
M A S T E R T H E S I S

Modeling and Performance Prediction
of HDF5 data on Objectstorage

vorgelegt von

Roman Jerger

MIN-Fakultät

Fachbereich Informatik

Arbeitsbereich Wissenschaftliches Rechnen

Studiengang: Informatik

Matrikelnummer: 5788742

Erstgutachter: Prof. Dr. Thomas Ludwig

Zweitgutachter: Dr. Julian Kunkel

2

CONTENTS

1 Introduction 5
1.1 Self-describing Data Formats . 5
1.2 Hierarchical Data Format 5 . 6
1.3 Object Storage Services . 6
1.4 Motivation . 8
1.5 Contribution . 8
1.6 Structure . 9
1.7 Summary . 9

2 Technical Background 11
2.1 Object Storage . 11
2.2 Object Storage vs. File System Interfaces . 12
2.3 Object Storge Interfaces and Implementations . 15
2.4 MPI I/O . 18
2.5 HDF5 . 19
2.6 HDF5 VOL . 21
2.7 Summary . 23

3 Performance Evaluations of Object Storage Services 25
3.1 Performance Factors . 25
3.2 Setup of Evaluation Environment . 28
3.3 Performance of Object Storage . 31
3.4 Analysis of Benchmarking Results . 31
3.5 Summary . 35

4 Design 37
4.1 Mapping HDF5 Objects to Object Store . 37
4.2 Mapping Memory Space to Object Store . 39
4.3 Summary . 41

5 Implementation 43
5.1 The Main Components . 43

3

5.2 Authentication . 44
5.3 Operations on Bucket and Objects . 45
5.4 Operations on Files, Groups and Datasets . 46
5.5 Partitioning a dataset . 47
5.6 Reading and Writing Datasets . 48
5.7 Computation of Object Suffix . 48

6 Evaluation 49
6.1 Benchmarking the implemented plugin . 49

7 Conclusion 53

Bibliography 61

4

CHAPTER

ONE

INTRODUCTION

In this chapter, basic introduction about a popular HDF5 data format as a representative for other
self-describing data formats in use is given. Another briefly discussion concern object storage
technologies as an alternative to file storage. After that, the combination of this technologies - one
for data access and one for data storage is motivated. Subsequently the structure of this thesis is
described and a summary of this chapter is given.

1.1 Self-describing Data Formats

A self-describing data format is one that contains the information about the fields in the file. This
allows an application to interpret the data stored in file without any information given from outside.

In the early years of scientific computing custom data formats have been developed for storing
data. This data formats often utilize raw binary or even ASCII based formats, which had big
disadvantages for using them:

• Reading and writing ASCII based formats requires additional functionality like parsing and
serialisation and therefore inefficient

• Limited portability due to different representations dependent on machine architecture and
used programming language:

– Byte ordering (big endian vs. little endian)

– Floating point representation standards (e.g. IEEE 754 vs. Cray standard)

• Reading data requires changes of implemented operational logic for every custom data or-
ganisation

The information describing the stored data is shipped within the file itself. This information allows
interpretation by characterizing the contained data and optimizes access to datapoints by opera-
tions.

Standardisation of self-describing data formats also allow providing a standardized stable API
as well as implementing portable libraries for efficient data access in variety of programming
languages.

5

1.2 Hierarchical Data Format 5

HDF5 is an open source self-describing data format, which combine metadata and data itself. It
is designed for flexible and efficient I/O, for high volume and complex data. Developed over 20
years HDF5 provides a large set of features highly desired in scientific environments:

• bindings for many programming languages

• portability and compatibility

• openness

• flexibility

• long term support

• tools for viewing, managing, manipulating and analyzing data

HDF5 implements a model for storing and managing large amounts of data. It includes the follow-
ing components:

• File format:

an abstract storage model for storing data.

• Data model:

an abstract data model for storing logical structures for data management and access by an
application.

• Software:

open source libraries for accessing information stored in a HDF5 file format. This includes
providing programming language API’s, mapping of storage models to different storage
mechanisms and providing additional tools for data management. The relationships between
the different models and implementations are shown in Fig. 1.1.

Hierarchical Data Format is widely used in scientific applications for storing huge amounts of
data. Due to optimizations it provides high efficient access to extremely large and complex data
collections stored on backend storage systems. However, due to the growing amount of data and
increasing of required precision and time limits for computing, the current bottleneck limiting the
computing performance is not the data model itself, but the performance of the underlying storage
technologies.

1.3 Object Storage Services

With development of cloud systems in recent years the common trend for storing of unstructured
data has moved towards using object storage services for common applications. The advantages
of using a object storage service for applications which are not imply high I/O load of the storage

6

Fig. 1.1: HDF5 abstract data model

are very diverse, they reach from pure financial reasons to technological decisions. The most often
named reasons are the following:

• simplicity of usage and management

• scalability

• as-a-service delivering model

• pay-per-use accounting

• interchangability through opensource/open standards

• diversity of implementations

The most interesting property in context of scientific computing is scalability. The design of ob-
ject storage services allows to scale storage systems regarding to volume of stored data and I/O
throughput in near linear scale. Due to the differences between the way data is organized and ac-
cessed though the file system interface and using object storage systems the tools, which actually
manage access to the storage systems to have to be adopted in order to support the new storage
paradigm.

Despite of the fact that storage and I/O scalability are highly desired in high performance comput-
ing, the practical advantages of accessing scientific data in the same manner as it is done by using
object storage services has been underresearched.

7

1.4 Motivation

Scientific computing is often very I/O intensive. Scientific disciplines such as climate research,
astro and nuclear physics, fluid dynamics and other have to deal with terabytes of data accessing
it by thousands of servers in parallel. The data itself is stored on many servers and storage devices
providing a global view on available storage resources. Scientific applications access the required
data through the file system interface. However, providing a file system interface with strong
consistency semantics (usually compatible with POSIX semantics) is very challenging in highly
distributed environments and leads to performance forfeits.

Computational performance in critical is such environments for the overall throughput. One of
the main factors which have a big influence on performance of I/O intensive computations is the
performance of the underlying storage. Besides already described scaling of I/O performance many
object storage systems have a additional built-in functionalities, that also could be very useful in
scientific environment. These are:

• replication

• high availability

• asynchronous replication

• encryption

• deduplication

• compression

• erasure code

• cache tiering

• and other

Apart of technical considerations using object storage for storing big amounts of data also has a
potential to reduce costs for maintaining a data center.

1. Object storage system are designed for utilizing commodity hardware. This has a potential
to reduce the costs for IT procurement by using a more inexpensive hardware.

2. Simplified scalability could also reduse costs for personal training required for commission-
ing and supporting an object storage system.

3. The same reason would allow to reduce personnel expenses.

1.5 Contribution

The main purpose of this thesis is to investigate the behaviour of object storage systems in context
of scientific data and applications. The key contributions of this thesis include:

8

• evaluation of object storage performance dependent on parameters configurable by a client
application

• evaluation of object storage performance dependent on the chosen interface

• design and implementation of HDF5 plugin for storing data using object storage service

• establishing an I/O performance prediction algorithm

• evaluation of prediction algorithm and the implemented plugin

1.6 Structure

This rest of the thesis is organized as follows:

Chapter 2 introduces object storage systems. It shows the differences between file system and
object storage interfaces. Additionally the relevant aspects of the HDF5 data and a programming
model are introduced.

Chapter 3 deals with performance evaluation of object storage systems and interfaces.

Chapters 4 and 5 describe the design of the implementations of the plugin respectively.

The next chapter introduces the I/O performance prediction algorithm and evaluates the imple-
mented plugin under various conditions.

The last chapter summarizes the work done and gives an overview over the future work.

1.7 Summary

This chapter has briefly introduced the self-describing file format, data model and library HDF5.
It has also described object storage services and the possible advantages of using them with the
HDF5 library. Subsequently the motivation and the structure of this work was provided.

9

10

CHAPTER

TWO

TECHNICAL BACKGROUND

This chapter describes the whole stack of technologies used for storing data in high performance
computing and compares corresponding parts of them in a bottom up manner. In the beginning of
the chapter the common architecture and the properties of object storage services are introduced.
Further the differences between using file system object storage interfaces are stated out. Later
the differences between different implementations of object storage systems are described and the
most common object storage interface - S3 API is presented. Further in the storage hierarchy, the
MPI I/O library is basically introduced. The chapter is rounded up by describing the data and
programming models together with the introduction of HDF5 VOL plugin.

2.1 Object Storage

Object storage services provide an essentially different way of storing, organizing and accessing
data on disk. An Object Storage platform implements a storage infrastructure to store data along
with metadata as objects. Storage devices build a single storage resource for storing objects, which
is represented as pool to the end user. Designed to solve storage scalability problems, object storage
provides a lot of desired features for distributed storage systems:

• near linear scalability

• simplicity of management

• built-in replication

• high availability through avoidance of single point of failure

• avoiding file system limits

• simplicity of usage

Object storage systems are designed to be easily extendable. This is made possible through chang-
ing the way scalability is reached. There are two ways of scaling a system - scale up and scale out.
Scaling up generally refers to purchasing and installing a more capable central control or piece
of hardware. In contrast, scaling out means grouping together low performant hardware in order
to collectively do the work of a much more performant one. For instance, in case of increasing

11

network I/O performance, scaling up would imply replacing all 1Gb/s networking hardware by
10Gb/s ones. Scaling out would mean using interface bounding.

Scaling of object storage systems is done by scaling out principal. This implies simplicity of
management and cost reduction and allows a system to be extendable into peta- or even exabyte
scale.

Never the less, object storage systems change the way data is accessed by applications. In contrast
to file systems, object storage defines no hierarchical relations between objects. When objects are
created, an identifier (a key) is created to locate the object within the pool. Using the key of the
object read and write operations on data and on is metadata can be be performed, typically using
HTTP protocol utilizing REST- or XML-based APIs.

Despite of the fact that every implementation of an object storage service can potentially introduce
its own architecture, there are some similarities between them. Common architecture of object
storage systems is depicted in Fig. 2.1.

In this architecture every controller node has knowledge about storage server, storage devices and
the current state of them. With this knowledge every controller node builds a ring over storage
devices in order to map object to them. Ideally this is done by uniformly distributing objects to
storage devices maximizing the possible parallel throughput.

Object storage access is based on client-server architecture. A set of clients perform CRUD-
operations (Create, Remove, Update, Delete) on objects and metadata using objects key. The
load-balancer delegates each operation to one of the controller nodes which resides either collo-
cated with storage devices, or deployed as a stand alone service. The controller node computes
a hash over the objects key, determining on which storage node and on which storage device the
object is located and delegates the operation to responsible storage node. The response is returned
on the same way, or is returned directly to requester dependent of implementation.

2.2 Object Storage vs. File System Interfaces

There are differences between how an application aresses data on storage systems based on file
system interface and based on object storage. File system interfaces provide a hierarchical names-
pace for specifying a path to the file, where a data is stored. This path consists of a set of directories
names beginning with a root directory separated by a system specific separator character. The path
ends with the name of the file where the data has to be read or written.

Object storage systems provide no hierarchical relationships between objects. Instead this, they
provide a flat namespace, where a data is accessed by a key/value relationships, where key is name
of the object and value is data itself, stored under the name of the key. The separation of the keys
namespaces is made by so called buckets.

One another significant difference between file system and object storage interfaces concerns how
the data is accessed. Using a file system interface, once a file is opened for read or write access, the
I/O operations take place blockwise. Additionally to specifying a file descriptor, a read/write buffer

12

Fig. 2.1: Common architecture of object storage services

13

and a size of data to be read/written this requires a specifying an offset relative to the beginning of
the file, where the data has to be stored.

In contrast to the file system interface objects are accessed by the name of the object (the key) and
are read/written as a whole. Object storage interfaces define no partial I/O operations. The best
way to illustrate this is to show the interfaces of the corresponding functions. For this purpose
in Listing 2.1 and in Listing 2.2 the interfaces of I/O related operations using POSIX- and object
storage interfaces are shown. In case of the object storage interface the related operations of libs3
library are shown. Despite of the fact that the libs3 library defines partial read operations, they
are commonly not supported. Partial write operations are not supported completely.

Listing 2.1: File system related I/O operations as defined by
POSIX interface

1 ssize_t pwrite(int fildes, const void *buf,
2 size_t nbyte, off_t offset);
3 ssize_t pread(int fildes, void *buf, size_t nbyte, off_t offset);

Listing 2.2: Object storage related I/O operations as defined
by libs3 library

1 void S3_put_object([...], const char *key,
2 uint64_t contentLength,
3 [...], void *callbackData)
4

5 void S3_get_object([...], const char *key,
6 uint64_t startByte,
7 uint64_t byteCount,
8 [...], void *callbackData)

Another significant difference between file system and object storage interfaces concerns consis-
tency of read/write operations. After Brewer’s CAP theorem [Bre00] in a distributes system at
most two of the following tree characteristics can be achieved:

• Consistency: by performing a read operation a process receives the most recent written data
or an error.

• Availability: every read or write receives a non-error response, without guarantee that it
contains the most recent written data.

• Partition tolerance: a system continues to operate in the desired way, despite of failures
concerning parts of the system.

This led to a definition of an alternative semantics to characterize consistency of a systes. In
contrast to the well known ACID (Atomicity, Consistency, Isolation, Durability) semantics, object
storage are designed to follow the BASE semantics. BASE semantics means:

• Basically Available: a system is guaranteed to receive a response. This response can however
be an error response or the requested data can be in a inconsistent or changing state.

14

• Soft state: the state of the system is always soft in a sense of even if there is no operations
taking place, there may be changes going on due to eventual consistency.

• Eventual consistent: a system continues operating, not checking the consistency of every
transaction before it moves to the next one.

File system interfaces define strongly consistent semantics. Thereby the result of any write opera-
tion done by one process is seen instantaneously by all processes operating on the same data. This
requires additional locking overhead by the operating system and has additional negative impact
on storage performance.

Object storage systems relax the consistency semantics for the benefit of performance. Object
storage is known to be eventually consistent. This means that by making a read operation on the
shared data the processes eventually receives the last updated value. In the case of object storage
systems the nature of eventual consistency can lead to following inconsistent behavior:

• read after create:

after creating an object a client immediately tries to read the same object and receives an
error.

• read after delete:

after deleting an object the same object can be still read for a portion of time.

• read after overwrite:

after overriding an object with a new version of the same, subsequently reading the object
receives the old version of it.

• list after create:

after creating an object the response of operation for listing of all objects does not include
the object just created.

• list after delete:

after deleting an object the same object is still present in the list of all objects for a portion
of time.

The exactly set of inconsistent operations varies from implementation to implementation of the
object storage service [S3I] [WLBM07] [MSA] and has to be investigated for every single imple-
mentation.

2.3 Object Storge Interfaces and Implementations

Many different implementations providing different object storage interfaces has been developed.
Technically they rely on very different storage technologies and provide a vary varying set of
features. It reaches from simply implementing the API leveraging local file systems for storing
data [min], up to providing additional services and implementing alternative storage beckends

15

[Cepd]. Depending on the software used, a subset of the following properties can be supported
(this list illustrates properties, which could be relevant in context of high performance computing
and is not meant to be complete):

• authentication and authorization

• monitoring

• scrubbing

• encryption

• logging

• replication

• policy management

• usage tracking

• asynchronous replication over WAN

• additional interfaces like POSIX-semantics/interface and block-service [Cepb], [Cepc]

• e.t.c.

Commonly, object storage services provide a single interface for accessing unstructured data,
which resides on many storage devices under a single service point. By building a ring of stor-
age devices, object storage services map every object to one of the devices leveraging the key of
the object. By distributing objects in this way several goals are achieved:

• scalability of storage amount by eliminating file system limitations (e.g. number of files,
size of file system).

• scalability of read and write operations by distributing them to a set of devices.

• potential additional scalability of read operations by replicating a single object to several
storage devices on distinct servers.

• high availability ensures the operational functionality in case of failures.

Despite of the fact that every object storage system potentially provides its own set of interfaces
and defines its own APIs for object and bucket operations, the intersection of this set seams to be
the S3 (Amazons Simple Storage Service) interface, which is also a de-facto standard interface
for operating with object storage services. Other object storage systems that implement their own
interfaces usually provide an additional service which maps the S3 API calls to to the API call of
the relevant interface and provide only the subset of S3 API (e.g. swift, rados).

In the following, the parts of the S3 API, which are relevant for storage operations are described.
Other operations (e.g. operations dealing with ACLs, lifecycle and policy management, logging,
static websites, encryption and many other) do not deal directly with data itself are usually not sup-
ported by other object storage systems and considered out of scope of this work. The description
is related to the 2006-03-01 version of the API.

16

The S3 API is relies on HTTP/HTTPS protocol. It provides a Representational State Transfer
(REST) based and Simple Object Access Protocol (SOAP) based endpoints for managing data.
The API defines mainly two data structures - objects and buckets. Objects represent a portion of
data accessed by the object name (a key) and can optionally have metadata attached. For separating
the namespace of objects, buckets are used.

Below, basic CRUD operations on objects and buckets of the S3 API are listed. For shortening
reasons the optional headers, as well as some other header which are not mandatory or common
for every operation (e.g. Authorization, Host headers) are not listed. For the same reason
response of the operations is skipped either.

2.3.1 Operations on buckets

• Create bucket: creates a bucket optionally setting an Access Control List (ACL) and bucket
location.

PUT / HTTP/1.1

Host: <bucketname>.s3.amazonaws.com

Content-Length: 0

• List bucket content: list object names of the objects, contained in the bucket. Optionally
additional listing parameter specifying the parameter of the returned list can be set.

GET / HTTP/1.1

Host: <bucketname>.s3.amazonaws.com

• Check bucket existence: determines if a bucket exists.

HEAD / HTTP/1.1

Host: <bucketname>.s3.amazonaws.com

• Delete bucket: deletes a bucket named in the Host header. For successful operation bucket
has to be empty.

DELETE / HTTP/1.1

Host: <bucketname>.s3.amazonaws.com

2.3.2 Operations on objects

• Upload Object: performs a write operation on an object. Optionally additional header can be
set in order to assign Access Control List, alternative storage class. Additionally metadata
can be assigned to the object by specifying additional headers.

PUT /<objectname> HTTP/1.1

17

Host: <bucketname>.s3.amazonaws.com

Content-Length: <Length of uploaded content>

• Download object: performs a read operation on an object. Optionally some header can be
set in order to control the range of read data and to provide some conditional filters.

GET /<objectname> HTTP/1.1

Host: <bucketname>.s3.amazonaws.com

• Delete Object: deletes an object. Optionally if object versioning is used delete all the ver-
sions of the specified object.

DELETE /<objectname> HTTP/1.1

Host: <bucketname>.s3.amazonaws.com

Content-Length: length

• Get objects metadata: retrieves metadata associated with an object. Optionally some header
can be set in order to provide some conditional filters.

HEAD /<objectname> HTTP/1.1

Host: <bucketname>.s3.amazonaws.com

2.4 MPI I/O

Message Passing Interface (MPI) is an open-source standard for communication designed for inter-
process communication in highly distributed parallel computing environments. The main purpose
of MPI is the providing a synchronized access to shared resources in the computing cluster. MPI
defines a set of communication patterns for communicating in the cluster also also allows dynamic
process management.

MPI I/O is a set of functions, which allow coordinated parallel access to files residing on shared
file systems. The main goal of the MPI I/O is to utilize parallelism to increase I/O bandwidth. It
also provides coordinated access in order to force all processes to read/write data simultaneously
or to wait for each other. The Implementations of MPI also optimizes read and write operations
with the goal of efficiently servicing the requests. This happens by combining the requests of all
processes and merging them.

Fig. 2.2 depicts how the MPI library and fit in the context of highly distributed computing and
storage systems.

18

Fig. 2.2: Architecture of parallel I/O access using HDF5 and MPI.

2.5 HDF5

This section describes the abstract data model of the HDF5 library. The programming model for
working with the HDF5 library is described in the next section.

The abstract data model of the HDF5 library defines the following data structures, which are used
for organizing data within HDF5 file format. In many cases the tree structure is very similar to the
file system structure. HDF5 files are similar to file systems, groups are analogous to the directories
and datasets can be seen as files.

• File:

Files represent containers for storing groups, datasets and other objects. They also provide a
root group in which all other objects are stored. Additionally files store property lists which
hold extra portion of information (metadata) about accessing and creating file objects.

• Groups:

Groups are primary HDF5 objects. They represent containers for storing other groups and
datasets and thereby provide a basis for hierarchical structure of HDF5 files. They are used
to aggregate objects which logically belong together by the kind of data.

Within a HDF5 file exist a minimum of one group - the root group with the name “/”. This
group represents a basis for further hierarchy. Each group can contain zero or more objects
and each object must be a member of at least one group. In contrast to file system structure,
which is strictly hierarchical, this allows a definition of hierarchy with circular references.

19

Analogous to files, groups also store property lists with additional metadata.

• Datasets:

Datasets are objects where data is actually resides. As in case of files and groups additional
metadata is stored next to the data itself. The metadata belonging to a dataset includes prop-
erty lists with information about accessing and creating the dataset object and information
allowing the interpretation of data - datatype and dataset.

The data itself is stored blockwise without any interpretation.

• Datatype:

Datatypes describe a single datapoint. They provide information about the size of each
datapoint, together with the information about the layout of bits used to store the datatype.
This allows the interpretation of datapoints and, if needed, also conversion of datatypes.

HDF5 library defines a set of built-in datatypes. Additionally it allows defining own
datatypes by composing the built-in types. The following list consists of datatypes which
are natively supported by the HDF5 library.

– Integer

– Float

– Character

– Date and Time

– Bitfield

– Opaque

– Enumeration

– Reference

– Array

– Variable length

– Compound

• Dataspace:

Dataspaces represent the shape of the data stored in the related dataset. It includes informa-
tion about the number of dimensions and the size of each dimension of the data, stored in
the dataset.

• Attributes:

Attributes are user defined key/value pairs which can be associated with a group, dataset or
named datatype.

• Property lists:

20

Property lists are collection of parameters controlling the behavior of the library. Each object
type has its own set of properties which can be stored in the related property list.

• Links:

Links are used to interconnect the objects within the HDF5 hierarhy.

To summarize the points mentioned above Fig. 2.3 shows the hierarchical structure of HDF5 file.

Fig. 2.3: Hierarchical structure of HDF5 file.

2.6 HDF5 VOL

Virtual Object Layer(VOL) is a new abstraction layer in HDF5 library. Residing right behind the
HDF5 public API it intercepts all API routines that could potentially modify the HDF5 file and
forwards those calls to the plug-in configured to used by setting the appropriate properties in the
file access property list. The archtecture of HDF5 Virtual Object Layer object drivers is depicted
in Fig. 2.4.

HDF5 VOL is similar to Virtual File Layer (VFL) [HDF Group12b] which provides an abstrac-
tion layer over file storage mechanisms, Virtual Object Layer provides an opportunity for custom
handling of various components of HDF5 data model. This allows to address some of bottlenecks
of the storage system as well as to provide some new opportunities for data management.

By using the HDF5 VOL one could for instance implement an alternative storage backend extra
for metadata storage (due to limited performance of the same). Another desirable purposes are

21

stacking and mirroring of plugins. This would allow various object types in the data model to be
handled by different plugins potentially reducing the complexity. One more purpose could be the
storing a logging information to a remote logging server. This could be useful for later statistical
analysis with the goal to optimize the backend storage of file/dataset creation or access properties.
Mirroring of plugins would allow parallel writing of data in different formats.

Fig. 2.4: Architecture of HDF5 Virtual Object Layer

The programming model for working with the HDF5 library defines a set of functions and pro-
gramming patterns for working on various objects defined in the last section building an interface
for using the HDF5 library. Basically this functions implement the CRUD operations as well as
some additional functions for manipulating objects:

• create, open and close files, groups, datasets, datatype

• read and write operations to datasets

• copy operation on links

• requesting of additional parameter of files, groups and datasets

• possibility to implement driver/plugin dependent functions for files, groups, datasets, at-
tributes and links

The additional concepts include:

• uniformly using object ids for addressing objects

• uniformly using access property lists for supplying creation, access and transfer parameters
to created objects

22

• possibility for using asynchronous transfer mode

2.7 Summary

In this chapter the stack of technologies is for accessing data in high performance computing is in-
troduced and every single component of the architecture is described. Additionally, the differences
between the classical storage access and the one based on object storage services are stated out.

23

24

CHAPTER

THREE

PERFORMANCE EVALUATIONS OF OBJECT STORAGE
SERVICES

This chapter covers performance consideration of using object storage. At first, common factors
of storage performance are briefly introduced. After that, the setup of the physical infrastructure
and the ceph object storage service which are used for the evaluation purposes is described. Sub-
sequently, the evaluation results are introduced.

3.1 Performance Factors

There are plenty of factors which directly influence the I/O performance of software system using
an object store. They involve hardware and software components of systems, but also consider
possible implications of of logic, implemented by an end user application. In the following vari-
ous parts of object storage architecture together with performance influencing elements are listed,
grouped in categories by system component. Each element of this list represents a possible opti-
misation vector and can be tuned within the scope of possibilities. This list should generally give
an overview of possible influencing factors and should not be considered as complete.

3.1.1 Server Performance Considerations

Aspects mentioned in this section concern all storage systems and are valid not exclusively for
object storage systems. This parameters concern mainly the hardware and the configuration of
storage systems and can be adopted with some effort by the operational side.

• CPU usage and capabilities

The time needed for processing a computing operation is determined by the CPU capabilities
and is essential for performance of storage systems.

• Memory usage

The amount of free memory determines the caching capabilities of system. Since the access
to the main memory is much more efficient, the performance acceleration can be enormous.

25

• I/O subsystem

– Concurrency

The amount of concurrent operation on storage devices have a significant influence on
the common performance. Depending on access pattern and the I/O subsystem some
system are capable of optimizing the access by reordering the operations.

– Access time

Access time is the delay which is introduced by several components of the storage
systems. Storage devices with non random access to the data (e.g. spinning disks)
require some portion of time to move the access arm to the position where data is
stored/has to be written. Network storage system potentially add additional delay by
establishing a connection and requiring some sort of authentication and encryption.

– Throughput

After establishing the connection or positioning the access arm to the right position,
the performance of reading or writing operations is known as throughput. This per-
formance can also as well depend on some factors (e.g. file system alignment, data
fragmentation and other).

• I/O strategy

– Caching

Holding the most frequently accessed data on performant storage or even in memory
is a common practice in computing environment. To predict the subsequent data ac-
cess physical and temporal locality of data is used. Bu using cache mainly two goals
achieved. By using a read cache no operations have to be delegated to a slower medium.
Using a write cache helps to keep the underlying storage constantly busy. This is es-
pecially useful for workloads which have a burst character. In both cases the workload
on the underlying storage is reduced.

– Replication

Creating local (RAID) or distributed copies of data also contributes to performance
improvement due to enhancement of throughput. However this strategy should only be
used in environment with mostly reading workloads, thus keeping the replica consistent
requires additional overhead.

– Aggregation and reordering of requests

Additional improvement of I/O performance can be achieved by this strategies. In
case of aggregation, several operations are combined to a bigger one if it is expected
to increase the performance. Therefore the operation on the storage devices can be
reordered with the goal to create a most contiguous order of storage accesses.

• Architecture

– I/O control

26

By I/O control a piece of hardware is meant, which takes over a particular task relieving
the CPU. (e.g. RAID-Controller, DMA)

– Bus system

Bus system defines the interconnection between components within a single machine.
The specifications of bus systems defines also the maximal throughput of communica-
tion between this components(e.g. SATA vs. NVMe, QPI vs. FSB).

3.1.2 Interconection Performance Considerations

Aspects mentioned in this section concern all network storage systems and are valid not exclusively
for object storage systems. This parameters concern both hardware as well as software components
of the communicating systems. Some aspects can be adopted with some effort by the operational
side, other require additional effort from the client side.

• hardware

– Topology

Topology is defined as the logical and physical structure of network components includ-
ing interconnections. Some of the topologies allow directly communication between
the components, not sharing any common resources (e.g. fully mashed networks).
Other network topologies share common resources which introduces additional delay
in processing network I/O.

– Latency

In the network file system latency has a significant influence for operations on small
objects like metadata. Operating on big data portions becomes negligible.

– Buffer size

Networking hardware like switches usually have an amount of memory for temporar-
ily caching I/O operations. This allows queueing and reordering of network packet-
s/frames. In big networks with heigh network load, small amount of memory used for
caching could also have a negative influence of the performance.

– Bandwidth

Bandwidth refers to the data transfer rate supported by network interconnection and
represents the maximum capacity of it.

• software

– Protocol

Protocols define a common communication pattern between network components.
They define the establishment of the connection and define additional guarantees for
data transfer. This factor can also influence the common performance of the storage
systems.

27

– Frame size

Setting the size of network transmitting unit to the most possible value could addition-
ally contribute to the performance of large read and write operations due to reducing
the ratio of network header to payload.

3.1.3 Client Performance Considerations

Aspects mentioned in this section concern all systems. They are controlled by only by user ap-
plication, performing operations on the storage systems. From the operational side there is no
possibility to influence this parameters.

• Access pattern

– Type of operation

Read and write operation stress storage systems in a different way. Usually write oper-
ations tend to be more performance intensive.

– Size of requested data block

High I/O throughput is reached especially when large operations are performed. This
minimizes a ratio of the latency to the overall overhead.

– Contiguity of access

Using storage devices with no random access features, contiguity of access is very im-
portant for overall storage performance. The best performance is reached when several
portions of requested data are physically located closely together on the persistent stor-
age, building a contiguous access. In case when several parts of a data are distributed
along a storage device, in addition to the extra overhead for seeking every piece of data,
it also has to be recomposed together. This requires a in-memory copying.

– Predictability of access

Predictability describes a mass of similarities between the operations of an application
over time. The more predictive a pattern is, the more comprehensive I/O optimizations
can be exposed.

3.2 Setup of Evaluation Environment

The object storage service of choice to evaluate is Ceph. Ceph is an open-source object storage sys-
tem which can build up to exabyte-scale storage system. It is completely distributed and avoiding
single points of failure. Providing a set of functionalities common for every distributed object stor-
age system Ceph implements also two unique features providing file and block storage interfaces
based on underlying object storage Fig. 3.1 [Cepa].

28

Fig. 3.1: Interfaces provided by Ceph object storage cluster.

29

Ceph is built upon CRUSH (Controlled Replication Under Scalable Hashing) algorithm
[WBMM06] - a hashing algorithm which efficiently maps objects to storage devices in a clus-
ter. CRUSH also has a notion of hierarchical structure - “a CRUSH map” of a storage cluster and
object replicas. This allows distributing objects and its replicas to different storage devices which
have no shared resources (e.g. I/O bandwidth, network bandwidth). Thus by creating copies of
each object and placing them on different Failure Domains (disks, servers, racks, cabinets) high
availability is reached.

By creating an object on Ceph storage cluster a client computes a placement group id using objects
key. After that, using information from clusters monitor about the state of the cluster and the
CRUSH map, the client determines the exactly device to read to/write from and communicates
directly to this device.

To provide object storage functionality the following components of Ceph storage architecture are
involved:

• Monitor: monitoring processes keep track about the cluster status, monitor resource usage,
negotiate consensus about the master cluster map between multiple monitor processes, re-
ceive heartbeats from other components of the system.

• OSD: each storage device is represented by a Object Storage Daemon (OSD) building a
logical disk. OSD processes make storage devices accessible over network through RADOS
protokoll.

• RadosGW: Rados Gateway processes provide S3 and Swift API’s. Working as proxies this
processes mediate between this API’s and RADOS protokoll.

The evaluation environment consist of six Sun Fire X2200 M2 (TODO: link to specs) Servers with
the following hardware configuration:

• 2 x Quad-Core AMD Opteron 2376

• 32 GB Memory

• Broadcom BCM5715 Gigabit Ethernet

• Western Digital WD1003FBYX, 1 TB, 7200 rpm

All server are interconnected through ProCurve J4904A 1Gb/s switch building a storage network.
As operating system Ubuntu 16.04 LTS with kernel 4.13.0 is used.

Three of the servers acts as clients performing read and write operations, the other three services
build a storage cluster. In order to provide no bottleneck all the three services required for operating
the object storage service are deployed on every node. Each client is connected to the different
server.

Unfortunately, no benchmarking tool could be found to support all of the object storage interfaces
supported by Ceph. However, the “Yahoo! Cloud Serving Benchmark” (YCSB) is capable of
benchmarking of Rados and S3 interfaces and provides a simple and clean programming model
to allow the implementation of additional benchmark of Swift interface using the openstack4j
library.

30

YCSB is a framework for benchmarking of database systems. It includes an extensible workload
generator and a set of basic workload scenarios to be executed by the generator. Currently is
supports over 30 different database interfaces and is also capable of benchmarking of some other
interfaces like generic REST-based interfaces. Amongst other interfaces it provides support for
Rados- and S3- APIs.

3.3 Performance of Object Storage

In this section performance capabilities of the evaluation environment are investigated.

The main purpose of the this benchmarking is to investigate, how an object storage system behaves
under a heavy parallel load. Therefore a set of parameters is defined under which an Object storage
API is put under stress testing. The following parameter and corresponding values are chosen:

• Type of performed operation:

As stated above different types of operations generate a very different load on storage sys-
tems and both types of operations, read and write are included in the parameter list.

• Concurrency of storage access:

In context of high performance computing storage systems are exposed a continuous load
from thousands of clients. A storage system deployed under in such environment has to
continue working and provide a respectable performance to the clients. Following values for
the number of parallel processes is chosen: 3, 30, 60 and 90.

• Object size:

The relevance of sizes of accessed data is also described above. In order to cover the whole
bandwidth of object sizes the logarithmic scale of this axis is chosen. The exact values for
this parameter are the following: 1Mb, 10Mb, 50Mb and 100Mb.

The main goal is the investigation of parameter space in order to find out the optimal parameter in
dependency of parameters described above and to develop a model for prediction of performance
with the goal of minimizing latency and maximizing throughput.

The Benchmarking results for the S3 API are shown below. Benchmarking of Swift and Rados
interfaces show very similar results and therefore skipped. The representation outliers is skipped
for the viewability reasons.

3.4 Analysis of Benchmarking Results

Reviewing of the benchmarking results lead to the following observations:

31

read write

0

1000

2000

3000

4000

Threads=3

read write

Threads=30

read write

Threads=60

read write

Threads=90

Fig. 3.2: Latency of object storage systems dependent on number of parallel storage operations
with object size 1Mb

read write

0

2000

4000

6000

8000

10000

12000

14000

Threads=3

read write

Threads=30

read write

Threads=60

read write

Threads=90

Fig. 3.3: Latency of object storage systems dependent on number of parallel storage operations
with object size 10Mb

32

read write

0

10000

20000

30000

40000

50000

60000

70000

80000

Threads=3

read write

Threads=30

read write

Threads=60

read write

Threads=90

Fig. 3.4: Latency of object storage systems dependent on number of parallel storage operations
with object size 50Mb

read write

0

25000

50000

75000

100000

125000

150000

175000

Threads=3

read write

Threads=30

read write

Threads=60

read write

Threads=90

Fig. 3.5: Latency of object storage systems dependent on number of parallel storage operations
with object size 100Mb

33

1mb
/3t

1mb
/30t

1mb
/60t

1mb
/90t

10mb
/3t

10mb
/30t

10mb
/60t

10mb
/90t

0

25

50

75

100

125

150

175

Th
ro

ug
hp

ut
 [o

bj
ec

ts
/s

]

read
write

Fig. 3.6: Throughput of object storage systems dependent on number of threads. Object sizes 1MB
and 10MB.

50mb
/3t

50mb
/30t

50mb
/60t

50mb
/90t

100mb
/3t

100mb
/30t

100mb
/60t

100mb
/90t

0

5

10

15

20

25

30

35

40

Th
ro

ug
hp

ut
 [o

bj
ec

ts
/s

]

read
write

Fig. 3.7: Throughput of object storage systems dependent on number of threads. Object sizes
50MB and 100MB.

34

3.4.1 Throughput

• With increasing number of parallel processes the throughput of read operation is increasing.
For large enough object sizes a 1Gb/s ethernet network can get fully saturated.

• With increasing number of parallel processes the throughput of read operation rapidly in-
creasing up to a value of about 50 threads. From this point the throughput stay relatively
constant.

• The course of the functions for read and write operations is very similar and seen to correlate.

• The ratio of throughput of read operation to the throughput of write operation seems to
behave logarithmic dependent of the number of threads and of size of objects.

3.4.2 Latency

• The slope of the function of latency of writing operation is much more steeper then the one
of the reading function in dependency of threads..

• With increasing number of threads the scattering becomes bigger.

• With increasing number of threads the average latency grows. This seems to behave near
liner in both cases, for writing and reading and dependent on both - the number of threads
and the size of objects.

3.5 Summary

In this chapter common performance considerations in distributed systems are covered. After that,
the setup of the physical infrastructure and the ceph object storage service which are used for the
evaluation purposes is described.

35

36

CHAPTER

FOUR

DESIGN

This chapter documents various design decisions that have to be made in order to implement the
S3 VOL plugin.

4.1 Mapping HDF5 Objects to Object Store

There are differences between how data is organized in HDF5 file format which do not allow it
do be mapped to object storage directly. Basically HDF5 file format defines two datatypes to
represent hierarchical relation: datasets and groups. Datasets represent collections of information
of the same type usually organized in multidimensional space. Groups are used to compose similar
datasets. To access a dataset in the hierarchical structure of a HDF5 file one have to define a relative
of absolute path under which the dataset is located (similar to accessing a file on Linux/Unix file
system).

Object storage services use a different way to reference objects. Due to the fact, that object storage
does not implement hierarchical relations and object access is done by the key of corresponding
object, one has to adopt the addressing of HDF5 objects when object storage services are used as
backend.

Additionally files, groups and datasets have some extra portion of metadata like property lists,
datatype and dataspace, which have to be stored extra. Object storage services provide a possibility
to store small amount of data as objects metadata. This could be used to store metadata for groups
and datasets, however the size of this data is quite small (2kB in S3 implementation [s3d]) and
varying dependent of actual implementations and configuration of object storage service. In addi-
tion, S3 interface does not support updating and deleting of metadata. The whole set of key/value
pair building the metadata has to be defined by the time of creation of the object (subsequently
adding a metadata to an object requires copying it on the server side). Since it would be inefficient
and in order to keep the implementations suitable for alternative implementations of object storage
service, the decision was made not to rely storing HDF5 metadata as objects metadata.

In order to ensure backwards compatibility the HDF5 has to deal with the changed layout of storing
information and has to support the same addressing manner as the HDF5 library. However object
storage services have very little restrictions on naming of object keys. This allows one to use the

37

full path to the object as a part of the key. Additionally metadata for groups and datasets is stored
as extra objects prefixed with the key of the corresponding object.

In the following two example layouts of the same structure stored in object store Listing 4.2 and as
plane HDF5 file Listing 4.1 are shown. The structure of HDF5 is shown as the output of h5dump
command. The listing of resulting objects stored in object store is shown as the output of s3
list command. File is mapped to S3 buckets, groups are mapped as aprfix of the object key and
datasets are decomposed and stored as objects.

Listing 4.1: Example of hierarchcal structure defined by na-
tive HDF5 file format as returned by h5dump command.

1 $ h5dump dset.h5
2 HDF5 "dset.h5" {
3 GROUP "/" {
4 GROUP "mygroup" {
5 DATASET "mydataset" {
6 DATATYPE H5T_STD_I32BE
7 DATASPACE SIMPLE { (4, 6) / (4, 6) }
8 DATA {
9 [...]

10 }
11 }
12 }
13 }
14 }

38

Listing 4.2: Example of hierarchcal structure of HDF5 file
format mapped to Object storage as returned by s3 list
command.

1 $ s3 -u list dset
2 Key Last Modified Size
3 --------------------------------------- -------------------- -----
4 fapl 2018-01-07T10:48:38Z 1516
5 fcpl 2018-01-07T10:48:38Z 412
6 gapl 2018-01-07T10:48:38Z 113
7 gcpl 2018-01-07T10:48:38Z 113
8 mygroup/gapl 2018-01-07T10:48:38Z 117
9 mygroup/gcpl 2018-01-07T10:48:38Z 113

10 mygroup/mydataset_0000000000 2018-01-07T10:48:38Z 48
11 mygroup/mydataset_0000000001 2018-01-07T10:48:38Z 48
12 mygroup/mydataset_dapl 2018-01-07T10:48:38Z 210
13 mygroup/mydataset_dcpl 2018-01-07T10:48:38Z 132
14 mygroup/mydataset_space 2018-01-07T10:48:38Z 63
15 mygroup/mydataset_type 2018-01-07T10:48:38Z 14

One additional design consideration concerns defining a set of variables which handle are read
by the plugin and interpreted as information required for authentication against the object storage
system and specifying the location with the endpoint of the service.

4.2 Mapping Memory Space to Object Store

The default behavior of the HDF5 library is to stores datasets in contiguous layout. As depicted in
Fig. 4.1 this is done by mapping memory space directly to file space.

As already described in the last chapter, for efficient access the space of every dataset has to be
partitioned into smaller object. HDF5 library already supports splitting a dataset into a partitions by
chunking mechanism. This is done by supplying additional parameters to dataset creation property
list. The resulting layout is shown in Fig. 4.2.

Chunking is used by by HDF5 library in many contexts. Chunking allow enabling compression
and other filters on datasets, as well as creating extendible or unlimited dimension datasets. A built
in caching mechanism based on chunking also contributes to performance improvement. Therefore
using chunking for partitioning data space would bring additional features as well as provide a well
known interface to the end user. With a chunked storage layout the data is stored in equal-sized
blocks or chunks of a pre-defined size within the same file. The HDF5 library always writes and
reads the entire chunk.

As one can see, the behavior of chunks defined by the HDF5 library have many things in common
with the behavior of objects. Reusing of this functionalities would be highly desired for imple-
menting of the S3 plugin based on Virtual Object Layer. The investigation of HDF5 library for

39

Fig. 4.1: Contiguous storage layout of HDF5 dataset

Fig. 4.2: Chunked layout layout of HDF5 dataset

40

reusing the same functionalities has shown that they are distributed along many files and object
and are tightly bound to the internals of the HDF5 library. This makes it hardly possible to reuse
the same codebase. Therefore some set of functions providing the same functionalities have to be
implemented.

As shown in Fig. 4.2 native chunking mechanism uses chunk index which keeps track of the chunks
associated with a dataset. Tracking chunks in the same way as it is done by the native HDF5
implementation in a highly distributed environment using a common resource would be inefficient.
Therefore an other solution has to be found to map partitions of datasapce to object storage. The
proposed solution for this purpose is a hash function, which computes a suffix of the object key in
dependency of a region of dataset application reads from or writes to.

Additionaly, in order to support partial I/O operation a set of functions has to be imple-
mented to support reading and writing to specified regions of a dataset, as defined by using the
H5Sselect_hyperslab function.

4.3 Summary

In this chapter various decisions concerning the design of the S3 VOL plugin is described. A
mapping of files, groups and datasets is introduced and a scheme for addressing of HDF5 objects
is offered. Subsequently commonalities as well as differences in the behavior between HDF5
chunking and Objects are stated out. After it, the problems of addressing portions of datasets and
selecting a single regions are discussed.

41

42

CHAPTER

FIVE

IMPLEMENTATION

This chapter provides an overview of the implementation of HDF5 VOL plugin for storing dataset
in object storage system.

5.1 The Main Components

In order to implement the plugin for storing the content of datasets within a set of objects residing
on distributed object storage system several components of data and programming model as desired
by the HDF5 Virtual Object Layer have to be implemented Listing 5.1:

Listing 5.1: H5VL_class_t holds all implemented function
for implementing the S3 plugin based on HDF5 Virtual Ob-
ject Layer

1 static const H5VL_class_t H5VL_s3_vol = {
2 0, // Class version #
3 S3PLUGINID, // value to identify plugin
4 "s3vol", // Plugin
5 *H5VL_s3_init, // init
6 *H5VL_s3_term, // terminate
7 sizeof(S3_fapl_t),
8 *S3_fapl_copy,
9 *S3_fapl_free

10

11 {NULL}, // attribute class callbacks
12 { // dataset class callbacks
13 *S3_dataset_create,
14 *S3_dataset_open,
15 *S3_dataset_read,
16 *S3_dataset_write,
17 *S3_dataset_get,
18 NULL, //*S3_dataset_specific,
19 NULL, //*S3_dataset_optional,

(continues on next page)

43

(continued from previous page)

20 *S3_dataset_close
21 },
22 {NULL} //datatype
23 { // file class callbacks
24 *S3_file_create,
25 *S3_file_open,
26 *S3_file_get,
27 *S3_file_specific,
28 NULL, //*S3_file_optional,
29 *S3_file_close
30 },
31 { // group class callbacks
32 *S3_group_create,
33 *S3_group_open,
34 *S3_group_get,
35 NULL, //*S3_group_specific,
36 NULL, //*S3_group_optional,
37 *S3_group_close
38 },
39 {NULL}, // link class callbacks
40 {NULL}, // object class callbacks
41

42 {NULL},
43 NULL
44 };

• Callbacks:

A set of callback defied by the HDF5 virtual object layer have to be implemented. Techni-
cally, they capture all the API calls, which can potentially change the content of HDF5 and
redirect them to the appropriate function.

• Datatypes:

Datatypes for file, groups and datataset, which are required by the programming model, have
to be adopted to fit the needs of the new plugin.

• S3 function:

A set of function that actually communicate with the object storage service and process the
I/O related operation have to be implemented.

5.2 Authentication

In order to perform requests to the object storage service using S3 interface every process has
to have valid credentials for accessing the service. Additionally some auxiliary information have

44

to be provided in order to communicate the general conditions of the connection to the Object
storage service. The usual way HDF5 library is doing this is by supplying this parameters in form
of property lists. However, this parameters are required for the first connection, during the file
opening procedure only and thereby holding them within the file creation property list makes no
sense.

Specifying the connection parameter to the object storage service is done by setting environment
variables to appropriate values. The whole set of environment variables is described below:

• S3_HOSTNAME:

Provides the name of the host, where the object storage service is located.

• S3_BUCKETNAME:

Provides the name of the bucket to operate on.

• S3_PROT:

The default behavior of the libs3 library is to use ssl encryption to connect to the service to
perform operations of bucket and objects. By setting this variable to the value of http no
encryption is used.

• S3_URISTYLE:

Amazons simple storage provides two ways for specifying the name of the bucket: an path
style and vhost style. In case of path style specification the bucket name is served as suf-
fix of the host name where the object storage resides segregated by a separator “/”. (e.g.
s3.amazonaws.com/mybucket). In case of vhost style the name of the bucket is
specified as a prefix of the host name of service URI segregated by the separator “.”. (e.g.
mybucket.s3.amazonaws.com). The behavior described at least is the default. Setting
this parameter to the value of path toggles this behavior.

• S3_ACCESSKEY and S3_SECRETKEY:

This two variables actually provide the S3 credentials.

This variables are read during the initialization phase of the plugin by the function
mkContext(), which returns a struct with various connection parameters of the object storage
service connection. This struct is used by all the S3 related functions.

5.3 Operations on Bucket and Objects

Despite of the fact that the libs3 library already implements interfaces for operating on Bucket and
Objects they require a specification of extra callback functions which manually handle responses
of every operation (e.g. GET, PUT) on the object service and react when an operation is complete
Listing 5.2.

45

Listing 5.2: The function S3_put_object of the libs3
library defines extra callbacks for custom handling of re-
sponce properties of object storage services.

1 void S3_put_object(const S3BucketContext *bucketContext,
2 const char *key,
3 uint64_t contentLength,
4 const S3PutProperties *putProperties,
5 S3RequestContext *requestContext,
6 const S3PutObjectHandler *handler,
7 void *callbackData)

The implemented function wraps this calls in order to provide a generic handling of responses and
make a using of them more user friendly. In addition to some error handling callbacks and some
other helper functions following function are implemented for this purpose:

On buckets:

• listBucket

Lists the content of the content of the bucket specified by the arguments.

• createBucket

Creates a bucket specified by the arguments.

• testBucket

Tests the existence of the bucket specified by the arguments.

On Objects:

• getObject

Downloads an object specified by a key.

• putObject

Uploads an object to a object storage service.

5.4 Operations on Files, Groups and Datasets

For operations on files, groups and datasets the H5VL_class_t struct defines mainly create,
open, get and close operations. The design and the implementation implementation of this func-
tions is very similar and can be summarized. The additional write and read operations are described
below.

• create operations: (S3_file_create, S3_group_create, S3_dataset_create)

46

By creating of a file, group or a dataset the corresponding corresponding datatypes are ini-
tialized with the parameters of the function arguments. Policy lists are stored within the
storage service. In the case of dataset in addition to property lists, space of the dataset and
type of the data are stored.

As explained in the last chapter the prefixes of the keys of the objects are computed based
on the path to the object in the hierarchy. The suffix is determines by the type of stored data.

• open operations: (S3_file_open, S3_group_open, S3_dataset_open)

Opening operations read the objects (property lists, space, type) stored within a object stor-
age system. A corresponding initialized datatype is returned.

• get operations: (S3_file_get, S3_group_get, S3_dataset_get)

A get operation returns one of the parameters of the corresponding datatype (e.g. space or
type in case of datatype, or property lists). Which parameter have to be returned is defined
by the arguments of the functions.

• close operations: (S3_file_close, S3_group_close, S3_dataset_close)

For closing of a file, a group or a dataset the memory occupied by the corresponding
datatypes is freed.

5.5 Partitioning a dataset

As briefly mentioned in the last chapter, partitioning of the space of dataset as required for efficient
storing of data in object storage services and defining a HDF5 native chunking have many things
in common. Therefore defining the partitioning parameters in same way as it is done in case of
specifying chunking parameters would be obvious.

Specifying the size of chunks for datasets is done by using the function H5Pset_chunk as it
is done in the HD5 native API Listing 5.3. This function sets the chunking related parameters of
dataset creation property list. This parameters are used by the functions which actually read and
write data to datasets.

Listing 5.3: Specifying of partition space of S3 objects.

1 herr_t H5Pset_chunk(hid_t plist, int ndims, const hsize_t * dim)

The parameters used by this function are:

• plist: id of the creation property list of the dataset.

• ndims: number of dimensions of each chunk. This number should match the number of
dimensions of the dataset.

• dim: array which holds the number of datapoints in each dimension.

47

5.6 Reading and Writing Datasets

Reading and writing of data to datasets are done by selecting a region (a hyperslab) of dataspace
of the dataset, where the operation has to take place. Selecting this hyperslab is done by calling the
HDF5 function H5Sselect_hyperslab, which returns an id of the dataspace if the selected
hyperslab. Using this id HDF5 library performs read or write operations.

In case of using object storage services as storage backends the selected hyperslab has to be fur-
ther splitted according to the grid, defined by the chunking properties. Further, every part of the
hyperslab has to be mapped to the name of the object, where this part has to be stored.

Additionally, dependent of the boundaries of the selected hyperslab, an object, to which this part
of hyperslab is mapped, has to be read or written either as a whole object, ore partially. In case of
writing a part of the object, before writing, the corresponding object has to be read.

5.7 Computation of Object Suffix

The following function computes the suffix of the S3 object, where the datapoint point should
be located.

Listing 5.4: The getSuffix implements the computing of the
suffix of S3 objects for every datapoint in dataset space.

1 int getSuffix(hsize_t ddims[], hsize_t cdims[],
2 hsize_t point[], int ndims){
3

4 int suff = 0;
5 for(int i = 0; i < ndims; i++){
6 int rest = point[i]/cdims[i];
7 suff = suff + rest * (i +1);
8 }
9

10 return suff;
11 }

The parameter of the function are listed below:

• ddims: a list of dimension sizes of dataset

• cdims: a list of dimension sizes of chunks

• point: coordinates of the datapoint

• ndims: number of dimensions of dataset

48

CHAPTER

SIX

EVALUATION

6.1 Benchmarking the implemented plugin

For the Benchmarking of the implemented plugin “IOR Interleaved-Or-Random” [ior] is used.
This tool is designed for performance evaluation of parallel file systems. Using the implemented
plugin it is also capable to benchmark the I/O operations on the test environment.

In order to make the results comparable the parameter of the benchmark have to be chosen carefully
to match the parameter used by the YCSB benchmark.

After the some changes on the IOR benchmark related for using of the implemented plugin, the
same evaluation platform is used as described in chapter 3.

However, IOR has no notion of objects, so the benchmarking results have to be scaled in order to
be compared with the results of the YCSB benchmark.

In essence, the shape of Latency graphs remain the same. The scaling however has changes.

49

read write

0

2000

4000

6000

8000

10000

12000

Threads=3

read write

Threads=30

read write

Threads=60

read write

Threads=90

Fig. 6.1: Latency of object storage system using implemented plugin dependent on number of
parallel storage operations with object size 1Mb

read write

0

5000

10000

15000

20000

25000

Threads=3

read write

Threads=30

read write

Threads=60

read write

Threads=90

Fig. 6.2: Latency of object storage system using implemented plugin dependent on number of
parallel storage operations with object size 10Mb

50

read write

0

20000

40000

60000

80000

Threads=3

read write

Threads=30

read write

Threads=60

read write

Threads=90

Fig. 6.3: Latency of object storage system using implemented plugin dependent on number of
parallel storage operations with object size 50Mb

read write

0

50000

100000

150000

200000

250000

Threads=3

read write

Threads=30

read write

Threads=60

read write

Threads=90

Fig. 6.4: Latency of object storage system using implemented plugin dependent on number of
parallel storage operations with object size 100Mb

51

1mb
/3t

1mb
/30t

1mb
/60t

1mb
/90t

10mb
/3t

10mb
/30t

10mb
/60t

10mb
/90t

0

20

40

60

80

100

120

140

160

Th
ro

ug
hp

ut
 [o

bj
ec

ts
/s

]

read
write

Fig. 6.5: Throughput of object storage system using implemented plugin dependent on number of
threads. Object sizes 1MB and 10MB.

50mb
/3t

50mb
/30t

50mb
/60t

50mb
/90t

100mb
/3t

100mb
/30t

100mb
/60t

100mb
/90t

0

5

10

15

20

25

30

Th
ro

ug
hp

ut
 [o

bj
ec

ts
/s

]

read
write

Fig. 6.6: Throughput of object storage system using implemented plugindependent on number of
threads. Object sizes 50MB and 100MB.

52

CHAPTER

SEVEN

CONCLUSION

This chapter summarizes and concludes the thesis.

53

54

LIST OF FIGURES

1.1 HDF5 abstract data model . 7

2.1 Common architecture of object storage services 13
2.2 Architecture of parallel I/O access using HDF5 and MPI. 19
2.3 Hierarchical structure of HDF5 file. 21
2.4 Architecture of HDF5 Virtual Object Layer . 22

3.1 Interfaces provided by Ceph object storage cluster. 29
3.2 Latency of object storage systems dependent on number of parallel storage opera-

tions with object size 1Mb . 32
3.3 Latency of object storage systems dependent on number of parallel storage opera-

tions with object size 10Mb . 32
3.4 Latency of object storage systems dependent on number of parallel storage opera-

tions with object size 50Mb . 33
3.5 Latency of object storage systems dependent on number of parallel storage opera-

tions with object size 100Mb . 33
3.6 Throughput of object storage systems dependent on number of threads. Object

sizes 1MB and 10MB. 34
3.7 Throughput of object storage systems dependent on number of threads. Object

sizes 50MB and 100MB. 34

4.1 Contiguous storage layout of HDF5 dataset . 40
4.2 Chunked layout layout of HDF5 dataset . 40

6.1 Latency of object storage system using implemented plugin dependent on number
of parallel storage operations with object size 1Mb 50

6.2 Latency of object storage system using implemented plugin dependent on number
of parallel storage operations with object size 10Mb 50

6.3 Latency of object storage system using implemented plugin dependent on number
of parallel storage operations with object size 50Mb 51

6.4 Latency of object storage system using implemented plugin dependent on number
of parallel storage operations with object size 100Mb 51

55

6.5 Throughput of object storage system using implemented plugin dependent on num-
ber of threads. Object sizes 1MB and 10MB. 52

6.6 Throughput of object storage system using implemented plugindependent on num-
ber of threads. Object sizes 50MB and 100MB. 52

56

LIST OF TABLES

57

58

LISTINGS

2.1 File
system related I/O operations as defined by POSIX interface14
2.2 Object
storage related I/O operations as defined by libs3 library14
4.1 Example
of hierarchcal structure defined by native HDF5 file format as returned by h5dump command.38
4.2 Example
of hierarchcal structure of HDF5 file format mapped to Object storage as returned by s3 list
command.39 5.1 H5VL_class_t
holds all implemented function for implementing the S3 plugin based on HDF5 Virtual Object
Layer43 5.2 The
function S3_put_object of the libs3 library defines extra callbacks
for custom handling of responce properties of object storage services.46
5.3 Specifying
of partition space of S3 objects.47 5.4 The
getSuffix implements the computing of the suffix of S3 objects for every datapoint in dataset
space.48

59

60

BIBLIOGRAPHY

[s3d] Amazon s3: developer guide, working with amazon s3 objects, object key and metadata.
URL: https://docs.aws.amazon.com/en_en/AmazonS3/latest/dev/UsingMetadata.html.

[Cepa] Ceph architecture. URL: http://docs.ceph.com/docs/master/architecture/.

[Cepb] Ceph block device. URL: http://docs.ceph.com/docs/master/rbd/.

[Cepc] Ceph filesystem. URL: http://docs.ceph.com/docs/master/cephfs/.

[ior] Ior interleaved-or-random. URL: https://github.com/hpc/ior.

[S3I] Introduction to amazon s3. URL: https://docs.aws.amazon.com/AmazonS3/latest/dev/
Introduction.html#ConsistencyModel.

[MSA] Managing concurrency in microsoft azure storage. URL: https://azure.microsoft.com/
en-en/blog/managing-concurrency-in-microsoft-azure-storage-2/.

[min] Minio: high performance distributed object storage server. URL: https://www.minio.io/.

[Cepd] New in luminous: bluestore. URL: https://ceph.com/community/
new-luminous-bluestore/.

[YCS] Yahoo! cloud serving benchmark. URL: https://github.com/brianfrankcooper/YCSB.

[lib] Libs3: amazon s3 library. URL: https://github.com/bji/libs3.

[HDF Group12a] HDF5 User’s Guide. The HDF Group, 1.6.10 edition, 11 2012. URL: https:
//support.hdfgroup.org/HDF5/doc1.6/UG/.

[HDF Group12b] HDF5 Virtual File Layer. The HDF Group, 2012. URL: https://support.
hdfgroup.org/HDF5/doc/TechNotes/VFL.html.

[HDF Group17] The HDF Group. HDF5: API Specification Reference Manual. The HDF Group,
2017. URL: https://support.hdfgroup.org/HDF5/doc/RM/RM_H5Front.html.

[Bre00] Eric A. Brewer. Towards robust distributed systems. In Proceedings of the Nineteenth
Annual ACM Symposium on Principles of Distributed Computing, PODC ‘00, 7–. New York,
NY, USA, 2000. ACM.

[Cha14] Mohamad Chaarawi. User guide for developing a virtual object layer plugin. 2014.

61

https://docs.aws.amazon.com/en_en/AmazonS3/latest/dev/UsingMetadata.html
http://docs.ceph.com/docs/master/architecture/
http://docs.ceph.com/docs/master/rbd/
http://docs.ceph.com/docs/master/cephfs/
https://github.com/hpc/ior
https://docs.aws.amazon.com/AmazonS3/latest/dev/Introduction.html#ConsistencyModel
https://docs.aws.amazon.com/AmazonS3/latest/dev/Introduction.html#ConsistencyModel
https://azure.microsoft.com/en-en/blog/managing-concurrency-in-microsoft-azure-storage-2/
https://azure.microsoft.com/en-en/blog/managing-concurrency-in-microsoft-azure-storage-2/
https://www.minio.io/
https://ceph.com/community/new-luminous-bluestore/
https://ceph.com/community/new-luminous-bluestore/
https://github.com/brianfrankcooper/YCSB
https://github.com/bji/libs3
https://support.hdfgroup.org/HDF5/doc1.6/UG/
https://support.hdfgroup.org/HDF5/doc1.6/UG/
https://support.hdfgroup.org/HDF5/doc/TechNotes/VFL.html
https://support.hdfgroup.org/HDF5/doc/TechNotes/VFL.html
https://support.hdfgroup.org/HDF5/doc/RM/RM_H5Front.html

[CK14] Mohamad Chaarawi and Quincey Koziol. Rfc: virtual object layer. 2014.

[CST+10] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. Benchmarking cloud serving systems with ycsb. In Proceedings of the 1st ACM Sympo-
sium on Cloud Computing, SoCC ‘10, 143–154. New York, NY, USA, 2010. ACM.

[GL02] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility of consistent, avail-
able, partition-tolerant web services. SIGACT News, 33(2):51–59, June 2002.

[MBT+12] Kshitij Mehta, John Bent, Aaron Torres, Gary Grider, and Edgar Gabriel. A plugin
for hdf5 using plfs for improved i/o performance and semantic analysis. In Proceedings of the
2012 SC Companion: High Performance Computing, Networking Storage and Analysis, SCC
‘12, 746–752. Washington, DC, USA, 2012. IEEE Computer Society.

[WBMM06] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, and Carlos Maltzahn. Crush: con-
trolled, scalable, decentralized placement of replicated data. In Proceedings of the 2006
ACM/IEEE Conference on Supercomputing, SC ‘06. New York, NY, USA, 2006. ACM.

[WLBM07] Sage A. Weil, Andrew W. Leung, Scott A. Brandt, and Carlos Maltzahn. Rados: a
scalable, reliable storage service for petabyte-scale storage clusters. In Proceedings of the 2Nd
International Workshop on Petascale Data Storage: Held in Conjunction with Supercomputing
‘07, PDSW ‘07, 35–44. New York, NY, USA, 2007. ACM.

62

	Introduction
	Self-describing Data Formats
	Hierarchical Data Format 5
	Object Storage Services
	Motivation
	Contribution
	Structure
	Summary

	Technical Background
	Object Storage
	Object Storage vs. File System Interfaces
	Object Storge Interfaces and Implementations
	MPI I/O
	HDF5
	HDF5 VOL
	Summary

	Performance Evaluations of Object Storage Services
	Performance Factors
	Setup of Evaluation Environment
	Performance of Object Storage
	Analysis of Benchmarking Results
	Summary

	Design
	Mapping HDF5 Objects to Object Store
	Mapping Memory Space to Object Store
	Summary

	Implementation
	The Main Components
	Authentication
	Operations on Bucket and Objects
	Operations on Files, Groups and Datasets
	Partitioning a dataset
	Reading and Writing Datasets
	Computation of Object Suffix

	Evaluation
	Benchmarking the implemented plugin

	Conclusion
	Bibliography

