UH
iﬁ
L2 ¥ Universitat Hamburg

DER FORSCHUNG | DER LEHRE | DER BILDUNG

MASTERTHESIS

Optimising Scientific Software for Heterogeneous Cluster
Computers: Evaluation of Machine Learning Methods for
Source Code Classification

vorgelegt von

Ruben Felgenhauer

MIN-Fakultat
Fachbereich Informatik

Studiengang: Informatik
Matrikelnummer: 6659393

Erstgutachter: Prof. Dr. Thomas Ludwig

Zweitgutachter: Prof. Dr. Peter Hauschildt
Betreuer: Jannek Squar, Prof. Dr. Peter Hauschildt

Hamburg, den 3. August 2021

Abstract

Since high performance compute centres are shifting more to use accelerators like GPUs,
vector processors, or many-core CPUs, HPC programmers are often confronted with a
very heterogeneous hardware environment. Different computation units have different
requirements in order to use them most efficiently. Typically, scientific software is optimised
for specific target architectures based upon decisions that are made before it is known
which hardware composition will be available at the time of running. This can lead to
cluster computers being used under capacity which wastes computational resources and
energy.

With the evolution and resulting gain in popularity of automatic parallelisation tools like
OpenMP and sophisticated static code analysis methods, source code can increasingly be
written in a more readable fashion with acceptable performance cuts. Therefore, given the
choice between performance and maintainability, it can increasingly be made in favour of
the latter.

However, at the time of writing, this only goes so far that the programmer decides which
sections to parallelise and optimise for which target architecture. Ultimately, to efficiently
tackle cluster heterogeneity, the goal should be to automatically find the optimal mapping
of sub-programs to computation units and performing the required parallelisation. Central
to this task is source code classification.

It has been shown by Barchi et al. that machine learning classification can be used to
determine a suitable computation unit for OpenCL source code samples. In this thesis, we
evaluate machine learning methods for general-purpose classification of program parts to
extend this principle to support all ahead-of-time compiled programming languages. First,
we combine the ASTNN by Zhang et al., a neural network architecture that can be used
for the classification of C source code samples, with RetDec, a retargetable decompiler
by Kioustek (Avast Software) based on LLVM which generates C code from machine
instructions.

This is compared with a straight-forward approach where general-purpose classifiers
from scikit-learn are trained on byte-value data of the object code files’ .text
section. We show that the modified ASTNN outperforms these methods in all of our
performed benchmarks, but that it comes with several limitations including high memory
consumption and training time, and unresponsiveness of the decompiler on some samples.

Acknowledgement

Als erstes mochte ich mich bei meinen Gutachtern und Betreuern Prof. Dr. Thomas
Ludwig, Prof. Dr. Peter Hauschildt, und Jannek Squar bedanken. Danke, Peter, dass Du
diese Arbeit betreut hast, obwohl, anders als urspriinglich geplant, der Physik-Anteil nun
leider auf Null gesunken ist! Danke, Jannek, dass Du mir in zahlreichen Telefonkonferenzen
geholfen hast, auf der richtigen Spur zu bleiben und fiir Deine wirklich extrem ausfiihrlichen
Anmerkungen!

Weiter mochte ich mich bei den Mitarbeitern des Studienbiiros Informatik bedanken,
die mich bei allen Aspekten meines Studiums immer freundlich und ziigig beraten und
unterstiitzt haben, und hierbei ganz besonders bei Dagmar Schacht, die mich im Bachelor-
Studium am Ende des ersten Semesters davon abgehalten hat, das Studium abzubrechen,
und ohne die diese Arbeit deshalb wohl nicht entstanden ware.

Auflerdem mochte ich mich natiirlich bei meiner Freundin Lina Meyer bedanken. Danke,
Lina, dass Du mir geholfen hast, wahrend der Heimarbeit, die durch die anhaltende
SARS-CoV-2-Pandemie erzwungen wurde, die Nerven zu behalten, und dass Du mich
Tag fir Tag dazu motiviert hast, mich an den Schreibtisch zu setzen und kreativ zu sein!

Schliefllich méchte ich mich bei meinen Eltern fiir ihre Unterstiitzung bei dieser Arbeit
bedanken und dass sie mir geholfen haben, soweit zu kommen, wie ich jetzt bin, und bei
meinen Freunden Fabian Schmidt, Jasper Gerwers, Karim Ritter von Merkl, Laurence
Grossen, Leonhard Reichenbach, Michaela Schneeberger, Simon Welker, Theresa Cavasin,
Tim Kuhrt, und Timon Schiimann. Danke, dass ihr wihrend meines Studiums immer fiir
mich da wart!

Contents

1. Introduction
2. Related Work

3. Background
3.1. Hardware Evolution in HPC
3.2. Automatic Parallelisation Tools
3.2.1. OpenMPo
3.2.2. OpenACC
3.2.3. Polly
3.2.4. Molly
3.3. Code Patterns
3.4. Languages in HPC
3.5. Code Generation o
3.5.1. Code Generation Tools
3.5.2. Compiler Internals
3.5.3. LLVM
3.6. Software Reverse Engineering
3.7. Language-independent classifiers
3.8. Machine Learning Classification
3.8.1. Nearest Neighbour Classifiers
3.8.2. Decision Tree Classifiers
3.8.3. Naive Bayes Classifiers
3.8.4. Support Vector Machines,
3.8.5. Ensemble Methods,
3.8.6. Neural Networks
3.9. Word2Vec
3.10. Online Judge Dataset
311 ASTNN . .

Contents

4. Methods
4.1. Object Code Classification
4.2. Classification of Reverse-Engineered Source Code
4.3. Benchmarks
4.3.1. Prototype Application Dataset
4.3.2. OJ Dataset
4.3.3. BLAS dataset,
4.3.4. PHOENIX dataset
4.4. Problems and Limitations

5. Conclusion
5.1. Comparison of the classifiers
5.2. Future Work
5.2.1. Improving the Classifiers
5.2.2. Automatic Code Mapping

Bibliography

Appendices

A. Source Code Samples

B. PHOENIX dataset module selection
C. Class hierachy of sklearn classifiers
List of Acronyms

List of Figures

List of Listings

List of Tables

45
45
46
49
50
52
26
29
61

65
65
67
67
68

71

81

87

91

93

95

97

99

Chapter 1.

Introduction

There is an intricate struggle inside the High Performance Computing (HPC)
community that is more present than in other fields of applied computer science. At
some point, every HPC programmer will have to make a choice between readability
and performance. Basically, this boils down to a balance between the runtime of
an application and the working time a programmer has to put into it. However,
while the runtime of a program is easily measurable, the complete workload that is
induced by a deliberate design decision is often unpredictable. The reason for this
is quite simple:

“It’s harder to read code than to write it.”
— Joel Spolsky [1]

A programmer may easily be able to put in an hour of work into his program,
replacing well-readable high-level constructs with machine-oriented ones, reducing
the runtime by 5 minutes per run, which makes it seem like his work has amortised
after 12 runs (a small number for most applications), but it would be a fallacy to
unconditionally call this a success, because the subsequent work is not incorporated
in the final balance. If later, a different developer joined the team to implement new
features, fix bugs, or inherit the code base for maintenance, this gain of time would
quickly diminish if they were confronted with an unreadable code base. This has
led many members of the HPC community to give a lot more weight to readability
than to small runtime advantages.

1. Introduction

“Premature optimisation is the root of all evil.”
— Donald E. Knuth [2]

Tools like OpenMP (see Section 3.2.1) have helped reducing the stress on program-
mers by offering parallelisation that can often be achieved through the addition of
very few lines (compiler pragmas) to an existing iterative program. This does not
only save time while writing in comparison to parallelisation via POSIX threads,
where extensive modification of the source code and the used datastructures is
often necessary, but also strongly helps keeping source code more readable.

Since the speed-up per workload for the programmer that is achieved by using
OpenMP is comparatively large, one can argue that a stronger focus on tool
assistance is generally desirable.

This thesis takes this assumption to the next logical step by researching methods
that could finally enable us to even banish preprocessor pragmas from the lives of
the average HPC programmer, pushing all necessary work to utilise a heterogeneous
set of computational resources as best as possible to the compiler. This could
be done by automatically deciding the optimal target architecture for parts of a
program.

In the following, we denote a large-scale set of individual computers (nodes) that
can be addressed in a way so that they can be used to solve a large computational
problem simultaneously through joint effort as a cluster computer. We say that
a cluster computer is heterogeneous, when the nodes employ drastically different
types of processing units.

Apart from traditional Server CPUs with up to 64 cores (128 threads), this can
mean general-purpose computing on graphics processing units (GPGPUs) with
thousands of cores, vector processors / Vector Engines with approximately 10 cores,
or many-core processors with up to 72 cores (288 threads).

All of the above systems can be found in high performance systems and require
different methods to fully make use of their computational power, thus, different
classes of algorithms may be suited differently for optimisation on the individual
platforms. A description of these classes and code patterns is given in Section 3.3.

Apart from OpenMP which is usually used to acquire parallelism on the CPU,
OpenACC can be used to automatically run code on GPUs in a similar fashion,
and building for vector processors is usually done by using a dedicated compiler. A
detailed rundown of these and similar tools can be found in Section 3.2.

10

1. Introduction

Three vastly different examples for clusters with a heterogeneous structure are
the “Cori” Cluster at the National Energy Research Scientific Computing Center
(NERSC) in Berkeley, California, which consists of 2,388 nodes with only (traditional)
Intel Xeon CPUs and 9,688 nodes with Intel Xeon Phi many-core CPUs [3]; the
“Aspire 1”7 cluster at the National Supercomputing Centre (NSCC) in Singapore
which has 1,288 nodes with only Intel Xeon CPUs and 128 nodes with additional
NVIDIA GPUs [4]; or the “Mistral” cluster at the German Climate Computing
Center (Deutsches Klimarechenzentrum, DKRZ) in Hamburg, which consists of
3,359 nodes with only Intel Xeon CPUs, and 21 nodes with additional NVIDIA
GPUs [5], although the system has also featured a handful of NEC' SX-Aurora

Vector Engines in internal testing systems in the past.

The user base of a typical scientific software is usually a superset of the team of
its developers, thus it gets used by people that generally do not know much about
its internal structure. Therefore, a widespread behaviour of these users is simply
condoning the limitations of the software that they are confronted with. If the
application is optimised to only run on CPUs, the user will probably only allocate
nodes dedicated to CPU computation, while other nodes of the cluster (e.g. with
GPUs) may lie idle, i.e. the computational resources get adjusted to the program’s
capabilities which can lead to a waste of potential computational power.

On the other hand, if we manage to adjust the program to the available cluster,
one could utilise the cluster in its entirety (if desired). Through tool assistance, this
could be done by the user so that the distribution of the individual processes to
the heterogeneous hardware is simplified to yet another parameter like the number
of processors used. In this scenario, a programmer would write iterative high-level
code that is independent of the type of processors and gets specialised only at
compile-time.

There is a multitude of research projects that engage in static source code analysis
with the goal of automatic parallelisation even without the help of compiler pragmas.
For example, Polly, which has by now been integrated into the LLVM framework,
attempts to locate relevant loops and to automatically create parallel or GPU
optimised code. Based upon that, the tool Molly tries to assist in the creation of
MPI code for computers with distributed memory. However, these tools usually
require the user to know a priori for which architecture to optimise. At the time of
writing, relatively little research has been done in automatically deciding for which
platform a piece of code is best suited for.

11

1. Introduction

Crucial to this idea is the task of source code classification. As has been shown
by Barchi et al. [6], source code samples can be grouped into classes which go
along with an optimal computation unit. In Chapter 3, the theoretical background
of this thesis is explained. This includes the types of hardware that are used in
HPC environments (Section 3.1) and modern methods to create programs for them
(Section 3.2), developments in code pattern analysis (Section 3.3) and programming
languages in HPC (Section 3.4), tools for creation of machine code from high-level
source code (Section 3.5) and vice versa (Section 3.6), and descriptions of the basic
machine learning methods that were used in this thesis (Sections 3.8 to 3.11). In
Chapter 4, we will see concrete examples for source code classifiers that can be
used in a scientific HPC context. They are then evaluated through benchmarks
(Section 4.3). Finally, in Chapter 5 we conclude this thesis by first giving a qualitative
comparison of the methods (Section 5.1), listing steps to improve their performance
in general (Section 5.2.1), and finally proposing a hypothetical model based upon
the used classifiers that could be used for automatic code mapping (Section 5.2.2).

12

Chapter 2.

Related Work

In 2006, Asanovié et al. listed several classes of programs which are characteristic
for their computation behaviour and data movement which they titled the “Seven
Dwarfs” [7]. They based this list on the work of Colella from 2004, where these
patterns were described in detail [8]. Furthermore, Asanovié¢ et al. listed six further
classes of algorithms that they stated were missing from Colella’s work.

There have been multiple projects to automatically parallelise code with the aid
of the programmer. The OpenMP compiler extension is able to produce multi-
threaded machine code for loops that have been annotated by the programmer [9,
10]. OpenMP is supported by compilers like gcc or clang and widely adopted.
Likewise, OpenACC allows creation of code for graphics processing units [11]. On a
lower level, the OpenCL language and library are generally able to target different
processing units, although it usually gets used to create programs for GPUs [12].
The Kokkos project offers an abstract platform that enables programmers to run
software portably on a variety of platforms [13]. It uses some of the tools listed
in Section 3.2 as a back-end to automatically parallelise code. While it makes it
possible that programmers write their applications only once and distribute them
on multiple platforms, one might find that code that uses Kokkos is marginally
harder to read than sequential code. Furthermore, a disadvantage of Kokkos is that
it only supports C++-.

Grosser et al. created the tool Polly which analyses loops inside programs to
automatically parallelise them [14]. They state that work has also been done for the
task of GPU code production. Based on this, Kruse created the tool Molly, which

13

2. Related Work

offers semi-automatic parallelisation via message passing (MPI) [15]. Work has also
been done by Squar et al. to transform code that has been parallelised with OpenMP
to MPI [16]. In 2019, Barchi et al. proposed machine learning methods that were
trained on OpenCL kernels which were compiled to LLVM IR for automatic source
code mapping to suitable processing units [6]. In their tests, this method was able
to predict the optimal computation unit with an accuracy of 85 %.

There have been numerous different approaches to perform static code analysis
via machine learning. McDaniel and Heydari have shown in 2003 that a lot of
information can already be extracted from binary files using statistical analysis of
byte-value histograms [17]. In their work, they used their method to recognize the
file type for files with missing headers, but they state that it could also be used
for virus scanning or forensic hard drive analysis. In 2015, Clemens took a similar
approach to infer the target architecture and endianess from executables containing
unspecified machine instructions [18].

There are several models that were based on the abstract syntax trees (AST) of
source code: In 2015, Mou et al. proposed a tree-based convolutional neural network
(TBCNN) for source code classification which worked on the abstract syntax tree
of source code samples [19]. They created a dataset containing labelled source code
samples and used this for benchmarks in which their method achieved an accuracy
of 94.0%. The method was outperformed by a model called ASTNN which was
proposed by Zhang et al. in 2019 [20]. By splitting up the AST into smaller pieces
called statement trees, it reached an accuracy of 98.2% on the benchmark from
Mou et al. In 2018, Dam et al. proposed a deep model based on long short term
memory networks (LSTMs) which they used for software defect prediction [21].
A disadvantage of these models is that they are fixated on the classification of
samples from a specific programming language during training, since the structure
of ASTs varies drastically from language to language.

To generate high-level source code from machine instructions, a decompiler can be
used. A common challenge of these tools is to reconstruct the original source code
as true to the original as possible. In this thesis, we use the RetDec decompiler
from Kroustek [22] which often generates well-readable code and is available under
the permissive MIT license.

14

Chapter 3.

Background

3.1. Hardware Evolution in HPC

According to an article that was published inside the blog insideHPC in 2016, the
evolution of HPC can be split into three epochs: the progression of supercomputers
from singular machines like the Cray-1 in 1976 [23] to modern distributed systems
that consist of millions of processor cores located on numerous individual nodes, a
development towards increasingly more processor cores per node (therein called
the “Multi and Many-core Explosion”), and finally, a more involved development
process through hardware-software co-design [24].

The first two claims can be backed by the biannually published TOP500 list, a
list of the 500 fastest supercomputers in the world [25]: From 2011 to 2020, the
maximum number of overall processor cores per supercomputer has increased from
705,024 to 7,630,848, while the proportion of clusters that are listed to feature
accelerators has increased from 7.8 % (39 systems) to 34.8 % (174 systems) [26].

The most popular kind of accelerators are general-purpose computing on graphics
processing units (GPGPUs). At the time of writing, these systems feature thousands
of cores and up to 11.5 teraFLOPs of double precision computing capacity [27].
This outstanding performance is achieved through high parallelism and memory-
bandwidth. Therefore, GPUs excel when they are performing uniform operations

LCompare to a traditional CPU like the “AMD Ryzen™ Threadripper™ 3990X” which was
benchmarked with 1.571 teraFLOPs in the HPL benchmark [28].

15

3. Background

on large amounts of data, e.g. matrix multiplications [29]. However, this also comes
with a significant downside: Since GPU computing has originated from GPU shaders
used for 3D visualisation, it is to this day strongly linked to libraries like CUDA [30]
or OpenCL [12] that make the processing power usable by the programmer in a
more convenient manner. It is also possible to reduce the programmer’s workload
through the framework OpenACC (see Section 3.2.2) which works with compiler
pragmas (see Section 3.5.2) similarly to OpenMP (see Section 3.2.1) or OpenMP
with accelerator offloading. However, Kirk and Hwu claim that this approach will
often not produce optimal results or require further steps. Furthermore, GPUs are
not suited for all kinds of tasks and will only deliver their theoretical peak power
on highly parallel problems [29].

The second variant of accelerators are many-core processors which are almost
exclusively built by Intel and sold as Intel Xeon Phi which feature up to 72 cores
[31] and made up only 0.8 % of the TOP500 systems (4 systems) in 2020 [26]. The
individual Xeon Phi models have a large diversity: While initial designs which
were codenamed Larrabee [32] and later sold as Knights Ferry [33] were classified
as GPUs and to be used as PCle extension cards which still required a CPU to
be present on the mainboard, more recent models from the Knights Landing [34]
and Knights Mill [31] generation can be socketed directly onto the mainboard and
also be used to run the operating system, so these models can not be properly
classified as accelerators. In fact, they are instead marketed as coprocessors by
Intel. These models consist of modified Airmont [35] cores with a comparatively
low clock rate of up to 1.7 GHz which were originally used for low-power mobile
Atom architectures, but have been equipped with AVX-512 vector units, 16 GB of
MCDRAM instead of L3 cache, and fourfold hyperthreading (288 CPU threads in
total). Therefore, while Xeon Phi processors have a smaller computation capacity
compared to high-end GPUs?, they can be easier to use in practice, since programs
written for x86 CPUs can exploit their power without changes, especially if they
make use of AVX-512 instructions.

Finally, a type of accelerator that is present in 0.4 % (2 systems) of the TOP500
list are Vector Processors or Vector Engines. Both of these systems are SX-Aurora
TSUBASA processors by NEC, and although they are executed as PCle cards and
need a host CPU that runs the operating system, they are listed as processors
rather than accelerators in the TOP500 list which can be considered inconsistent
in regards to GPUs. A reason for this could be that one considers the workload on
the host CPU as negligible on a system that is accelerated by a vector processor.

2The Xeon Phi 7290 has 3.456 teraFLOPS of double precision computation power [34].

16

3.2. Automatic Parallelisation Tools

NEC’s vector engines have up to 3.07 teraFLOPs of computing power [36] which
is roughly comparable to the performance of Intel Xeon Phis, but with only 10
processor cores instead of 72. However, it is not uncommon to use several vector
processors in one machine as performed in a cluster by the German Meteorological
Service (Deutscher Wetterdienst, DWD) [37]. The source of this high processing
power lies, as the name suggests, in a consequent exploitation of vectorisation,
following the Single Instruction Multiple Data (SIMD) paradigm. To ensure this,
NEC offers compilers for C, C++ and Fortran which allow for efficient automatic
vectorisation and support for OpenMP [38]. It is also possible to explicitly optimise
written code to be more suitable for automatic vectorisation.

In summary, there are multiple kinds of accelerators that are used in HPC clusters.
Although tools exist that help the programmer to optimise their code for certain
architectures, this process is usually still associated with deliberate design decisions
that simplify or even facilitate these optimisations, i.e. it is not trivial to write code
that will run well on traditional or many-core CPUs, GPUs, and vector processors,
and an attempt to do so can lead to code duplication. In the next section, we will
give an overview over these tools and frameworks, and in Section 5.2.2, we will
present a hypothetical solution to this problem based on the methods that are
discussed in this thesis.

3.2. Automatic Parallelisation Tools

3.2.1. OpenMP

OpenMP (Open Multiprocessing) is an application programming interface (APIT)
which simplifies the parallelisation of programs written in C, C++, or Fortran for
machines with shared memory [39] through the usage of compiler pragmas (see
Section 3.5.2). This means that OpenMP can only be used for parallelisation across
machine boundaries, and therefore not for programs that are distributed on cluster
computers, where libraries like MPT (see Section 3.2.4) may be used instead?. Prior
to OpenMP’s first release in 1997 (Fortran interface) [9] respectively 1998 (C/C++
interface) [10], programmers were bound to existing, usually more verbose, methods
like POSIX threads. Listing A.1 shows a simple C program where an (abridged)
computationally expensive function gets called multiple times sequentially in a

3Tt is however possible to use a hybrid approach where one uses MPI and OpenMP together to
achieve thread-level parallelism with message passing.

17

3. Background

loop. A straightforward parallelisation of this program using POSIX threads can
be found in Listing A.2. As one can see, this snippet is significantly longer, and,
since the number of threads and the number of tasks is not equal, arguably a lot
harder to comprehend. In comparison, the parallelisation using OpenMP which
can be found in Listing A.3 is almost identical. The compiler pragma in line 13
is informing the compiler to parallelise the following loop. Therefore, OpenMP
enables a programmer to parallelise their applications very quickly and to keep
them comparatively readable.

In the next section, the API OpenACC will be described which assists the program-
mer in running programs on GPUs and has a similar syntax to OpenMP. Since
2013, OpenMP also supports accelerator offloading [40] which can be understood
as an alternative to OpenACC. However, with both OpenMP and OpenACC, the
programmer has to make a decision to select specific loops that are to be parallelised.
Section 3.2.3 describes the tool Polly which can help to automatically identify them.

3.2.2. OpenACC

Similar to OpenMP, OpenACC (Open Accelerators) is a library for automatic
parallelisation of sequential source code on GPUs which also has a fairly similar
syntax: The analogue to OpenMP’s #pragma omp parallel (see Listing A.3)
in OpenACC would be "#pragma acc parallel". Furthermore, OpenACC
has several features that are specific to GPUs, e.g. for memory management, because
GPUs usually have their own dedicated memory [11]. Since automatic parallelisation
with OpenACC will not always lead to optimal results [29], tools like OpenCL [12]
or CUDA [30] (which is specific to NVIDIA GPUs) are still relatively common in
the HPC community.

3.2.3. Polly

While tools like OpenMP and OpenACC have the power to significantly reduce the
work required for parallelisation, a downside of them is that they still require manual
intervention at the source code level. While a loss of readability to the extent of
a parallelisation approach which purely uses POSIX threads (see Listing A.2) is
prevented, this still can be a lot of work, especially if one desires to optimise their
code for more than one platform.

18

3.2. Automatic Parallelisation Tools

The tool Polly which was written in 2012 by Grosser et al. [14] is able to analyse
source code by representing memory-accesses and loop bounds as polyhedra. This
representation makes it possible to apply geometric optimisation algorithms like
the simplex algorithm [41]. Apart from improving data-locality, Polly also aims to
automatically identify and parallelise relevant loops using OpenMP. Polly has been
integrated into the LLVM framework (see Section 3.5.3) and can be invoked from
its front-ends like clang [42].

3.2.4. Molly

While Polly can in some cases be used to automatically parallelise source code
on machines with shared memory, this is not possible on cluster computers with
distributed memory, i.e. ensembles of many individual computers that are inter-
connected with each other. The de-facto standard of enabling programs to run
on these machines is MPI (Message Passing Interface) [43], a specification which
defines various routines for communication between processes which may run on
different physical machines. There are several implementations of the MPI stan-
dard like OpenMPI [44] (not to be confused with OpenMP) and MVAPICH [45].
Since programmers have to consider things like explicit communication, memory
distribution, and several instances of the same program in different states, it has
traditionally been a lot harder to write software for distributed clusters than for
single machines [46]. In an effort to combine the message passing paradigm with
automatic parallelisation, Kruse created the tool Molly [15], which is based on MPI
and Polly. At the time of writing, this is done by specifying via compiler pragmas
how the memory layout of individual processes should be, e.g. by specifying a
transformation rule of an array’s indices to split up a large array between several
processes. Molly is then able to generate the necessary communication operations.
Furthermore, loop bounds are analysed so that the individual processes each only
run a smaller part of the original loop. In benchmarks run by Kruse in 2016 [47],
Molly achieved about 4.5 % of the performance of a manual MPI implementation,
but the latter also had a significantly larger code size with 320 times as much lines
of code.

19

3. Background

3.3. Code Patterns

In theoretical computer science, the idea that there are algorithms (or classes thereof)
that can be used as building parts for a variety of different problem solutions has
been present for multiple centuries. An illustrative example for this is the depth-
first search which was probably conceptualised first by Trémaux in 1876 [48] and
which has since then been applied in numerous situations like finding the connected
components or a topological sorting of a graph [49]. In pseudo-code or other abstract
representations of algorithms, this led to the concept of sub-algorithms resembling
functions which can be called and then used as placeholders of their results.

Regardless of this, the standard way of programming microprocessors in performance-
critical environments in the 1950s was still through assembly language, i.e. a textual
representation of machine instructions, because the few compilers for higher-level
programming languages that were available at that time could usually not compete
against hand-coded assembly performance-wise [50]. However, common assembly
languages have only rudimentary support for sub-programs through jump statements
and do not feature functions in a mathematical sense, i.e. as mappings f: X — Y.
Instead, one has to work around this issue by manually copying input parameters
to predefined registers, jumping to a certain address, and storing the result in an
adequate way.

In 1954, the first draft specification of The IBM Mathematical Formula Translating
System was published by Backus et al. respectively IBM. After the Fortran manual
and compiler were published in the following years, it was shown that the Fortran
compiler, being the first optimising compiler, could outperform manually written
assembly code by factors up to 20 which helped its industry adoption [51].

The rise in popularity of high-level languages, especially Fortran, lead to the
development of various libraries, e.g. the Scientific Subroutine Package (SSP) by
IBM [52]. This includes the popular BLAS library (see Section 4.3.3) in 1979 [53].
The outsourcing of functionality into third party libraries helped programmers to
concentrate on their problems on a more abstract level and makes it possible that
performance-critical subroutines have to be optimised only once by the library
creator.

In 2004, Colella listed several important aspects in scientific software [8]. In terms
of memory, data locality has special importance. If a data element has been recently
used, one speaks of temporal locality if the same element will likely be used again
soon, and of spatial locality, if elements neighbouring in memory will likely be used

20

3.3. Code Patterns

soon. An example for temporal locality is a loop that uses a data element without
changing it. An example for spatial locality is a loop in which a mathematical
operation is applied to all elements of an array. Locality has large consequences
for optimal cache strategies. While it is often possible to optimise for temporality
local elements by using paging strategies like Least Recently Used (LRU) or more
sophisticated ones, where they might be kept in the cache, spatially local elements
require prediction of memory accesses for an optimal strategy which is be attempted
through read-ahead in modern CPUs and operating systems [54]. Colella lists seven
motifs of scientific computing, i.e. reoccurring patterns that can be routinely found
in scientific software. These patterns differ in terms of their computation and data
access behaviour. There are structured and unstructured grids, dense and sparse
algebra, Fast Fourier Transform, particle behaviour, and Monte Carlo methods.

An example for structured grid algorithms is the stencil pattern in which a spatially
local computation is made on a higher-dimensional array, e.g. a matrix. To illustrate
this, Listing 3.1 shows an abridged pseudo-code of the main-loop of the Gauf3-Seidel
method [55]. As one can see therein, for each (7, j) inside the loop, the value that
is written to the matrix element MT[i, j| is only dependent on the values of its four
neighbours inside the matrix. In a typical implementation, M[i, j| and M[i, j + 1]
will always be adjacent in memory.

1 fort:=1to N

2 for j =1to N

3 star = — Ml[i,j—1] — M[i —1,5] — M[i + 1, §] — M[i,j +1]
+4- MJi, j]

4 residuum = GETRESIDUUM(i, 7, star)

5 Mli, j| = M]Ji, j] + residuum

Listing 3.1: Abridged pseudo-code of the GauB-Seidel method.

In 2006, Asanovié¢ et al. listed several classes of programs which are characteristic
for their computation behaviour and data movement based on the patterns listed
by Colella [7]. Except for spectral methods which include FFT, and n-body methods
which include particle methods, the nomenclature is identical. Asanovi¢ et al. call
these classes the seven dwarfs and also list an additional six dwarfs: combinatoric
logic, graph traversal, dynamic programming, backtracking / branch and bound,
construct graphical models, and finite state machines.

21

3. Background

In 2019, Barchi et al. showed that classification via machine learning can be used
to automatically decide an adequate processing unit for a piece of source code.
They used a dataset containing OpenCL kernels* which were compiled to LLVM
IR (see Section 3.5.3) and benchmarked in terms of their execution time on CPUs
and GPUs. This data was used to train a neural network which was then able to
predict a suitable compilation unit for an unseen compiled kernel [6].

In Section 4.3.1, a prototype application is described which generalises on the stencil
code implementation shown in Listing 3.1. This application is used to train machine
learning methods for recognition of numerical methods. In Sections 4.3.2 to 4.3.4,
machine learning methods are then used in benchmarks using other datasets. In
Section 5.2.2, we describe how this could be used in a similar context as the work
from Barchi et al.

3.4. Languages in HPC

According to the PopularitY of Programming Language Index (PYPL), the six most
popular languages are Python, Java, Javascript, C#, C, and C++ [56]. However, if
we restrict this to only the HPC community, the answer is slightly different:

In a systematic mapping study, Amaral et al. showed in 2019, that the most used
general-purpose programming languages in HPC were C++, C, Python, Java, and
Fortran [57] (listed in the order given therein). These languages can be split into
the following categories: C, C++, and Fortran are usually compiled languages
(although C++ can also be used in a read-eval-print loop fashion through the
Cling interpreter [58]), Java is typically just-in-time-compiled (JIT) and running
inside the Java Virtual Machine (although recent versions of the Android operating
system may use Ahead-of-Time compilation or caching of compiled code [59, 60]),
and Python is typically an interpreted language (although the tools PyPy [61] and
Numba [62] also bring JIT to Python). Also taking into account the number of
programs written in each language, it is likely that most HPC applications are
currently written in compiled languages.

4In this context, the word “kernel” denotes a small piece of OpenCL source code, e.g. for matrix
multiplication, which can be executed on a computational unit, e.g. a GPU, usually by calling
it from inside a program written in a general-purpose programming language like C.

22

3.5. Code Generation

The relatively new language Rust that was created in 2010 [63] with the goal of
performance, reliability and productivity [64] and had its first stable release in 2015
has at the time of writing not yet widely been accepted by the HPC community
according to the above statistics. However, it has been shown by Sudwoj in 2020
that “Rust is a viable language choice for HPC applications, both in terms of its
features, which match or surpass those of Fortran and C++, and in terms of its
performance” [65]. Therefore, Rust could rise in popularity in the coming years
which would further strengthen the influence of compiled languages in HPC.

A problem with many existing static code analysis tools (e.g. Barchi et al., 2019 [6];
Droste, Kuhn, and Ludwig, 2015 [66]) is that they are limited to a specific language.
The methods presented in this thesis are independent of the programming language.

In Section 3.5, there will be an overview of the compilation process, i.e. the steps
and tools required to translate a piece of source code to an executable file.

3.5. Code Generation

3.5.1. Code Generation Tools

Figure 3.1 shows a typical pipeline to create executable binary code from source
code (e.g. C, C++, or Fortran). The description of the tools below can be found
at Levine, 1999 [67]. Note that the whole pipeline may colloquially be called a
compiler since it can usually be induced all at once via a compiler front-end like gcc
or clang, but this is technically not correct. A more precise definition of a compiler
is given below.

Here, the term source code denotes a high-level programming language that is meant
to be as comprehensible as possible for humans, containing control-structures and
sub-programs, while still being unambiguously interpretable by a computer. Before
it can be compiled, the source code has to be run through a preprocessor which
eliminates preprocessor directives, e.g. #include directives in the C programming
language that will be replaced verbatim with the file that is included. A compiler
transforms this source to assembly code which is low-level symbolic machine code
that contains machine instructions operating on registers, and performs optimisa-
tions during the process. Compiler pragmas, like for OpenMP (see Section 3.2.1),
also get processed in this step. An overview of compiler architecture can be found in
Section 3.5.2. The assembly code is then transformed to its binary representation,

23

3. Background

the object code, by an assembler, which also replaces symbolic by real addresses
whenever this is possible. Finally, as a software project might consist of multiple
compilation units, which will be individually transformed to object code files, the
linker will merge these into a single executable file and further resolve remaining
symbolic addresses.

Source Assembly Object

Source % Preprocessor }mﬁ Compiler }m’{ Assembler }m){ Linker }—) Bg;zzy

Code

Figure 3.1.: Code Generation Pipeline [67].

On a typical HPC system using a Linux-based operating system, object code files,
executable files, and shared libraries are using the Executable and Linking Format
(ELF) which standardises the structure of these files through headers, sections and
segments. An overview of the basic structure of an ELF file is given in Figure 3.2.
Of particular interest for us is the . text section which contains the actual machine
instructions in binary form. See Section 4.1 for classifiers which work on the .text
section of object code files.

ELF header

Program Header Table

text
Machine
instructions
.rodata
.data

N

Section Header Table

Figure 3.2.: Basic structure of an ELF file (based on Kyi, Koide, and Sakurai, 2019 [68]).

24

3.5. Code Generation

3.5.2. Compiler Internals

The compiler can be considered the heart of the code generation pipeline and
consists of multiple phases in itself which is illustrated in Figure 3.3. The individual
components can often be split into a front-end, an optimisation step, and a back-end,
although the optimisation is sometimes also considered part of the back-end. As
an example, an overview of the architecture of the LLVM compiler framework is
given in Section 3.5.3. A closer look into the components can be found in Appel
and Ginsburg, 1997 [69], and Muchnick, 1998 [70].

The first component of the front-end is the lexical analyser which is often also
called lexer, tokeniser or scanner, which decomposes the given source code to a
sequence of tokens, often through regular expressions. This token sequence is then
transformed into an abstract syntax tree (AST) by the parser which performs
syntactical analysis by deciding if the token sequence can be inferred from the
grammar of the given programming language. As the name implies, the AST is a
tree-representation of the source code’s syntactical information, where e.g. a binary
operator, i.e. an operator with two operands, is represented by a node with two
children. Colloquially, the lexer is often included implicitly when speaking of the
parser. The AST is then usually transformed to an intermediate representation
(IR) by an IR Generator which performs the semantic analysis meaning that the
type, name, and lifetime of symbols are checked, and that a symbol table is created
which stores this information.

Token

<
Source Lexical Sequence | Syntactical AST Semantic 5
— . . . b=
Code Analysis Analysis Analysis 5
€N
IR Code IR
Optimisation

- Virtual ASM
$ Code Code Register Code Instruction L ASM
f% Generation Allocation Scheduling Code

m

Figure 3.3.: Compiler phases (based on Appel and Ginsburg, 1997 [69], and Muchnick,
1998 [70]).

25

3. Background

There are many different examples for IRs and compilers can even feature multiple
IRs with a descending abstraction level where different optimisations may be applied
on different levels. While high-level IRs are very close to source code, low-level IRs
much more resemble assembly code. Inside the LLVM compiler framework (see
Section 3.5.3), a single IR called LLVM IR or LLIR is used that acts as input and
output of all compiler optimisations.

Inside the back-end, the first step can be code generation which can also be called
instruction selection. This can often be seen as a translation step from the given IR
to virtual code, a representation that resembles assembly code in terms of syntax,
but assumes an infinite number of registers in the CPU. This changes after the
register allocation, where the code gets limited to the actual physical number of
registers, introducing store and load directives whenever necessary. Finally, this
assembly code gets rescheduled with the constraint that the overall behaviour
must not change to reduce register copy instructions and exploit instruction-level
parallelism of modern CPUs.

3.5.3. LLVM

The LLVM?® project is a compiler framework that can be used to build compilers
for many programming languages and architectures due to its modular design.

There is a large number of back-ends for LLVM, including x86, ARM and PowerPC.
LLVM compilers are usually cross-compilers by default, meaning that there is no
necessity to install special cross compiling binaries if one wanted to compile for a
different architecture, e.g. for ARM while working on an x86 machine.

There are also many pre-existing front-ends for LLVM, the most common one being
the C/C++ front-end clang.

For Fortran, there are and have been multiple front-ends with the name flang.
Historically, flang was the name of an open-sourced version of a Fortran compiler
written by PGI and NVIDIA which was marketed as pgfortran or nvfortran.
This compiler fully supports Fortran 2003 and partly Fortran 2008. In 2018, a new
project called f18 was started to build a modern compiler that supports Fortran
2018. Since 2020, f18 has been integrated into the LLVM project and renamed to

5The name LLVM was originally an acronym of Low-Level Virtual Machine, but this meaning
was removed to avoid confusion, since LLVM is in fact not a virtual machine. The name LLVM
is not an acronym any more.

26

3.5. Code Generation

flang®. To avoid confusion, the older flang is now more commonly referred to as
Classic Flang and is further maintained, since multiple projects depend on it [71,
72].

LLVM’s flexibility is possible since every front-end translates the given source
code to a low-level representation which is referred to as LLVM IR or LLIR.
This intermediate representation is similar to assembly code and can be found in
textual or binary form where it is called LLVM Bytecode. All optimisations are
performed in a centralised manner by the LLVM Optimiser on this IR. Afterwards,
the transformed LLIR is given to an architecture-specific back-end which converts
it to an executable. A graphical representation of LLVM’s full translation process
is given in Figure 3.4.

C C++ Fortran
\/ |
Clang C/C++ Frontend Flang Fortran Frontend
\ /
LLVM IR
LLVM Optimizer
LLVM IR
/ \
LLVM x86 Backend LLVM ARM Backend LLVM PowerPC Backend
| |
%86 ARM PowerPC

Figure 3.4.: Modular structure of the LLVM compiler (based on Kolek et al., 2013 [73]).

6Tt is also worth mentioning that, at the time of writing, the new flang (previously f18) is
not available for many Linux distributions including Debian, FreeBSD, Ubuntu, Arch Linux,
CentOS, and openSUSE, or via Spack.

27

3. Background

3.6. Software Reverse Engineering

In computer science, reverse engineering means the process of reconstructing a
higher-level representation of software from a low-level representation like machine
instructions, assembly code or bytecode [74]. In the context of compiled languages
which are prevalent in HPC (see Section 3.4), popular kinds of tools to achieve this
are decompilers and disassemblers.

A disassembler is a tool which translates binary machine instructions to human-
readable assembly and which can therefore be considered the inverse operation to
that of the assembler. This process is straightforward and it is easily possible to
reconstruct the original assembler input with the possible exception of meta-data
and label names. The tool objdump [75] which can be used to extract various
information about object code files can also be used to disassemble them and
identify the start and end addresses of individual functions should they not have
been inlined.

A decompiler is an application that generates code in a high-level language from
assembly code or machine code, thus they often require a disassembler as a first step.
Depending on whether one considers the compiler to be only a small part inside
a compiler toolchain, or one calls the entire toolchain compiler, the decompiler
can therefore be understood as the inverse of the compiler. Its goal is usually to
reconstruct the original source code as faithfully as possible. However, contrary to
disassemblers, this is usually not possible easily.

To illustrate this problem, Listing 3.2 shows a small C program which performs
the assembly operation nop ten times in a for loop and returns EXIT_SUCCESS
which is defined to be zero. nop stands for “no operation” and means that a
processor core pauses for one cycle. Listing 3.3 shows the abridged x86 assembly
output of gcc when it is invoked with —01 (some optimisations). All meta-data
and some labels have been removed. The code reads as follows: Line 1 defines a
label for the main method which is not used here. First, the literal value of 10 is
written to the register eax. A label with the name .L2 is defined. Then, nop is
performed. Afterwards, the value of 1 is subtracted from eax and written back.
If the result is equal to zero, the so-called zero-flag (2F) of the processor is set.
jne stands for jump, if not equal and is a synonym for jnz (jump, if not zero).
It checks if ZF is set, and if this is the case, jumps to a specified label, in this
case .L2. This can be understood as returning to the head of the loop in the
C representation. Finally, eax is set to zero via movl and the value of eax is
returned. In Listing 3.4, the assembly output of gcc using —03 (all optimisations)

28

3.6. Software Reverse Engineering

can be found. Here, loop-unrolling has been done. To increase execution speed by
preventing jumps and arithmetic operations, nop is simply executed ten times’.
Finally, eax is set to zero by computing the xor value of itself with itself, which

is always zero, and eax is returned as in the other listing.

1 #include <stdio.h>

2 #include <stdlib.h>

3

4 int main(void) {

5 for (int i = 0; 1 < 10; i++) {
6 asm volatile ("nop");
7 }

8 return EXIT_SUCCESS;

9 1}

Listing 3.2: An example C program which exectutes nop in a loop.

1 main:

2 movl $10, %eax

3 .L2:

4 nop

5 subl $1, %eax

6 jne L2

7 movl 50, %eax

8 ret

Listing 3.3: Abridged output of the compiler on Listing 3.2 using —01.

1 main:

2 nop

3 nop

4 nop

5 nop

6 nop

7 nop

8 nop

9 nop
10 nop
11 nop
12 xorl %eax, %eax
13 ret

Listing 3.4: Abridged output of the compiler on Listing 3.2 using —03.

"Normally, a compiler would aim to eliminate all nops from source code, but this is prevented
by marking the inline assembly operation as volatile in the C source code.

29

3. Background

As one can see from these listings, it is very hard for a human to quickly reconstruct
the original C sample from each of the assembly listings, since higher-level constructs
like loops are entirely absent from assembly languages and have to be translated to
jump statements. There are also many details of the implementation that get lost
during the compilation process. First, lexical information like identifier names get
lost which usually help humans to better understand a source code sample if the
programmer gave functions and variables sensible names. Especially preprocessor
macros can never be reconstructed, because all of their information gets lost before
the compiler is used. Second, the compilation process might introduce changes in
behaviour to a program if these changes do not result in a change of net effect,
i.e. if they are not visible from outside the program’s memory. For example, in
Listing 3.3, the loop counter gets decremented, while in Listing 3.2, the counter is
incremented, and in Listing 3.4, the counter is absent.

In this thesis, we used RetDec, a retargetable decompiler based on LLVM [22, 76].
In this context, retargetable means that RetDec is able to work with compiled files
for multiple architectures including x86, ARM, MIPS, and PowerPC as an input.
It is possible to reconstruct C source code from complete object code or executable
files using RetDec, but one can also choose to specify certain address ranges inside
the binary file that shall be used for decompilation.

RetDec performs the decompilation process in multiple phases which are denoted
“Preprocessing”, “Core”, and “Back-End”. In the preprocessing phase, it collects
various meta-data about the input file [77], e.g. ELF headers. In the “Core” phase,
the binary input file is translated to LLVM IR by first using a disassembler to
generate assembly code for the specific target architecture and then generating a
series of instructions in LLVM IR that is equivalent to the assembly instructions [78].
This can be understood as the inverse operation to the various target-specific
back-ends of LLVM (see Figure 3.4) and has the advantage that the result is
architecture-independent. RetDec performs some optimisations on the LLVM IR
code which are executed as LLVM passes similarly to how optimisations work inside
an LLVM compiler. Examples for these passes are system call detection, stack
reconstruction, and C++ class hierarchy reconstruction. In the back-end, RetDec
translates the LLVM IR to C by starting with a very direct translation which
closely resembles assembly and then applying multiple optimisations on it. RetDec
features 29 different back-end optimisations like dead code elimination, conversion
of while (true) loops to conditional loops by extracting break conditions or
elimination of unused identifiers. Using this bottom-up approach, RetDec is able to
generate readable code that closely resembles the original C source code in many

30

3.7. Language-independent classifiers

cases, even going so far that calls to functions in C standard library headers are
identified and reconstructed. Examples for this are listed in Section 4.2.

RetDec’s back-end optimisations can be individually and fully disabled, but this is
not the case for the LLVM passes performed in the core. In Section 4.2, we describe
a source code classifier which uses RetDec alongside the ASTNN (see Section 3.11)
which partly suffers from this since some optimisations were unresponsive on some
samples and could not be disabled in all cases.

3.7. Language-independent classifiers

If presented with the task of building a language-independent code classifier, one
could come up with multiple ideas to use the various levels of program represen-
tations that were described in Section 3.5. A common property of all approaches
listed below is that they can (or even have to) be used after the compiler opti-
misations have already been executed. On one hand, this can be an advantage,
because optimisations like dead-code-elimination would probably remove noise that
could degrade the performance. On the other hand, optimisations can also appear
obfuscating which could have an disadvantageous effect.

First, one could use one of the intermediate representations that are used internally
by the compiler as described in Section 3.5.2. If one uses an LLVM-based compiler
like clang or flang, this could be the LLVM IR which has a large set of tools
built around it. This would come with the disadvantage that users of the classifier
were tied to a specific compiler and, if they were not using it in the first place, had
to possibly change their building process. While clang is very widespread in the
scientific community, flang is often not a good choice for Fortran programmers
(see Footnote 6). Alternatively, one could use the assembly output of the compiler
for classification. However, compared to the original source code, both assembly
and intermediate representations tend to be significantly longer. This increase in
verbosity would lead in a decrease of information density and could lead to a lack of
context-awareness of the classifier as has been described by Zhang et al. for similar
methods [20]. In this thesis, this approach is, therefore, not considered further.

Next, one could use the ELF binary data that is emitted from either the assembler
(object code) or the linker (usually executable code). This can be done with many
different general-purpose classifiers on a byte-code level which is further described
in Section 4.1. After linking, all individual object code files and statically linked
libraries get merged, and link-time-optimisation is possibly performed. While this

31

3. Background

could be desirable, operating on the object code level also helps to split the data into
smaller, more manageable chunks. We also noticed that simply linking the 1ibm.a
against a program, which is done via —1m in most C compilers, significantly increases
the final executable’s file size, introducing noise to the classification. Therefore, we
only used object code in our experiments.

Finally, a more complicated approach is using a decompiler to reconstruct high-level
source code from binary files. Most of the disadvantages of working with binary
files described above apply here as well, but it is possible that some of them can be
compensated by the more expressive nature of the reconstructed source code. It
is demonstrated in Section 4.2 that a decompiler like RetDec (see Section 3.6) is
often able to reconstruct source code such that the end result is very close to the
original source code. Since C source code is a lot less verbose than intermediate
representations or assembly, there can be much more information picked up by a
single statement.

Based on the choice of program representation, different types of classifiers may be
suitable. In this thesis, only machine learning classifiers were used. An overview
over the methods that can be applied with the representations described above is
given in Sections 3.8 to 3.11.

3.8. Machine Learning Classification

There have been numerous different approaches for static code analysis that involve
machine learning which contains multiple sub-fields: In supervised learning, one
tries to predict a mapping f : X — Y, where X is a set of samples, and Y is a
set of labels. This contains regression, where Y is continuous, and classification,
where Y is discrete. In the latter, the elements of Y are also called classes. Besides
other fields, there is also unsupervised learning, where patterns are attempted to
be found inside datasets that are unlabelled. In this thesis, we only make use of
classification, and therefore use the terms classifier and estimator interchangeably.
In practice, one trains a classifier upon a training set, a set of samples where this
mapping is known, and later predicts the labels for unknown data, e.g. from a test
set [79]. A common problem of machine learning methods is overfitting, i.e. the
phenomenon that a classifier achieves good results on the training set, but does
not generalise on unseen data very well. For different classifiers, different strategies
to prevent overfitting may be attempted [80, 81].

32

3.8. Machine Learning Classification

The Python library scikit—learn [82] (often abbreviated with sklearn) offers
a multitude of machine learning methods, e.g. general-purpose classifiers that can
be used as drop-in replacements for each other because of their consistent API. A
graphical overview of some of sklearn’s classifiers can be found in Figure C.1. A
short overview over different groups of classifiers that are contained inside sklearn
and that we used for this thesis is given in Sections 3.8.1 to 3.8.6.

A disadvantage of sklearn is that it does not support GPUs, although the
project H204GPU aims to replicate sklearn’s interface and run the models on
the GPU [83]. There are many other machine learning libraries for Python, like
PyTorch [84], Keras [85], and TensorFlow [86] which are specialised on the creation
of neural networks and also offer GPU support via CUDA.

In the context of static code analysis, one can distinguish between methods that
represent code as tokens [17, 18], and methods that make use of its abstract
syntax tree [19, 20, 21]. Token-based methods may either train directly on the
byte-representation of a program or on vector-representations of the tokenised
output of the lexer (see Section 3.5.2), e.g. by using Word2Vec (see Section 3.9). In
principle, these tasks can be performed by every classifier that supports arbitrary
input data. On the other hand, AST-based methods almost exclusively make use
of neural networks (see Section 3.8.6).

3.8.1. Nearest Neighbour Classifiers

Nearest neighbour methods can be considered as the most simple machine learning
techniques. Their estimations work by performing a majority vote of multiple
samples taken into account which get selected based upon the shortest distance
from a sample using an arbitrary distance function, i.e. the Euclidean distance.
This selection can be made based upon a predefined number k, which is then
called & Nearest Neighbours Classification, or all samples inside a specified radius
r, which is called Radius Neighbours Classification [87]. It should be noted that
the latter might perform better in environments where the data is not uniformly
sampled, but will fail if the minimum distance of all neighbours of a sample is
larger than r which is why this method was not used in this thesis. However, the
optimal choice for k is also not trivial: A larger k will result in more samples being
taken into account which can suppress noise, but can also make it harder to clearly
distinguish the individual classes. Since nearest neighbour methods only store the
training data and do not construct a model for a function that is attempted to be
learnt, they are called non-generalising methods. However, especially the k nearest

33

3. Background

neighbour classifier is still widely used, since generalisation is not always necessary
for acceptable results, and since they showed good results on different problems,
e.g. the classification of hand-written digits [88].

3.8.2. Decision Tree Classifiers

Decision Tree Classifiers [89, 90] make predictions based on multiple boolean rules
(decisions) that build up a tree. For a sample in a high-dimensional vector space
r = (21,...,2,) € R", all these decisions have the shape

T, >z or x; <z,

where z € R is an arbitrary threshold for each decision.

This tree can be built up iteratively by starting with the trivial tree that contains
only one node and repeatedly selecting a feature where the dataset can be split well
into two classes. There are multiple ways to find this feature, e.g. methods that try
to reduce the overall variance. The deeper the tree grows, the more fine-grained the
decisions become which can lead to an increase in accuracy, but also leads to an
increase in memory consumption and prediction time cost as the time to traverse
the tree grows logarithmically with the depth. An advantage of decision trees is
that the tree can be examined and the decisions that lead to a specific classification
can therefore be reviewed, but they are not performing well in situations where
data is badly describable by if-then-else rules [90]. In such cases, ensemble methods
like Random Forest (see Section 3.8.5) may be better.

3.8.3. Naive Bayes Classifiers

Naive Bayes (NB) methods are estimators that are based upon the assumption that
all samples from the training set are pairwise conditionally independent, i.e. that
for a class variable (label) y, a feature vector (z1,...,2,), and their corresponding
probability distributions

P(xzily, z1,. .., %1, Tit1, - - -) = P(ai]y)
holds, so that Bayes’ theorem [91]

P(y)P(z1,...,znly)
P(:Cl, e ,Jjn)

P(ylz1,...,2n) =

34

3.8. Machine Learning Classification

simplifies to a product of probabilities:

P(y) ITizy P(xily)
P(z1,...,2p)

P(y|lz1,...,xn) = .
They are called naive, because this very strong assumption does not hold in
general [92]. However, Naive Bayes Methods show good results in tasks like spam
classification nonetheless [93]. Different classifiers make different assumptions about
the underlying probability distributions, e.g. Gaussian NB classifiers assume that
the probabilities are given by Gaussian probability distributions:

exp (—W>

2
20y

P(zily) =

1
\/ 2’/T0'5
3.8.4. Support Vector Machines

Support Vector Machines (SVM) or Support Vector Classifiers (SVC) [94] are
estimators which divide a set of objects into two classes by a separating hyperplane
so that the empty area around the class boundary is maximised, and they are
therefore so-called large-margin classifiers. The separating hyperplane can be
parametrised by

(w,x) +b =0,

where w, x € R",b € R. This wide, empty border should later ensure that objects
which do not correspond exactly to the training objects are also classified as reliably
as possible. Given a set of linearly separable data points that can be viewed in a
vector space, it is not necessary to consider all training vectors, because vectors that
lie further away from the hyperplane do not influence its position and orientation,
since they are hidden behind other vectors. The vectors that are closest to the
hyperplane are the only ones that are needed for the mathematical description.
These are called the support vectors. For the case of data that is not linearly
separable, SVMs may make use of the so-called kernel trick: Instead of explicitly
transforming the data to a vector space with a higher dimension in which the
data may be actually linearly separable®, which would be very computationally
expensive, one can instead use a kernel function in place of the inner product to
construct the hyperplane. Kernel functions are functions k£ : X x X — R with a

81t is always guaranteed that such a vector space exists for every set of training data if the
number of dimensions is not bounded.

35

3. Background

vector space X, if a vector space with an inner product (F, (-,-)) and a function
¢ : X — F exist so that k(z,2') = (p(x),p(2')) for all z, 2" € X. Examples for
kernel functions are linear kernels

k(z,2') = (x,2),
polynomial kernels
k(z,2") = (x,2/)", where n € R,
and radial basis functions (RBF)

| — /||
202

k(z,2") = exp (—), where 0 € RT.

To perform classification on more than two classes, one can combine the estimations
of multiple SVMs using a majority vote [95, 79]. Inside sklearn, there are multiple
ways to use SVMs: Besides the svm module which contains SVC and NuSVC which
are very similar and both support various kernels, the default being RBF, and
LinearSVC which uses a linear kernel, there is also the SGDClassifier from
the 1inear_models module which uses an SVM as the default.

3.8.5. Ensemble Methods

Ensemble methods [96] combine the estimations of several individual estimators to
achieve better results than with a single estimator. In general, one can distinguish
between averaging methods, which take the average of several classifiers to decrease
the variance of the estimations and therefore the overall robustness, and boosting
methods, which aim to build up a strong classifier from several weak classifiers
which only have to perform better than guessing. A popular averaging method is
the Random Forest which combines the results of several smaller decision trees (see
Section 3.8.2) that have been constructed from a random subset of the training data.
On the other hand, examples for boosting methods are AdaBoost which performs a
weighted majority vote of its classifiers, and Gradient Tree Boosting which, like a
random forest, combines multiple trees, but does not simply average their results
and instead combines them similarly to AdaBoost.

36

3.8. Machine Learning Classification

3.8.6. Neural Networks

Artificial neural networks? (NNs) [97, 98] are machine learning methods that
are inspired by the brains of animals, and, as the name suggests, built up by
artificial neurons that are connected to each other. These neurons are also called
perceptrons [99, 100] and each compute an inner product between a weight vector
w and an input vector x

n
§=> wi,
i—1

where ¢ is the prediction. A single perceptron is already able to predict a linear
function f : R” — IR if the weights are set accordingly. This can be done by
updating the weights after the time step t via

t+1 . t A~
wi = w05, 5) - T

where 7 is the learning rate, and ¢ is a loss function (e.g. ¢(z,y) = 2 — y). Neurons
are usually organised in groups called layers, where in simple cases the output of
one layer is used as the input for the next layer, with the exception of the first
layer, which is the input layer, and the last layer, which is the output layer. NNs
are therefore also called Multilayer Perceptrons (MLP)!.

Figure 3.5 shows a hierarchy of different types of neural networks. Aside from the
most simple examples which are also called Feedforward Neural Networks, there are
also Recurrent Neural Networks (RNN) [101], where data may pass the network
multiple times. Subgroups of RNNs are Bidirectional RNNs [102], where the layers
of the network are connected in both directions, and Long Short-Term Memory
Networks (LSTMs) [103], where nodes also contain storage to remember certain
information over a longer time. The latter approach tackles a specific problem that
RNNs have when used on sequential data like natural language which is called
the Vanishing Gradient Problem [104]: When neural networks update their weights
based on the gradient of a loss function which has to be computed through the
chain rule, effectively multiplying a large number of values between 0 and 1, this
gradient can become increasingly small up to the point where the neural network
is not able to be trained any further. In the context of natural language processing,
this can mean that RNNs have difficulties picking up the long-range context of
words. LSTMs solve this by explicitly remembering this long-range context in their

9The term “artificial” is usually omitted in computer science.
10Ty sklearn, the MLPClassifier uses a neural network.

37

3. Background

memory cells. A special kind of LSTM is the Tree-LSTM [105], where the nodes
arrange themselves in a tree structure based on tree-shaped input data like syntax
trees. Tree-LSTMs have mainly been used for natural language recognition [106],
but have also been used for static code analysis on ASTs [21].

Like other classifiers, NNs may also suffer under the problem of overfitting. In
practice, one often splits up a dataset into training, validation, and testing datasets.
While the training set is used to set the weights of the network, the validation set
is used to also compute a validation loss. To prevent overfitting, one should stop
training when the validation loss is at its minimum [81].

Neural Networks

o~

Recurrent Neural Networks (RNNs) Feedforward Neural Networks
Long Short-Term Memory Networks (LSTMs) Bidirectional RNNs
Tree-LSTMs ASTNN

Figure 3.5.: Hierarchy of different neural network architectures [107, 103]!,

3.9. Word2Vec

Word2vec is a method of representing words inside a natural language text as tuples
of numbers using a neural network [108, 109]. This neural network is trained upon
large bodies of text with the goal that words that appear in similar contexts will
also be similar in terms of the cosine of the angle between them in the resulting
vector space (cosine similarity).

HThese arrows do not denote a strict subset relation, but “a — b” should rather be read as “b
originated from a”. Hybrid forms, like a bi-directional LSTM, do exist; and technically, regular
LSTMs can be considered a linear specialisation of Tree-LSTMs.

38

3.10. Online Judge Dataset

One of the goals of Word2vec is that the vector representations behave in a way so
that certain algebraic operations intuitively make sense to a human, e.g.

vec(“Madrid”) — vec(“Spain”) ~ vec(“Paris”) — vec(“France”),

where the function vec denotes the words’ vector representation.

Word2vec is frequently used in natural language processing [110], but may also
be used for static code analysis using machine learning [111, 112] like the neural
network that was used for this thesis (see Section 3.11).

3.10. Online Judge Dataset

The Online Judge (OJ) Dataset was created by Mou et al. in 2015 by downloading
source code samples from a pedagogical programming open judge (OJ) system
that students could submit their solutions to various programming problems to, so
that they can automatically be evaluated by running them. The dataset is labelled
with 104 different classes which correspond to the programming problem that is
attempted to be solved. For each problem, 500 random samples have been selected.
Therefore, there are 52000 samples in the dataset [19]. Zhang et al. state in their
paper that the dataset consists of C programs [20], but this is at least partly untrue,
as many snippets (see Listing A.4 for the first sample) are clearly written in C++,
but it is not known whether the dataset contains source code snippets which are
valid C, but not valid C++'2. Both Mou et al. and Zhang et al. used the python
module pycparser [114] to generate the ASTs from the samples which is possible
because pycparser allows for parsing of many C++ features like operator<<.
However, it is not possible for many samples from the dataset to be compiled
with a C or C++ compiler without changing them. Therefore, it is likely that the
samples ran through a preprocessing step to shorten them as much as possible
while retaining the ability to parse them.

1204+ is not a strict superset of C [113].

39

3. Background

3.11. ASTNN

In 2019, Zhang et al. have proposed the ASTNN, a model for source code classifi-
cation and clone detection based on abstract syntax trees [20] which outperformed
existing methods, achieving an accuracy of 98.2% on the OJ dataset, while the
existing top-performer at this point, the TBCNN from Mou et al., achieved an
accuracy of 94 %.

As has been stated in Section 3.8, there are token-based and AST-based machine
learning methods for static code analysis. Zhang et al. state that both have signifi-
cant disadvantages: While token-based methods fail to recognise the greater context
of the tokens and will therefore not pick up all of the structural information of
source code, a problem with methods that treat ASTs similarly to natural language
syntax trees is that the former grow much deeper (they state that node numbers
of 7,027 and depths of 76 are common) which can lead to the Vanishing Gradient
Problem which was described by Hochreiter in 1998 [104]. Although LSTMs [103]
were specifically introduced by Hochreiter and Schmidhuber to tackle this prob-
lem, even Tree-LSTMs [105] are not guarded against this problem for trees of
these depths, since the content of the memory cells gets computed recursively by
traversing the tree. This is even worsened by the fact that in many approaches, the
ASTs get converted to binary trees which typically increases the depth drastically.
Even though this problem could be solved by the usage of control flow or data
dependency graphs, Zhang et al. state that they have not followed this approach
because this would require the programs to be present in a compiled state and
render uncompilable code fragments unusable!3.

Instead, the ASTNN uses an approach called statement trees which can be seen
as the middle ground between the two aforementioned approaches: Not the whole
AST is used for training as is, but it is rather split up into a list of multiple smaller
trees that each resemble a single statement, where the root determines the type of
the statement. Zhang et al. have also experimented with other granularities like a
full AST, individual statement nodes, and the contents of compound statements,
i.e. the body between two braces, but these approaches came with the problems
described in the paragraph above and have therefore been neglected.

13Note that this is not really an advantage for this thesis, as we even require compiled programs
to be present in the method based on the ASTNN that is described in Section 4.2. Instead,
we used the ASTNN for this thesis, because it achieved good results in benchmarks at the
time of writing.

40

3.11. ASTNN

The ASTNN has been used by Zhang et al. for source code classification for
C/C++ and source code clone detection for C and Java. In this thesis, we will
only consider the former task. The overall structure of the ASTNN can be seen in
Figure 3.6a. For classification, the implementation is split up into a pre-processing
phase (pipeline.py) which handles the conversion of a source code sample given
as text to a single vector representation (see Figure 3.6b), and a training and testing

phase (train.py) [115]. The ASTNN is built upon the neural network library
PyTorch [84].

QOO statement Vector
r r Representation r A
|
[1]
hy 1y hs hesy hey he [Pooling Layer Pooling
e A — R A i
‘L,‘ L‘_{IL "'%ﬁ o / sz v-1\ P
P P - r Recurrent Layer
B-8-8 886
1t 1 1t -t 1]
e le e led len le) | 00“ 00
[T R R R R A
Statement Encoder] Method
- - = . r T Air Declaration
ST-tree, || ST-tree, || ST-tree; i ST-tree,_, ST-tree,_, ST-tree; | sT-trees Reference Formal h bod
P N N N N AN AN £ throws body
J) V) OO0 U0) [O O O [0 O ¢ Modifier TYP® reaqText Parameter

(a) The architecture of AST-based Neural (b) The statement encoder, where blue, orange
Network and green circles represent the initial embed-
dings, hidden states and statement vector,

respectively.

Figure 3.6.: Architecture of the ASTNN and the statement encoder therein [20].

First, the source code gets parsed using pycparser which emits an AST that is
then split up into a list of statement trees. See Figure 4.2a for an AST of a small C
program!®. There are several constructs that acquire special treatment: Method
declarations get treated as statements, and apart from that, other statements that
can be split into a head and a body, e.g. loops!®, will be treated as two statements.
Here, statements do not get nested: Only AST nodes that are not statement nodes
themselves get included as descendents of a compound statement node. Therefore,
the individual statement trees will be disjoint of each other.

14 This AST was dumped from clang and not by pycparser, but the general structure will be
similar regardless of the parser.

157Zhang et al. also list t ry statements here that are technically absent from the C language, but
it has already been established that the OJ dataset also contains C++ samples.

41

3. Background

In the next step, all nodes of the statement trees are tokenised to string represen-
tations depending on the node type, e.g. for the root of the statement trees, this
is usually the statement type (e.g. MethodDeclaration) converted verbatim
to a string, otherwise the values of literals or identifier names may be used which
means that the ASTNN can work with both syntactical and lexical information.
Afterwards, Word2vec (see Section 3.9) is applied recursively on the tree to re-
tain vector representations hi,...,hny, N € IN, of the individual nodes, where
hi = (hi1, ..., hit), k € N. Finally, maz-pooling is used, i.e. a single vector e of
length k is computed via

€ = (max(hﬂ), “os ,max(hik)).

These statement vectors are denoted with ey, ..., e; in Figure 3.6a. The individual
nodes are passed to an RNN composed of multiple layers (depicted as Recurrent
Layer in Figure 3.6a) which aims to pick up dependencies between the individual
statement vectors. The weights of the recurrent layers are then compressed to a
single vector representation r of a whole source code fragment via max-pooling. To
use this vector for source code classification, a feed-forward network is trained on a
one-hot encoding of the individual classes'. In a testing environment, this network
then outputs the probability for each class that the source code fragment belongs
to it. The final prediction can be extracted by selecting the maximum.

By default, the ASTNN will use the GPU, a batch size of 64, and 100 hidden di-
mensions, and will stop training after 15 epochs. In this configuration, the ASTNN
requires a GPU that supports CUDA and 16 GB of RAM, although the ASTNN’s
configuration can easily be changed. In Table 3.1, an overview over the average time
cost per epoch (over 100 epochs) is given for different machine configurations. The
GPU was used if applicable. The first benchmark was performed using a desktop PC
with consumer hardware, the second benchmark was performed on the host igor
of the Hamburg Observatory, and the third benchmark was performed on the host
abul of the research group scientific computing (“Wissenschaftliches Rechnen”,
WR) of the Universitdt Hamburg. Remarkably, the desktop system was about 20 %
faster than igor, even though the latter has a much more powerful GPU (in terms of

160ne-hot encoding means that for n classes a vector with n entries is used, where only one entry
is one and all other entries are zero. The index of the non-zero entry corresponds with the index
of the class that is represented. Since models that are trained using one-hot encodings often
output values between zero and one for each class, this representation can also be understood
as a discrete probability distribution.

42

3.11. ASTNN

raw processing power!?). It is also worth noting that the benchmark took about 24
to 30 times longer on abul, stretching the average time cost per epoch to over 40
minutes, which is not surprising since we had to train on the CPU there. However,
this becomes relevant in Section 4.2 where we are forced to compute on the CPU
for memory reasons.

Table 3.1.: Time cost per epoch of the ASTNN on different machine configurations.

CPU GPU (VRAM) RAM Time cost
Intel(R) Core(TM) NVIDIA GeForce 32GB (84.0+5.9)s
i7-10700 CPU RTX 2060 (6 GB)
Intel(R) Xeon(R) NVIDIA Tesla V100 200GB (107.14+0.8)s
Silver 4110 CPU PCIE (32GB)
2 x AMD Opteron(tm) — 256 GB (2561.3 +£142.6) s

Processor 6344

1"The NVIDIA Tesla V100 achieved a more than twice as good result as the NVIDIA RTX 2060
in the Geekbench OpenCL benchmark [116, 117, 118].

43

Chapter 4.

Methods

In this chapter, we describe and evaluate the source code classifiers that were used
in this thesis. In Section 4.1, we describe straight-forward methods that are based
on general-purpose classifiers from sklearn, and in Section 4.2, we describe a
method that is based on the ASTNN and the RetDec decompiler. The methods
are evaluated in Section 4.3 through performance benchmarks on multiple different
datasets. During the evaluation, multiple problems were found which are discussed
in Section 4.4.

4.1. Object Code Classification

We used multiple classifiers from sklearn (see Section 3.8) to classify object code
files by treating their content as raw byte-data. First, for each object code file, the
.text section was extracted, because as has been explained in Section 3.5.1, this is
the section that contains the actual machine instructions (as opposed to meta-data,
variable initialisations, etc., which we consider noise). This is done with the Python
package pyelftools. Additionally, we can identify the start and end addresses of
individual methods inside the object code file using the tool objdump. This can be
used to classify them individually as in Section 4.3.4, but should be used prudently,
because compilers tend to inline functions on higher optimisation levels. Then,
we had to ensure that all samples for a benchmark had the same length, because
every classifier inside sklearn expects this to be the case. For this problem, the
following solutions may come into mind: First, one could extend all samples to

45

4. Methods

the largest length, either by padding them with zeros or by repeating the samples
in a cyclic manner, or one could crop all samples to the shortest length. For our
experiments, we used the first approach, because in this way, no information gets
added or lost, although the added zeros might incite some algorithms to partly
fit on the (unpadded, i.e. non-zero) length of the samples which is probably not
desirable. After the padding, we perform a train-test split with a ratio of 4:1, and
use a standard scaler to enforce a mean of 0 and a standard deviation of 1 on the
datasets, because this is beneficial for many classifiers [119]. A graphical overview
over this process is given in Figure 4.1. The method has been tested on various
datasets, and benchmarks thereof can be found in Section 4.3. In the following
section, we describe a method based on the ASTNN which outperformed the object
code classifiers in all benchmarks.

ELF Object x86 x86 x86
CH+ CH+ C++ | Code Binary | Extract |binary| Pad |binary| Standard |Pinary| sklearn
Preprocessor Compiler .text samples Scaler classifier

CH+ —

Figure 4.1.: Value flow diagram of the object code classification.

4.2. Classification of Reverse-Engineered Source Code

In Section 3.11, a description of the tool ASTNN was given, which can be used
for source code classification. A downside mentioned in this section was that it
currently only supports the C programming language for classification tasks. On
one hand, the ASTNN’s design is extensible and creating support for a different
programming language should require only few steps after including a parser for
this language. On the other hand, ASTs of source code snippets for the same task
in two different languages can be quite different. This is illustrated in Figure 4.2
which shows ASTs for the source code snippets given in Listing A.5 and A.6. Since
their effect is identical — both print “Hello World!” to the console — they should be
treated as counterparts of each other, but since the printing is done via a function
(printf) in C and via stream operators (operator<<) in C+4+, it would be
very hard to recognise this in the AST. This can also apply to arithmetic code, e.g.
the recommended way of the Standard C++ Foundation to implement a subscript
operator for a matrix is by overloading the operator () [120] which is not possible
in C, where one might use multi-dimensional arrays instead. To avoid redundancy
in the following, we will call two programs that are semantically identical, i.e. that
show the same behaviour, but are syntactically different, siblings if they are written
in the same programming language, and cousins if they are not.

46

4.2. Classification of Reverse-Engineered Source Code

FunctionDecl

FunctionDecl CompoundStmt

|
H

ReturnStmt

\

CompoundStmt ’ CXXOperatorCallExpr

/

CallExpr ReturnStmt ’ ImplicitCast Expr ’CXXO])CI}]‘((JY'CANEX])I ImplicitCastExpr ’ IntegerLiteral ‘
|
ImplicitCast Expr ImplicitCastExpr IntegerLiteral DeclRefExpr ImplicitCastExpr ’ DeclRefExpr DeclRefExpr
l
DeclRefExpr ImplicitCastExpr ’ DeclRefExpr ImplicitCastExpr
(a) C program (see Listing A.5) (b) C++ program (see Listing A.6)

Figure 4.2.: Abstract syntax trees for the main method of Hello World programs.

Our solution to the above problem was keeping the ASTNN mostly unchanged and
building upon the basic idea explained in Section 4.1 so that arbitrary object code
files can be used as an input for it. We did this by processing them with RetDec, a
retargetable decompiler, which is able to create C code from them through Reverse
Engineering. In the following, we will denote this as reconstructed source code to
distinguish it from the original source code. Note that, while this may suggest that
the languages of these two types are always the same, this is not always the case
here.

However, for the case that the languages are identical, namely when using C as
input, one can see in Listing A.7, where the decompiled Hello World program from
Listing A.5 is shown, that RetDec can in some cases do a remarkably good job in
creating source code that looks very close to the original. This even goes so far
that the necessary headers get included so that the printf function from the C
standard library can be used.

In contrast, the C source code shown in Listing A.8 which is reconstructed from
the C++ program shown in Listing A.6 shares very little similarity with it. This is
quite expectable since the required language features like operator<< are not
present in C, so the underlying functions of C++’ standard library have to be used
instead. In particular, we are actually not interested in a source code reconstruction
that is as faithful to the original as possible, but rather in a method where the
reconstructions of cousins are as close as possible to each other syntactically. While

47

4. Methods

one might argue that Listing A.8 is a lot harder to read than Listing A.7, they
both share the property that the relevant line of the main function that prints is a
function call, so in terms of their AST, the samples became more similar through
the compilation and decompilation process.

Therefore, these steps can be seen as a sort of source code normalisation which is
also the term we will use from now on. A graphical overview over the full process is
given in Figure 4.3, where C++ has been used as an input language. It is trivially
transferable to other languages that get compiled to an ELF binary.

ELF Object

Ctr+ C++| C++ |CodeBinary| RetDec | C C C AST
CH+ —| . R) pycparser ASTNN
Preprocessor Compiler Decompiler Preprocessor

Figure 4.3.: Value flow diagram of the Source Code Normalisation process.

A previously unmentioned aspect of this process is the role of the preprocessor.
Since pycparser, the python module that is responsible for creating the AST
for further usage inside the ASTNN, does not support preprocessor directives,
and RetDec will insert #include statements to the C standard library in its
reconstructed C code, we need to remove them before we can process the source
code with it.

In general, it is not sufficient to simply delete all lines starting with a hash sign
(#). This is illustrated in Listing 4.1. Both displayed source code snippets contain
valid C programs with a different behaviour although the verbatim content of their
main methods is identical: On the left, a is defined to be int so that in the first
line of the main method, a variable b is defined which effectively has the type of
int pointer. On the right, both a and b are defined to be the integer literal 1 so
that in the first line of the main method a multiplication of a and b is performed
which is not used any further. This clarifies that we have to use the actual C
preprocessor for the task of resolving preprocessor directives. However, C standard
library implementations like the glibc contain keywords and qualifiers (e.g. the
__restrict keyword which can be found at the arguments of memcpy inside
string.h) that pycparser also does not support. Therefore, pycparser’s
source repository contains a so-called “fake libc” which is a collection of headers
that have the same names as the standard library headers but that only contain
151 dummy typedefs and 207 #defines that allow pycparser to parse an
arbitrary piece of source code without external dependencies [114]. However, we
modified the ASTNN slightly to remove all nodes describing typedefs from the

48

4.3. Benchmarks

AST after the parsing process, since RetDec’s output source code never contains
them and therefore all of them have to originate from pycparser’s fake libc, and
all source code samples that include a header from the standard library will contain
the same approximately 150 lines at the start. This should improve the neural
network’s convergence without losing comparability to the original ASTNN on the
unmodified dataset.

#include "stdlib.h" #include "stdlib.h"

#define a 1
#define b 1

#idefine a int

a * b; int main (void) {

return EXIT_SUCCESS; a * b;
return EXIT_SUCCESS;

}

1
2
3
4
5 int main (void) {
6
7
8

}

O 0 J o U b W N K

Listing 4.1: Illustration that preprocessor directives can drastically change the syntactical
interpretation of C statements.

Since a build process for a software usually already exists before analysis is at-
tempted, and the code base of a large HPC application is often split up into
modules that are compiled separately, this pipeline can usually be plugged into an
existing program. Furthermore, similar to the object code classification described
in Section 4.1, we can again utilise objdump’s output to identify the start and
end addresses of individual methods inside the .text section, which can then be
passed to RetDec.

4.3. Benchmarks

In this section, multiple benchmarks of the methods described in Sections 4.1
and 4.2 can be found. All timed benchmarks were performed on the machine abul,
but some benchmarks took longer than 48 hours (see Table 4.4) and have therefore
been run on a different machine. For classifiers from sklearn, the arguments
n_Jjobs=-1 (adapt the number of parallel jobs to the logical number of CPUs) and
random_state=42 (use a fixed seed for the pseudo-random number generator)
have been used where applicable, so the results are reproducible across different

49

4. Methods

machines. If necessary, the maximum number of iterations was increased if a classifier
terminated with a warning that convergence has not yet been reached.

4.3.1. Prototype Application Dataset

In order to test the approach described in Section 4.1, we created a small application
written in C which features ten functions which are listed in Table 4.1 and fulfil dif-
ferent roles: There is memory management (allocation and deallocation of a matrix),
matrix initialisation, simulated I/O from the Linux block devices /dev/urandom
and to /dev/null, numeric calculation, and matrix display. Some of these func-
tions are directly inspired by a program called partdiff which was originally
written by Ludwig and Schmidt [121] and solves partial differential equations like
Poisson’s equation [122] using the GaufB-Seidel or Jacobi solver [55, 123].

Table 4.1.: Functions defined in and roles of the functions in the prototype application.

Method name Functionality
allocate Memory management
init_simple Matrix preparation
read_from_dev_urandom Input
preprocess_matrix Matrix preparation
calc_simple Numeric calculation
calc_mirrored Numeric calculation
calc_star Numeric calculation
write_to_dev_null Output
print_matrix Matrix display
deallocate Memory management

The application contains compiler directives which make it possible to choose
for every function if it is included in the executable or not (with the exception
of allocate and deallocate which always appear together). Furthermore,
other compiler directives allow to introduce variations to certain functions: For
read_from_dev_urandom and write_to_dev_null, it is possible to choose
the granularity of the I/O (byte-wise, element-wise, row-wise, or whole matrix),
if buffered I/O should be used instead of direct matrix accesses, and how the
computation should be performed in calc_star. Here, a computation similar to
the Gaufl-Seidel method is performed: In a for loop, for each element the sum of

20

4.3. Benchmarks

its neighbours is computed and used as input for a mathematical function. Here,
one can decide via preprocessor directives, if one should incorporate an X shape
(north west, north east, south west, south east), a column shape (north and south),
a row shape (west and east), the centre, or a combination of these. Depending on
the choice, the memory access patterns of the for loop will be different.

A python script was written which uses a Makefile that allows fine-grained control
over the several conditional compilation options and builds the prototype applica-
tion using all possible combinations. Additionally, we used several different compiler
options like optimisation levels and different compilers. In total, 870,352 combi-
nations were used for compilation!'. The purpose of this was that we hoped that
the compilers would introduce variations into the resulting machine instructions
if different function were present, e.g. by eliminating instructions that calculate
values that are not further used, and that different optimisations amplified this
effect.

We extracted the .text sections from the object code files, extracted the bytes of
each function that was present, and removed duplicates. Each sample was labelled
with one out of nine labels depending on the function that it originated from, while
allocate and deallocate received the same label since they only appeared
together. On these samples, classifiers were trained as described in Section 4.1.

Table 4.2 shows the testing accuracies of three classifiers. Here, the internal testing
accuracy denotes the accuracy of the classifiers on a testing dataset after a train-
test split of 4:1 has been performed, and the external testing accuracy denotes the
accuracy on an object code file from partdi £ £ which has been labelled accordingly,
e.g. since calc_star is modelled after partdiff’s calculate function, the
two received the same label. As one can see in the table, the classifiers achieved
very high internal accuracies over 98 %, but performed poorly when classifying the
functions from partdiff. We conclude that these high accuracies are a result
of overfitting and that the classification does therefore not generalise. The reason
for this could be that the variation inside the dataset was not large enough. In
Sections 4.3.2 to 4.3.4, we used larger datasets to test the classifiers in scenarios
which are closer to practical use.

LA large part of these combinations is induced by the fact that every function could be ei-
ther included or not (except for allocate / deallocate), and the number of possible
combinations is given by the cardinality of their power set here.

o1

4. Methods

Table 4.2.: Testing accuracies of different classifiers on the prototype application dataset.

Testing accuracy

Classifier name Internal External

RandomForestClassifier 100.0% 11.1%
MLPClassifier 99.5% 11.1%
SGDClassifier 98.3% 0.0%

4.3.2. OJ Dataset

The exact effects of our source code normalisation in a real-world scenario with
a mixed language setting are hard to measure. To benchmark it in an isolated
context, we compared the ASTNN’s performance on the OJ dataset before and
after the source code normalisation, and compared the latter with object code
classification methods. This is not easily possible since many samples from the
OJ dataset are not compilable without further steps. Therefore we developed a
source code transformation method that modifies every given sample to make
it compilable. A control flow diagram of this process is given in Figure 4.4. As
has been mentioned before, unlike stated by Zhang et al., many samples inside
the OJ dataset are actually clearly written in C++ and not in C, and it just so
happens that these samples could be parsed by pycparser anyway. For example,
pycparser does not reject source code samples that use operator<< and many
other features specific to C++.

Write sample

Read sample Include basic header }—>{ Attempt normalisation

Attempt recovery o

Figure 4.4.: Control flow diagram of the transformation of the OJ dataset.

As a first step, a short header gets included which can be found in Listing A.9. This
file only contains some further includes and a statement that makes members of
the std namespace usable without a prepended qualifier. This is actually considered
a bad practice [124], but also very prominently used in the OJ dataset (the first
sample of the dataset which can be found in Listing A.4 uses std::cin and
std: : cout without their namespace qualifiers), therefore it has been included to
make samples like these easily compilable.

52

4.3. Benchmarks

Afterwards, we attempt to run the normalisation pipeline shown in Figure 4.3. We
are not using strict compiler settings like -Wall -Werror. Furthermore, we no-
ticed that RetDec seems to hang or take an unusually large amount of time on certain
samples: Usually, an extracted method was decompiled in a few seconds, but on some
samples, RetDec did not finish after hours. This could be traced back to RetDec’s
back-end optimisations. The decompilation worked flawlessly when disabling the
CopyPropagationOptimizer and WhileTrueToWhileCondOptimizer.

If the process completed successfully, i.e. the exit code is zero, we can simply use
the reconstructed C source code in our modified dataset. Otherwise, we modify
the source code further in an attempt to fix the errors that were raised during
the normalisation process. This is done by parsing the error messages (which will
in most cases come from the compiler) and selecting further steps based on the
type of message. The effects of these steps vary widely, e.g. if the compiler stopped
because of a missing symbol, we declare this symbol as a global variable, but upon
more complicated errors where a fix is not easily retrievable from the error message
itself, we also delete the line in which the error occurs. In Figure 4.5, a histogram of
the number of attempts to normalise the source code can be found. Note that the
y-axis is logarithmic; an excerpt of the concrete portions can be found in Table 4.3.

105 =

Frequency

0 25 50 (0] 100 125 150 175

Number of compilation attempts

Figure 4.5.: Distribution of the number of attempted normalisations before success on
the OJ dataset.

93

4. Methods

Table 4.3.: Portions of the OJ dataset that compiled after the n-th attempt.

Number of attempts Relative frequency

1 84.9%
<2 87.6 %
<3 99.1 %
<4 99.6 %
<5 99.7 %
>5 0.3%

Since about 85 % of the dataset compiled after only including the header, we can
assume, that no semantics were lost during the transformation of this portion. We
observed that, due to the nature of the recovery process, the deletion of lines also
only happens if multiple other steps have been performed unsuccessfully before, so
it is probable that a very large portion of the 99.7 % of the dataset that compiled
successfully after 5 attempts or less have only gained variable definitions or the like,
where no semantic information was lost either. In some cases the deletion of lines
has triggered a chain reaction where the complete sample gets deleted line-by-line,
in which we replace the program with an empty main method as a last resort, but
since these cases are extremely rare (there is a single sample that compiled after
174 steps), their statistical significance is negligible.

In summary, one can conclude that the semantic information of the source code
samples was retained throughout the normalisation process for at least 84.9 % of
the samples, but probably much closer to over 99 %.

Figure 4.6 and Figure 4.7 show the accuracy and loss on the training and validation
sets during training over time. As one can see in Figure 4.7b, the validation loss
decreases up to a certain point and then increases notably later on. To prevent
overfitting, one should stop the training when the validation loss is at its minimum,
as has been mentioned in Section 3.8.6. Even though the modified ASTNN clearly
converges slower, this is the case after approximately 15 epochs. The final test
accuracies are then 98.2% for the original ASTNN and 95.8% for the modified
ASTNN and dataset which is still larger than the accuracies of compared single-
language classification models, like the model by Mou et al. which achieved 94 %
testing accuracy [19].

The object code files that were used as RetDec’s input for the final dataset were also
used for object code classification. A comparison of these methods can be found in

o4

4.3. Benchmarks

Table 4.4. As one can see therein, sklearn’s GradientBoostingClassifier
was the second-best method overall, but also took longer than 48 hours for training.
The third-best method was the RandomForestClassifier which also was the
quickest with 66.7s time cost overall, which is especially impressive in comparison
with the modified ASTNN which took just under 42 hours. The third- and fourth-
best methods were the DecisionTreeClassifier and NuSVC. We note that
all classifiers performed substantially better than guessing (expected correctness

0.96 %2).
1 >‘<><><><><><><><><><>‘< 1
0.9 X 0.95 1 ><><><><><><><><><><><><><><><><><><><><><><><x><><><><><><><><><><><><x><><><><><><g
> : & | L
€08 | § 0.9+
5 ’ € 0.85 I
S 0.7 4 < x
= = 08 I
0.6 A 2
= = 0.75 4 H
= =
& 051 = 07| -
0.4 4 original 0.65 1 original L
; modified modified x
0.3 : \ \ : 0.6 : : : ‘
0 10 20 30 40 50 10 20 30 40 50
Epoch Epoch

(a) Training accuracy

(b) Validation accuracy

Figure 4.6.: Training and validation accuracy of the ASTNN on the original and modified

0OJ dataset over time.

original

x original 18 | |
3 modified x ’ modified
1.6 4 r
@ 2.5 1 % 1.4 1 L
3 5] =12 .
=] =
3 1.5 } £ 08 1 L
&1 £ 064 I
x 044 =x r
0.5 1 x 0.2 1 ><><><><><><><><>< SO IIIHIK I AXH KK
0 eoneeeonuonon ‘ 0 : : : :
0 10 20 30 40 50 0 10 20 30 40 50
Epoch Epoch

(a) Training loss

(b) Validation loss

Figure 4.7.: Training and validation of the ASTNN on the original and modified OJ
dataset over time.

2This value comes from the fact that the OJ dataset is distributed into 104 classes and the
expected correctness for guessing is the reciprocal value of this.

%)

4. Methods

Table 4.4.: Testing accuracies and time costs of different classifiers on the modified OJ

dataset.
Classifier name Testing accuracy Total time cost
Modified ASTNN 95.8% 151192.2s
GradientBoostingClassifier 54.3 % > 172800s
RandomForestClassifier 475% 66.7s
DecisionTreeClassifier 38.6% 150.2s
NuSVC 37.0% > 172800s
MLPClassifier 31.4% 13360.7s
SvC 29.3% > 172800s
LinearSVvC 25.3% > 172800s
SGDClassifier 24.2% 4288.6s
KNeighborsClassifier 23.8% 146.1s
AdaBoostClassifier 6.2% 815.6
GaussianNB 2.2% 192.0s

4.3.3. BLAS dataset

In an attempt to benchmark the ASTNN with a Fortran code base, we tested the
ASTNN on a dataset that was derived from refblas, the reference implemen-
tation of the numerics library specification “Basic Linear Algebra Subprograms”
(BLAS) [53], which is written in Fortran 77. The library contains 163 methods
(subroutines and functions) which are usually contained in one source code file
each. The methods are grouped into the following categories which are referred to
as Levels:

In the following, let a, 5 € R, z,y € R", A,B,C € R™™, and T € R™*" be
triangular. Then, Level 1 [125] (50 files) contains vector operations of the form

y = ar+y,

as well as vector norms and scalar products, Level 2 [126] (66 files) contains
vector-matrix operations of the form

y = aAr+ Py
and solvers for linear equation systems of the form

Tr =y,

26

4.3. Benchmarks

and Level 3 [127] (30 files) contains matrix operations of the form
C = aAB+ pC
and solvers for linear equation systems of the form
TB = aB.

Additionally, there are also 17 Eztended precision Level 2 BLAS routines which we
will not consider further.

We collected the 146 methods from Level 1 to 3 in a dataset and labelled them with
their corresponding level. The accuracy and loss on the training and validation sets
can be found in Figure 4.8 and Figure 4.9. As one can see, both the training and
validation accuracy approach 100 % around epoch 30. Likewise, the final testing
accuracy is also 100 %. This means that the trained ASTNN is able to classify the
BLAS dataset perfectly, but it is disputable if it would be able to decide correctly if
source code samples that are not from the BLAS dataset are vector, vector-matrix,
or matrix operations. However, since the validation does not increase again for the
shown epochs, this overfitting could probably not have been prevented through
early stopping as for the OJ dataset. Furthermore, the BLAS dataset is extremely
small in comparison to the other datasets.

1 e ‘ 1

09 | ++++ 0.95 | +++++++++
o z 0.9
2001 5 085 - -
2077« éc: 081 i 1
206, 2 0.75 1
§ 0.5 1 E;; 0.7

= 0.65 4
0.4 4 F 0.6 1
03+ : : : : 0.55 + : : : :
0 10 20 30 40 50 0 10 20 30 40 50
Epoch Epoch
(a) Training accuracy (b) Validation accuracy

Figure 4.8.: Training and validation accuracy of the ASTNN on the BLAS dataset over
time.

57

4. Methods

Training Loss
—
ot

+
++
T+
+
iy

+
++
+
0 ++++++++++++++4
T T

0 10 20 30 10
Epoch

(a) Training loss

Validation Loss

o
o]
.

=
=}
.

=}
S
.

ot
o

(==

e,
i

++
++
++
++++++++++++++++

10

(e}

2 30 10 50
Epoch

(b) Validation loss

Figure 4.9.: Training and validation of the ASTNN on the BLAS dataset over time.

Table 4.5 shows the testing results of the modified ASTNN and various classifiers
from sklearn on the BLAS dataset. Since the dataset is very small, all classifiers
were able to converge in a matter of seconds. The testing accuracies of sklearn’s
classifiers are between 63.3 % and 83.3 %, so the overall variety of the accuracies
is very small in comparison to the results for the OJ dataset. The top performer

was the MLPClassifier (Multilayer Perceptron) which uses a neural network

)

and the second- to fourth-best models were GaussianNB, SGDClassifier, and

SVC.

Table 4.5.: Testing accuracies and time costs of different classifiers on the modified BLAS

dataset.

Classifier name

Testing accuracy Total time cost

Modified ASTNN
MLPClassifier
GaussianNB
SGDClassifier
SvVC
LinearSVC

GradientBoostingClassifier
RandomForestClassifier

AdaBoostClassifier

KNeighborsClassifier
DecisionTreeClassifier

NusSvC

100.0 %
83.3%
73.3%
73.3%
73.3%
70.0 %
70.0 %
66.7 %
66.7 %
63.3%
63.3 %
63.3 %

8369.3 s
6.2s
2.0s
2.2s
3.4s
4.3s
56.7s
2.6s
7.6s
2.1s
2.2s
3.7s

o8

4.3. Benchmarks

4.3.4. PHOENIX dataset

We also derived a dataset from the astrophysical simulation PHOENIX by Hauschildt
et al. which simulates stellar and planetary atmospheres [128, 129].

PHOENIX’ source code is distributed in approximately 40 modules which are
collections of source code files that are engaged with a specific part of the simulation.
Examples for modules are “3DRT” (3D Radiative Transfer), “ACES” (Astrophysical
Chemical Equilibrium Solver) and “SESAM(E)” (Stoichiometric Equilibrium Solver
for Atoms and Molecul(E)s).

Similar to the OJ dataset which contains source code snippets that are aimed
to solve specific problems, the PHOENIX modules can also be understood as
collections of functions which tackle a specific sub-problem. Therefore, we compiled
PHOENIX, created one sample per method that can be identified inside the object
code files by objdump, and used the corresponding module as the label.

Since the BLAS dataset was very small in comparison to the OJ dataset, we tried to
maximise the dataset size for the PHOENIX dataset while simultaneously receiving
the same amount of samples per class. Since the number of methods per module
varies strongly, this can not be done by including all modules into the dataset.
As can be found in Appendix B, the maximum dataset size can be achieved by
including 7 modules and 173 (arbitrary) methods per module which would result
in 1211 samples (see Table B.1). Surprisingly, the maximum number of samples
in debug mode is smaller with 1204 (see Table B.2). While the largest modules
became larger (in debug mode, the modules get compiled without function inlining),
the limiting factor is given by the module SESAM which loses one method in debug
mode.

Just like with the OJ dataset, we noticed that the RetDec decompiler seems to
hang on certain samples again. However, this time the optimisations that were
causing problems were the LLVM passes in RetDec’s core, and RetDec does only
offer arguments to disable back-end optimisations. This concerned all samples
from the MPFUN-Lapack module (which is the largest module in the optimised
build mode), but also few samples from other modules. Although RetDec was
restricted to certain instruction address ranges via a command line argument, we
noticed that the decompilation time was also increased by the overall size of the
object code file which could mean that RetDec incorporates information from the
surrounding machine instructions in order to better understand the context of a
segment. However, an obvious correlation between method count, method length,
or file size, and the unresponsive behaviour could not be revealed. It is also worth

99

4. Methods

mentioning that RetDec consistently took significantly longer on the object code
files that were built in debug mode. Therefore, we only considered the optimised
data, excluded the MPFUN-Lapack module completely, and used a timeout of 5
minutes for the decompilation process. This resulted in a dataset with 990 entries
(6 classes with 165 samples each).

The results of the training process can be found in Figure 4.10 and Figure 4.11. Since
the minimum of the validation loss is very clearly after epoch 14, it is evident that we
should early-stop training here. The final testing accuracy is then 67.7 %, although
the validation accuracy (71.2%) for this epoch is unusually high in comparison
which could have been caused by statistical disparities between the testing and the
validation set.

1 0.75 — -
0.9 ++++++++++++++ E 0.7 | +++++ 4t +++ +++++++++ +++++++ ++++
= 0.8 *+++ a ++++
9 . <
g 5 0.65
g 0.7 - E N
<06 = 061
2 S
5059 £ 055
& 04 5
.
03 .- 0.5
0.2 ! ! : ! 0.45 ! ! ! :
0 10 20 30 40 50 0 10 20 30 40
Epoch Epoch

Figure 4.10.: Training and validation accuracy of the ASTNN on the PHOENIX dataset

(a) Training accuracy

(b) Validation accuracy

over time.
1.8 1.6
1.6 4 1.5 4
1.4 A L 14
% | w
k 1.2 813 T
> 1 + =] + o4 ++
& + 2 1.2 1 *
g 0.8 +++ _Cg + 7t 4
& 0.6 = M P
+++ > 1 + 4
0.4 *+++++ + Y
0.2 ++++++++++++++++++++++++7 0.9 1 +++ -
0 : : : : 0.8 ML ‘ ‘
0 10 20 30 40 50 0 10 20 30 40
Epoch Epoch

Figure 4.11.: Training and validation of the ASTNN on the PHOENIX dataset over time.

(a) Training loss

(b) Validation loss

60

4.4. Problems and Limitations

As in the previous sections, Table 4.6 again shows a comparison of different classifiers
on this dataset. Since the dataset is larger than the BLAS dataset, all classifiers
took significantly longer than before. The accuracies range from 25.8 % to 48.0 %,
and the four best-performing classifiers are identical to the results from Table 4.4
(OJ dataset).

Table 4.6.: Testing accuracies and time costs of different classifiers on the modified
PHOENIX dataset.

Classifier name Testing accuracy Total time cost

Modified ASTNN 67.7% 77210.1s

GradientBoostingClassifier 48.0 % 10724.7 s
RandomForestClassifier 45.5% 53.9s
DecisionTreeClassifier 39.4% 53.1s
NuSvC 39.4% 1079.6 s
SGDClassifier 37.9% 104.6s
AdaBoostClassifier 35.9% 501.8s

LinearSVC 32.8% 13077.8s
GaussianNB 31.3% 36.1s
MLPClassifier 30.8% 754.2s

SVC 30.8% 1074.2s
KNeighborsClassifier 25.8% 42.7s

4.4. Problems and Limitations

There are several factors limiting the representativeness of the benchmarks described
in Section 4.3 and the real-world applicability of the method described in Sections 4.1
and 4.2.

First of all, it should be mentioned that the ASTNN has an immense memory
consumption. As has been mentioned in Section 3.11, its performance (in terms of
time cost per epoch) on the unchanged OJ dataset has been best on a desktop PC
with consumer hardware and second best on Hamburg Observatory’s igor. For the
modified OJ dataset, these systems were not available any more, because even when
using a batch size of 1 and igor’s NVIDIA Tesla V100 GPU with 32 GB of VRAM,
the neural network ran out of memory during training. Therefore, we were forced to
train on the CPU and used the machine abul for training which features 256 GB of

61

4. Methods

RAM which enabled us to use the default batch size of 64. The average time cost per
epoch in this configuration was (9987.6 £+ 68.0) s (about 2 hours and 45 minutes),
so together with the results shown in Table 3.1 we can conclude that training
one epoch on the modified dataset was about 3.9 as time-consuming compared
with the unchanged OJ dataset on the same machine. For the PHOENIX dataset,
which contained less but longer samples, the memory problem even worsened so
that abul’s RAM was not enough when using the default batch size of 64. We
repeatedly halved the batch size and found that the problems vanished with a batch
size of 16.

In summary since two thirds of the performed benchmarks with the modified
ASTNN showed memory problems, we can conclude that these problems are very
likely to return for any real-world example that the method is applied on. Firstly, it
is generally unpleasant that the training time is lengthened by a factor between 24
and 30 when using the CPU instead of the GPU (see Section 3.11), and secondly,
when training on large datasets containing a variety of scientific codebase excerpts,
it is possible that even a machine with 256 GB of RAM will not be enough, even
if we reduced the batch size to 1. A possible fix for this could be taking a deep
look into ASTNN’s vector representations and memory management and trying to
optimise these factors to preferably make it possible to use the GPU.

A problem with representativeness arises from the nature itself of the benchmarks
above. In Section 5.2.2, we propose a hypothetical model that is able to classify
program sections (e.g. compilation units, functions) into their suitability for different
processing unit architectures and that is independent of the programming languages
of the input. To train such a model, we would need a large dataset of labelled
samples, i.e. a collection of source code samples, preferably written in different
languages, that is labelled with the processing unit architecture they are best
suited for. To our knowledge, such a dataset does not exist at the time of writing.
Each benchmark above has been performed with qualitatively different, although
remotely similar, labels in mind.

Furthermore, it is noteworthy that while the benchmarks above have been performed
with code samples in different programming languages (before normalisation),
namely C++, Fortran, and C, the datasets of each benchmark only contained one
language each, and the same language for training and testing. Due to the large
difference between the individual datasets, we did not succeed in coming up with
a metric that could be used for a combination of them, so that we could actually
have mixed languages as the input. Therefore, while we showed that our method

62

4.4. Problems and Limitations

worked well with multiple languages individually, we technically could not show
that it worked well with multiple languages at once.

Finally, as has already been mentioned in Section 4.3, some of RetDec’s core and
back-end optimisations were seemingly hanging up during the decompilation process.
For the back-end, this is not a large problem, since the relevant optimisations could
be easily identified and disabled through the command line. However, for the core
optimisations which were hanging up only for the PHOENIX dataset, this is not
possible so that we were forced to discard the affected samples. In a real-world
scenario, this would not be tolerable. It seems likely that these problems were
caused by bugs inside RetDec.

In summary, one can conclude that the ASTNN in combination of the proposed
source code normalisation method delivers promising results, but one would have to
fix multiple flaws before it would be ready in a production environment. In contrast,
as can be found in Table 4.4, sklearn’s RandomForestClassifier achieved about
50 % of the testing accuracy of the modified ASTNN, but was more than 2200
times as quick overall. It is possible that trying out more methods or fine-tuning
the listed methods could close this gap further.

63

Chapter 5.

Conclusion

In this thesis, we evaluated multiple machine learning methods for general-purpose
source code classification. A qualitative comparison of the methods reviewed can be
found in Section 5.1 which also gives an overview over the problems and limitations
of the methods. A more detailed description of the latter can be found in Section 4.4.
Section 5.2.1 lists the necessary work to solve these problems and other possible
steps that could improve the classifiers or their comparability. Finally, Section 5.2.2
describes a scenario in which the evaluated classifiers could be used for automatic
mapping of source code samples to adequate computation units, similar to the work
of Barchi et al. [6].

5.1. Comparison of the classifiers

During all benchmarks that were performed in Section 4.3, the modified ASTNN
was consistently performing the best out of all tested classifiers.

During the benchmarks with the OJ Dataset, the results of which can be found in
Table 4.4, the performance of sklearn’s classifiers varied very strongly. The top
performers are the GradientBoostingClassifier which achieved a testing ac-
curacy of 54.3 % in over 48 hours, the RandomForestClassifier which achieved
47.5% (about half has accurate as the modified ASTNN) in only 66.7s (about
0.04 % of the total time cost of the ASTNN), the DecisionTreeClassifier
(38.6 %), and Nusvc (37.0%).

65

5. Conclusion

For the BLAS dataset (see Table 4.5), the accuracies of the different classifiers were
a lot more similar which could have been caused by the small size and arguably
smaller complexity of the dataset with only three classes. While the modified
ASTNN achieved a testing accuracy of 100 %, the other classifiers achieved results
between 63.3% and 83.3%. A qualitative analysis of the classifiers is therefore
omitted for this benchmark.

Finally, on the PHOENIX dataset (see Table 4.6), the modified ASTNN showed
its worst performance out of the three experiments with an accuracy of 67.7 %,
and relative to this, the classifiers from sklearn performed a lot better
in comparison to the other benchmarks, the four top performers being
the GradientBoostingClassifier (48.0%), RandomForestClassifier
(45.5%), DecisionTreeClassifier, and NusVC (both 39.4%). This order is
identical to the results for the OJ dataset.

Overall, the GradientBoostingClassifier performed second-best in two of
three benchmarks, but can also take significantly longer than the ASTNN. The
RandomForestClassifier shows a much better ratio of accuracy per training
time than both the ASTNN and the GradientBoostingClassifier. It is
noteworthy, that the three best classifiers after the ASTNN are all tree-based. It is
possible that some of the semantic structure of the program could be recognised by
these classifiers and that the trees that they build internally even resemble control
flow graphs of the programs on the instruction level.

Even though the modified ASTNN was consistently achieving the best testing
accuracies, this approach also came with a significant amount of problems as has
been described in detail in Section 4.4: Firstly, the ASTNN has an extensive demand
on RAM, which forced us to train on the CPU which significantly slowed the process
down, and secondly, the perceived bugs in RetDec, the decompiler that was used,
made some samples unable to be used for classification, so the method is not
generally applicable in its current state.

66

5.2. Future Work

5.2. Future Work

5.2.1. Improving the Classifiers

There are several steps that could be attempted to improve the performance of the
classifiers that have been evaluated in this thesis.

While the method that combined RetDec and the ASTNN showed the best results
during the benchmarks in terms of accuracy, it has been shown that it is not
ready for production use because of the hardware requirements and the amount
of samples that it did not work on at all. First, the unresponsiveness of RetDec
should be investigated. Since it occurs in the LLVM passes of RetDec’s core, it
would probably already be enough to add an option to disable certain passes.
However, the various optimisations that RetDec performs (both in the core and the
back-end) are actually one of its biggest strengths that help it to produce readable
code. If expressive and short code improves the ASTNN’s ability to reach a high
classification accuracy, a better solution would be to find out why some of the
optimisations were causing problems and to fix them. Furthermore, it has been
noted that the ASTNN’s immense memory consumption restricts it to machines
with very high amount of RAM and makes it impossible to use the GPU at the
time of writing. It should be investigated why this is the case and if it could be
avoided. At the time of writing, the ASTNN relies heavily on the built-in memory
management routines from PyTorch which possibly try to store more data on the
GPU than necessary. Alternatively, one could also try to implement the ASTNN’s
design using a different machine learning library or even programming language.

Also note that all classifiers from sklearn have not been fine-tuned during this
thesis. sklearn offers many customisation options for each classifier that each
come with an extensive set of best-practices. However, to optimise every available
option would have been outside the scope of this thesis. It is probably prudent to
try to investigate the available options of the best-performing classifiers, although
it is actually not guaranteed that the order of their ranking would stay the same if
all classifiers achieved their theoretical maximum performance.

Furthermore, as has been stated in Section 5.1, the three best-performing classifiers
overall were tree-based methods. With the DecisionTreeClassifier, the tree
that is built up internally can be accessed via the tree_ attribute. Similarly,
the RandomForstClassifier, being an ensemble method, supplies the list of
DecisionTreeClassifiers it uses as sub-estimators via the estimators_
attribute. The GradientBoostingClassifier supplies the same attribute,

67

5. Conclusion

but uses DecisionTreeRegressors instead. It is possible that one could learn
interesting information about the syntactical structure of low-level program repre-
sentations upon closer analysis of these trees. It is however clear that this would
have been beyond the scope of this thesis, since their nodes only contain boolean
decisions of numerical values.

Finally, the classification result of the ASTNN for a source code sample is determined
by calculating the probability for each class that the sample belongs to it and
then choosing the class with the highest possibility. There are several sklearn
classifiers with a similar functional principle: For example, the SGDClassifier
trains n binary classifiers for n classes which each decide a class probability. This
implies that these classifiers also have a “second choice”, i.e. the class with the
second-highest probability. In a scenario where the number classes is larger than
the number of targetted computation units, it is probably a good idea to also take
these choices into account.

5.2.2. Automatic Code Mapping

The source code classifiers that were evaluated in this thesis could also be used for
automatic code mapping similar to the work of Barchi et al. [6]. In their work, a
dataset of OpenCL kernels was created and their execution time was measured on
both CPUs and GPUs. The difference between these values was used to train a
deep neural network which could then decide the optimal computational unit for a
new OpenCL sample.

A fundamental flaw with this approach is that this result can not be used in the
context of a whole program without hesitation, because it does not consider how
many times the individual kernels are executed at runtime. As an example, one
could consider two OpenCL kernels A and B which have a similar execution time
on the CPU and of which only one could be offloaded to the GPU because of
resource limitations. If A runs twice as fast on the GPU but gets used only once
during an application run, and B runs only 10 % faster on the GPU, but gets
called a million times, it would be preferable to run A on the CPU and B on the
GPU. Instead, an approach that only considers the performance gain per kernel
would make the opposite decision. This illustrates that more information about
the whole program is necessary for this decision. Static loop analysis could help
in this situation, but in general, this decision is undecidable, because loop bounds
frequently depend on input values in scientific software, and finding out how many
times each sub-program of an application can be called could be used to solve the

68

5.2. Future Work

halting problem [130]. It is however possible to run an application in a defined
configuration that is regarded typical for production use and extract the required
data from profiling results.

The second disadvantage of the method from Barchi et al. is that it is limited
to OpenCL kernels. Although OpenCL can be used to write code for various
target architectures, it is less popular than CUDA for GPU applications and not a
widespread choice for CPU-only applications®. In contrast, the methods discussed
in this thesis can be used for all programming languages that are ahead-of-time
compiled. However, this also makes it extremely more difficult to find a training
dataset that could be used to train them. Such a dataset could be created from a
large collection of different scientific software codebases. To facilitate generalisability,
it should be ensured that multiple languages are included, and that all code patterns
frequent to HPC as described by Asanovié¢ et al. and Colella (see Section 3.3) are
represented. Similarly to Barchi et al., one could use profiling to find out the optimal
architecture for each training sample.

To automatically map compilation units of programs to the optimal target platform,
one could rely on automatic parallelisation tools as described in Section 3.2, primarily
tools that perform the parallelisation without the help of the programmer, like
Polly (see Section 3.2.3). Since OpenMP works for traditional and many-core CPUs
and GPUs via accelerator offloading, it could be used as a back-end for these
architectures. Additionally, the NEC compiler also supports OpenMP [38] which is
useful in case that the source code classifier has predicted that a piece of source
code is best suited for vector processors.

Since it is already common to compile scientific software on the cluster computer that
it is meant to be run on?, a compilation process that takes into account the available
hardware and the optimal computational units of the individual compilation units, a
process could be developed that maps a program to a heterogeneous cluster. During
this process, one could also split up compilation units in multiple parts to increase
the granularity of this process while ensuring that certain functions are executed on
the same hardware. This could go as far as one function per compilation method,
although this could again reduce maintainability and would also require link-time
optimisation to produce efficient code.

LAt the time of writing, there are 1,817,848 repositories on Github [131] which contain C/C++
code and out of this portion, 4,439 repositories contain the word OpenCL and 12,881 repositories
contain the word CUDA.

20n many clusters, this is preferably done on dedicated compile or login nodes, the regulations
vary between the systems.

69

Bibliography

1]

Joel Spolsky. Things You Should Never Do, Part I — Joel on Software. 2000-04-06.
URL: https://www. joelonsoftware.com/2000/04/06/things—you-
should-never-do-part-i/ (visited on 2021-05-23).

Donald E. Knuth. “Structured Programming with Go to Statements”. In: ACM
Comput. Surv. 6.4 (1974-12), pp. 261-301. 1ssN: 0360-0300. DOI: 10 .1145/
356635.356640. URL: https://doi.org/10.1145/356635.356640.

Cori — NERSC Documentation. URL: https://docs.nersc.gov/systems/
cori/ (visited on 2021-05-23).

Our Facility — ASPIRE 1 — NSCC. URL: https://www.nscc.sg/2020/
about-nscc/our-facilityaspire-1/ (visited on 2021-05-23).

Configuration — User Portal. URL: https://www.dkrz.de/up/systems/
mistral/configuration (visited on 2021-05-23).

Francesco Barchi et al. “Code Mapping in Heterogeneous Platforms Using Deep
Learning and LLVM-IR”. In: 2019-06, pp. 1-6. DO1: 10 .1145/ 3316781 .
3317789.

Krste Asanovié et al. The Landscape of Parallel Computing Research: A View
from Berkeley. Tech. rep. UCB/EECS-2006-183. EECS Department, University
of California, Berkeley, 2006-12. URL: http://www2.eecs.berkeley.edu/
Pubs/TechRpts/2006/EECS-2006-183.html.

Phillip Colella. Defining software requirements for scientific computing. 2004.

OpenMP Fortran Application Program Interface. 1997-10. URL: https://www.
openmp.org/wp-content/uploads/fspecl0.pdf (visited on 2021-07-31).

OpenMP C and C++ Application Program Interface. 1998-10. URL: https :

/ /www . openmp . org/wp—content /uploads/cspeclO.pdf (visited on
2021-07-31).

The OpenACC Application Programming Interface Version 2.5. 2015-10. URL:
https://www.openacc.org/sites/default/files/inline-files/
OpenACC_2pt5_0.pdf (visited on 2021-06-24).

71

https://www.joelonsoftware.com/2000/04/06/things-you-should-never-do-part-i/
https://www.joelonsoftware.com/2000/04/06/things-you-should-never-do-part-i/
https://doi.org/10.1145/356635.356640
https://doi.org/10.1145/356635.356640
https://doi.org/10.1145/356635.356640
https://docs.nersc.gov/systems/cori/
https://docs.nersc.gov/systems/cori/
https://www.nscc.sg/2020/about-nscc/our-facilityaspire-1/
https://www.nscc.sg/2020/about-nscc/our-facilityaspire-1/
https://www.dkrz.de/up/systems/mistral/configuration
https://www.dkrz.de/up/systems/mistral/configuration
https://doi.org/10.1145/3316781.3317789
https://doi.org/10.1145/3316781.3317789
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html
https://www.openmp.org/wp-content/uploads/fspec10.pdf
https://www.openmp.org/wp-content/uploads/fspec10.pdf
https://www.openmp.org/wp-content/uploads/cspec10.pdf
https://www.openmp.org/wp-content/uploads/cspec10.pdf
https://www.openacc.org/sites/default/files/inline-files/OpenACC_2pt5_0.pdf
https://www.openacc.org/sites/default/files/inline-files/OpenACC_2pt5_0.pdf

Bibliography

[12]

[13]

[14]

[15]

[16]

[21]
22]

23]

Aaftab Munshi. “The OpenCL Specification”. In: 2009 IEEE Hot Chips 21
Symposium (HCS). IEEE. 2009, pp. 1-314.

H. Carter Edwards, Christian R. Trott, and Daniel Sunderland. “Kokkos: En-
abling Manycore Performance Portability Through Polymorphic Memory Ac-
cess Patterns”. In: Journal of Parallel and Distributed Computing 74.12 (2014).
Domain-Specific Languages and High-Level Frameworks for High-Performance
Computing, pp. 3202-3216. 1SSN: 0743-7315. DOIL: https://doi.org/10.
1016/7j.3pdc.2014.07.003. URL: http://www.sciencedirect.com/
science/article/pii/S0743731514001257.

Tobias Grosser, Armin Groesslinger, and Christian Lengauer. “Polly — Perform-
ing Polyhedral Optimizations on a Low-Level Intermediate Representation”. In:
Parallel Processing Letters 22.04 (2012).

Michael Kruse. Introducing Molly: Distributed Memory Parallelization with LLVM.
2014. arXiv: 1409.2088 [cs.PL].

Jannek Squar et al. “Compiler Assisted Source Transformation of OpenMP
Kernels”. In: 2020 19th International Symposium on Parallel and Distributed
Computing (ISPDC). 2020, pp. 44-51. por: 10.1109/ISPDC51135.2020.
00016.

Mason McDaniel and Mohammad Heydari. “Content Based File Type Detection
Algorithms.” In: 36th Annual Hawaii International Conference on System Sciences,
2003. Vol. 9. IEEE. 2003-01, p. 332. bo1: 10.1109/HICSS.2003.1174905.

John Clemens. “Automatic Classification of Object Code Using Machine Learning”.
In: Digital Investigation 14 (2015-08), S156-S162. DOI: 10.1016/3.diin.2015.
05.007.

Lili Mou et al. Convolutional Neural Networks over Tree Structures for Program-
ming Language Processing. 2015. arXiv: 1409.5718 [cs.LG].

Jian Zhang et al. “A Novel Neural Source Code Representation Based on Abstract
Syntax Tree”. In: Proceedings of the 41st International Conference on Software
Engineering. ICSE ’19. Montreal, Quebec, Canada: IEEE Press, 2019, pp. 783-79%4.
DOI: 10.1109/ICSE.2019.00086. URL: https://doi.org/10.1109/
ICSE.2019.00086.

Hoa Khanh Dam et al. A Deep Tree-Based Model for Software Defect Prediction.
2018. arXiv: 1802.00921 [cs.SE].

J. Kfoustek. “Retargetable Analysis of Machine Code”. PhD thesis. Faculty of
Information Technology, Brno University of Technology, CZ, 2015, p. 190.

Richard M. Russell. “The CRAY-1 Computer System”. In: Commun. ACM 21.1
(1978-01), pp. 63-72. 1ssN: 0001-0782. DOI: 10.1145/359327.359336. URL:
https://doi.org/10.1145/359327.359336.

72

https://doi.org/https://doi.org/10.1016/j.jpdc.2014.07.003
https://doi.org/https://doi.org/10.1016/j.jpdc.2014.07.003
http://www.sciencedirect.com/science/article/pii/S0743731514001257
http://www.sciencedirect.com/science/article/pii/S0743731514001257
https://arxiv.org/abs/1409.2088
https://doi.org/10.1109/ISPDC51135.2020.00016
https://doi.org/10.1109/ISPDC51135.2020.00016
https://doi.org/10.1109/HICSS.2003.1174905
https://doi.org/10.1016/j.diin.2015.05.007
https://doi.org/10.1016/j.diin.2015.05.007
https://arxiv.org/abs/1409.5718
https://doi.org/10.1109/ICSE.2019.00086
https://doi.org/10.1109/ICSE.2019.00086
https://doi.org/10.1109/ICSE.2019.00086
https://arxiv.org/abs/1802.00921
https://doi.org/10.1145/359327.359336
https://doi.org/10.1145/359327.359336

Bibliography

“The Evolution of HPC”. In: insideHPC Guide to Co-Design Architectures —
Designing Machines Around Problems. The Co-Design Push to Exascale 2 (2016-
08).

Jack Dongarra and Piotr Luszczek. “TOP500”. In: Encyclopedia of Parallel
Computing. Ed. by David Padua. Boston, MA: Springer US, 2011, pp. 2055-2057.
ISBN: 978-0-387-09766-4. pDor: 10.1007/978-0-387-09766—-4_157. URL:
https://doi.org/10.1007/978-0-387-09766-4_157.

November 2020 — TOP500. 2020-11. URL: https://www.top500.0rg/lists/
top500/2020/11/ (visited on 2021-06-21).

AMD Instinct™ MI100 Accelerator — Data Center GPU — AMD. URL: https:
/ /www .amd .com/en/products/server—-accelerators/instinct -
mil00 (visited on 2021-06-21).

AMD Threadripper 3990z 64-core Linpack and NAMD Performance (Linux).
2020-02. URL: https://www.pugetsystems.com/labs/hpc/AMD-Threa
dripper-3990x—-64—-core-Linpack—-and-NAMD-Performance-Linux-
1666/ (visited on 2021-06-21).

David B. Kirk and Wen-mei W. Hwu. Programming Massively Parallel Processors:
A Hands-on Approach. 1st. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2010. 1sBN: 0123814723.

Felix Weninger, Johannes Bergmann, and Bjérn Schuller. “Introducing currennt:
The munich open-source cuda recurrent neural network toolkit”. In: Journal of
Machine Learning Research (2015), pp. 547-551.

Intel Xeon Phi Processor 7295 16GB 1.5 GHz 72 Core Product Specifications.
URL: https://ark.intel.com/content/www/us/en/ark/products/
128690/ intel —xeon-phi-processor—-7295-16gb-1-5-ghz—-"72-
core.html (visited on 2021-08-01).

Intel Quietly Kills Off Xeon Phi — ExtremeTech. 2019-05-18. URL: https://www.
extremetech.com/extreme /290963 -intel -quietly-kills—-off-
xeon-phi (visited on 2021-06-21).

Intel Unveils New Product Plans for High-Performance Computing. 2010-05-31.
URL: https://www.intel.com/pressroom/archive/releases/2010/
20100531comp.htm (visited on 2021-06-21).

Intel Xeon Phi Processor 7290 16GB 1.50 GHz 72 core Product Specifications.
URL: https://ark.intel.com/content/www/us/en/ark/products/
95830/ intel —xeon-phi-processor—-7290-16gb—-1-50-ghz-72 -
core.html (visited on 2021-08-01).

73

https://doi.org/10.1007/978-0-387-09766-4_157
https://doi.org/10.1007/978-0-387-09766-4_157
https://www.top500.org/lists/top500/2020/11/
https://www.top500.org/lists/top500/2020/11/
https://www.amd.com/en/products/server-accelerators/instinct-mi100
https://www.amd.com/en/products/server-accelerators/instinct-mi100
https://www.amd.com/en/products/server-accelerators/instinct-mi100
https://www.pugetsystems.com/labs/hpc/AMD-Threadripper-3990x-64-core-Linpack-and-NAMD-Performance-Linux-1666/
https://www.pugetsystems.com/labs/hpc/AMD-Threadripper-3990x-64-core-Linpack-and-NAMD-Performance-Linux-1666/
https://www.pugetsystems.com/labs/hpc/AMD-Threadripper-3990x-64-core-Linpack-and-NAMD-Performance-Linux-1666/
https://ark.intel.com/content/www/us/en/ark/products/128690/intel-xeon-phi-processor-7295-16gb-1-5-ghz-72-core.html
https://ark.intel.com/content/www/us/en/ark/products/128690/intel-xeon-phi-processor-7295-16gb-1-5-ghz-72-core.html
https://ark.intel.com/content/www/us/en/ark/products/128690/intel-xeon-phi-processor-7295-16gb-1-5-ghz-72-core.html
https://www.extremetech.com/extreme/290963-intel-quietly-kills-off-xeon-phi
https://www.extremetech.com/extreme/290963-intel-quietly-kills-off-xeon-phi
https://www.extremetech.com/extreme/290963-intel-quietly-kills-off-xeon-phi
https://www.intel.com/pressroom/archive/releases/2010/20100531comp.htm
https://www.intel.com/pressroom/archive/releases/2010/20100531comp.htm
https://ark.intel.com/content/www/us/en/ark/products/95830/intel-xeon-phi-processor-7290-16gb-1-50-ghz-72-core.html
https://ark.intel.com/content/www/us/en/ark/products/95830/intel-xeon-phi-processor-7290-16gb-1-50-ghz-72-core.html
https://ark.intel.com/content/www/us/en/ark/products/95830/intel-xeon-phi-processor-7290-16gb-1-50-ghz-72-core.html

Bibliography

[35]

[41]

[42]

[43]

[44]

[46]

[47]

Intel’s Silvermont Architecture Revealed: Getting Serious About Mobile. 2013-05-06.
URL: https://www.anandtech.com/show/6936/intels-silvermont—
architecture-revealed-getting-serious—-about-mobile (visited

on 2021-07-31).

NEC SX-Aurora TSUBASA — Vector Engine. URL: https://www.nec.com/
en/global/solutions/hpc/sx/vector_engine.html (visited on 2021-
06-22).

SX-Aurora TSUBASA A412-8, Vector Engine Typel0AE 8C 1.58GHz, InfiniBand
HDR 100 — TOP500. 2020-11. URL: https://www.top500.0rg/system/
179872/ (visited on 2021-06-22).

NEC SX Aurora TSUBASA — VSC documentation. URL: https://vlaams—
supercomputing-centrum-vscdocumentation.readthedocs—-hoste
d.com/en/latest/antwerp/uantwerp_SX_Aurara_TSUBASA. html
(visited on 2021-06-22).

Peter B Galvin, Greg Gagne, Abraham Silberschatz, et al. Operating system
concepts. John Wiley & Sons, 2003.

OpenMP Accelerator Support for GPUs — OpenMP. URL: https://www.openmp.
org/updates/openmp-accelerator-support-gpus/ (visited on 2021-
06-22).

G. Madey et al. “Agent-Based Scientific Simulation”. In: Computing in Science

¢ Engineering 2.01 (2005-01), pp. 22-29. 1SSN: 1558-366X. DOI: 10.1109/MCSE.
2005.7.

Using Polly with Clang — Polly 13.0-devel documentation. URL: https: //
polly.llvm.org/docs/UsingPollyWithClang.html (visited on 2021-07-
14).

Brandon Barker. “Message Passing Interface (MPI)”. In: Workshop: High Perfor-
mance Computing on Stampede. Vol. 262. 2015.

Richard L Graham, Timothy S Woodall, and Jeffrey M Squyres. “Open MPI:
A flexible high performance MPI”. In: International Conference on Parallel
Processing and Applied Mathematics. Springer. 2005, pp. 228-239.

Dhabaleswar K Panda et al. “The MVAPICH project: Evolution and Sustainability
of an Open Source Production Quality MPI Library for HPC”. In: Workshop on
Sustainable Software for Science: Practice and Ezxperiences, held in conjunction
with International Conference on Supercomputing (WSSPE). 2013.

Gabriele Jost et al. “Comparing the OpenMP, MPI, and Hybrid Programming
Paradigms on an SMP Cluster”. In: Proceedings of EWOMP. Vol. 3. 2003, p. 2003.

Michael Kruse. Molly: Parallelizing for Distributed Memory using LLVM. Talk.
2016-03.

74

https://www.anandtech.com/show/6936/intels-silvermont-architecture-revealed-getting-serious-about-mobile
https://www.anandtech.com/show/6936/intels-silvermont-architecture-revealed-getting-serious-about-mobile
https://www.nec.com/en/global/solutions/hpc/sx/vector_engine.html
https://www.nec.com/en/global/solutions/hpc/sx/vector_engine.html
https://www.top500.org/system/179872/
https://www.top500.org/system/179872/
https://vlaams-supercomputing-centrum-vscdocumentation.readthedocs-hosted.com/en/latest/antwerp/uantwerp_SX_Aurara_TSUBASA.html
https://vlaams-supercomputing-centrum-vscdocumentation.readthedocs-hosted.com/en/latest/antwerp/uantwerp_SX_Aurara_TSUBASA.html
https://vlaams-supercomputing-centrum-vscdocumentation.readthedocs-hosted.com/en/latest/antwerp/uantwerp_SX_Aurara_TSUBASA.html
https://www.openmp.org/updates/openmp-accelerator-support-gpus/
https://www.openmp.org/updates/openmp-accelerator-support-gpus/
https://doi.org/10.1109/MCSE.2005.7
https://doi.org/10.1109/MCSE.2005.7
https://polly.llvm.org/docs/UsingPollyWithClang.html
https://polly.llvm.org/docs/UsingPollyWithClang.html

Bibliography

Charles Pierre Trémaux. “Ecole polytechnique of Paris (X: 1876)”. In: French
Engineer of the Telegraph in Public Conference, December. Vol. 2. 2010, pp. 0980—
603.

Thomas H Cormen et al. Introduction to Algorithms. MIT press, 2009.

Mary Hall, David Padua, and Keshav Pingali. “Compiler Research: The Next 50
Years”. In: Communications of the ACM 52.2 (2009), pp. 60-67.

Norman S Clerman and Walter Spector. Modern Fortran: Style and Usage. Cam-
bridge University Press, 2011.

Ronald F Boisvert et al. “Mathematical Software: Past, Present, and Future”. In:
Computational Science, Mathematics and Software. Purdue Univ. Press, 2002,
pp- 3-27.

BLAS (Basic Linear Algebra Subprograms). URL: http://www.netlib.org/
blas/ (visited on 2021-06-06).

Andrew S Tanenbaum and Herbert Bos. Modern Operating Systems. Pearson,
2015.

Robert Schaback and Holger Wendland. Numerische Mathematik. Springer-Verlag,
2006.

PYPL PopularitY of Programming Language index. URL: https://pypl.
github.io/PYPL.html (visited on 2021-05-23).

Vasco Amaral et al. “Programming Languages for Data-Intensive HPC Appli-
cations: a Systematic Mapping Study”. In: Parallel Computing (2019-11). DOI:
10.1016/7j.parco.2019.102584.

V. Vassilev et al. “Cling — The New Interactive Interpreter for ROOT 6”. In:
vol. 396. 5. IOP Publishing, 2012-12, p. 052071. poI: 10.1088/1742-6596/
396/5/052071. URL: https://iopscience.iop.org/article/10.
1088/1742-6596/396/5/052071/pdf.

Implementing ART Just-In-Time (JIT) Compiler. URL: https://source.
android.com/devices/tech/dalvik/jit—compiler (visited on 2021-
05-23).

Android Runtime (ART) and Dalvik — Android Open Source Project. URL: https:
//source.android.com/devices/tech/dalvik (visited on 2021-05-23).

Carl Friedrich Bolz et al. “Tracing the meta-level: PyPy’s tracing JI'T compiler”. In:
Proceedings of the 4th workshop on the Implementation, Compilation, Optimization
of Object-Oriented Languages and Programming Systems. 2009, pp. 18-25.

Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. “Numba: A LLVM-Based
Python JIT Compiler”. In: Proceedings of the Second Workshop on the LLVM
Compiler Infrastructure in HPC. 2015, pp. 1-6.

75

http://www.netlib.org/blas/
http://www.netlib.org/blas/
https://pypl.github.io/PYPL.html
https://pypl.github.io/PYPL.html
https://doi.org/10.1016/j.parco.2019.102584
https://doi.org/10.1088/1742-6596/396/5/052071
https://doi.org/10.1088/1742-6596/396/5/052071
https://iopscience.iop.org/article/10.1088/1742-6596/396/5/052071/pdf
https://iopscience.iop.org/article/10.1088/1742-6596/396/5/052071/pdf
https://source.android.com/devices/tech/dalvik/jit-compiler
https://source.android.com/devices/tech/dalvik/jit-compiler
https://source.android.com/devices/tech/dalvik
https://source.android.com/devices/tech/dalvik

Bibliography

[63]
[64]

[65]

[66]

[72]

73]

[74]

[75]

[76]

[77]

Future Tense. 2011-04-29. URL: https://www.slideshare.net/Brendan
Eich/future-tense-7782010 (visited on 2021-05-23).

Rust Programming Language. URL: https://www.rust—lang.org/ (visited
on 2021-05-23).

Michal Sudwoj. “Rust Programming Language in the High-Performance Comput-
ing Environment”. en. MA thesis. Zurich: ETH Zurich, 2020-09. Do1: 10.3929/
ethz-b-000474922.

Alexander Droste, Michael Kuhn, and Thomas Ludwig. “MPI-Checker — Static
Analysis for MPI”. In: Proceedings of the Second Workshop on the LLVM Compiler
Infrastructure in HPC. LLVM ’15. Austin, Texas, USA: ACM, 2015-11. ISBN: 978-
1-4503-4005-2. DOI: http://doi.acm.org/10.1145/2833157.2833159.
URL: http://1llvm-hpc2-workshop.github.io/.

John R. Levine. Linkers and Loaders. 1st. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1999. 1sBN: 1558604960.

Wai Kyi, Hiroshi Koide, and Kouichi Sakurai. “Analyzing the Effect of Moving
Target Defense for a Web System”. In: International Journal of Networking and
Computing 9 (2019-07), pp. 188-200. DOI: 10.15803/ijnc.9.2_188.

Andrew W. Appel and Maia Ginsburg. Modern Compiler Implementation in C.
Cambridge University Press, 1997. bor: 10.1017/CB09781139174930.

Steven S. Muchnick. Advanced Compiler Design and Implementation. San Fran-
cisco, CA, USA: Morgan Kaufmann Publishers Inc., 1998. 1sBN: 1558603204.

flang-compiler/flang: Flang is a Fortran language front-end designed for integration
with LLVM. URL: https://github.com/flang-compiler/flang (visited
on 2021-05-25).

Home — flang-compiler/flang Wiki. URL: https://github.com/ flang-
compiler/flang/wiki (visited on 2021-05-25).

Jozef Kolek et al. “Adding microMIPS backend to the LLVM compiler infras-
tructure”. In: 2013 21st Telecommunications Forum Telfor (TELFOR) (2013),
pp. 1015-1018.

Andrew Johnson-Laird. “Software Reverse Engineering in the Real World”. In: U.
Dayton 1. rev. 19 (1993), p. 843.

Milan Stevanovic. “Linux toolbox”. In: Advanced C' and C++ Compiling. Springer,
2014, pp. 243-276.

J. Kroustek. “On Decompilation of VLIW Executable Files”. In: Scientific Journal
Problems in Programming 16.1 (2015), pp. 29-37.

J. Kroustek and P. Matula. RetDec: An Open-Source Machine-Code Decompiler.
[talk]. Presented at Pass the SALT 2018, Lille, FR. 2018-07.

76

https://www.slideshare.net/BrendanEich/future-tense-7782010
https://www.slideshare.net/BrendanEich/future-tense-7782010
https://www.rust-lang.org/
https://doi.org/10.3929/ethz-b-000474922
https://doi.org/10.3929/ethz-b-000474922
https://doi.org/http://doi.acm.org/10.1145/2833157.2833159
http://llvm-hpc2-workshop.github.io/
https://doi.org/10.15803/ijnc.9.2_188
https://doi.org/10.1017/CBO9781139174930
https://github.com/flang-compiler/flang
https://github.com/flang-compiler/flang/wiki
https://github.com/flang-compiler/flang/wiki

Bibliography

Capstone2LlvmIr — avast/retdec Wiki. URL: https://github.com/avast/
retdec/wiki/Capstone2LlvmIr (visited on 2021-07-14).

Christopher M. Bishop. Pattern Recognition and Machine Learning (Informa-
tion Science and Statistics). Berlin, Heidelberg: Springer-Verlag, 2006. ISBN:
0387310738.

Douglas M Hawkins. “The Problem of Overfitting”. In: Journal of chemical
information and computer sciences 44.1 (2004), pp. 1-12.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http :
//www.deeplearningbook.org. MIT Press, 2016.

F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal of
Machine Learning Research 12 (2011), pp. 2825-2830.

N Gill, E LeDell, and Y Tang. H204GPU: Machine Learning with GPUs in R
and Python.

Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep
Learning Library”. In: Advances in Neural Information Processing Systems 32.
Ed. by H. Wallach et al. Curran Associates, Inc., 2019, pp. 8024-8035. URL:
http://papers.neurips.cc/paper/9015-pytorch-an—-imperative—
style-high-performance-deep—-learning-library.pdf.

Francois Chollet et al. Keras. https://keras.io. 2015.

Martin Abadi et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous
Systems. Software available from tensorflow.org. 2015. URL: https: //www.
tensorflow.org/.

Evelyn Fix. Discriminatory Analysis: Nonparametric Discrimination, Consistency
Properties. Vol. 1. USAF school of Aviation Medicine, 1985.

U. Ravi Babu, Y. Venkateswarlu, and Aneel Kumar Chintha. “Handwritten Digit
Recognition Using K-Nearest Neighbour Classifier”. In: 2014 World Congress on
Computing and Communication Technologies. 2014, pp. 60—65. DOI: 10.1109/
WCCCT.2014.7.

J. R. Quinlan. “Induction of Decision Trees”. In: Machine Learning 1 (1986),
pp. 81-106.

L. Breiman et al. Classification and Regression Trees. Taylor & Francis, 1984.
ISBN: 9780412048418.

James Joyce. “Bayes’ Theorem”. In: The Stanford Encyclopedia of Philosophy. Ed.
by Edward N. Zalta. Spring 2019. Metaphysics Research Lab, Stanford University,
2019.

Harry Zhang. “The Optimality of Naive Bayes”. In: AA 1.2 (2004), p. 3.

7

https://github.com/avast/retdec/wiki/Capstone2LlvmIr
https://github.com/avast/retdec/wiki/Capstone2LlvmIr
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://keras.io
https://www.tensorflow.org/
https://www.tensorflow.org/
https://doi.org/10.1109/WCCCT.2014.7
https://doi.org/10.1109/WCCCT.2014.7

Bibliography

(93]

[94]

101]

[102]

[103]

[104]

[105]

[106]

107]

Johan Hovold. “Naive Bayes Spam Filtering Using Word-Position-Based At-
tributes.” In: CEAS. 2005, p. 41.

Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. “A Training
Algorithm for Optimal Margin Classifiers”. In: Proceedings of the 5th Annual ACM
Workshop on Computational Learning Theory. ACM Press, 1992, pp. 144-152.

Alex J. Smola and Bernhard Schélkopf. A Tutorial on Support Vector Regression.
2004.

Lior Rokach. “Ensemble-Based Classifiers”. In: Artificial Intelligence Review 33.1
(2010), pp. 1-39.

Stephen Cole Kleene. Representation of Events in Nerve Nets and Finite Automata.
Princeton University Press, 2016.

Warren S McCulloch and Walter Pitts. “A Logical Calculus of the Ideas Immanent
in Nervous Activity”. In: The Bulletin of Mathematical Biophysics 5.4 (1943),
pp. 115-133.

Frank Rosenblatt. “The Perceptron: A Probabilistic Model for Information Storage
and Organization in the Brain.” In: Psychological Review 65.6 (1958), p. 386.

Paul Werbos. “Beyond Regression: New Tools for Prediction and Analysis in the
Behavioral Sciences”. PhD thesis. Harvard University, 1974.

Danilo Mandic and Jonathon Chambers. Recurrent Neural Networks for Prediction:
Learning Algorithms, Architectures and Stability. Wiley, 2001.

Mike Schuster and Kuldip K Paliwal. “Bidirectional Recurrent Neural Networks”.
In: IEEE Transactions on Signal Processing 45.11 (1997), pp. 2673-2681.

Sepp Hochreiter and Jiirgen Schmidhuber. “Long Short-Term Memory”. In: Neural
Computation 9.8 (1997), pp. 1735-1780.

Sepp Hochreiter. “The Vanishing Gradient Problem During Learning Recurrent
Neural Nets and Problem Solutions”. In: International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems 6.02 (1998), pp. 107-116.

Kai Sheng Tai, Richard Socher, and Christopher D. Manning. Improved Semantic
Representations From Tree-Structured Long Short-Term Memory Networks. 2015.
arXiv: 1503.00075 [cs.CL].

Thai Thien. Pytorch Implementation of Sentiment Classification in Improved Se-
mantic Representations From Tree-Structured Long Short-Term Memory Networks.
2017. URL: https://github.com/ttprol995/TreelLSTMSentiment.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. “Learning
Representations by Back-Propagating Errors”. In: Nature 323.6088 (1986-10),
pp. 533-536. DOL: 10.1038/323533a0.

78

https://arxiv.org/abs/1503.00075
https://github.com/ttpro1995/TreeLSTMSentiment
https://doi.org/10.1038/323533a0

Bibliography

[108]
[109]
[110]

[111]

[112]

[113]
[114]
[115]

[116]

[117]

[118]

[119]

[120]
[121]
[122]

[123]

Tomas Mikolov et al. Efficient Estimation of Word Representations in Vector
Space. 2013. arXiv: 1301.3781 [cs.CL].

Tomas Mikolov et al. Distributed Representations of Words and Phrases and their
Compositionality. 2013. arXiv: 1310.4546 [cs.CL].

Kenneth Ward Church. “Word2Vec”. In: Natural Language Engineering 23.1
(2017), pp. 155-162.

Igor Popov. “Malware Detection Using Machine Learning Based on word2vec
Embeddings of Machine Code Instructions”. In: 2017 Siberian Symposium on
Data Science and Engineering (SSDSE). IEEE. 2017, pp. 1-4.

Tieming Chen et al. “Droidvecdeep: Android malware detection based on Word2Vec
and deep belief network”. In: KSII Transactions on Internet and Information
Systems (TIIS) 13.4 (2019), pp. 2180-2197.

Learning C++ if you already know C, C++ FAQ. URL: https://isocpp.org/
wiki/fag/c#is-c—a-subset (visited on 2021-05-29).

eliben/pycparser: Complete C99 parser in pure Python. URL: https://github.
com/eliben/pycparser (visited on 2021-05-27).

zhangj111/astnn. URL: https://github.com/zhangjlll/astnn (visited
on 2021-07-10).

NVIDIA Tesla V100 PCle 32 GB review: GPU specs, performance benchmarks.
URL: https://askgeek.io/en/gpus/NVIDIA/Tesla-V100-PCIe—-32-
GB (visited on 2021-07-21).

NVIDIA GeForce RTX 2060 review: GPU specs, performance benchmarks. URL:
https://askgeek.io/en/gpus/NVIDIA/GeForce-RTX-2060 (visited on
2021-07-21).

Geekbench 5 — Cross-Platform Benchmark. URL: https://www.geekbench.
com/ (visited on 2021-07-21).

sklearn.preprocessing.StandardScaler — scikit-learn 0.24.2 documentation. URL:
https://scikit—-learn.org/stable/modules/generated/sklearn.
preprocessing.StandardScaler.html (visited on 2021-07-08).

Operator Overloading, C++ FAQ. URL: https://isocpp.org/wiki/faqg/
operator-overloading#matrix-subscript-op (visited on 2021-05-26).

Thomas Ludwig and Andreas C. Schmidt. partdiff — Partial differential equation
solver for Gauf-Seidel and Jacobi method.

Siméon-Denis Poisson. Mémoire sur la théorie du magnétisme en movement.
L’Académie, 1826.

Carl Friedrich Gauss. “Werke (in german), 9”. In: Géttingen: Koninglichen
Gesellschaft der Wissenschaften 763 (1903), p. 764.

79

https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1310.4546
https://isocpp.org/wiki/faq/c#is-c-a-subset
https://isocpp.org/wiki/faq/c#is-c-a-subset
https://github.com/eliben/pycparser
https://github.com/eliben/pycparser
https://github.com/zhangj111/astnn
https://askgeek.io/en/gpus/NVIDIA/Tesla-V100-PCIe-32-GB
https://askgeek.io/en/gpus/NVIDIA/Tesla-V100-PCIe-32-GB
https://askgeek.io/en/gpus/NVIDIA/GeForce-RTX-2060
https://www.geekbench.com/
https://www.geekbench.com/
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://isocpp.org/wiki/faq/operator-overloading#matrix-subscript-op
https://isocpp.org/wiki/faq/operator-overloading#matrix-subscript-op

Bibliography

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]
[132]

Coding Standards, C++ FAQ. URL: https://isocpp .org/wiki/ faq/
coding-standards#using-namespace-std (visited on 2021-05-27).

C. L. Lawson et al. “Basic Linear Algebra Subprograms for Fortran Usage”.
In: ACM Trans. Math. Softw. 5.3 (1979-09), pp. 308-323. 1ssN: 0098-3500. DOT:
10.1145/355841.355847. URL: https://doi.org/10.1145/355841.
355847.

Jack J. Dongarra et al. “An Extended Set of FORTRAN Basic Linear Algebra
Subprograms”. In: ACM Trans. Math. Softw. 14.1 (1988-03), pp. 1-17. 1SSN: 0098-
3500. DOI: 10.1145/42288.42291. URL: https://doi.org/10.1145/
42288.42291.

J. J. Dongarra et al. “A Set of Level 3 Basic Linear Algebra Subprograms”. In:
ACM Trans. Math. Softw. 16.1 (1990-03), pp. 1-17. 1ssN: 0098-3500. DOI: 10 .
1145/77626.79170. URL: https://doi.org/10.1145/77626.79170.

P. H. Hauschildt, E. Baron, and F. Allard. “Parallel Implementation of the
PHOENIX Generalized Stellar Atmosphere Program”. In: ApJ 483 (1997), p. 390.

P. H. Hauschildt and E. Baron. “Numerical Solution of the Expanding Stellar
Atmosphere Problem”. In: Journal of Computational and Applied Mathematics
109 (1999), pp. 41-63.

Martin Davis. Computability and Unsolvability. Courier Corporation, 2013.
GitHub. URL: https://github.com/ (visited on 2021-07-31).

Supervised learning — scikit-learn 0.24.2 documentation. URL: https://scikit—
learn.org/stable/supervised_learning.html (visited on 2021-06-08).

80

https://isocpp.org/wiki/faq/coding-standards#using-namespace-std
https://isocpp.org/wiki/faq/coding-standards#using-namespace-std
https://doi.org/10.1145/355841.355847
https://doi.org/10.1145/355841.355847
https://doi.org/10.1145/355841.355847
https://doi.org/10.1145/42288.42291
https://doi.org/10.1145/42288.42291
https://doi.org/10.1145/42288.42291
https://doi.org/10.1145/77626.79170
https://doi.org/10.1145/77626.79170
https://doi.org/10.1145/77626.79170
https://github.com/
https://scikit-learn.org/stable/supervised_learning.html
https://scikit-learn.org/stable/supervised_learning.html

Appendix A.

Source Code Samples

#include <stdlib.h>

#define MAX 1024

void expensive_function (int i) {

/S

O ~J o U b w N

NeJ

int main (int argc, char const *argv[]) {
10 for (int i = 0; 1 < MAX; i++) {

11 expensive_function (i) ;

12 }

13 return EXIT_SUCCESS;

14 '}

Listing A.1: Example for a simple program where a computationally expensive function
gets executed in a loop.

81

A. Source Code Samples

#include <pthread.h>
#include <stdlib.h>

#define MAX 1024
#define NUM_THREADS 16

void expensive_function (int i) {

/7

struct args_t {
int begin;
int end;

bi

void xthread_fun (void xargs) {
int begin = ((struct args_t x)args)->begin;
int end = ((struct args_t «)args)->end;
for (int i = begin; i < end; i++) {
expensive_function (i) ;
}
return NULL;

int main (int argc, char const xargv[]) {
struct args_t args[NUM_THREADS];
pthread_t threads[NUM_THREADS];
for (int i = 0; i < NUM_THREADS; i++) {
args[i].begin = 1 * MAX / NUM_THREADS;
args([i].end = (i + 1) * MAX / NUM_THREADS;

pthread_create (&threads[i], NULL, &thread_fun, &args([i]);

}

for (int i = 0; i < NUM_THREADS; i++) {
pthread_join(threads[i], NULL);

}

return EXIT_SUCCESS;

Listing A.2: The program from Listing A.1 parallelised with POSIX threads.

82

A. Source Code Samples

1 #include <omp.h>
2 #include <stdlib.h>
3
4 $#define MAX 1024
5 #define NUM_THREADS 16
6
7 wvoid expensive_function(int i) {
8 //
9 }
10
11 int main (int argc, char const x*argv[]) {
12 omp_set_num_threads (NUM_THREADS) ;
13 #pragma omp parallel for
14 for (int i = 0; 1 < MAX; i++) {
15 expensive_function (i) ;
16 }
17 return EXIT_SUCCESS;
18 1}
Listing A.3: The program from Listing A.1 parallelised with OpenMP.
1 int main()
2 A
3 int a;
4 int bai,wushi,ershi, shi,wu,yi;
5 cin>>a;
6 bai=a/100;
7 a=a%100;
8 wushi=a/50;
9 a=a%50;
10 ershi=a/20;
11 a=a%20;
12 shi=a/10;
13 a=a%10;
14 wu=a/5;
15 a=a%h;
16 yi=a;
17 cout<<bai<<endl;
18 cout<<wushi<<endl;
19 cout<<ershi<<endl;
20 cout<<shi<<endl;
21 cout<<wu<<endl;
22 cout<<yi<<endl;
23 return O;
24 '}

Listing A.4: First sample from the OJ dataset.

83

A. Source Code Samples

#include <stdio.h>
#include <stdlib.h>

int main (void) {
printf ("Hello World!\n");
return EXIT_SUCCESS;

~ o U W N

Listing A.5: Example Hello World program written in C.

#include <iostream>

int main () {
std::cout << "Hello World!" << std::endl;
return EXIT_SUCCESS;

o U W N

Listing A.6: Example Hello World program written in C++.

#include <stdint.h>
#include <stdio.h>

int64_t printf (char » al);
int main(int argc, char *x argv) {

printf ("Hello World!\n");
return 0O;

O 00 J o U1 i W N K

}

Listing A.7: Program from Listing A.5 after compilation and subsequent decompilation
to C.

84

A. Source Code Samples

O 3 o U b W N

9
10
11
12
13
14

15

16
17
18
19
20
21
22
23
24
25
26

#include <stdint.h>

int64d_t _ cxa_atexit (int64_t al, char =*a2, into64d_t =*a3);
int64_t __ _cxx_global_var_init (void);
int64_t _GLOBAL_ sub_I_helloworld_cpp (void) ;
int64_t _ZNSolsEPFRSoS_E (int64_t =xal, int6d_t = (*a2) (intod_t =*));
int64_t _ZNSt8ios_based4InitClEv (int64d_t =al);
int64_t x_7StlsIStllchar_traitsIcEERStl3basic_ d
< ostreamIcT_ES5_PKc(int64_t =al, char =*a2);

inte4_t gl = 0;

int main(int argc, char xxargv) {
int6d4_t vl = x(into6d_t *)15;
int64_t xv2 = _7StlsIStllchar_traitsIcEERStl3basic_ d
— ostreamIcT_ES5_PKc ((int64_t *)vl, "Hello World!");
_ZNSolsEPFRSoS_E (v2, (int64_t % (%) (int64_t *)) * (int64_t
— *)41);
return 0;

int64_t _ cxx_global_var_init (void) {
_ZNSt8ios_basedInitClEv((int64_t +)"Hello World!");
return __ cxa_atexit (x (int64_t)87, "Hello World!", &gl);

int64_t _GLOBAL__sub_I_helloworld_cpp (void) {
return _ cxx_global_ var_init();

}

Listing A.8: Program from Listing A.6 after compilation and subsequent decompilation

to C (lines containing very long identifiers have been broken).

o U W N

#include <iostream>
#include <cmath>

#include <cstring>
#include <cassert>

using namespace std;

Listing A.9: Source code header that has been used for the source code recovery process

described in Section 4.3.2.

85

Appendix B.

PHOENIX dataset module selection

The following two tables contain an overview over the PHOENIX modules and
the number of modules that are contained within them. The lists are ordered by
the number of methods per module in descending order. The rightmost column
contains the product of the index (leftmost column) and the number of methods in
the module. For each module, this is the total number of methods that would be
contained in the dataset if one included this module and all modules above into it.

87

B. PHOENIX dataset module selection

Table B.1.: PHOENIX modules and their method counts in optimised build mode.

Index Module name Number of methods Total number of

in module methods in dataset

1 MPFUN-Lapack 315 315
2 MPFUN-MPFR 289 578
3 3DRT 253 759
4 Cassandra 184 736
5 KAPCAL 182 910
6 SESAM 173 1038
7 MISC 173 1211
8 Sybil 97 776
9 S3R2T 85 765
10 NMS3 73 730
11 LTELINES 66 726
12 FPPRESS 66 792
13 DRIFT 57 741
14 NLTE 34 476
15 ACES 34 510
16 DISK 30 480
17 GR2T 27 459
18 NM_3DRT 20 360
19 Hiro 17 323
20 SubSlatec 15 300
21 FUZZ 5 105
22 OpenCL 1 22

88

B. PHOENIX dataset module selection

Table B.2.: PHOENIX modules and their method counts in debug build mode.

Index Module name Number of methods Total number of

in module methods in dataset

1 3DRT 402 402
2 MPFUN-Lapack 315 630
3 Cassandra 308 924
4 MPFUN-MPFR 289 1156
5 KAPCAL 183 915
6 MISC 176 1056
7 SESAM 172 1204
8 LTELINES 116 928
9 Sybil 106 954
10 S3R2T 85 850
11 NMS3 81 891
12 FPPRESS 66 792
13 DRIFT 54 702
14 NM_ 3DRT 42 588
15 ACES 42 630
16 NLTE 36 576
17 GR2T 31 527
18 DISK 30 540
19 Hiro 17 323
20 SubSlatec 15 300
21 FUZZ 5 105
22 OpenCL 1 22

89

Appendix C.

Class hierachy of sklearn classifiers

linear model SGDClassifier

RandomForestClassifier

/ AdaBoostClassifier

/

ensemble

GradientBoostingClassifier

SVC

/ NuSvVC

svm ——
T LinearSVC
sklearn neighbors KNeighborsClassifier
\\\\\
naive_bayes GaussianNB
tree DecisionTreeClassifier
neural network MLPClassifier

Figure C.1.: Class hierarchy of some Classifiers in sklearn [132]. In this hierar-
chy, the column on the right represents classes, and the two columns
on the left are modules, so the first example can be addressed as
sklearn.linear_model.SGDClassifier.

91

List of Acronyms

API

AST
ASTNN
AVX-512
BLAS
CNN
CPU
CUDA
ELF
FLOPS
GPGPU
GPU
HPC

IR

JIT
LSTM
MIT

ML

MLP
MPI

NB

NN
OpenACC
OpenCL
OpenMP
PCle
POSIX
PYPL
RAM
RetDec
RNN
SGD
SVM/SVC
TBCNN

Application Programming Interface
Abstract Syntax Tree

Abstract Syntax Tree Neural Network
Advanced Vector Extensions 512-bit
Basic Linear Algebra Subprograms
Convolutional Neural Network
Central Processing Unit

Compute Unified Device Architecture
Executable and Linking Format
Floating Point Operations per Second

General-Purpose Computing on Graphics Processing Unit

Graphics Processing Unit

High Performance Computing
Intermediate Representation

Just-in-Time Compilation

Long Short-Term Memory Network
Massachusetts Institute of Technology
Machine Learning

Multilayer Perceptron

Message Passing Interface

Naive Bayes

Neural Network

Open Accelerators

Open Computing Language

Open Multiprocessing

Peripheral Component Interconnect Express
Portable Operating System Interface
PopularitY of Programming Language index
Random Access Memory

Retargetable Decompiler

Recurrent Neural Network

Stochastic Gradient Descent

Support Vector Machine/Classification
Tree-Based Convolutional Neural Network

93

List of Figures

3.1. Code Generation Pipeline.
3.2. Basic structure of an ELF file.
3.3. Compiler phases.
3.4. Modular structure of the LLVM compiler.
3.5. Hierarchy of different neural network architectures.
3.6. Architecture of the ASTNN and the statement encoder therein.

4.1. Value flow diagram of the object code classification.

24

46

4.2. Abstract syntax trees for the main method of Hello World programs. 47

4.3. Value flow diagram of the Source Code Normalisation process. . . .
4.4. Control flow diagram of the transformation of the OJ dataset.
4.5. Distribution of the number of attempted normalisations before suc-
cess on the OJ dataset.
4.6. Training and validation accuracy of the ASTNN on the original and
modified OJ dataset over time.
4.7. Training and validation of the ASTNN on the original and modified
OJ dataset over time.
4.8. Training and validation accuracy of the ASTNN on the BLAS dataset
over time. e
4.9. Training and validation of the ASTNN on the BLAS dataset over

4.10. Training and validation accuracy of the ASTNN on the PHOENIX
dataset over time.

4.11. Training and validation of the ASTNN on the PHOENIX dataset
over time.

C.1. Class hierarchy of some Classifiers in sklearn.

48
52

91

95

List of Listings

3.1.
3.2.
3.3.
3.4.

4.1.

Al

A2
A3
AA4.
A5,
A.6.
AT

AS.

A9.

Abridged pseudo-code of the GauB-Seidel method.
An example C program which exectutes nop in a loop.
Abridged output of the compiler on Listing 3.2 using -01.
Abridged output of the compiler on Listing 3.2 using -03.

Illustration that preprocessor directives can drastically change the
syntactical interpretation of C statements.

Example for a simple program where a computationally expensive
function gets executed inaloop.
The program from Listing A.1 parallelised with POSIX threads. . .
The program from Listing A.1 parallelised with OpenMP.
First sample from the OJ dataset.
Example Hello World program written in C.
Example Hello World program written in C++.
Program from Listing A.5 after compilation and subsequent decom-
pilation to C.o
Program from Listing A.6 after compilation and subsequent de-
compilation to C (lines containing very long identifiers have been
broken).
Source code header that has been used for the source code recovery
process described in Section 4.3.2.

85

97

List of Tables

3.1.

4.1.

4.2.

4.3.
4.4.

4.5.

4.6.

B.1.
B.2.

Time cost per epoch of the ASTNN on different machine configurations.

Functions defined in and roles of the functions in the prototype
application.o
Testing accuracies of different classifiers on the prototype application
dataset.
Portions of the OJ dataset that compiled after the n-th attempt. . .
Testing accuracies and time costs of different classifiers on the mod-
ified OJ dataset.
Testing accuracies and time costs of different classifiers on the mod-
ified BLAS dataset.
Testing accuracies and time costs of different classifiers on the mod-

ified PHOENIX dataset.

PHOENIX modules and their method counts in optimised build mode.

PHOENIX modules and their method counts in debug build mode.

43

50

52
o4

56

58

61

38
89

99

Eidesstattliche Erklarung

Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit im Masterstudien-
gang Informatik selbststandig verfasst und keine anderen als die angegebenen Hilfsmittel
— insbesondere keine im Quellenverzeichnis nicht benannten Internet-Quellen — benutzt
habe. Alle Stellen, die wortlich oder sinngeméfl aus Veroffentlichungen entnommen
wurden, sind als solche kenntlich gemacht. Ich versichere weiterhin, dass ich die Arbeit
vorher nicht in einem anderen Priifungsverfahren eingereicht habe und die eingereichte
schriftliche Fassung der auf dem elektronischen Speichermedium entspricht.

Veroffentlichung

Ich stimme der Einstellung der Arbeit in die Bibliothek des Fachbereichs Informatik zu.

Hamburg, den 3. August 2021 Ruben Felgenhauer

	Introduction
	Related Work
	Background
	Hardware Evolution in HPC
	Automatic Parallelisation Tools
	OpenMP
	OpenACC
	Polly
	Molly

	Code Patterns
	Languages in HPC
	Code Generation
	Code Generation Tools
	Compiler Internals
	LLVM

	Software Reverse Engineering
	Language-independent classifiers
	Machine Learning Classification
	Nearest Neighbour Classifiers
	Decision Tree Classifiers
	Naïve Bayes Classifiers
	Support Vector Machines
	Ensemble Methods
	Neural Networks

	Word2Vec
	Online Judge Dataset
	ASTNN

	Methods
	Object Code Classification
	Classification of Reverse-Engineered Source Code
	Benchmarks
	Prototype Application Dataset
	OJ Dataset
	BLAS dataset
	PHOENIX dataset

	Problems and Limitations

	Conclusion
	Comparison of the classifiers
	Future Work
	Improving the Classifiers
	Automatic Code Mapping

	Bibliography
	Source Code Samples
	PHOENIX dataset module selection
	Class hierachy of sklearn classifiers
	List of Acronyms
	List of Figures
	List of Listings
	List of Tables

