09 are used. They have
the following configuration each:

• CPUs: 2x Intel XEON (Prestonia) 2GHz, 512KB Cache (HT disabled)

• Memory: 1GB RAM / 3GB swap space

• Network: 1Gbit Ethernet

• Harddisk: P-ATA UDMA100 (mounted to /tmp and used as swap space)

• Operating System: Ubuntu Linux 8.04 (SMP-Kernel 2.6.30, PXE/NFS)

Fig. 5.4: Hardware/Software configuration of the PVS Research Cluster

5.2 Performance Impact by Tracing

One of the problems with measurements in general is the influence of the measuring
procedure to the measured system and thus to the measurement itself. In our context,
this means the tracing produces additional utilization of resources that would not happen
if we would not trace. Therefore, it is very important to keep the influence to the
measured system very small, in our case to do the tracing very efficient and produce as
little additional utilization as possible. While writing the libraries, this fact had always
been in mind and efficient programming was done whenever possible. Nevertheless, an
evaluation of the results is necessary to make a qualitative statement.
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It is not possible to see the impact of the tracing directly since we cannot get the power
consumption and resources utilization of a non-tracing program run without tracing
them. Instead we can make an indirect test by comparing the runtime of a resource
intensive program with and without tracing.

Most likely, tracing will have its highest impact on the CPU, so we focus here on this
bottleneck. The tests are made using two programs, the well known HPCC benchmark
and a simple self-written synthetic benchmarks called CPUstress. The HPCC bench-
mark simulates typical load situations for parallel programs. CPUstress just pushes the
CPU utilization to 100% all the time by counting up the loop variables in two nested
for loops.

We use the PVS Cluster described in figure 5.4 on the preceding page for all of our tests.
The exact configuration of the HPCC benchmark is the same as used later in section 6.2
“HPCC Benchmark” on page 70 and is briefly described there.

5.2.1 Power Tracer

For the power tracing, it holds: Higher utilization of the resources produces higher
power consumption of the whole system. Even though, the described problem is not so
important for our Power Tracer since its design allows to put it on a separate host and
so eliminate all direct impact to the measured systems.

no tracing RUT500ms RUT500ms/PT200ms

Run 1 599 s 601 s 599 s
Run 2 597 s 603 s 602 s
Run 3 602 s 603 s 603 s
Run 4 589 s 593 s 613 s
Run 5 592 s 597 s 596 s
� 595, 8 s 599, 4 s 602, 6 s
σ 5, 26 s 4, 34 s 6, 43 s
cv 0.88% 0.72% 1.07%
Impact – 0.60% 1.14%

Tab. 5.1: Runtime comparison of the HPCC benchmark with or without utilization and power
tracing. Five runs are shown with arithmetic mean (�), standard deviation (σ),
coefficient of variation (cv), and the relative tracing impact.
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Yet, in some cases it might be important as we also provide the Power Tracer Library
to be used directly. Hence, we make one test to get an idea of the libraries performance
impact. In table 5.1 on the preceding page you can see the runtime values of the HPCC
benchmark. The first column is without tracing. The second column is with only
utilization tracing using a moderate tracing interval of 500ms. The last column is with
additional power tracing in the same node using the Power Tracer Library directly with
a tracing interval of 200ms.

You can see that tracing with the interval lengths used here produces only a very small
performance impact of only about one percent. Therefore we can mark the libraries
as usable. Even if the used power device supports measuring cycles down to a length
of 50ms, using such a small interval makes not much sense as long as the technical
problems discovered and described in section 5.1.1 are not yet resolved. The influence
of the interval length used for utilization tracing is analyzed in the next section.

5.2.2 Resources Utilization Tracing

To analyze the influence of the tracing interval length on the performance impact of the
utilization tracing the HPCC benchmark is traced with a few different interval lengths.
The results are listed in table 5.2.

Interval no tracing 500ms 100ms 20ms

Run 1 599 s 601 s 609 s 660 s
Run 2 597 s 603 s 613 s 655 s
Run 3 602 s 603 s 613 s 660 s
Run 4 589 s 593 s 607 s 657 s
Run 5 592 s 597 s 609 s 655 s
� 595.8 s 599.4 s 610.2 s 657.4 s
σ 5.26 s 4.34 s 2.68 s 2.51 s
cv 0.88% 0.72% 0.44% 0.38%
Impact – 0.60% 2.42% 10.34%

Tab. 5.2: Runtime comparison of the HPCC benchmark with or without utilization tracing
using different tracing intervals. Five runs are shown with arithmetic mean (�),
standard deviation (σ), coefficient of variation (cv) and the relative tracing impact.
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We can see a strong influence of the tracing interval to the performance impact. The
2.42% with 100ms steps are just about acceptable but more than 10.34% is not ac-
ceptable at all. So we can make the guess that when tracing all values provided, with
the current implementation of libRUT the tracing interval should not be smaller than
100ms. To verify the guess, we make another test using the described CPUstress pro-
gram. To get a more detailed picture we increase the number of tested intervals. Please
take a look at the results in table 5.3 and in figure 5.5.

Interval no tracing 500ms 200ms 100ms 50ms 20ms 10ms

Run 1 402.2 s 406.2 s 405.5 s 408.6 s 415.6 s 436.3 s 476.4 s
Run 2 402.5 s 405.5 s 408.0 s 408.6 s 415.3 s 436.2 s 476.3 s
Run 3 402.1 s 404.0 s 405.7 s 408.9 s 415.5 s 436.2 s 475.8 s
Run 4 402.0 s 403.8 s 405.9 s 408.5 s 415.4 s 436.1 s 475.8 s
Run 5 402.3 s 404.2 s 405.6 s 409.2 s 415.4 s 435.8 s 476.1 s
� 402.2 s 404.7 s 406.1 s 408.8 s 415.4 s 436.1 s 476.1 s
σ 0.21 s 1.07 s 1.05 s 0.27 s 0.14 s 0.20 s 0.30 s
cv 0.05% 0.26% 0.26% 0.07% 0.03% 0.04% 0.06%
Impact 0.00% 0.63% 0.97% 1.62% 3.29% 8.43% 18.36%

Tab. 5.3: Runtime comparison of the CPUstress benchmark with or without utilization tracing
using different tracing intervals. Five runs are shown with arithmetic mean (�),
standard deviation (σ), coefficient of variation (cv) and the relative tracing impact.

Fig. 5.5: Mean value diagram of runtime comparison of the CPUstress benchmark (compare
table 5.3)
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Here as well, we can identify 100ms as a threshold to the reasonable interval length.
Decreasing the interval length below this value results in a highly increased performance
impact. In general we instruct the user not to choose an interval smaller than necessary
for the desired purpose to keep the performance impact caused by the tracing as small
as possible. This is a wise advice from another point of view, too: The smaller the
tracing interval is chosen, the larger the traces will be.

During the evaluation, be found the library working correctly and efficiently to a satis-
factory degree. Solely, the tracing intervals should not be chosen to short. Anyway, the
environment is ready for analyzing some benchmarks in the next chapter.
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In this Chapter the developed libraries are used to do some first investigation of existing
and popular benchmarks. We take a look at the SPECpower benchmark as one of very
few power benchmarks already established today and at the HPCC benchmark suite as a
widely accepted benchmark in the field of high performance computing.

6.1 SPECpower_ssj2008 Benchmark

The SPECpower_ssj2008 benchmark is developed by the Standard Performance Evalu-
ation Corporation (SPEC)1. ”SPECpower_ssj2008 is the first industry-standard SPEC
benchmark that evaluates the power and performance characteristics of volume server
class and multi-node class computers”[34]. Unfortunately support for multi-node class
computers that could have been of high interest in the subject of this thesis was added
initially in version 1.10. The version available for the tests was only 1.00. Hence, every-
thing following is related to this now obsolete version 1.00.

6.1.1 Description of the Benchmark

SPECpower_ssj2008 consists of three logical components, the Workload (SSJ), the
power and temperature daemon (PTD) and the control and collect system (CCS). ”These
modules work together in real-time to collect server power consumption and performance
data by exercising the server under test (SUT) with a predefined workload”[35]. The
base of the benchmark is the assumption that ”power consumption varies as a function
of [transactions] throughput”[35].

1The SPEC ”is a non-profit corporation formed to establish, maintain and endorse a standardized set of
relevant benchmarks that can be applied to the newest generation of high-performance computers.”
It is well known as the creator of several performance benchmark suites.”[http://www.spec.
org/]
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Fig. 6.1: SPECpower_ssj2008 scheme diagram [36, page 5]

Workload (SSJ)

As the name already implies, the component called workload is the part responsible
for generating the workload on the server under test. ”It is a Java implementation
simulating a standard three-tier client-server architecture designed to exercise several
components of the SUT”[35]. The three tiers are the client, the businessmodel and the
warehouse. Virtually the client sends requests for transactions to the warehouse using
the businessmodel and such provokes load on the server under test. It is supported
to run the benchmark with more than one warehouse instance, but in the standard
configuration that is used for the tests, there is only one warehouse and one client.
Therefore having multiple instances is not regarded here.

Power and Temperature Daemon (PTD)

The power and temperature daemon is the only part not written in Java. Is is responsible
for getting the measurement values from the power analyzer and temperature sensors
connected via USB oder RS-232 serial bus. For testing, it comes with two dummy
devices, one for power and one for temperature. By using these dummy devices, it is
possible to run the benchmark without having a power analyzer or temperature sensors
connected. The daemon has to run two times, once for the power and once for the
temperature. For our purpose the environment conditions don’t matter for which reason
we always use the temperature daemon in dummy mode.
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Control and Collect System (CCS)

The control and collect system is written in Java, too. It is connected to all three other
components via TCP, so each of the components could be on different systems as long as
a TCP network connection is available between them. The CCS starts the benchmark
and collects the data from the other three components in real-time. At the end of the
run it generates the output for the user.

Workflow of the Benchmark

The concept of the SPECpower_ssj2008 benchmark is to generate different stress levels
on the SUT and measure the average power consumption on each level. Therefore, the
benchmark is running in several phases. Each phase is driven with a preferably constant
stress level. The single phases are always divided by short intermediate idle times.

The workload to stress the SUT is produced by performing operations in the virtual
warehouse. As first step of each run, a number of calibration phases are performed. In
those, the SUT is driven to the highest stress level possible and the CPU utilization is
measured as well as the operations throughput the server could handle. These values are
set to be 100% performance and all target stress levels are calculated on that base. The
assumption made is that the utilization is straight proportional to number of operations
performed in the virtual warehouse during a fix time interval. So the benchmark controls
the stress levels by controlling the number of operations.

The number of calibration phases, the stress levels benchmarked, and the duration of
the levels are all configurable. We use here the standard configuration, that is three cal-
ibration phases with the first ignored to get rid of warmup effects, 11 stress levels (100%
to idle in 10% steps) and a duration of 240 seconds for each phase. The intermediate
idle time is 10 seconds.

6.1.2 Test Environment

The Benchmark on its Own

In the first test described here, the recommended setup for the benchmark is used. One
of the nodes of our cluster is the server under test which only runs the SSJ workload
program. Another node is used as CCS, running also the two instances of PTD. The
temperature daemon is running in dummy mode, while the power daemon is connected
to the power analyzer where all the energy consumed by the SUT node is measured.
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Fig. 6.2: Schematic diagram of the SPECpower_ssj2008 test setup without our environment

The SUT and the CCS are both identical nodes in the PVS Cluster described in figure 5.4
on page 57. The SUT is running on node08 and the CCS on node06. The power
supply of node08 is connected to the first channel of a ZES ZIMMER LMG450 power
analyzer. The data interface of the power analyzer is connected to the USB port of
node06 using an USB-to-RS232 adapter. You can see a schematic diagram of the test
setup in figure 6.2

Using Our Environment

The second test uses our own environment. The setup is illustrated in figure 6.3. The
CCS now is running on node07 with both instances of the PTD in dummy mode. The
power analyzer is still connected to node06.The power analyzer is still connected to

Fig. 6.3: Schematic diagram of the SPECpower_ssj2008 test setup with our environment
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node06. It is only running our Power Tracer for tracing the power of node08 which is
again the SUT. Additionally, on node08 a little tool is running using libRUT for tracing
the resources utilization on the SUT. The power tracing is performed with 200ms. The
utilization tracing is using a 500ms interval time for minimizing the influence to the
SUT as much as reasonably possible.

6.1.3 Test Results and Interpretation

The Benchmark on its Own

The first results are those of a normal SPECpower_ssj2008 benchmark run using its
default configuration with the test setup presented in figure 6.2 on the previous page.
The main output of the run you can see in figure 6.4. It is a table showing the ten load
steps with the target and the actual load. If the difference in only one step extends
a limit (+2%, −2.5% for the 100% and 90% target loads, ±2% for the 80% though
10% target loads), the entire run is declared as invalid. Invalidity of a benchmark run
mainly denies the acceptance of submission to the official SPEC results database and
is of no high interest for us. Actually we cannot get a valid run since we don’t have
an environment temperature sensor connected to the system. The other values in the
table are the power measurements and the performance to power ratio, both shown in
the diagram, too.

Fig. 6.4: Results of a standard run of SPECpower_ssj2008 1.00 with power analyzer connected
The server under test is one of the PVS Cluster nodes.

The performance to power ratio is a metric indicating how power efficient the system is
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working at a specific load level. The higher this value is, the more performance you will
get per watt2 consumed. It is not surprising, that the best ratio is achieved at 100%
load. There is a base amount of power that you always need for having the system
running, primarily idling. Every piece of load you put on the system will decrease the
relative portion of the base energy requirement and so increase the performance to power
ratio. The unit for the ratio is Performance per Watt and SPEC uses its Server Side
Java operations (ssj ops) as unit for the performance.

Using Our Environment

Now we try to verify the results presented by the benchmark itself using our new tracing
environment in the setup illustrated in figure 6.3 on page 65. The SPEC’s power daemon
is put into dummy mode. Instead the power analyzer is used by our Power Tracer,
running on its own node, to trace the power consumption of the server under test. A
small standalone program using libRUT traces the utilization on the SUT node.

Fig. 6.5: Results of a standard run of SPECpower_ssj2008 without power analyzer connected
The power analyzer is used by the Power Tracer. The server under test is one of the
PVS Cluster nodes.

In figure 6.5 you can see the benchmark’s own output of the traced run. The visualization
of the trace project containing power and utilization trace is represented in figure 6.6(a)
on the next page. Due to the idle phases separating the consecutive load phases they
can be easily identified. In the figure they are additionally labeled. Beside the different
CPU load intervals, we can also identify a constantly increasing memory usage that we
cannot explain at this time. At the beginning an finalizing of the benchmark, some short
two way network activity is observable. Presumably this is the setup of the SUT at the
beginning and the collection of the final results at the end. Some low outgoing network
activity we can see during the whole runtime which we assume to be the real-time data
collection by the CCS mentioned in the user manual.

2Watt [W] is the SI unit for electrical power
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(a) Overview

(b) CPUs and power in detail
Fig. 6.6: Power and utilization trace of a of a standard SPECpower_ssj2008 run
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Since we are especially interested in the relation of the CPU load and the consumed
power, we now take a closer look to this aspect using figure 6.6(b) on the preceding page
showing the same trace zoomed in and having only the CPU and power lines visible.
We can see that the CPU load in the single intervals is far away from being constant.
For getting a nice visual stairs effect, perhaps larger tracing intervals could help or the
viewer had to support ad hoc merging of adjacent values to smoothen the jitters.

But the Sunshot viewer has another useful feature already implemented. It is capable
to calculate the arithmetical mean of a specified interval, therefore we can get the mean
values of each load phase. They are listed in table 6.1. In the scaled column here are
the achieved CPU utilization levels scaled to the highest measured level, that is the
achieved utilization for 100% target. This is how the benchmark calculates its actual
performance levels. error is the difference from the archived scaled level to the desired
level. We compare these values with those reported by the benchmark (see figure 6.5
on page 67) and find some significant differences. While the actual load values reported
by the benchmark are all together very close to the target values with a maximum
error of 7.9% and an average error of 0.79%, the values calculated from our trace show
differences from actual to target load up to 4% and an average error of 1.45%. This
discrepancy indicates the need of more tests. Unfortunately the time with access to
the power meter was not long enough for further testing, so we have to delay that to a
another opportunity.

target CPU CPU0 CPU1 Power scaled error

100.00% 93.70% 93.90% 93.50% 193.9W 100.00% 0.00%
90.00% 80.50% 79.40% 81.60% 186.2W 85.91% −4.09%
80.00% 74.20% 74.80% 73.50% 182.4W 79.19% −0.81%
70.00% 64.30% 66.20% 62.30% 176.1W 68.62% −1.38%
60.00% 53.70% 53.10% 54.30% 168.9W 57.31% −2.69%
50.00% 44.80% 44.60% 45.10% 162.8W 47.81% −2.19%
40.00% 35.30% 36.60% 33.90% 155.8W 37.67% −2.33%
30.00% 28.00% 28.50% 27.50% 150.6W 29.88% −0.12%
20.00% 18.50% 12.60% 24.40% 143.3W 19.74% −0.26%
10.00% 10.00% 9.10% 10.90% 136.6W 10.67% 0.67%
0.00% 0.10% 0.10% 0.10% 128.9W 0.11% 0.11%

Tab. 6.1: Mean values for CPU utilization and power consumption from a default run of the
SPECpower_ssj2008 benchmark The values are calculated by Sunshot from the trace
shown in figure 6.6(b) on the preceding page.
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In conclusion, it seems to be hard work to develop a method that can steadily stress a
system at a defined load level. The SPEC people have already reached some achieve-
ment in this point so a detailed analysis of their methods could bring helpful insights.
Nevertheless, at least in our test their methods did not work perfectly. Hence, it could
be necessary to further enhance them.

6.2 HPCC Benchmark

6.2.1 Description of the Benchmark

The High Performance Computing Challenge Benchmark[37] is actually a benchmark
suite combining seven different tests into one consistent environment. It is developed in
cooperation of several partners from research and industry in the scope of the DARPA
HPCS3 project coordinated by Jack Dongarra at the Innovative Computing Laboratory
(ICL), University of Tennessee, Knoxville.

Fig. 6.7: Memory hierarchy levels and test
focuses [38]

The motivation for the benchmark suite is
that ”modern standard [parallel computer] ar-
chitecture produces a “steep” multi-layered
memory hierarchy”[38, slide 11] reaching from
registers, and cache over the local memory
and remote memory to the disk. In the HPCC
benchmark suite, ”each benchmark focuses on
a different part of the memory hierarchy”[38,
slide 12]. Please see the memory hierarchy
and benchmark focuses in figure 6.7.

The single benchmarks are:

1. HPL - High Performance Linpack
”HPL is a software package that solves a (random) dense linear system in double preci-
sion (64 bits) arithmetic on distributed-memory computers”[39].

2. DGEMM - Double-Precision General Matrix Multiply ”The DGEMM benchmark
measures the floating point performance of a processor (or core). The code is cache
friendly, thus memory bandwidth has little affect on results and the results obtained
should be reasonably close to the theoretical peak performance of the processor.”[40]

3DARPA High Productivity Computing Systems (http://www.highproductivity.org/)
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3. STREAM - Sustainable Memory Bandwidth ”The STREAM benchmark is a
simple synthetic benchmark program that measures sustainable memory bandwidth (in
MB/s) and the corresponding computation rate for simple vector kernels”[41].

4. PTRANS - Parallel Matrix Transpose ”PTRANS [...] exercises the communi-
cations where pairs of processors communicate with each other simultaneously. It is a
useful test of the total communications capacity of the network.”[37]

5. RandomAccess ”RandomAccess measures the rate of integer random updates of
memory”[37].

6. FFT - Fast Fourier Transform ”FFT measures the floating point rate of execution
of double precision complex one-dimensional Discrete Fourier Transform (DFT).”[37]

7. beff - Effective Bandwidth ”The effective bandwidth beff measures the accumu-
lated bandwidth of the communication network of parallel and/or distributed computing
systems. Several message sizes, communication patterns and methods are used. The
algorithm uses an average to take into account that short and long messages are trans-
ferred with different bandwidth values in real applications.”[42]

6.2.2 Test Environment

We use the HPCC benchmark version 1.3.1. This is the current version released in
December, 2008. The test runs are performed on the PVS research cluster described in
figure 5.4 on page 57. For running the HPCC benchmark suite an implementation of the
Message Passing Interface (MPI) is needed. We use the free MPICH2, version 1.0.8p1
released in March, 2009. The test runs are made using four cluster nodes (node06–
node09) and hpcc is started with eight ranks, thus we have one rank per CPU. The
default configuration is slightly modified to achieve a longer runtime for a better ability
to identify the different test phases and to minimize the portion of potential fade in
and fade out effects at phase changes. We use the input file coming with the HPCC
benchmark sources and increase the problem size Ns from the default 1000 to 10000.

For the runs with tracing, the Power Tracer is executed on node06 tracing the power
consumption of all four used nodes. For the utilization tracing, on each node one instance
of the same RUT tool as used for the SPECpower analysis is started from node06 with
ssh. The setup is illustrated in figure 6.8 on the next page.
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Fig. 6.8: Schematic diagram of the HPCC test setup with our environment

6.2.3 Test Results and Interpretation

The HPCC benchmark generates an output text file called hpccoutf.txt containing the
results of all tests. Since we are not interested in performance analysis here, the only
relevant data in this file are the border times between the single tests. The trace project
of a complete HPCC run using the setup and configuration described in the last section
is visualized in figure 6.9 on the following page. During the run, only 2MB of data have
been written to the local disk, probably not even by the benchmark but by a system
process. Therefore we will completely disregard the hard disk traces. The border times
from the results file are drawn in the figure and the phases are labeled. As you can
see, some of the tests have multiple stages so there are actually 13 phases instead of the
seven expected.

In the bare trace visualization, the phases were not as simple to identify as for the
SPECpower_ssj2008 benchmark, but with the border lines drawn in we can discover
different resources utilization profiles in the different phases. Especially, it emerges that
not all phases are using all available CPUs. Let us take a look at the single phases:

In phase 1 PTRANS is running. The resources utilization is discontinuous. Even if
some memory is used and the network shows some activity, the power consumptions
seems to follow only the CPU utilization. Due to the discontinuity this test is of low
interest for our purposes.

Phase 2 is the Linpack benchmark. Surprisingly, only one CPU is used per node. In
addition, the utilization of the one CPU is obviously not constant at its maximum.
Hence, it seems that HPL is not suitable for stressing the CPU to its maximum, at least
not with the parameters used here.
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6 Analyzing Existing Benchmarks

On the contrary, Phase 3a and 3b could be of use for that purpose. These are the phases
running DGAMM with multiple and single processes per node. They seem to produce
a constant maximal utilization for two or one CPU on each system, respectively. The
only problem could be the simultaneous utilization of some memory that would better
be avoided for measuring only the CPU’s influence to the power consumption.

Phase 4a and 4b running the STREAM benchmark shows exactly the same resources
utilization as the phases 3a+b, but with 10% (220W to 200W) lower power consump-
tion. Further investigation would be interesting to identify the cause for this difference.
This is not only an interpolation issue. A deeper analysis using the capabilities of Sun-
shot as zooming, histograms and mean value calculation engaged no significant difference
in the traced resources utilization between phases 3a and 4a or 3b and 4b, respectively.
Perhaps there are other relevant utilization values not yet traced in our environment.

Phase 5a running the MPIRandomAccess test shows two subphases. The first one
has nearly the same utilization profile as phase 4a with lower memory usage and an
additional slight network activity. With the network usage eliminated it could be a
better alternative for stressing the CPU than 4a. The second subphase is uninteresting
since no resource is stressed to its maximum. With phase 5b we have exactly the
described case of the first subphase of 5a without the network utilization. Until now
from all HPCC tests this is the best CPU-only stress test. Phase 5c is just the same
as phase 5b with only one process running.

The first FFT phase labeled 6a again is very discontinuous in resources utilization thus
not of interest for us. Phase 6b has nearly the same profile as phase 5b, but showing
discontinuities in power consumption not explainable with only the information within
the trace. If we later think about using this test for our purposes, it has to be investigated
whether this is a persistent effect and if so where it is coming from. Again, phase 6c is
just like phase 6b with only one process running and of no further interest.

The last phase 7 is running the LatencyBandwidth test. It shows moderate CPU
utilization and discontinuous network utilization. Configured in the way used here, this
is not what we are looking for. But the discontinuity is not very distinct, so perhaps
this test could be more useful for our purpose running it with other parameters.

We summarize, that barely one of the tests in the HPCC benchmark suite can directly
be used for our purpose of investigating the impact of a single component’s utilization
to the system’s power consumption. But some of the tests could become suitable with
slight modifications. Candidates for this are especially the RandomAccess test used in
phase 5b and maybe the LatencyBandwidth test beff in phase 7. Furthermore we have
found some hints, that the currently traces utilization values could be insufficient. To
clarify this, further comparisons between the DGRAMM and STREAM phases should
be done. Both of these topics could be subject for a future work.
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7 Summary and Conclusion

The work for this thesis was entirely driven by the idea of saving power in high perfor-
mance clusters by knowing about future program behavior. The first conclusion made
was the need of a tracing environment for analyzing the potential of the approach. This
tracing environment should be able to profile the power consumption of a system to-
gether with the utilization of several system resources. It is the precondition for the
development of a benchmark that stresses different system components at different load
levels and measures the power consumed in the meanwhile. Purpose of such a benchmark
would be to analyze correlations between using different components and the system’s
consumed power for making conclusions at the power saving capability of the system.
Goal of the thesis was to create the tracing environment and make some first analysis
of existing benchmarks.

At the beginning we had only these ideas and the very new HDTrace tracing format not
yet suitable for implementing them. We enhanced the format by the topology concept
and HDStats, an extension for efficient tracing of statistical values. We designed two
entirely new libraries, one for power tracing and one for resources utilization tracing.

The three new libraries are implemented using reasonable techniques as multi-threading,
automatic build system, integrated tests and good documentation. They have been
evaluated for correctness and efficiency and could be marked as well usable.

Afterwards the two benchmarks SPECpower_ssj2008 and HPCC have been analyzed
with the help of our new tracing environment. It emerged that SPECpower_ssj2008
has a reasonably working concepts for CPU load control but further testing would be
necessary to decide whether it is suitable for our needs. The tests used by HPCC in
the default configuration are mostly unusable for our purposes. Anyhow, some of them
have shown desired characteristics so further testing with different parameters could be
promising.

In conclusion, we have developed a useful profiling environment which is a first achieve-
ment. We could demonstrate their help with analyzing benchmark concepts concerning
power consumption in computer clusters. Even if they could still get improved, they
build a good foundation to proceed with our approach. However, there is still a long
way to go until the High Performance Computing caravan can finally enter the Green
IT valley.
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8 Future Work

8.1 Work in Progress

Ongoing Development of the HDTrace format

The HDTrace format under heavy development. New concepts are integrated and exist-
ing concepts become successively enhanced. For example, in the meantime a relations
concept has been integrated for tracking connections between different events.

MPI Wrapper for Seamless Statistics Tracing

The existing MPI wrapper mentioned in section 2.1 has already been adapted to the for-
mat modifications and extended by the functionality provided by our two new libraries.
We are now able to trace power and utilization statistics together with the MPI function
calls for an arbitrary MPI program. We just have to compile it with a modified mpicc
linking the wrapper and necessary libraries to the program and then start it as usual.

Simulation of Power Consumption in PIOsim

In parallel to this thesis, Timo Minartz already has used the new environment for his own
thesis about Model and simulation of power consumption and power saving potential of
energy efficient cluster hardware. He used the Power Tracer Library and the Resources
Utilization Library to analyze the power consumption of different system components
to integrate power simulation functionality into the PIOsim cluster simulator.
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8.2 Ideas for Enhancing the Libraries

Buffering in HDStats

In the current implementation of HDStats, each entry is written directly into the statis-
tics trace file once is is complete. Depending on the entry size this leads to many short
writes. Using a buffer to collect a number of entries and write them all at once could
decrease the CPU usage of the library.

Split Configuration for the Power Tracer

It would be great to provide the power tracing capability also to the regular users of a
cluster. In the current configuration concept for the Power Tracer, each user would have
to know the hardware configuration, that is, which node is measured by which channel
of which power analyzer connected to which node. For this purpose it would be nice
to have an abstraction layer for the power tracing infrastructure. The idea is, that the
administrator configures the power analyzers setup somewhere and a user simply has to
specify which values of which nodes he wants to trace for which time interval. After the
interval has passed, he will just get the traces.

8.3 Interesting Further Investigations

Technical Power Analyzing Details

In section 5.1.1 on page 54 we have seen, that the power trace has always a delay of
about 50ms to the utilization trace. We assumed, that this is due to the time needed
to collect and transfer the measurement values to the Power Tracer but there could also
be other reasons. In addition such effect as the attenuation of the power supply unit
could influence the accuracy of the data. To be able to interpret the traces correctly, a
deeper insight to this area is necessary. Therefore it would be expedient to make further
investigations, ideally in cooperation with electrical engineers.

Verification of the SPECpower_ssj2008 Load Levels

The tests section 6.1.3 on page 66 revealed a discrepancy between the actual load levels
as measured by the benchmark itself and those extracted from our traces. This should be
investigated by further testing to discover in which concept there is an error, or whether
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there are just different measuring methods used. In the second case a comparison of the
methods would be interesting.

Trying Different Parameters for Interesting HPCC Tests

We found two of the tests in the HPCC benchmark suite interesting for our purposes
in section 6.2. That is the RandomAccess test for CPU stressing and the Latency-
Bandwidth test for stressing the network. Those should be analyzed with other input
parameters. We would like to so see whether it is possible to make them fit better for
our needs of producing constant stress levels for a defined period of time.

8.4 An Idea for the Farther Future

Automatic Generation of Resources Utilization Profiles

The introduction describes the far goal of giving the developer of a program the possibil-
ity to pass information about the program’s future behavior to the power management
system. Another or supplementary approach could be to automatically create a re-
sources utilization profile for a program during one run, and use the gained information
in later runs to make power saving decisions.
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A API Documentation of the
HDTrace Writing C Library

A.1 Module Documentation

A.1.1 HDTrace Topology

Detailed Description

The topology of a complete trace project describes a tree structure where each single trace can
be assigned to a tree node.
As we have several singly assigned trace files that build one whole trace project, this structuring
method allows us to describe the associations between the single traces.
The root of the topology is defined to be the project name. The types of the deeper levels can
be freely specified. A topology’s structure is fully specified by the topology level types. The
level type should describe the semantics of the nodes on the level.
An example of a topology structure is (Project, Host, Process, Thread).
Each trace is assigned to exactly one node of the topology called the trace’s topology node.
Each such topology node has a label that must be unique at the node’s topology level. A node
is well-defined by the unique path that leads from the root of the topology to this node. The
path is the list of labels of each node in the order they are passed when walking on the edges
of the tree to the target node starting from the root node.
An example for a leaf node in the example topology above could be (myProject, node01, rank3,
thread0). The path string and unique id of that node would be myProject_node01_-
rank3_thread0. The node in this path on the first level were (myProject, node01) with the
path string myProject_node01.
Note:

We count the topology levels starting with the root level as number zero.

The topology structure represented by the topology level types is written into the project file
in order to be used as labels in trace visualization.
Note:

The node labels as well as the topology types are restricted to strings with alphanumerical
ASCII characters only.

Typedefs

• typedef struct _hdTopology hdTopology
• typedef struct _hdTopoNode hdTopoNode
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Functions

• hdTopology ∗ hdT_createTopology (const char ∗project, const char ∗∗levels, int nlevels)
• int hdT_getTopoDepth (const hdTopology ∗topology)
• int hdT_destroyTopology (hdTopology ∗topology)
• hdTopoNode ∗ hdT_createTopoNode (hdTopology ∗topology, const char ∗∗path, int

length)
• int hdT_getTopoNodeLevel (const hdTopoNode ∗node)
• const char ∗ hdT_getTopoPathString (const hdTopoNode ∗node)
• const char ∗ hdT_getTopoPathLabel (const hdTopoNode ∗node, int level)
• int hdT_destroyTopoNode (hdTopoNode ∗node)

Typedef Documentation

hdTopology
Type for using topology objects.
Use hdT_createTopology to get one of this objects.

hdTopoNode
Type for using topology node objects.
Use hdT_createTopoNode to get one of this objects.

Function Documentation

hdTopology∗ hdT_createTopology (const char ∗ project, const char ∗∗ levels, int
nlevels)
Create new topology.
The topology is simply specified by the names of the tree levels.
The first one (level 0) is the name of the root node and also the name of the HDTrace project.
The second one is the name of level 1, the third name belongs to level 2 and so on.
In HDTrace these names do have only descriptive character and are not used by the library
beside writing them to the Trace Info. Other tools like the Project Description Merger could
use this information for consistency checks.
This function generates and returns a hdTopology object that you have to destroy when no
longer needed by passing it to hdT_destroyTopology.
Example usage:
const char *levels[] = {"Host", "Process", "Thread"};
hdTopology *myTopology = hdT_createTopology("myProject", levels, 3);

Parameters:
project Name of the HDTrace project
levels Array of names
nlevels Number of levels the topology has beside root level
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Returns:
HDTrace topology object

Return values:
topology on success
NULL on error, setting errno

Values of errno:

• HD_ERR_INVALID_ARGUMENT
• HD_ERR_MALLOC

See also:
hdT_destroyTopology

hdTopoNode∗ hdT_createTopoNode (hdTopology ∗ topology, const char ∗∗ path,
int length)
Create new topology node.
The topology is the semantical structure of HDTrace files. It is meant to map a hierarchical
structure to the trace files.
Actually the topology is a tree structure, so the place of each node in the topology is exactly
specified by the path to reach this node from the root node. The root node is always the
starting point, so it is omitted here when passing the path to this function.
This function takes such a path and gives you a hdTopoNode object representing the node you
reach walking the given path. This could be an inner as well as a leaf node of the topology
tree.
With the path for creating nodes, you implicitly label the path’s nodes on each involved level
of the topology tree. And so the tree is automatically extended with each hdTopoNode object
created.
A good example is the typical structure of a parallel program: Hosts, Processes, Threads.
Each thread has its own control flow an so it might be a good idea to create one trace for each
thread. So you will choose to have the threads as leaf nodes of your tracing topology tree. Of
course you are free to use only two levels and so produce traces per process.
The node labels on the path are used to generate the canonical filenames for the traces.
Example usages:
const char *path[] = {hostname, pid, thread_id};
hdTopoNode *myTopoNode = hdT_createTopoNode(myTopology, path, 3);

const char *path[] = {hostname, pid};
hdTopoNode *myTopoNode = hdT_createTopoNode(myTopology, path, 2);

Parameters:
topology Topology this node should belong to
path Array of pointers to the node labels on the path.
length Length of the path.
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Returns:
HDTrace topology node object

Return values:
node on success
NULL on error, setting errno

Values of errno:

• HD_ERR_INVALID_ARGUMENT
• HD_ERR_MALLOC

See also:
hdT_destroyTopoNode

int hdT_destroyTopology (hdTopology ∗ topology)
Destroy topology object.
Parameters:

topology Topology object to destroy
Return values:

0 on success
-1 on error, setting errno

Values of errno:

• HD_ERR_INVALID_ARGUMENT
See also:

hdT_createTopology

int hdT_destroyTopoNode (hdTopoNode ∗ node)
Destroy topology node.
Parameters:

node Topology node to destroy
Return values:

0 on success
-1 on error, setting errno

Values of errno:

• HD_ERR_INVALID_ARGUMENT
See also:

hdT_createTopoNode
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int hdT_getTopoDepth (const hdTopology ∗ topology)
Get the depth of a topology.
Returns the number of levels in the topology including root level (level 0).

Parameters:
topology Topology to use

Returns:
The number of topology levels.

Return values:
>0 on success
-1 on error, setting errno

Values of errno:

• HD_ERR_INVALID_ARGUMENT

int hdT_getTopoNodeLevel (const hdTopoNode ∗ node)
Get the topology tree level of a node.
Returns the level where the node take place in its topology.
Parameters:

node Topology node to use
Returns:

The number of the topology level node lives in.
Return values:

>0 on success
-1 on error, setting errno

Values of errno:

• HD_ERR_INVALID_ARGUMENT

const char∗ hdT_getTopoPathLabel (const hdTopoNode ∗ node, int level)
Get the label of one node at the passed node’s path.
Searches the path of the given node for the topology node at the given level and return its
label.
For example, create a node like this:
const char *path[] = {host0, process0, thread0};
hdTopoNode *myTopoNode = hdT_createTopoNode(myTopology, path, 3);

then the following call will return "process0":
hdT_getTopoPathLabel(myTopoNode, 2);
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Parameters:
node Topology node to use
level Level to get node label for (>0)

Returns:
Label of the node sitting at level on node’s path

Return values:
String on success
NULL on error, setting errno

Values of errno:

• HD_ERR_INVALID_ARGUMENT

const char∗ hdT_getTopoPathString (const hdTopoNode ∗ node)
Get the path string of a topology node.
Returns a string representation of the node’s path.
For example: host1_process1_thread1
Parameters:

node Topology node to use
Returns:

String representing the node’s path
Return values:

String on success
NULL on error, setting errno

Values of errno:

• HD_ERR_INVALID_ARGUMENT

A.1.2 HDTrace Statistics Writing Library

Detailed Description

In HDTrace format statistics are a special kind of trace for periodically occurring data. One
canonical usage is to trace utilization data like CPU load, memory usage, used amounts of
network or I/O bandwidth.
The statistics are categorized in so called groups. Each group is associated with the tracing
topology at any level and each group’s data is written binary to its own data file.
A statistics group consists of entries, each marked with a timestamp. One entry consists of
a tuple of values, each with one of several well defined types. In one group, all entries have
exactly the same number of values with exactly the same types and so exactly the same length,
except when using values of string type (not yet implemented).
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The HDTrace statistics group data file is self-descriptive. At the very beginning there is a
header in XML describing the values and types each entry in the following binary part of the
file contains.

Library Usage

Outline of creating HDTrace Statistics Groups using this library:
1. Create the group first (hdS_createGroup, called once)
2. Add all value info (hdS_addValue, called several times)
3. Commit the group (hdS_commitGroup, called once)
4. Use the group to trace data (hdS_write..., called many times)
5. Finalize the group (hdS_finalize, called once)

Writing Values Write order of the values must be exactly the same as they were regis-
tered!
At the beginning of each entry, the current time is taken and a timestamp is written for the
new entry. This is always done, when the first hdS_write∗ function for an entry is called. A
call to hdS_writeEntry is always the first such call for an entry.
The timestamp is 4 byte integer seconds and 4 byte integer nanoseconds since epoch (Jan 01
1970). Function gettimeofday is used to get the time and the returned microseconds are
transferred to nanoseconds.

File Content The file written for each statistics group is constructed in three parts.
1. The first part is only 6 bytes an contains the length of the header, the second part,

as string in decimal notation with 5 numbers and leading zeros followed by a newline
character ’\n’.

2. The second part is the header. It describes the binary data, the third part, and is written
in correct XML notation.

3. The third part is where the actual trace data are written to in entries like described in
"Writing Values".

Example:
00362
<Group name="Utilization" timestampDatatype="EPOCH"

timeAdjustment="-0000000000.000000000">
<Value name="CPU_TOTAL" type="FLOAT" unit="%" grouping="CPU" />
<Value name="MEM_USED" type="INT64" unit="B" grouping="MEM" />
<Value name="NET_IN" type="INT64" unit="B" grouping="NET" />
<Value name="NET_OUT" type="INT64" unit="B" grouping="NET" />

</Group>
BINARYBINARYBINARYBINARYBINAY.......

362 since ’\n’ and spaces also count of cause.
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Defines

• #define order_bytes32ip(x)
• #define order_bytes64ip(x)
• #define order_bytes32fp(x)
• #define order_bytes64fp(x)

Typedefs

• typedef enum _hdStatsValueType hdStatsValueType
• typedef struct _hdStatsGroup hdStatsGroup

Enumerations

• enum _hdStatsValueType {
INT32, INT64, FLOAT, DOUBLE,
STRING }

Functions

• hdStatsGroup ∗ hdS_createGroup (const char ∗groupName, hdTopoNode ∗topoNode,
int topoLevel)

• int hdS_addValue (hdStatsGroup ∗group, const char ∗name, hdStatsValueType type,
const char ∗unit, const char ∗grouping)

• int hdS_commitGroup (hdStatsGroup ∗group)
• int hdS_enableGroup (hdStatsGroup ∗group)
• int hdS_disableGroup (hdStatsGroup ∗group)
• int hdS_writeEntry (hdStatsGroup ∗group, void ∗entry, size_t entryLength)
• int hdS_writeInt32Value (hdStatsGroup ∗group, int32_t value)
• int hdS_writeInt64Value (hdStatsGroup ∗group, int64_t value)
• int hdS_writeFloatValue (hdStatsGroup ∗group, float value)
• int hdS_writeDoubleValue (hdStatsGroup ∗group, double value)
• int hdS_writeString (hdStatsGroup ∗group, const char ∗str)
• int hdS_finalize (hdStatsGroup ∗group)

Define Documentation

#define order_bytes32fp(x)
Conversation of a 32 bit floating point number (float) to network byte order.
The argument has to be a pointer to the float and becomes converted in place.

#define order_bytes32ip(x)
Conversation of a 32 bit integer to network byte order.
The argument has to be a pointer to the integer and becomes converted in place.
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#define order_bytes64fp(x)
Conversation of a 64 bit floating point number (double) to network byte order.
The argument has to be a pointer to the double and becomes converted in place.

#define order_bytes64ip(x)
Conversation of a 64 bit integer to network byte order.
The argument has to be a pointer to the integer and becomes converted in place.

Typedef Documentation

hdStatsGroup
Type to use for statistics groups.

hdStatsValueType
Type to use for value types for statistics groups.

Enumeration Type Documentation

enum _hdStatsValueType
Enumeration of value types for statistics groups.
Enumerator:

INT32 32 bit integer
INT64 64 bit integer
FLOAT single precision floating point
DOUBLE double precision floating point
STRING String.

Function Documentation

int hdS_addValue (hdStatsGroup ∗ group, const char ∗ name, hdStatsValueType
type, const char ∗ unit, const char ∗ grouping)
Add a new value to the entry structure of a statistics group.
By multiple calls of this function you can specify the structure of an entry to the group. This
is only possible as long as the group is not committed. After committing the group by calling
hdS_commitGroup any modification to the entry structure of a group is impossible.
Each call of this function adds a new value to the end of the entry structure of the group.
Parameters:

group Statistics group to modify
name Name of the new value (Not more than HDS_MAX_VALUE_NAME_LENGTH

characters including XML escapes done automatically)
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type Type of the new value
unit Unit string of the new value. (NULL or not more than HDS_MAX_UNIT_-

NAME_LENGTH characters including XML escapes done automatically)
grouping Grouping string of the new value (NULL or not more than HDS_MAX_-

GROUPING_NAME_LENGTH characters including XML escapes done automat-
ically)

Returns:
Error state

Return values:
0 Success
-1 Error, setting errno

Values of errno:

• HD_ERR_INVALID_ARGUMENT
• HD_ERR_BUFFER_OVERFLOW
• HDS_ERR_GROUP_COMMIT_STATE

int hdS_commitGroup (hdStatsGroup ∗ group)
Commit statistics group, closes initialization step.
Calling this function for a statistics group closes its initialization and writes the descriptive
header to the group’s trace file.
The group is not enabled automatically, so before any passed values or entries are recorded by
the group, you have to call hdS_enableGroup.
Parameters:

group Statistics group to commit
Returns:

Error state
Return values:

0 Success
-1 Error, setting errno

Values of errno:

• HD_ERR_INVALID_ARGUMENT
• HDS_ERR_GROUP_COMMIT_STATE

hdStatsGroup∗ hdS_createGroup (const char ∗ groupName, hdTopoNode ∗ to-
poNode, int topoLevel)
Create a new statistics group.
Creates and opens the file for a new statistics group. The filename is built using the rules for
HDTrace statistics files an the given topology and level.
For example:
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const char *levels[] = {"Host","Process"};
hdTopology *myTopology = hdT_createTopology("MyProject", levels, 2);
const char *path[] = {"host0","process0"};
hdTopoNode *myTopoNode = hdT_createTopoNode(myTopology, path, 2);
hdStatsGroup *myGroup = hdS_createGroup("MyGroup", myTopoNode, 1);

creates a file named MyProject_host0_MyGroup.stat

Parameters:
groupName Name of the new statistics group (Not more than HDS_MAX_GROUP_-

NAME_LENGTH characters including XML escapes done automatically)
topoNode Topology node to use
topoLevel Topology level the group shell belong to

Return values:
Statistics group on success
NULL error, setting errno

Values of errno:

• HD_ERR_INVALID_ARGUMENT
• HD_ERR_MALLOC
• HD_ERR_BUFFER_OVERFLOW
• HD_ERR_CREATE_FILE

See also:
hdT_createTopoNode, hdT_createTopology

int hdS_disableGroup (hdStatsGroup ∗ group)
Disable statistics group.
This function does not set errno! So it can easier be used as reaction of errors.
Parameters:

group Statistics group to disable
Returns:

Error state and type
Return values:

1 Success, was already disabled
0 Success, is now disabled
-1 Error: group is not committed
-2 Error: group is NULL

See also:
hdS_enableGroup
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int hdS_enableGroup (hdStatsGroup ∗ group)
Enable statistics group.
This function does not set errno!
Parameters:

group Statistics group to enable
Returns:

Error state and type
Return values:

1 Success, was already enabled
0 Success, is now enabled
-1 Error: group is not committed
-2 Error: group is NULL

See also:
hdS_disableGroup

int hdS_finalize (hdStatsGroup ∗ group)
Finalizes a statistics group.
This must be the last hdS_∗ function called in a program for each statistics group.
Parameters:

group Statistics group to use.
Returns:

Error state
Return values:

0 Success
-1 Error, setting errno

Values of errno:

• HD_ERR_INVALID_ARGUMENT
• HDS_ERR_GROUP_COMMIT_STATE

int hdS_writeDoubleValue (hdStatsGroup ∗ group, double value)
Writes 8 byte double as next value to a statistics group.
Checks if the next value in current entry is of type DOUBLE and append it to the group buffer
if so.
Parameters:

group Statistics Group
value DOUBLE value to write
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Returns:
Error state

Return values:
0 Success
-1 Error, setting errno

Values of errno:
• HD_ERR_INVALID_ARGUMENT
• HD_ERR_TRACE_DISABLED
• HDS_ERR_GROUP_COMMIT_STATE
• HDS_ERR_ENTRY_STATE

int hdS_writeEntry (hdStatsGroup ∗ group, void ∗ entry, size_t entryLength)

Writes a complete entry to a statistics group.
Attention:

Do only use this function if you really know what you are doing.
No byte order conversation is done. No check for consistency with the specified entry
structure beside length check is done. In groups containing string values even the length
check is omitted since it is not possible.

Parameters:
group Statistics group to use
entry Pointer to the entry to write
entryLength Length of the entry to write

Returns:
Error state

Return values:
0 Success
-1 Error, setting errno

Values of errno:
• HD_ERR_INVALID_ARGUMENT
• HD_ERR_TRACE_DISABLED
• HDS_ERR_GROUP_COMMIT_STATE
• HDS_ERR_UNEXPECTED_ARGVALUE
• HDS_ERR_ENTRY_STATE

int hdS_writeFloatValue (hdStatsGroup ∗ group, float value)
Writes 4 byte float as next value to a statistics group.
Checks if the next value in current entry is of type FLOAT and append it to the group buffer
if so.
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Parameters:
group Statistics Group
value FLOAT value to write

Returns:
Error state

Return values:
0 Success
-1 Error, setting errno

Values of errno:

• HD_ERR_INVALID_ARGUMENT
• HD_ERR_TRACE_DISABLED
• HDS_ERR_GROUP_COMMIT_STATE
• HDS_ERR_ENTRY_STATE

int hdS_writeInt32Value (hdStatsGroup ∗ group, int32_t value)
Writes 4 byte integer as next value to a statistics group.
Checks if the next value in current entry is of type INT32 and append it to the group buffer
if so.
Parameters:

group Statistics Group
value INT32 value to write

Returns:
Error state

Return values:
0 Success
-1 Error, setting errno

Values of errno:

• HD_ERR_INVALID_ARGUMENT
• HD_ERR_TRACE_DISABLED
• HDS_ERR_GROUP_COMMIT_STATE
• HDS_ERR_ENTRY_STATE

int hdS_writeInt64Value (hdStatsGroup ∗ group, int64_t value)
Writes 8 byte integer as next value to a statistics group.
Checks if the next value in current entry is of type INT64 and append it to the group buffer
if so.
Parameters:

group Statistics Group
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value INT64 value to write
Returns:

Error state
Return values:

0 Success
-1 Error, setting errno

Values of errno:
• HD_ERR_INVALID_ARGUMENT
• HD_ERR_TRACE_DISABLED
• HDS_ERR_GROUP_COMMIT_STATE
• HDS_ERR_ENTRY_STATE

int hdS_writeString (hdStatsGroup ∗ group, const char ∗ str)
Writes string as the next value to a statistics group.
This function is not yet implemented.
Parameters:

group Statistics group to use
str STRING value to write

Returns:
Error state

Return values:
0 Success
-1 Error, setting errno

Values of errno:
• HD_ERR_INVALID_ARGUMENT
• HDS_ERR_GROUP_COMMIT_STATE

A.1.3 HDTrace Errors

Enumerations

• enum hdCommonError {
HD_ERR_INVALID_ARGUMENT, HD_ERR_MALLOC, HD_ERR_BUFFER_-
OVERFLOW, HD_ERR_GET_TIME,
HD_ERR_CREATE_FILE, HD_ERR_WRITE_FILE, HD_ERR_CLOSE_FILE,
HD_ERR_TIMEOUT,
HD_ERR_TRACE_DISABLED, HD_ERR_INVALID_CONTEXT, HD_ERR_-
UNKNOWN }

• enum hdStatsError { HDS_ERR_GROUP_COMMIT_STATE, HDS_ERR_-
UNEXPECTED_ARGVALUE, HDS_ERR_ENTRY_STATE }
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Functions

• char ∗ hdT_strerror (int errno)

Enumeration Type Documentation

enum hdCommonError
Enumeration for common errors in function.
hdT_∗ as well as hdS_∗ functions can set errno to one of these values in case of an error
Enumerator:

HD_ERR_INVALID_ARGUMENT Invalid argument.
HD_ERR_MALLOC Error while memory allocation.
HD_ERR_BUFFER_OVERFLOW Error due to buffer overflow.
HD_ERR_GET_TIME Error while getting system time.
HD_ERR_CREATE_FILE Error while creating a file.
HD_ERR_WRITE_FILE Error while writing a file.
HD_ERR_CLOSE_FILE Error while closing a file.
HD_ERR_TIMEOUT Timeout occurred.
HD_ERR_TRACE_DISABLED Trace is disabled.
HD_ERR_UNKNOWN Error with unknown cause.

enum hdStatsError
Enumeration for errors in statistics functions.
hdS_∗ functions can set errno to one of these values in case of an error
Enumerator:

HDS_ERR_GROUP_COMMIT_STATE Statistics group’s commit state is not the
needed.

HDS_ERR_UNEXPECTED_ARGVALUE One of the arguments has an unexpected
value.

HDS_ERR_ENTRY_STATE State of the current entry is wrong for requested action.

Function Documentation

char∗ hdT_strerror (int errno)
Return a string describing the error represented by errno.
Parameters:

errno errno value to get the string for
Returns:

Error describing string or null for unknown errno value
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Tracer and Library

B.1 Module Documentation

B.1.1 Power Tracer Library

Detailed Description

The Power Tracer Library (libPT) is the part of the Power Tracer providing the power tracing
functionality directly to other programs. It is able to trace the power measured by a power
analyzer connected.
Currently only the ZES ZIMMER LMG450 power analyzer connected via RS-232 serial port
is supported.
The library uses the HDTraceWritingCLibrary to produce statistics traces as specified by
the HDTrace format. The traces can be embedded in an HDTrace project and visualized in
Sunshot, the native viewer for HDTrace format.

Library Usage

Outline of creating Power Traces using this library:
1. Create a configuration file matching the setup of the power analyser and containing the

traces you want to create.
2. Create a PowerTrace object (pt_createTrace)
3. Start tracing (pt_startTracing)
4. Stop tracing (pt_stopTracing)
5. Finalize the trace and destroy the PowerTrace object (pt_finalizeTrace)

Creating the configuration file The configuration file has to contain the general hardware
setup of the power analyzer and all traces to create with all relevant information. Therefore
the file is divided into sections, one for the general setup and one for each trace to create.
In the general section we need the following values:

• device specifying the type of the power analyzer in use.
• port specifying where the power analyzer is connected.
• cycle specifying the period time for the tracing.
• project specifying the project name.
• topology specifying the topology for the project.

In each trace section we need the following values:
• type specifying the type of the trace.
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• node specifying the node to associate with the trace.
• channel specifying the channel of the power analyzer to use for the trace.
• values specifying which values to trace

Example:
[General]
device=LMG450
port=node06:/dev/ttyUSB0
cycle=100
project=MeinProjekt
topology=Cluster_Host_Process_Thread

[Trace]
type=HDSTATS
node=pvs_node06
channel=1
values=Utrms,Itrms,P

[Trace]
type=HDSTATS
node=pvs_node07
channel=2
values=Utrms,Itrms,P

• port has the format NODE:DEVICE. NODE is the node which has the power analyzer
connected via the RS-232 port. DEVICE is the name of the serial device file to use.

• topology is built using the topology level types concatenated with underscores in the
same way as the topology node path string is created.

• node is given as the topology node path string and has to match the topology defined.
Of course, as in the example, the topology can have more levels than the node uses.

• values is a comma separated list of strings, defining the values to trace. The strings
can be specific to the used power analyzer. Currently the three shown here are the only
supported values.

Creating a PowerTrace object With the configuration file created you are ready to create
a PowerTrace object:
PowerTrace *myPowerTrace;
pt_createTrace("pt.cfg", NULL, &myPowerTrace);

Note:
Passing NULL to the second argument will use the topology defined in the configuration
file.

Start and stop tracing The tracing does not start before you tell it to by calling pt_-
startTracing.
You can start and stop tracing multiple times by calling pt_startTracing and pt_stopTracing.
When calling pt_stopTracing the current tracing period is finished and no new period is
started. Calling pt_startTracing immediately instructs the power analyzer to send data. The
exact start time depend on the arrival time of the new data.

96



B.1 Module Documentation

Environment Variables

There in an environment variables used by libPT: PT_VERBOSITY
PT_VERBOSITY can be set to a number in the range -1 to 3. The default is 0 only showing
error messaged. 1 enables warnings, 2 enables info messages and 3 enables all debugging
output. -1 makes the library absolutely silent, even in case of a fatal error. This value affects
only the messages printed to stderr not the behavior of the functions.

Defines

• #define PT_SUCCESS
• #define PT_ECONFNOTFOUND
• #define PT_ECONFINVALID
• #define PT_ENOTRACES
• #define PT_EMEMORY
• #define PT_EHDLIB
• #define PT_EDEVICE
• #define PT_ETHREAD

Typedefs

• typedef struct powertrace_s PowerTrace

Functions

• int pt_createTrace (const char ∗configfile, hdTopology ∗topology, PowerTrace ∗∗trace)
• char ∗ pt_getHostname (PowerTrace ∗trace)
• int pt_startTracing (PowerTrace ∗trace)
• int pt_stopTracing (PowerTrace ∗trace)
• int pt_finalizeTrace (PowerTrace ∗trace)

Define Documentation

#define PT_ECONFINVALID
Configuration read from file is invalid.

#define PT_ECONFNOTFOUND
Could not find configuration file.

#define PT_EDEVICE
Problem during communication with measurement device.

#define PT_EHDLIB
Error in HDTrace library.
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#define PT_EMEMORY
Out of memory.

#define PT_ENOTRACES
No traces found in configuration.

#define PT_ETHREAD
Cannot create tracing thread.

#define PT_SUCCESS
Success.

Typedef Documentation

PowerTrace
Type definition of power trace object.

Function Documentation

int pt_createTrace (const char ∗ configfile, hdTopology ∗ topology, PowerTrace
∗∗ trace)
Create a power trace using the passed configuration file.
Use this function to create a new power trace. It will setup a new statistics trace with the
configuration read from the file.
For the format of the configuration file, please take a look at the example in Library Usage
The tracing will not start until pt_startTracing is called for the PowerTrace object returned
by this function.
Parameters:

configfile Name of the configuration file
topology Topology to override default or config file choice (NULL not to override)
trace Location to store the PowerTrace pointer (OUTPUT)

Returns:
Error state

Return values:
PT_SUCCESS Success
PT_ECONFNOTFOUND Could not find configuration file
PT_EMEMORY Out of memory
PT_ECONFINVALID Configuration read from file is invalid
PT_ENOTRACES No traces found in configuration
PT_EHDLIB Error in HDTrace library
PT_ETHREAD Cannot create tracing thread
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int pt_finalizeTrace (PowerTrace ∗ trace)
Finalize and free a power trace.
Parameters:

trace Power trace object
Returns:

Error state
Return values:

PT_SUCCESS Success
PT_EDEVICE Problem during communication with measurement device
PT_EMEMORY Out of memory

char∗ pt_getHostname (PowerTrace ∗ trace)
Return the hostname with the measuring device connected if specified in config file.
Parameters:

trace Power trace object
Returns:

Hostname of NULL if none specified in config file

int pt_startTracing (PowerTrace ∗ trace)
Start the power tracing.
Parameters:

trace Power trace object
Returns:

Indicate if tracing state changed
Return values:

0 Tracing is now started (was stopped before)
1 Tracing is started (as it was already before)
2 Parameter is NULL

int pt_stopTracing (PowerTrace ∗ trace)
Stop the power tracing.
Parameters:

trace Power trace object
Returns:

Indicate if tracing state changed
Return values:

0 Tracing is now stopped (was started before)
1 Tracing is stopped (as it was already before)
2 Parameter is NULL
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C.1 Module Documentation

C.1.1 Resources Utilization Tracing Library

Detailed Description

The Resources Utilization Tracing Library (libRUT) provides an easy way to produce traces of
several utilization statistics available in a common UNIX system. It utilizes the Gtop library
to get the statistics and the HDTraceWritingCLibrary to produce statistics traces as specified
by the HDTrace format. The traces can be embedded in an HDTrace project and visualized
in Sunshot, the native viewer for HDTrace format.

Library Usage

Outline of creating Resources Utilization Traces using this library:
1. Define sources to trace (rutSources, RUTSRC_SET_∗ macros)
2. Create a UtilTrace object (rut_createTrace)
3. Start tracing (rut_startTrace)
4. Stop tracing (rut_stopTrace)
5. Finalize the trace and destroy the UtilTrace object (rut_finalizeTrace)

Defining sources After creating a rutSources object
rutSources sources;

you can either set every source you want to trace by hand
sources.CPU_UTIL = 1;

or you can use the provided macros to set a whole source group at once
RUTSRC_SET_CPU(sources)

or to simply set all sources available
RUTSRC_SET_ALL(sources)
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Creating a UtilTrace object To create a UtilTrace object, you first need to create an
hdTopology and an hdTopoNode object to define the place of your trace in a HDTrace project.
Refer to hdTopology section in HDTraceWritingCLibrary documentation for further informa-
tion about this topic.
For the simplest case, you can use the following code fragment:
const char *levels[] = {"Host"};
hdTopology *myTopology = hdT_createTopology("MyProject", levels, 1);
const char *path[] = {"host0"};
hdTopoNode *myTopoNode = hdT_createTopoNode(myTopology, path, 1);

Note:
rut_finalizeTrace will not destroy the hdTopology and hdTopoNode objects for you, so if
you don’t need it for other purposes, you have to do this by calling hdT_destroyTopoNode
and hdT_destroyTopology.

Now that you have an hdTopology object, an hdTopoNode object and a rutSources object with
all sources set that you want to be included in the trace, you can create the UtilTrace object:
UtilTrace *myUtilTrace;
rut_createTrace(myTopology, myTopoNode, 1, mySources, 500, &myUtilTrace);

Note:
You cannot change the sources of an already created UtilTrace object

Start and stop tracing The tracing does not start before you tell it to by calling rut_-
startTrace.
You can start and stop tracing multiple times by calling rut_startTrace and rut_stopTrace.
When calling rut_stopTrace the current tracing period is finished and no new period is started
but the period timer is not reset. So after a subsequent rut_startTrace, the tracing will first
wait until the current (virtual) period would end and take the next values at the beginning of
the next period.

Environment Variables

There are two environment variables used by libRUT: RUT_VERBOSITY and RUT_HDD_-
MOUNTPOINT

RUT_VERBOSITY can be set to a number in the range -1 to 3. The default is 0 only showing
error messaged. 1 enables warnings, 2 enables info messages and 3 enables all debugging
output. -1 makes the library absolutely silence, even in case of a fatal error. This value affects
only the messages printed to stderr not the behavior of the functions.
RUT_HDD_MOUNTPOINT specifies the mountpoint of the partition to be traces when
rutSources::HDD_READ or rutSources::HDD_WRITE is enabled. Currently you can trace
only one partition at the same time.
Note: The mount mountpoint must be specified without a trailing ’/’

Data Structures

• struct rutSources_s
Bit field for sources to trace.
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Defines

• #define RUT_MAX_NUM_CPUS
• #define RUT_MAX_NUM_NETIFS
• #define RUT_MAX_STATS_VALUES
• #define RUTSRC_UNSET_ALL(sources)
• #define RUTSRC_SET_ALL(sources)
• #define RUTSRC_SET_CPU(sources)
• #define RUTSRC_SET_MEM(sources)
• #define RUTSRC_SET_NET(sources)
• #define RUTSRC_SET_HDD(sources)
• #define RUT_SUCCESS
• #define RUT_EMEMORY
• #define RUT_EHDLIB
• #define RUT_ETHREAD

Typedefs

• typedef struct UtilTrace_s UtilTrace
• typedef struct rutSources_s rutSources

Functions

• int rut_createTrace (hdTopoNode ∗topoNode, int topoLevel, rutSources sources, int
interval, UtilTrace ∗∗trace)

• int rut_startTrace (UtilTrace ∗trace)
• int rut_stopTrace (UtilTrace ∗trace)
• int rut_finalizeTrace (UtilTrace ∗trace)

Define Documentation

#define RUT_EHDLIB
Error in HDTrace library.

#define RUT_EMEMORY
Out of memory.

#define RUT_ETHREAD
Cannot create tracing thread.

#define RUT_MAX_NUM_CPUS
Maximum number of CPUs supported.

#define RUT_MAX_NUM_NETIFS
Maximum number of network interfaces supported.
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#define RUT_MAX_STATS_VALUES
Maximum number of statistics values traceable.

#define RUT_SUCCESS
Success.

#define RUTSRC_SET_ALL(sources)
Macro for setting all available sources.

#define RUTSRC_SET_CPU(sources)
Macro for enabling tracing of all CPU statistics at once.

#define RUTSRC_SET_HDD(sources)
Macro for enabling tracing of all hard disk statistics at once.

#define RUTSRC_SET_MEM(sources)
Macro for enabling tracing of all memory statistics at once.

#define RUTSRC_SET_NET(sources)
Macro for enabling tracing of all NET statistics at once.

#define RUTSRC_UNSET_ALL(sources)
Macro for cleaning all available sources.

Typedef Documentation

rutSources
Type definition of tracing sources bit field.

UtilTrace
Type definition of utilization trace object.

Function Documentation

int rut_createTrace (hdTopoNode ∗ topoNode, int topoLevel, rutSources sources,
int interval, UtilTrace ∗∗ trace)
Create utilization trace.
Use this function to create a new utilization trace. It will setup a new statistics trace with the
values specified in sources to trace.
The tracing will not start until rut_startTrace is called for the UtilTrace object returned by
this function.
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Parameters:
topoNode The new trace will we associated to this node or one of its ancestor nodes

(those on the nodes path)
topoLevel level of the node to associate the new trace to
sources Sources to trace
interval Interval to trace in milliseconds. Should be at least 100ms for acceptable perfor-

mance impact.
trace Location to store the UtilTrace pointer (OUTPUT)

Returns:
Error state

Return values:
RUT_SUCCESS Success
RUT_EMEMORY Out of memory
RUT_EHDLIB Error in HDTrace library
RUT_ETHREAD Cannot create tracing thread

int rut_finalizeTrace (UtilTrace ∗ trace)
Finalize utilization trace object.
Finalizes the trace. This destroys the UtilTrace object an frees all memory.
Parameters:

trace Utilization trace to finalize
Returns:

Error state
Return values:

RUT_SUCCESS Success
RUT_EMEMORY Out of memory

int rut_startTrace (UtilTrace ∗ trace)
Start utilization tracing.
Parameters:

trace Trace object to work on
Returns:

Indicate if tracing state changed
Return values:

0 Tracing is now started (was stopped before)
1 Tracing is started (as it was already before)
2 trace is NULL
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int rut_stopTrace (UtilTrace ∗ trace)
Stop utilization tracing.
Parameters:

trace Trace object to work on
Returns:

Indicate if tracing state changed
Return values:

0 Tracing is now stopped (was started before)
1 Tracing is stopped (as it was already before)
2 trace is NULL

C.2 Data Structure Documentation

C.2.1 rutSources_s Struct Reference

Detailed Description

Bit field for sources to trace.

Data Fields

• unsigned int CPU_UTIL: 1
• unsigned int CPU_UTIL_X: 1
• unsigned int MEM_USED: 1
• unsigned int MEM_FREE: 1
• unsigned int MEM_SHARED: 1
• unsigned int MEM_BUFFER: 1
• unsigned int MEM_CACHED: 1
• unsigned int NET_IN_X: 1
• unsigned int NET_OUT_X: 1
• unsigned int NET_IN_EXT: 1
• unsigned int NET_OUT_EXT: 1
• unsigned int NET_IN: 1
• unsigned int NET_OUT: 1
• unsigned int HDD_READ: 1
• unsigned int HDD_WRITE: 1

Field Documentation

unsigned int rutSources_s::CPU_UTIL
aggregated utilization of all CPUs

unsigned int rutSources_s::CPU_UTIL_X
CPU utilization for each single CPU.
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unsigned int rutSources_s::MEM_USED
amount of main memory used

unsigned int rutSources_s::MEM_FREE
amount of free main memory

unsigned int rutSources_s::MEM_SHARED
amount of shared main memory

unsigned int rutSources_s::MEM_BUFFER
amount of main memory used as buffer

unsigned int rutSources_s::MEM_CACHED
amount of main memory cached

unsigned int rutSources_s::NET_IN_X
incoming traffic of each single network interface

unsigned int rutSources_s::NET_OUT_X
outgoing traffic of each single network interface

unsigned int rutSources_s::NET_IN_EXT
aggregated incoming traffic of external network interfaces

unsigned int rutSources_s::NET_OUT_EXT
aggregated outgoing traffic of external network interfaces

unsigned int rutSources_s::NET_IN
aggregated incoming traffic of all network interfaces

unsigned int rutSources_s::NET_OUT
aggregated outgoing traffic of all network interfaces

unsigned int rutSources_s::HDD_READ
amount of data read from hard disk drives

unsigned int rutSources_s::HDD_WRITE
amount of data written to hard disk drives
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D Sources of the Shell Script
verifyRUT

#!/bin/bash

set -b

REMOTEHOST=node08

echo [ 0s] start stressing first CPU with 100%
taskset 0x1 awk ’BEGIN { i = 0; while(1) i++; }’ &

sleep 10
echo [10s] start stressing second CPU with 100\%
taskset 0x2 awk ’BEGIN { i = 0; while(1) i++; }’ &

sleep 10
echo [20s] stop stressing first CPU
kill %?0x1

sleep 10
echo [30s] stop stressing second CPU
kill %?0x2

sleep 10
echo [40s] allocate 512MB of memory
./cmalloc 512 &

sleep 10
echo [50s] allocate another 256MB of memory
./cmalloc 256 &

sleep 10
echo [60s] free all memory
jobs
killall ./cmalloc

sleep 9
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D Sources of the Shell Script verifyRUT

ssh -n $REMOTEHOST "nc -l -p 7666 > /dev/null" &
sleep 1
echo [70s] start stressing external network interface by sending 512MB
dd bs=16M count=32 if=/dev/zero 2> /dev/null | nc $REMOTEHOST 7666 &

sleep 9
killall -SIGINT nc
nc -l -p 7666 > /dev/null &
sleep 1
echo [80s] start stressing external network interface by receiving 512MB
ssh -n $REMOTEHOST "dd bs=16M count=32 if=/dev/zero 2> /dev/null | nc

$HOSTNAME 7666" &

sleep 10
echo [90s] start stressing local hard disk drive by writing 512MB
killall -SIGINT nc
dd if=/dev/zero of=/tmp/verifyRUT.tmp bs=16M count=32 2> /dev/null &

sleep 10
echo [100s] allocate all memory to clean cached data
./cmalloc 1024 &

sleep 10
killall -SIGINT cmalloc
echo [110s] start stressing local hard disk drive by reading 512MB
dd if=/tmp/verifyRUT.tmp of=/dev/null bs=16M 2> /dev/null &

sleep 10
echo [120s] terminate program

rm -f /tmp/verifyRUT.tmp
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