
BACHELORTHESIS

Database VOL-plugin for HDF5

vorgelegt von

Olga Perevalova

Fakultät für Mathematik, Informatik und Naturwissenschaften
Fachbereich Informatik
Arbeitsbereich Wissenschaftliches Rechnen

Studiengang: Wirtschaftsinformatik
Matrikelnummer: 6525419

Erstgutachter: Dr. Michael Kuhn
Zweitgutachter: Prof. Dr. Thomas Ludwig

Betreuer: Eugen Betke

Hamburg, 2017-07-05

Abstract
HDF5 is an open source, hierarchical, and self-describing format for flexible and efficient
I/O for high volume and complex data, that combines data and metadata. Advantages
of this format make it widely used by many scientific applications.

In a parallel HDF5 application when a large number of processes access a shared file
simultaneously synchronization mechanism used by many file systems may significantly
degrade I/O performance. Separation of metadata and data is the first step to solve this
problem.

The main contribution of this thesis is a prototype of an HDF5-VOL-Plugin that
separates metadata and data. To this end, metadata are stored in an SQLite3 database
and data in a shared file. It uses MPI for synchronization of metadata when several
processes access the SQLite3 database.

In the context of this work a benchmark test has been developed. It measures access
times for each metadata operation and the overall I/O performance. The execution time
of the Database VOL-plugin is compared to the native solution.

The test results show that the database plugin consistently demonstrates good perfor-
mance.

The thesis concludes with a critical discussion of the approach by looking at the
metadata from different perspectives: scientific applications vs. HDF5.

Contents
1 Introduction 5

1.1 Self-Describing Data Formats . 5
1.2 Hierarchical Data Format 5 (HDF5) . 6
1.3 HDF5 Virtual Object Layer (VOL) . 7
1.4 Motivation . 8
1.5 Contribution . 9
1.6 Structure . 9

2 Technical Background 10
2.1 The HDF5 Data Model . 10

2.1.1 The HDF5 File . 11
2.1.2 The HDF5 Group . 11
2.1.3 The HDF5 Dataset . 12
2.1.4 The HDF5 Dataspace and Datatype 12
2.1.5 The HDF5 Attribute . 13

2.2 The HDF5 Programming Model . 14
2.2.1 The HDF5 Library . 14
2.2.2 Working with an HDF5 File . 15
2.2.3 Working with an HDF5 Group . 16
2.2.4 Working with an HDF5 Dataset and with an HDF5 Attribute . . 17

2.3 The Database VOL-Plugin for HDF5 . 18
2.3.1 VOL Structure . 18
2.3.2 Mapping the API to the Callbacks 20

3 Related Work 23
3.1 Separation of metadata and data for other file formats 23
3.2 Storage of HDF5 Objects in separate locations 23

4 Design 25
4.1 Model of the Database VOL Plugin . 25
4.2 Storage of HDF5 Metadata in a Relational Database 26

4.2.1 Representation of HDF5 Objects 26
4.2.2 Working with the Database VOL Plugin 29

5 Implementation 32
5.1 The Main Components . 32
5.2 Create/Open/Close the Database and the Data File 33

3

5.3 Dataset Create Routine . 33
5.4 Dataset Open Routine . 36
5.5 Dataset Get Routine . 36
5.6 Dataset Read/Write Routine . 37
5.7 Attribute Read/Write Routine . 39
5.8 The barrier synchronization . 39

6 Evaluation 42
6.1 Test Environment . 42
6.2 Test Configurations . 42
6.3 Test Results and Evaluation . 44

6.3.1 Metadata performance . 44
6.3.2 Data performance . 47
6.3.3 Metadata: HDF5 vs. scientific applications 48

7 Conclusion and Future Work 51
7.1 Conclusion . 51
7.2 Future Work . 51

Bibliography 52

List of Figures 54

List of Listings 55

List of Tables 56

4

1 Introduction
In this chapter, basic information about a popular data format library HDF5 that is used
by many scientific applications will be introduced; it will be also briefly discussed an
abstraction layer internal to the HDF5 data model called the Virtual Object Layer (VOL).
A special focus lies on the HDF5 problems with data storage performance for small and
non-contiguous disk accesses.

1.1 Self-Describing Data Formats
Self-describing data format allows an application to interpret the structure and contents
of a file with no outside information.

The following advantages are the main reasons why self-describing data formats became
widely used by many scientific applications [CT]:

• Before standard file formats were developed, custom file formats were used in many
projects. Often they were raw binary or ASCII1, which caused some problems.
– Machine dependent byte ordering or floating-point organizations required a

key in order to open the file and read the right data.
– A new custom reader is needed for each different data organization.

• Self-describing data formats include a standard API and portable data access
libraries.

• Self-describing data formats include tools to open and work with files, using the
embedded descriptions to interpret the data.

Additionally, the use of self-describing data formats has proven valuable in archiving
and disseminating scientific data. For example, Hierarchical Data Format (HDF) and
Network Common Data Form (NetCDF) are two self-describing formats, that are widely
used by agencies including NASA2 and NOAA3 [CT].

1American standard code for information interchange
2National Aeronautics and Space Administration
3National Oceanic and Atmospheric Administration

5

1.2 Hierarchical Data Format 5 (HDF5)
HDF5 is an open source, hierarchical, and self-describing format which combines data
and metadata. HDF5 is maintained by a non-profit corporation, The HDF Group, whose
purpose is to ensure the sustainable development of HDF5 and continued accessibility of
HDF-stored data.

HDF5 implements a model for managing and storing high volume data. The model
consists of [Gro16]:

• Open file format - an abstract storage model for storing large amounts of data.

• Data model - structures for logically organizing and accessing HDF5 data from an
application (an abstract data model).

• Open source software - libraries to implement the abstract model and to map the
storage model to different storage mechanisms, language interfaces and tools for
working with data in this format.

Figure 1.1 illustrates the HDF5 model and its implementations [Gro15a].

HDF5
API

Library

Storage Model
(Format)

Abstract Data
Model

Programming
Model

Stored Data
transfer data

implements

implements

layout data

manipulates objects from

represents objects of

Figure 1.1: HDF5 Models and Implementations[Gro15a]

6

HDF5 has an object oriented ideas for storing data. Abstractly, an HDF5 file is a
container that holds data objects such as images, tables, graphs, documents. HDF5
objects can be thought of as building blocks for data organization and specification
[QK14].

The HDF5 data model is composed of two basic objects, groups and dataset: an
HDF5 file contains a hierarchy of numerical arrays of data elements (datasets) organized
within groups. There are also a variety of other objects in HDF5: datatypes, dataspaces,
properties, attributes etc.

1.3 HDF5 Virtual Object Layer (VOL)
The VOL is an abstraction layer in the HDF5 library. Its purpose is to expose HDF5 API
to applications and provide a simple way of using different storage mechanisms. VOL is
right below the public HDF5 API, it intercepts all API routines that could potentially
modify the HDF5 file and forwards those calls to plug-in object drivers (see Figure 1.2)
[Cha14b] [Gro15b].

HDF5 Application

HDF5 API

VOL

Raw
Mapping

Native(H5)
Metadata

Server
Remote
Access

VFL

File System

Virtual Object Layer

VOL plugins

Virtual File Layer

Figure 1.2: Virtual Object Layer(VOL)[Gro15b]

VOL provides a flexible way to write and read data. For example, a plugin could
distribute data objects remotely over different platforms or store the data in other file
formats. The VOL maintains the HDF5 object model and allows writing plugins for
accessing HDF5 data [Cha14b].

7

1.4 Motivation
It is very important to maintain the correct relationship between mass storage devices
costs and their performing efficientcy.

In most memory-consuming research areas like climate research, where petabytes of
data are collected and analyzed, mass storage costs are significant compared to the overall
system costs. Because of the cost, mass storage devices in such areas have tended to be
much larger and at the same time much slower. There are some reasons why separation
of metadata and data would be reasonable.

Use case 1: In a large-scale application, due to the domain decomposition, in most
cases, individual processes do not need complete metadata. Therefore, they request only
the parts of them, that are required for the processing of data. Since the most I/O
middleware and network do not guarantee the arrival of I/O requests in sequential order,
and the application processes run at different speed, it is most likely that they arrive at
the I/O nodes in more or less random order. Considering that large-scale applications
access relative small metadata with a high number of processes, it results in a large
number of small and non-contiguous disk accesses and probably in a poor performance.
For example, a user who runs parallel jobs on 1000 processing nodes and 24 processed per
node needs to access HDF5 data. In that case, supporting metadata would be accessed
by all these processes (24000) nearly at the same time. In an HD(CP) experiment [EB],
when accessing an float-array with 22282304 elements it would results in 24000 of 3.6KiB
random accesses. Metadata consists of 21 of such datasets would increase the number of
accesses to 504000.

Use case 2: Typically, the size of supporting metadata is small compared to data;
therefore, it could be reasonable to store metadata separately on a fast and highly
available storage device and data on a slow, but cheap storage (for example, tape). On a
such system, it is possible to implement a search service, that can use metadata, to find
required datasets.

Also, some small data or data in a coarser granularity as a preview can be stored. It
makes it possible search services to implement, which can also for data in the archive
look. Such service would not use slow tape storage; therefore, it would need relatively
not much time for searching in the whole archive. For example, a user can for particular
region search, using longitude and latitude or for simulation data using time interval.
Besides saving of time, external catalogue management would be not needed.

In addition, the application can work separately with metadata and does not need to
read the data into memory, which reduces the I/O time.

Use case 3: Separation of metadata and data can be used as the basis for the further
development of a high-performance HDF5 plugin. The parallelization of data I/O is
much easier, when metadata are stored separately.

8

1.5 Contribution
The purpose of this thesis is to develop an external plugin implemented using HDF5
VOL that stores data and metadata to different locations. Metadata to a database and
data to file system.

The key contributions of this thesis include:

• Design of the database framework for the HDF5 metadata.

• Design and implementation of the Database VOL Plugin for HDF5.

• Evaluation of this plugin.

1.6 Structure
This rest of the thesis is organized as follows: Chapter 2 introduces the HDF5 data
model and a programming model that manipulates objects from the data model. It
also discusses the implementation of the Database VOL Plugin for HDF5: the callback
interface defined for the VOL and mapping the HDF5 API calls to the callbacks. Related
works are reviewed in chapter 3. The design of the Database VOL Plugin is described in
Chapter 4. Chapter 5 presents some parts of the implementation. Chapter 6 gives an
overview of the experiments and performance results. Chapter 7 provides the conclusion.

Summary
This chapter has briefly introduced data format library HDF5 and the HDF5 Virtual
Object Layer(VOL). The VOL exports an interface that allows writing plugins for accessing
HDF5 data. The Database VOL Plugin would allow storing data and metadata separately.
Better HDF5 data storage performance for small and non-contiguous disk accesses could
be reached with the use of the plugin.

9

2 Technical Background
In this chapter, the HDF5 abstract data model and the HDF5 programming model will
be introduced in detail. This chapter also will provide the information related to the
implementation of the VOL Plugins for HDF5: the callback interface defined for the VOL
and mapping the HDF5 API calls to the callbacks.

2.1 The HDF5 Data Model
An abstract data model organizes data, data types, and standardizes how they are related
to one another.

Table 2.1 presents objects defined with the HDF5 data model [Gro15a] .

Object Description
File A container for organized HDF5 objects

Group An organizational structure containing zero or more
groups or datasets, with supporting attributes and
other metadata

Dataset A numerical array of data elements with attributes
and other metadata

Dataspace A description of organisation of the data elements

Datatype A description of the format of a single data element

Attribute A small metadata object associated with a group,
dataset, or named datatype

Property List A collection of parameters controlling options in the
library

Link The way objects are connected.

Table 2.1: The HDF5 Objects

10

Some objects of the HDF5 abstract data model are of special interest for this thesis;
therefore, they are presented in detail below.

2.1.1 The HDF5 File
Formally, an HDF5 file is a container for organized groups, datasets, and other HDF5
objects [Gro16]. The objects are organized as a rooted, directed graph. Every HDF5 file
has at least one object, the root group. Figure 2.1 shows an HDF5 file structure with
groups and datasets.

Root Group (./)

Group A Group B

Dataset 2 Dataset 1

Figure 2.1: A HDF5 file structure with groups and datasets

2.1.2 The HDF5 Group
The HDF5 groups are primary HDF5 objects. They organize data objects; therefore,
groups can be used to implement the hierarchy of HDF5.

A group can contain zero or more objects. Each HDF5 object must be a member of
at least one group. The root group is a special group with the name /. A HDF5 file
should have the root group: the root group is automatically created when the HDF5 file
is created [Gro15a]; therefore, other HDF5 objects are members or descendants of the
root group.

Working with HDF5 groups is analogous to working with a file system directory.
Directories (or folders) in a file system allow the user to group files into separate
collections and files are defined by their path names. HDF5 groups are similar to the
directories and folders; HDF5 datasets are similar to the files. As with a file system,
objects in HDF5 have a unique identity within the hierarchy of the file and can be
accessed by giving their path names.

But there are some important differences between a file system directory and a HDF5
hierarchy. Groups in HDF5 allow circular references, whereas the file systems are strictly

11

hierarchical, allowing no circular references [Gro15a]. For example, Group B is a member
of Group A, and Group C is a member of Group B. In a case of circular references, Group
A can be a member of Group C. Secondly, it is possible to add metadata to groups,
whereas file systems do not support this.

2.1.3 The HDF5 Dataset
The HDF5 datasets are multidimensional arrays, that organize and contain data elements
(sets of bits). Besides data, a dataset consists of supporting metadata that stores a
description of the data elements, data layout, and all other information necessary to
write, read, and interpret the stored data [Gro15a].

The number of dimensions, size of each dimension are described by the dataspace
object and the layout of the bits of a data element is described by the datatype. These
are independent objects and are created separately from any dataset to which they may
be attached. The dataset object also may have several attributes. The HDF5 dataspace,
datatype und attribute are described in the next sections.

Figure 2.2 illustrates an application view of the dataset. [Gro15a].

Dataset

Attribute

Datatype Dataspace

Data

0…*

1

1 0…* 0…* 1

1

describes one element describes an array of elements

Figure 2.2: Application view of the HDF5 dataset

2.1.4 The HDF5 Dataspace and Datatype
The HDF5 datatypes and dataspaces are required components of an HDF5 dataset or
attribute definition [Gro15a]:

• A dataspace object describes the number of dimensions and the size of each
dimension of the multidimensional array in which the data are represented.

12

• A datatype object describes the individual data element (one specific layout of bits)
and provides complete information for data conversion to or from that datatype.
The datatype applies to every data element and cannot be changed.

HDF5 supports a wide variety of datatypes [Gro16] (see Table 2.2).

Datatype Description
Integer Twos complement integers

Float Floating point numbers

Character Array of 1-byte character encoding

Bitfield String of bits

Opaque Uninterpreted data

Enumeration A list of discrete values, with symbolic names in the
form of strings

Reference A reference to object or region within the HDF5 file

Array An array of data elements

Variable-length A variable-length 1-dimensional array of data elements

Compound A datatype of a sequence of datatypes

Table 2.2: The HDF5 Datatypes

2.1.5 The HDF5 Attribute
An HDF5 attribute is a small metadata object, that can optionally be associated with a
group, dataset, or named datatype. These objects may have zero or more user defined
attributes.

HDF5 attributes consist of a name and data and look very similar to HDF5 datasets
in that they have a datatype and a dataspace.

But there are some differences [Gro15a]:
• An attribute should be a small object.

• An attribute does not have attributes.

• An attribute can only be accessed via the object it is attached to.

• There is no partial reading or writing.

13

2.2 The HDF5 Programming Model
A programming model manipulates objects from an abstract data model. The program-
ming model of HDF5 is just as important as the abstract data model, and the principles
used in both of them should be applied to design of the Database VOL Plugin.

The general paradigm for working with HDF5 objects is to:

• Create or open the object.

• Perform the desired operations on the object.

• Close the object.

2.2.1 The HDF5 Library
The HDF5 library implements the programming model; therefore, it should be considered
in this chapter.

The library is implemented in C programming language. Although it does not support
OOP1, the library uses several mechanisms to perform an object oriented ideas for storing
data [Gro15a].

The library implements HDF5 objects as data structures. There are special pointers
- identifiers; an identifier is used as a reference to a specific instance of an object. For
example, when a HDF5 file is created, the API returns a file identifier. The identifier
references all operations on that file and remains valid until the file is closed [Grod].

In OOP all available procedures for a given object are called methods of that object.
HDF5 library simulates object methods through its API naming convention.

The table below presents the HDF5 objects and the standard prefixes indicating the
type of object on which the function operates [Gro16](see Table 2.3).

Prefix The type of object
H5A Attribute
H5D Dataset
H5F File
H5G Group
H5L Link
H5O Object
H5P Property List
H5S Dataspace
H5T Datatype

Table 2.3: The HDF5 API naming scheme

1Object-Oriented Programming

14

2.2.2 Working with an HDF5 File
Before objects in HDF5 can be used or referred, they must be explicitly created or
opened. When the file is created or opened, the file access modes and the file creation
properties or file access properties specify permissions and settings for the file [Grob].

File Modes

Two modes can be used with a create function and two with an open function (see
Table 2.4) [Grob].

Access Func-
tion

Access Flag Access Mode

H5Fcreate H5F_ACC_EXCL If the file exists, create func-
tion fails.

H5Fcreate H5F_ACC_TRUNC If the file exists, create func-
tion overwrite it.

H5Fopen H5F_ACC_RDONLY If the file does not exist,
open function fails; other-
wise, read-only access.

H5Fopen H5F_ACC_RDWR If the file does not exist,
open function fails; other-
wise, read-write access.

Table 2.4: File Access Modes

In the example below, when a new file is created but a file of the same name already
exists, the access flag H5F_ACC_TRUNC allows overwrite any existing data(see Listing 2.1).

1 file = H5Fcreate
↪→ ("File.h5",H5F_ACC_TRUNC , H5P_DEFAULT , H5P_DEFAULT);

Listing 2.1: Creating an HDF5 file using read-write modus

File Properties

Defaults properties (H5P_DEFAULT) handle the most common needs [Grob]. File creation
and file access properties control the more complex aspects of creating and accessing
files[Gro15a]. The file creation properties specify version information and parameters
of global data structures; they are set permanently for the life of the file [Gro15a]. File
creation properties control the following characteristics[Grof]:

• The size of the user-block (a fixed length block of data located at the beginning
of the file which may be used to store any data information found to be useful to
applications).

15

• The number of bytes that are used to store the offset and length of objects in the
file.

• Properties of the B-trees that are used to manage the data in the file.

• Library versioning information.

The file access properties are used to control different methods of performing access
operations on files; they can be changed by closing and reopening the file [Gro15a]. Some
of them are [Grof]:

• Properties for data alignment.

• Properties for parallel access to a file through the MPI I/O library.

• Properties for access to local temporary files directly from memory without ever
creating permanent storage.

This following example shows how to initialize the file for parallel access [KA10].
1 /* create access property list */
2 plist_id = H5Pcreate (H5P_FILE_ACCESS);
3 /* necessary for parallel access */
4 status = H5Pset_fapl_mpio (plist_id , MPI_COMM_WORLD ,

↪→ MPI_INFO_NULL);
5 /* Create an hdf5 file */
6 file_id = H5Fcreate (FILENAME , H5F_ACC_TRUNC , H5P_DEFAULT ,

↪→ plist_id);
7 status = H5Pclose (plist_id);

Listing 2.2: Initialization the file for parallel access

For more information on the properties for other HDF5 objects refer to the HDF5
user guide.

2.2.3 Working with an HDF5 Group
Before a group can be created or opened, the location identifier must be obtained. For
example, in order to create the group in the file (root group), the function H5Gcreate
must be called, passing identifier returned from opening or creating the file.

A group may be created within another group by providing an absolute path to the
function or by specifying its location. The full name (the absolute path) would include a
tracing of the group hierarchy from the root group of the file [Gro15a] (see Figure 2.3).

16

group_a =
 H5Gcreate(file, "GroupA", H5P_DEFAULT,

H5P_DEFAULT,
H5P_DEFAULT);

Create a group in the file

Create group in the group
"GroupA"

 by specifying absolute name
of the group

Create a group in the
"GroupA"

 group by specifying its
location

or

grop_b =
 H5Gcreate(file, "GroupA/GroupB", H5P_DEFAULT,

H5P_DEFAULT,
H5P_DEFAULT);

group_b =
 H5Gcreate(group_a, "GroupB", H5P_DEFAULT,

H5P_DEFAULT,
H5P_DEFAULT);

Figure 2.3: Creating an HDF5 group

The properties optionally specify settings for the group (or H5P_DEFAULT is used).
When a group is created or opened, following operations can be performed on the

group [Groc]:

• Create new objects.

• Insert existing objects.

• Delete existing objects.

• Open and close member objects.

• Access information regarding member objects.

• Iterate across group members.

• Manipulate links.

The group is then closed.

2.2.4 Working with an HDF5 Dataset and with an HDF5 Attribute
Working with attributes is similar to working with datasets; therefore, the steps that are
required to create and open a dataset can be applied for attributes.

Creating a dataset requires the following steps [Gro15a]:

1. Define a dataspace for a dataset.

2. Define a datatype for a dataset.

17

3. Obtain the location identifier.

4. Create and initialize the dataset.
a) Optional: Write the dataset data.
b) Optional: Close the datatype, dataspace, property list.

5. Close the dataset.

The following steps are required to open and read or write an existing dataset [Gro15a]:

1. Obtain the location identifier.

2. Obtain the dataset name or index.

3. Open the dataset.
a) Optional: Get the dataspace and the datatype.
b) Optional: Specify the memory type.
c) Optional: Read and/or write data.

4. Close the dataset.

2.3 The Database VOL-Plugin for HDF5
The VOL allows writing plugins for accessing HDF5 objects. Internally, a plugin can
implement the different storage mechanisms of objects in any way desired [MC14]. The
main goal is that each plugin provides applications with the same HDF5 API and data
access model.

2.3.1 VOL Structure
Each VOL must contain a structure of type H5VL_class_t . This structure is defined as
follows (see Listing 2.3) [Cha14b]:

18

1 typedef struct H5VL_class_t {
2 H5VL_class_value_t value;
3 const char *name;
4 herr_t (* initialize)(hid_t vipl_id);
5 herr_t (* terminate)(hid_t vtpl_id);
6 size_t fapl_size ;
7 void * (* fapl_copy)(const void *info);
8 herr_t (* fapl_free)(void *info);
9 /* Data Model */

10 H5VL_attr_class_t attr_cls ;
11 H5VL_dataset_class_t dataset_cls ;
12 H5VL_datatype_class_t datatype_cls ;
13 H5VL_file_class_t file_cls ;
14 H5VL_group_class_t group_cls ;
15 H5VL_link_class_t link_cls ;
16 H5VL_object_class_t object_cls ;
17 /* Services */
18 H5VL_async_class_t async_cls ;
19 herr_t (* optional)(void *obj , hid_t dxpl_id , void **req ,

↪→ va_list arguments);
20 } H5VL_class_t ;

Listing 2.3: VOL class

The fields in lines 10 to 16 define classes that provide functionality for accessing HDF5
objects (file, attribute, dataset, group, link, object and named datatype). Other object
types (dataspace, property lists) are memory space objects that are not stored or accessed
through an HDF5 file [Cha14a].

HDF5 library functions map to the callbacks in the classes that the plugin needs to
implement (see Table 2.5).

Prefix of the HDF5 API function VOL Class
H5A H5VL_attr_class_t
H5D H5VL_dataset_class_t
H5F H5VL_file_class_t
H5G H5VL_group_class_t
H5L H5VL_link_class_t
H5O H5VL_object_class_t
H5T H5VL_datatype_class_t

Table 2.5: Mapping the HDF5 API to the Callbacks

19

For example, the functions containing the prefix H5G map to one of the group callback
routines in the H5VL_group_class_t class [Cha14b](see Listing 2.4).

1 typedef struct H5VL_group_class_t {
2 void *(* create)(void *obj , H5VL_loc_params_t loc_params ,

↪→ const char *name , hid_t gcpl_id , hid_t gapl_id , hid_t
↪→ dxpl_id , void ** req);

3 void *(* open)(void *obj , H5VL_loc_params_t loc_params , const
↪→ char *name , hid_t gapl_id , hid_t dxpl_id , void ** req);

4 herr_t (* get)(void *obj , H5VL_group_get_t get_type , hid_t
↪→ dxpl_id , void **req , va_list arguments);

5 herr_t (* specific)(void *obj , H5VL_group_specific_t
↪→ specific_type , hid_t dxpl_id , void **req , va_list
↪→ arguments);

6 herr_t (* optional)(void *obj , hid_t dxpl_id , void **req ,
↪→ va_list arguments);

7 herr_t (* close) (void *grp , hid_t dxpl_id , void ** req);
8 } H5VL_group_class_t ;

Listing 2.4: Group class

For more information on the rest of the fields refer to the VOL user guide.

2.3.2 Mapping the API to the Callbacks
The callback interface defined for the VOL has to include all HDF5 API functions
that potentially would modify the HDF5 file; however the API is extensive (containing
hundreds of functions). That is why it was decided to not have a one-to-one mapping
from the API to VOL callbacks [MC14].

Generic Callbacks

To provide applications with the same HDF5 API (by using one-to-N mapping), the
VOL class implements generic callbacks. There are three generic callbacks for each model
object [Cha14b]: Get-callbacks, Specific-callbacks, Optional callbacks.

Generic operations handle the three sets of the HDF5 library functions[Cha14b]:

• Get-operations that return certain information about an object will map to the
get-callbacks.

• Specific-callbacks handle functions specific to each HDF5 object. Having a callback
for each one would clutter the VOL callback structure.

• Optional callbacks handle new HDF5 functionality that is added specifically for
certain plugins and it is not general enough to be implemented by most plugins.

Generic callbacks use an argument of type va_list to handle the different set of
parameters that could be passed in. The get- and specific-callbacks also have an

20

argument that contain an enum of the type of a desired function. Using that type, the
va_list argument can be parsed [Cha14b]. For example, Listing 2.5 demonstrates
the get callback in the group class that should retrieve information about the group as
specified in the get_type parameter [Cha14b].

1 herr_t H5VLgroup_get (void *obj , hid_t plugin_id ,
↪→ H5VL_group_get_t

2 get_type , hid_t dxpl_id , void **req , va_list arguments);

Listing 2.5: Group get function

The type H5VL_group_get_t is an enum defined as follows [Cha14b]:

1 typedef enum H5VL_group_get_t {
2 H5VL_GROUP_GET_GCPL ,
3 H5VL_GROUP_GET_INFO
4 } H5VL_group_get_t ;

Listing 2.6: Enum group get

The group-enum have two modes:

• H5VL_GROUP_GET_GCPL retrieves the group creation property list.

• H5VL_GROUP_GET_INFO retrieves the group information.

The argument of type va_list contains a variable list of arguments depending on
get_type parameter and output pointers for the get-operation.

Create and Open Callbacks

All data model classes define a similar create and open callbacks:

• Create callbacks implement an object(group, dataset, attribute etc.) in the container
of the location object and return an identifier of type hid_t for that object
containing information to access the object in future calls [Cha14b]. In a case of
the file callbacks, the location object is not needed.

• Open callbacks should open an object in the container of the location object and
return a pointer to the object structure containing information to access the object
in future calls [Cha14b].

The HDF5 library implements several functions to open and create object. For
example, to create an attribute the functions H5Aopen_by_name or H5Aopen_by_idx
could be used [Groa]. Such functions map to one open or create callback with a location
parameter that indicates the access type. The location parameter is a structure that
holds parameters for object locations.

21

Close Callbacks

Close callbacks should terminate access to an object and free all resources it was
consuming, and return an herr\t indicating success or failure [Cha14b].

Summary
This chapter has given a necessary for the thesis description of the HDF5 abstract data
model and the HDF5 programming model. The abstract data model defines HDF5 objects
that have to be implemented. A programming model describes the relationships between
HDF5 objects. These principles should be applied to design of the Database VOL Plugin.

This chapter has also introduced mapping the HDF5 API calls and the callback
interface that has to be implemented in the Database VOL Plugin.

22

3 Related Work
In this chapter several works that use a related technique (separating data and metadata)
will be presented.

3.1 Separation of metadata and data for other file
formats

The method of a separating data and metadata are already used for other file formats.
One example of these works is presented below.

The authors of [MI] demonstrate the MSD format as a potential extension to the
DICOM format1. A DICOM data objects consist of image pixel data and associated
metadata. This format doesn‘t allow separate metadata access; in cases that only need
access to metadata, the DICOM format increases the running time (tag morphing is an
example of one such use cases).

MSD stores information using two files rather than in many single frame files. MSD
separates metadata from pixel data, and at the same time eliminates the replicated data
elements. The first file contains the de-duplicated metadata, and the second contains
pixel data. The results show that MDS significantly improves processing time for tag
morphing.

3.2 Storage of HDF5 Objects in separate locations
In[KM12] VOL Plugin is presented, that stores every HDF5 objects in a separate location.
Files and groups are stored as directories, whereas datasets and attributes are stored in
files created using PLFS.2

For example, file "test.h5" contains group A, which itself contains dataset B. B
contains attribute C. Thus these file and group are stored as following directories:
/test.h5/ and /test.h5/A. Dataset and attribute, which contain raw data, are stored
in files at the following paths: /test.h5/A/B and /test.h5/A/B.C . The name of the
attribute is stored as parent object.attribute name to denote the object to which
the attribute is attached.

Results demonstrate that the plugin shows good performance.

1DICOM: Digital Imaging and Communications in Medicine format. This format is used for handling,
storing, printing, and transmitting information in medical imaging.

MSD: Multi-Series DICOM
2Parallel Log Structured File System, which transforms N-1 access pattern into N-N

23

Summary
The presented works have shown that separating data and metadata improves I/O
performance. Unlike the presented in [KM12] VOL Plugin, the Database VOL Plugin
uses a database for metadata; thereby, it allows efficient storage of metadata using SQL
language. Moreover, in case of the large number of metadata the implemented by authors
of [KM12] plugin can overload the metadata server.

24

4 Design
In this chapter, the design of the separate storage of HDF5 data and metadata will be
introduced. The abstract data model of HDF5 will be presented in a relational database.

4.1 Model of the Database VOL Plugin
HDF5 is suitable for efficient management of large and complex data. It supports complex
relationships between objects. A parallel HDF5 application has multiple processes
accessing a single file. Unfortunately, a large number of small and non-contiguous disk
accesses typically results in a poor performance.

To improve the performance of the read and write operations, an approach is to store
metadata in a database and data in a file system; then to access metadata separately on
a faster storage device.

The VOL allows third party plugin development that can provide the efficient storage
mechanisms of HDF5 objects. Figure 4.1 illustrates how HDF5 data are stored using the
Database VOL Plugin.

HDF5 API

VOL

Data Metadata

File System Database

Figure 4.1: Using the Database VOL Plugin

25

Instead of storing all objects in a single file, the plugin stores data that are contained
in datasets in a file system and metadata are stored in a relational database.

4.2 Storage of HDF5 Metadata in a Relational
Database

Metadata represent the HDF5 objects and the relationships between them; therefore, the
relational database is responsible for a maintenance of the HDF5 abstract data model.

Some relevant information about the relational database is presented below:
• A relational database is a set of tables of columns and rows containing data

organized into categories.

• A table is a collection of objects of the same type (rows) with supporting metadata
(columns).

• A primary key is a column in a table which contain unique values for each row in
a database table; it makes it possible to select, add, delete or modify one and only
one row in a table; therefore, most implementations have a unique primary key for
each table.

4.2.1 Representation of HDF5 Objects
The relational database contains a set of tables that organize objects defined with the
HDF5 data model. The goal of this thesis is to implement such VOL operations that
handle the most common needs of HDF5. Therefore, some callbacks for the more complex
aspects of accessing files are not designed and not implemented. For the same reason
some object attributes are not presented in the tables. There are some common features:

• Objects in HDF5 have an unique identity within the hierarchy of the file and can
be accessed by giving their path names. Therefore, each table can use the path
name as a unique primary key.

• Each table has columns containing the information about primary data object1.
Model of HDF5 objects with specific to each of them metadata are presented in detail
below.

File

In the HDF5 data model the container for all objects is represented by a file; therefore,
the HDF5 file has no primary data object and its name an initial point of each object
path name.

Figure 4.2 represents a file model. The second column contains the information about
the type of each attribute.

1direct parent object

26

File

Name
(Primary Key)

TEXT

Figure 4.2: File

Group

A group is an association between HDF5 objects; a group’s direct parent object can be a
file (a root group) or other group.

Therefore, to implement groups the following attributes are needed:

• The name.

• The path name (a primary key).

• The information about primary data object: name and type.

Figure 4.3 represents a group with its attributes.

Group

Path (Primary Key) TEXT

Primary Data Object Type TEXT

Primary Data Object
Name

TEXT

Name TEXT

Figure 4.3: Group

Dataset

A dataset is characterized by a dataspace and a datatype. Therefore, besides the dataset
name, the path name (a primary key) and the primary data object type and name,
the dataset needs attributes containing the information about dataspace and datatype.
Knowing the number of dimensions and the type of data elements, a datasets size can be
calculated (a size attribute). The HDF5 data are stored in a file system, so there is no
table for them.

Figure 4.4 represents a dataset with its attributes.

27

Dataset

Path (Primary Key) TEXT

Primary Data Object Name

TEXT

Primary Data Object Type

TEXT

Name

TEXT

Type

BLOB

Space

BLOB

Data Size INTEGER

Figure 4.4: Dataset

Attribute

An attribute consists of a name and data and looks very similar to datasets.
Attributes are assumed to be small, so storing them as datasets would be quite

inefficient. Therefore, data are stored in a database and not in a file system (see Figure
4.5).

Attribute

Path (Primary
Key)

TEXT

Primary Data
Object Name

TEXT

Primary Data
Object Type

TEXT

Name

TEXT

Type

BLOB

Space

BLOB

Data Size INTEGER

Attribute Data

Path (Foreign
Key)

TEXT

Data

BLOB

Figure 4.5: Attribute

28

4.2.2 Working with the Database VOL Plugin
Below is presented a programming model with the use of the Database VOL Plugin.

Create Object

Before HDF5 objects can be used, they must be created or opened. For example, when
the file is created, the plugin initializes a row for this file in a File table (see Figure 4.6).

H5Fcreate („FileC.h5", H5F_ACC_EXCL,…)

FileName

„FileA.h5"

„FileB.h5"

„FileC.h5"

Add a row, if does not exist

Figure 4.6: Open and Create Operations

Location Identifier

The HDF5 objects are implemented as data structures. When the object is created or
opened, the plugin returns a special pointer - identifier; an identifier is used as a reference
to a specific instance of an object (see chapter 2.2.1). That pointer can be used as an
location identifier for the direct successors of the parent object; this provides a possibility
to obtain information about primary data object and to create the path name.

Primary data object information is stored for each object in a database. In the example
below the plugin obtains the information related to parent object type and name from
object identifies file and group (see Figure 4.7).

group = H5Gcreate (file, „GroupA“,…);

group2 = H5Gcreate(group,“GroupB“,…);

GroupName Path Primary Data
Object Name

Primary Data
Object Type

GroupA FileA.h5/GroupA FileA.h5 FILE

GroupB FileA.h5/GroupA/
GroupB

GroupA

GROUP

file = H5Fcreate(„ FileA.h5“,…);

Figure 4.7: Primary Data Object Information

29

Dataset Object Routines

Some part of the object information is stored in data structures. The main VOL
operations are explained below by the example of datasets; a special focus lies on a
storing the dataset information (in a data structure and in a database).

When the dataset is created, the plugin initializes all attributes of Dataset table and
the name, the location and the data size of the dataset structure (see Figure 4.8).

CREATE DATASET

Name (IN)
Path (IN)

Data_Size (IN)

Name (IN)
Path (IN)

Primary Data Object
Name (IN)

Primary Data Object
Type (IN)

Data_Space (IN)
Data_Type (IN)
Data_Size (IN)

Data Structure Database

Figure 4.8: Create Operation

Open function creates path name and selects from a database the data size. Then the
selected value and the name are stored in the dataset structure (see Figure 4.9).

OPEN DATASET

Name (IN)
Path (IN)

Data_Size (IN)

Path (IN)
Data_Size (OUT)

Data Structure Database

Figure 4.9: Open Operation

Get functions can return certain information about an object. In this case the plugin
selects from a database the data type and the data space with the use of path-parameter
from the data structure (see Figure 4.10).

GET DATASET

Path (OUT)

Path (IN)
Data_Space (OUT)
Data_Type (OUT)

Data Structure Database

Figure 4.10: Get Operation

30

The Dataset table is not needed for write and read operations. The plugin use the
information about the data size and the position of the data in the destination file from
the dataset structure (see Figure 4.11).

WRITE/READ DATASET

Data_Size (OUT)
Offset(IN/OUT)

DATA

Data Structure

File System

Figure 4.11: Write/Read Operations

Summary
In order to improve the performance of the HDF5 access operations, the Database

VOL Plugin is responsible for a separation data that are contained in datasets and for
managing HDF5 metadata in a database. The relational database implements the HDF5
abstract data model and makes it possible to manipulate with objects. To read and write
data correctly in a destination file in a file system, the plugin uses data size and offset
identifiers.

31

5 Implementation
In this chapter, an overview of the implementation of the Database VOL Plugin will be
given. Firstly, the main plugin components will be introduced, followed by operations that
are of particular interest:

• Connection to a database and a data file.

• The dataset routines that allow to create and manage datasets in a data file.

• The storage of the attribute data in a database.

• The barrier synchronization of multiple access to data.

5.1 The Main Components
In order to implement the desired storage of data and metadata as described in chapter
3, the plugin has followed main components:

• Calback operations. The plugin implements the main callbacks defined in the VOL
class (see section 2.3.1). They capture the HDF5 API operations that would access
the file. The callback operations call supporting database operations for managing
metadata.

• Database operations. They allow accessing the database using the SQL query
language. These functions are implemented with the use of SQLite. SQLite
provides a disk-based database that does not require a separate server process. It
is possible to prototype an application using SQLite and then port the code to a
larger database such as PostgreSQL.

• Data structures. There are data structures for file, group, dataset and attribute
objects, which are used by callbacks operations as a reference to a specific instance
of each object.

• Fapl operations. They are defined in the VOL class and used to store the info data
that the plugin needs.

32

5.2 Create/Open/Close the Database and the Data File
It is reasonable to create (or open) and close the database and the data file only one
time when the file create/open/close operations are called.

An example of a database and data file create routine is shown in Listing 5.1. The
function H5Pget_vol_info (line 5) returns the info data, that contains the information
received from an application about a database name and a data file name (ginfo->db_fn,
ginfo->data_fn).

A database connection is opened with the sqlite3_open function (line 8). Then the
database operation file_create_database is called (line 12). This function creates
tables for all objects and insert values in a File table.

The function open64 creates a file description that refers to a data file (line 15).
The plugin stores an SQLite database handle and a descriptor for a data file in the

SQF_t structure. The struct also contains complex data type SQF_t in variable root
(line 17), it gives a possibility for other routines to access a connection to the database
and the data file.

1 static void *
2 H5VL_extlog_file_create (const char *fname ,...)
3 {
4 ...
5 ginfo = (h5sqlite_fapl_t *) H5Pget_vol_info (fapl_id);
6 ...
7 SQF_t *file;
8 int rc = sqlite3_open (ginfo ->db_fn , &file ->db);
9 ...

10 if (0 == ginfo -> mpi_rank)
11 {
12 file_create_database (fname , flags , file ->db);
13 }
14 ...
15 file ->fd = open64 (ginfo ->data_fn , O_RDWR |O_CREAT , 0666);
16 ...
17 file ->root = file
18 ...
19 }

Listing 5.1: Create the database connection and the data file

5.3 Dataset Create Routine
The plugin needs datatype, dataspace and data size for writing and reading datasets
(see section 3.2.1).

Listing 5.2 demonstrates how these values can be created. The data size argument is
calculated using the number of dimensions in a dataspace, the size of each dimension

33

and the size of elements (lines 16-17).
The argument dcpl_id contains the dataset datatype (an hid_t) and dataspace

(an hid_t) identifiers. The function H5Pget retrieves a copy of the value for a prop-
erty dataspace and datatype in a property list (lines 6, 13). The number of di-
mensions in a dataspace is determined with H5Sget_simple_extent_ndims function;
H5Sget_simple_extent_dims returns the size and maximum sizes of each dimension
(lines 7, 10). H5Tget_size returns the size of a datatype in bytes (line 14).

1 static void *
2 H5VL_extlog_dataset_create (... , hid_t dcpl_id , ...)
3 {
4 ...
5 hid_t space_id ;
6 H5Pget (dcpl_id , " dataset_space_id ", & space_id);
7 int ndims = H5Sget_simple_extent_ndims (space_id);
8 hsize_t maxdims [ndims];
9 hsize_t dims[ndims];

10 H5Sget_simple_extent_dims (/* in */ space_id , /* out */
↪→ dims , /* out */ maxdims);

11
12 hid_t type_id ;
13 H5Pget (dcpl_id , " dataset_type_id ", & type_id);
14 size_t type_size = H5Tget_size (type_id);
15 size_t data_size = type_size ;
16 for(int i = 0; i < ndims; ++i)
17 {
18 data_size *= dims[i];
19 }
20 ...
21 }

Listing 5.2: Creation arguments for attribute data

The plugin stores some part of the object information in data structures. The dataset
structure is defined as follows (see Listing 5.3):

1 typedef struct SQD_t
2 {
3 SQF_t* root;
4 char *name;
5 char * location ;
6 int position ;
7 size_t data_size ;
8 } SQD_t;

Listing 5.3: Structure for dataset

Listing 5.4 demonstrates the initialization of the dataset structure in the create dataset
operation. The function receives the name as input parameter; the data size is calculated

34

as described before. With the use of the switch statement the plugin gets the type of
a primary object. Then, the root and the path variables are initialized (lines 14, 16).
The last one is created using an object name and a parent name with snprintf function
(lines 15-16).

1 static void *
2 H5VL_extlog_dataset_create (void *obj ,.., const char *name , ...)
3 {
4 ...
5 SQD_t *dset;
6 ...
7 dset ->name = strdup (name)
8 dset -> data_size = data_size ;
9 switch (loc_params . obj_type)

10 {
11 case H5I_FILE :
12 {
13 SQF_t *o = (SQF_t *) obj;
14 dset ->root = o->root;
15 snprintf (ch , sizeof ch , "%s%s", o->name ,"/");
16 snprintf (dset ->location , 512, "%s%s", ch , name);
17 dataset_create_database (name , o->name , " H5I_FILE ",

↪→ dset ->location , type_id , space_id ,data_size ,
↪→ dset ->root ->db);

18 }
19 ...
20 return (void *) dset;
21 }

Listing 5.4: Initialization of values in a dataset structure

Dataset create function calls a supporting database operation, that insert values in
Dataset table (see Listing 5.4 , line 17). How the plugin stores the data type and data
space values in a table is of particular interest for this thesis and is shown in Listing 5.5.

Firstly, it is important to make an overview of the sqlite3 module functions.
sqlite3_prepare compiles an SQL statement into a byte-code (line 6). sqlite3_bind
functions bind values to place-holders (lines 12, 22, 23). The prepared statement is exe-
cuted with sqlite3_step (line 25). Finally, sqlite3_finalize destroys the prepared
statement object (line 26).

To make it possible for next access sessions to reconstruct a data type description
(type_id) and a data space description (space_id) the functions H5Tencode / H5Sencode
and H5Tdecode / H5Sdecode are used. H5Tencode and H5Sencode convert a data type
description and a data space description into binary form in a buffer (lines 11, 21). Using
this binary form in the buffer, these objects can be reconstructed using H5Tdecode to
return a new object handle (hid_t).

35

1 void dataset_create_database (... , hid_t type_id , hid_t space_id ,
↪→ hid_t data_size ,...)

2 {
3 ...
4 char *sql2= " INSERT INTO DATASET VALUES (? ,? ,? ,? ,? ,? ,?);";
5 ...
6 rc = sqlite3_prepare (db , sql2 , strlen (sql2), &res , & pzTest);
7 ...
8 size_t type_size ;
9 H5Tencode (type_id , NULL , & type_size);

10 char type_buf [type_size];
11 H5Tencode (type_id , type_buf , & type_size);
12 sqlite3_bind_blob (res , 5, type_buf , type_size , NULL);
13 ...
14 int rank = H5Sget_simple_extent_ndims (space_id);
15 hsize_t dims[rank];
16 hsize_t max_dims [rank];
17 H5Sget_simple_extent_dims (space_id , dims , max_dims);
18 size_t space_size ;
19 H5Sencode (space_id , NULL , & space_size);
20 unsigned char* space_buf = (unsigned char *)

↪→ malloc (space_size);
21 H5Sencode (space_id , space_buf , & space_size);
22 sqlite3_bind_blob (res , 6, space_buf , space_size , NULL);
23 sqlite3_bind_int64 (res , 7, data_size);
24 rc = sqlite3_step (res);
25 sqlite3_finalize (res);
26 }

Listing 5.5: Part of the Insert operation for the Dataset table

5.4 Dataset Open Routine
Dataset open callback initializes name, root and location struct values in the same way
as create callback; the data size is retrieved from the database.

5.5 Dataset Get Routine
Listing 5.6 shows some part of the dataset get routine implementation.

The get callback returns information about the dataset as specified in the get_type
parameter. The dataset_get_database function selects data type and data space
from the table, reconstructs their binary form and returns new data descriptions (line 5).

Then, the switch statement selects the type; va_list arguments contains a variable
list depending on that type. va_arg macro expands to an expression of type hid_t with

36

the value of the current argument in the argument list (line 11). Finally, that buffer for
the identifier is initialized with a required information (line 12).

1 static herr_t
2 H5VL_extlog_dataset_get (void *dset , H5VL_dataset_get_t

↪→ get_type ,... , va_list arguments)
3 {
4 hid_t * ret_id ;
5 dataset_get_database (... , &type_id , &space_id , ...);
6 switch (get_type)
7 {
8 ...
9 case H5VL_DATASET_GET_SPACE :

10 {
11 ret_id = va_arg (arguments , hid_t *);
12 * ret_id = space_id ;
13 }
14 break ;
15 ...
16 }
17 ...
18 }

Listing 5.6: Dataset get callback

5.6 Dataset Read/Write Routine
The plugin supports parallel writing/reading datasets.

Listing 5.7 demonstrates some important parts of the dataset write function; the main
focus is on an ability to write data in parallel. Firstly, the data size is calculated in the
same way as in the dataset create routine (lines 7-16).

Then the current file position to write a portion of a dataset is found using values
mpi_rank and offset from info structure (lines 17-19). The type off64_t allows to
manipulate the file position of files that are larger than 2 gigabytes (line 19). The function
pwrite64 writes the specified number of bytes from the buffer to the file descriptor into
the specified position.

In the while loop the number of bytes count and the specified position (curr_offset
+ bytes_written_total) are calculated for each parallel writing process and passed to
the function (lines 26-31). The file descriptor is contained in the variable root of the
dataset structure (d->root->fd). The loop is repeated until all the bytes from the buffer
to the file are written.

Finally, the plugin updates a dataset file position; this value can be used for other
dataset write operations (lines 34-35).

37

1 static herr_t
2 H5VL_extlog_dataset_write (void *dset , hid_t mem_type_id , hid_t

↪→ mem_space_id ,... , const void *buf , ...)
3 {
4 ...
5 SQD_t *d = (SQD_t *) dset;
6
7 int rank = H5Sget_simple_extent_ndims (mem_space_id);
8 hsize_t dims[rank];
9 hsize_t max_dims [rank];

10 H5Sget_simple_extent_dims (mem_space_id , dims , max_dims);
11 size_t block_size = H5Tget_size (mem_type_id);
12 assert (block_size != 0);
13 for (size_t i = 0; i < rank; ++i)
14 {
15 block_size *= dims[i];
16 }
17 size_t rel_offset = block_size * ginfo -> mpi_rank ;
18 ...
19 off64_t curr_offset = ginfo -> offset + rel_offset ;
20 size_t bytes_written_total = 0;
21 size_t count = 0;
22 ssize_t bytes_written = 0;
23
24 while (bytes_written_total <= block_size)
25 {
26 size_t bytes_left = block_size - bytes_written_total ;
27 count = (COUNT_MAX < bytes_left) ? COUNT_MAX :

↪→ bytes_left ;
28 ...
29 bytes_written = pwrite64 (d->root ->fd , buf +

↪→ bytes_written_total , count , curr_offset +
↪→ bytes_written_total);

30 ...
31 bytes_written_total += bytes_written ;
32 }
33 ...
34 d-> position = ginfo -> offset ;
35 ginfo -> offset = ginfo -> offset + d-> data_size ;
36 ...
37 }

Listing 5.7: Dataset write routine

38

5.7 Attribute Read/Write Routine
Listing 5.8 shows how the plugin reads data from the database. The SQL statement to
select data using path name is demonstrated in line 4. Attribute data are stored in a
database in a binary format (BLOB type). sqlite3_column_blob() forces the result
into the desired format, then sqlite3_column_bytes() returns the number of bytes in
that BLOB (lines 6-7). Finally, memcpy copies the values of data_size bytes from the
location pointed to by data directly to the memory block pointed to by buf.

1 void attr_read_database (const char *location , /* OUT */ void
↪→ *buf , sqlite3 * db)

2 {
3 ...
4 char *sql = " SELECT data FROM DATA WHERE Path =?;";
5 ...
6 const void * data = sqlite3_column_blob (res , 0);
7 int data_size = sqlite3_column_bytes (res , 0);
8 memcpy (buf , data , data_size);
9 ...

10 }

Listing 5.8: Attribute read database function

5.8 The barrier synchronization
Strict time limits for the bachelor thesis do not allow to implement all HDF5 objects:
the actual implementation does not support the Link interface (H5L). The lack of this
implementation can result in some access problems.

The problems and the implemented solutions to these problems are demonstrated
below by the example of running the routine H5Dcreate H5Dwrite H5Dclose H5Dopen
H5Dclose H5Ldelete.

Scenario 1. Let us assume, that the process 1 needs relatively more time to write data.
It tries then to open deleted by process 0 dataset (see Figure 5.1). To avoid this problem
MPI_Barrier function after SELECT statement in H5Dopen can be used (see Figure 5.2).

Figure 5.1: Error by open deleted file

39

Figure 5.2: Error by open deleted file: Barrier solution

Scenario 2. Let us assume, that the process 0 for some reason needs more time for
H5Dcreate operation. It is possible, that the process 1 tries to select some value using
H5Dopen, but this value does not exist yet (see Figure 5.3). MPI_Barrier function after
INSERT statement in H5Dcreate is a solution for this case (see Figure 5.4).

Figure 5.3: Error by open values that not exists yet

Figure 5.4: Error by open values that not exists yet: Barrier solution

There are a lot of optimization solutions for this implementation. For example, it
is reasonable to use problem MPI_Barrier function after SELECT statement only for
cases with the followed operation, that can modify a database. For read-only modus
MPI_Barrier is not needed at all, since all read operations are idempotent.

In current implementation these optimization solutions do not used, because they do
not relevant for the main goal of the thesis.

40

Summary
This chapter has shown that the Database VOL Plugin implements all important callbacks
for HDF5 library. It separates metadata and data, stores data in a file system, and
manages HDF5 metadata in a database using SQLite. The plugin also supports parallel
HDF5 access using MPI library.

41

6 Evaluation
In this chapter the benchmark test and the obtained results will be introduced. Firstly,
the test environment will be presented, followed by test configurations (the libraries, the
data, the measured operations). Finally, the test will be run using original Native Plugin
and Database VOL Plugin. The performance of these experiments will be compared and
evaluated.

6.1 Test Environment
All experiments are conducted on the cluster of the Scientific Computing research group
at the University of Hamburg (see Table 6.1).

CPU 2x Intel Xeon Westmere X5650
RAM 12GB (DDR3/PC1333)
Kernel Linux cluster 4.4
NIC 2x Intel 82574L gigabit (Gbit) Ethernet
FS Lustre 2.9.0

Table 6.1: Experiment environment

The benchmark is performed with 1, 8, 16, 24 processes per node. All experiments are
run using OpenMPI 1.10.2 library. SQLite is compiled using -DSQITE_THREADSAFE=2
parameter to select serialized mode. In this mode SQLite can be safely used by multiple
threads with no restriction.

6.2 Test Configurations
Parallel I/O

The HDF5 library can provide parallel support using the MPI library. A file can be
opened in parallel from an MPI application by specifying a parallel file driver with an
MPI communicator and info structure. This information is communicated to HDF5
through a property list [Groe]. In Listing 6.1 a file access property list is created and set
to use the MPI-IO file driver.

42

1 hid_t fapl_id = H5Pcreate (H5P_FILE_ACCESS);
2 H5Pset_fapl_mpio (fapl_id , comm , info);
3 file_id = H5Fcreate (FNAME , H5F_ACC_TRUNC , H5P_DEFAULT , fapl_id);

Listing 6.1: Create the file in parallel

HDF5 allows to read or write to a portion of a dataset by use of hyperslab selection by
selecting a subset of the dataspace in the file, selecting a local memory dataspace, and
then using the memory and file dataspaces to read from or write to the dataset [KA10].
Firstly, the H5Dget_space obtains the dataspace of a dataset in a file; subset of that
dataspace can be selected with H5Sselect_hyperslab (see Listing 6.2).

1 filespace = H5Dget_space (dset_id);
2 H5Sselect_hyperslab (filespace , H5S_SELECT_SET , offset , NULL ,

↪→ count , NULL);

Listing 6.2: Select hyperslab

Then each process defines dataset in memory and writes it to the hyperslab in the file
(see Listing 6.3).

1 count [0] = dimsf [0] / mpi_size ;
2 count [1] = dimsf [1];
3 offset [0] = mpi_rank * count [0];
4 offset [1] = 0;

Listing 6.3: Writing dataset by rows

Before reading a subset from or writing a subset to a dataset, in addition to a file
dataspace the local memory space must be created (see Listing 6.4).

1 memspace = H5Screate_simple (RANK , count , NULL);

Listing 6.4: Create memory space

The local memory and file dataspace identifiers from the selections and property list for
collective dataset write/read are passed into the read or write operation (see Listing 6.5).

1 /* Create property list for collective dataset write */
2 plist_id = H5Pcreate (H5P_DATASET_XFER);
3 ...
4 status = H5Dread (dset_id , ..., memspace , filespace , ..., ...);

Listing 6.5: Collective dataset write

Read/Write Tests

The test contains an enum of the type of operations that are requested to be performed:

• IOTYPE_WRITE (H5Fcreate, H5Gcreate, H5Dcreate, H5Dwrite, H5Acreate, H5Awrite).

43

• IOTYPE_READ (H5Fopen, H5Gopen, H5Dopen, H5Dread, H5Aopen, H5Aread).

For each of these operations the functions time_start and time_stop take the
performance measurement using time library.

The test can be run using the Database VOL Plugin or original Native Plugin. Listing
6.6 demonstrates the routine that registers the database plugin. Firstly, the info data
including database name and file name are passed (lines 2-4). The plugin is registered
with the H5VLregister name() (line 5). The application then sets the plugin access
property in the file access property list (line 7).

1 #if defined VOL
2 h5sqlite_fapl_t finfo;
3 finfo.db_fn = " metadata .db";
4 finfo. data_fn = "data.dat";
5 hid_t vol_id = H5VLregister_by_name (" extlog ");
6 ...
7 H5Pset_vol (fapl_id , vol_id , &finfo);
8 #endif

Listing 6.6: Register the Database VOL Plugin

The Data used for Experiments

The experiments are conducted on one node with different numbers of processes (1,
8, 16, 24) and repeated 10 times. Each write experiment creates file, group, attribute
and 2-dimensional dataset with the 107520 x 4993 dimension size. The total file size is
2000MiB. In every run, the data is distributed equally among the processes.

Read experiments open objects and read dataset, that was created by write experiments.

6.3 Test Results and Evaluation
Some outliers are not shown in pictures, because they have large values and would affect
the presentation of results. The important outliers are explicitly stated in the text.

6.3.1 Metadata performance
The test measures the time is needed for the execution of all main operations and also
ensures the plugin functions correctness. The followed metadata operations are controlled:
H5Fcreate, H5Gcreate, H5Dcreate, H5Acreate, H5Awrite (create operation), H5Fopen,
H5Gopen, H5Dopen, H5Aopen, H5Aread (read operation).

Results show that all these operations are correctly run. It is also important to
mention, that the plugin writes and reads right attribute data using a database.

The figures below compares the time for some read and write operations using the
database plugin, labeled SQLite3-Plugin, and that for the native plugin (see Figures 6.1,
6.2, 6.3). It can be seen, that the database plugin consistently shows good performance,

44

moreover, for some operation it outperforms the native plugin. In particular H5Fopen is
much faster, because the database plugin has almost no initialization overhead. Native
plugin slower, probably, because it has to initialize some internal buffers and preload
metadata. For H5Fcreate it can be seen the opposite. Database plugin gets slower
because it has to create the database. The native plugin gets faster, probably there is
not many data to preload.

Overall, in group operations the database plugin is faster, because in contrast to the
native plugin it does not need to make many initializations.

In dataset read and write functions the database plugin is slower, since it has to make
a lot of operations to initialize the database (H5Dcreate) and to search values in it
(H5Dopen).

●

●

●

●

●

●

●

Native−Plugin SQLite3−Plugin

R
ead−

B
enchm

ark (open)
W

rite−
B

enchm
ark (create)

1 8 16 24 1 8 16 24

0.00

0.05

0.10

0.15

0.20

0.25

0.00

0.05

0.10

0.15

0.20

0.25

Processes Per Node

T
im

e
in

 [s
ec

]

Create/open file

Figure 6.1: Create/open file

45

●

●

●

●● ● ●

●

●

●

Native−Plugin SQLite3−Plugin

R
ead−

B
enchm

ark (open)
W

rite−
B

enchm
ark (create)

1 8 16 24 1 8 16 24

0.0

0.5

1.0

1.5

2.0

2.5

0.0

0.5

1.0

1.5

2.0

2.5

Processes Per Node

T
im

e
in

 [s
ec

]

Create/open group

Figure 6.2: Create/open group

●

●

●

Native−Plugin SQLite3−Plugin

R
ead−

B
enchm

ark (open)
W

rite−
B

enchm
ark (create)

1 8 16 24 1 8 16 24

0.000

0.005

0.010

0.015

0.020

0.025

0.000

0.005

0.010

0.015

0.020

0.025

Processes Per Node

T
im

e
in

 [s
ec

]

Create/open dataset

Figure 6.3: Create/open dataset

46

6.3.2 Data performance
Figure 6.4 compares the time for reading and writing the data in a file using the native
and the database plugins.

Overall, these results show that the database plugin also for dataset write/read
opeartions consistently shows good performance, however it does not outperform the
native plugin. This is due to the fact that both plugins always saturate the network
performance.

In experiments a small dataset (2GB) is compared to available amount of RAM (12GB).
The reason is that on current system and with MPI implementation the maximum datasize
that can be created by one process is limited to 2GB/dataset is used for experiments.
That means, the dataset is probably not large enough to overwrite the internal cache of
native plugin and some cache issues should be expected. Although, this problem can be
solved by writing several datasets or by using more processes, but on this system the
plugins will always saturate the network bandwidth. It is more interesting to observe the
cache effects. Figure 6.4 does not show the outliers, for example, in case of PPN=24 it
could even observed a write performance of 162MB/s, which exceeds by far the network
performance due the usage of internal cache. The maximum write performance achieved
by SQLite3-plugin is 111MB/s. This does not make the native plugin faster, because as
can be seen in Figure 6.5 this data are written to the file, when the file is close, which
results in large close times.

●

●

●

●

●

●

Native−Plugin SQLite3−Plugin

R
ead−

B
enchm

ark
W

rite−
B

enchm
ark

1 8 16 24 1 8 16 24

95

100

105

110

115

120

95

100

105

110

115

120

Processes Per Node

P
er

fo
rm

an
ce

 in
 [M

iB
/s

]

Total I/O Performance

Figure 6.4: Total I/O Performance

47

●● ●

● ●● ●●

Native−Plugin SQLite3−Plugin

R
ead−

B
enchm

ark
W

rite−
B

enchm
ark

1 8 16 24 1 8 16 24

0

5

10

15

0

5

10

15

Processes Per Node

T
im

e
in

 [s
ec

]

File Close

Figure 6.5: Close Performance

Besides, it can be also seen that compare to the native plugin, the database plugin
has a low variance of the data read/write performance. This positive property makes
the program execution easy to calculate.

6.3.3 Metadata: HDF5 vs. scientific applications
The output in Listing 6.7 was produced by the h5dump tool, which was used to dump the
header of a HDF5 file. It shows how labels can be attached to a dataset.

1 HDF5 "grid.nc" {
2 GROUP "/" {
3 DATASET "lat" {
4 DATATYPE H5T_IEEE_F32LE
5 DATASPACE SIMPLE { (6) / (6) }
6 ...
7 }
8 DATASET "lon" {
9 DATATYPE H5T_IEEE_F32LE

10 DATASPACE SIMPLE { (5) / (5) }
11 ...
12 }
13 DATASET "time" {
14 DATATYPE H5T_IEEE_F32LE
15 DATASPACE SIMPLE { (4) / (H5S_UNLIMITED) }

48

16 ...
17 }
18 DATASET "var1" {
19 DATATYPE H5T_STD_I32LE
20 DATASPACE SIMPLE { (4, 6, 5) / (H5S_UNLIMITED , 6,

↪→ 5) }
21 ATTRIBUTE " DIMENSION_LIST " {
22 DATATYPE H5T_VLEN { H5T_REFERENCE {

↪→ H5T_STD_REF_OBJECT }}
23 DATASPACE SIMPLE { (3) / (3) }
24 DATA {
25 (0): (DATASET 8428 /time), (DATASET 10954

↪→ /lat),
26 (2): (DATASET 11377 /lon)
27 }
28 }
29 ...
30 }
31 }
32 }

Listing 6.7: Data and metadata [EB]

The dataset var1 contains data. Its attribute DIMENSION_LIST includes three refer-
ences (Links) to other datasets. lon and lat contain longitude and latitude values. Time
values are stored in time. The meaning of these references is defined by the applications,
for example in this case they are interpreted as labels to the dimensions.

It is disputable whether linked datasets belong to metadata or not. From the scientific
application’s point of view, axis labels are part of metadata, since they contain supporting
information. For example, they can be used in search services to find required data (see
use case 2 from section 1.4). For HDF5 these datasets are not part of metadata, since
they are stored in ordinary datasets, especially because the large size does not allow
storage in attribute object.

It would be not reasonable to store datasets in SQLite3 database in binary format,
because of their size and how they are used by scientific applications it would probably
result in a slower performance. As already mentioned in use case 1, each process requests
only the parts of metadata, that are required for the processing of data. If a database
stores all the metadata in binary format, then it can be accessed only as the whole
object.

One possible solution to the problem could be the following. Datasets can be taken to
pieces and stored element-wise in database, but such method is much more complicated
and error-prone. A better way would be to store datatsets in binary format, just as it
was produced by the HDF5 library. Probably, a much more better solution would be to
store the data in some machine independent format.

The scientific application’s point of view is more important for the goals of this thesis;
therefore, it is doubtful whether the SQLite3 the optimal allocation for attributes.

49

Summary
In this chapter the results of the benchmark test were presented and discussed. The test
results have shown, that the Database VOL - plugin correctly runs all important HDF5
operations. Write and read operations for attributes and datasets write/read the right
data. The I/O performance using the database plugin was compared to the native plugin.

Overall time performance results are consistently good.
In this chapter was also presented a critical discussion of the approach, since metadata

can be seen from different viewpoints (scientific applications vs. HDF5).

50

7 Conclusion and Future Work
This chapter summarizes and concludes the thesis. Additionally, an outlook regarding
future work will be presented.

7.1 Conclusion
The main goal of this thesis is to implement the Database VOL-plugin for HFD5, that
allows storing HDF5 data and metadata in different locations. The current implementa-
tion of the plugin provides applications with the main HDF5 API operations that would
access the file. The plugin callback functions store HDF5 metadata in a database and
data in a file system.

Outsourcing of metadata to a SQLite3 database implies some additional overhead.
The main reasons are access to shared file system and MPI_Barriers. For the latter,
there is a lot of optimization potential.

Scientific applications and HDF5 have a different view on metadata. This makes
outsourcing of metadata to SQLite3 a kind of difficult. From point of view of scientific
applications, in addition to HDF5 metadata, the database must contain some datasets,
which causes some troubles, for axample for performance reasons, the datasets can not
be stored in binary format, but must be stored by individual elements.

7.2 Future Work
Firstly, it would be reasonable to port the code to a database server (for example,
PostgreSQL). It would significantly reduce the amount of file access and would simplify
the implementation of a search service.

The actual implementation also does not support the Link interface (H5L). This
interface includes functions that enable the creation and use of link classes in HDF5, and
is required to create references.

Using such model the plugin can store in a database for each parts of a dataset
supporting parts of metadata. It eliminates the problem of a large number of small and
non-contiguous disk accesses and improves I/O performance.

As already mentioned, the separation of metadata and data is a first step to the high
performance HDF5 plugin. The current plugin implementation allows the next step, the
parallel I/O of dataset, which might be a quite challenging task.

51

Bibliography
[Cha14a] Mohamad Chaarawi. A Developer’s Guide for the HDF5 Virtual Object Layer.

09 2014.

[Cha14b] Mohamad Chaarawi. User Guide for Developing a Virtual Object Layer Plugin.
09 2014.

[CT] NASA Curt Tilmes. Data Formats: Using self-describing data formats. Last
accessed: 2017-05.

[EB] Dr. Julian Kunkel Eugen Betke. External Links for netCDF. Last accessed:
2017-07.

[Groa] The HDF Group. H5A: Group Interface. Last accessed: 2017-04.

[Grob] The HDF Group. H5F: File Interface. Last accessed: 2017-05.

[Groc] The HDF Group. H5G: Group Interface. Last accessed: 2017-04.

[Grod] The HDF Group. HDF5: API Specification Reference Manual. Last accessed:
2017-04.

[Groe] The HDF Group. Introduction to Scientific I/O. Last accessed: 2017-06.

[Grof] The HDF Group. The File Interface(H5F). Last accessed: 2017-05.

[Gro15a] The HDF Group. HDF5 User’s Guide. 2015. Last accessed: 2017-05.

[Gro15b] The HDF Group. Virtual Object Layer in HDF5. 05 2015. Last accessed:
2017-05.

[Gro16] The HDF Group. High Level Introduction to HDF5. 09 2016. Last accessed:
2017-06.

[KA10] The HDF Group Katie Antypas. Intro to HDF5. 10 2010. Last accessed:
2017-04.

[KM12] Aaron Torres Gary Grider Edgar Gabriel Kshitij Mehta, John Bent. A Plugin
for HDF5 using PLFS for Improved I/O Performance and Semantic Analysis.
1 2012. Last accessed: 2017-06.

[MC14] Quincey Koziol Mohamad Chaarawi. RFC: Virtual Object Layer. 09 2014.

52

[MI] James Philbin Mahmoud Ismail, Yu Ning. Separation of metadata and bulkdata
to speed DICOM tag morphing. Last accessed: 2017-06.

[QK14] The HDF Group Q. Koziol. Introduction to HDF5 . 08 2014. Last accessed:
2017-05.

53

List of Figures
1.1 HDF5 Models and Implementations[Gro15a] 6
1.2 Virtual Object Layer(VOL)[Gro15b] . 7

2.1 A HDF5 file structure with groups and datasets 11
2.2 Application view of the HDF5 dataset 12
2.3 Creating an HDF5 group . 17

4.1 Using the Database VOL Plugin . 25
4.2 File . 27
4.3 Group . 27
4.4 Dataset . 28
4.5 Attribute . 28
4.6 Open and Create Operations . 29
4.7 Primary Data Object Information . 29
4.8 Create Operation . 30
4.9 Open Operation . 30
4.10 Get Operation . 30
4.11 Write/Read Operations . 31

5.1 Error by open deleted file . 39
5.2 Error by open deleted file: Barrier solution 40
5.3 Error by open values that not exists yet 40
5.4 Error by open values that not exists yet: Barrier solution 40

6.1 Create/open file . 45
6.2 Create/open group . 46
6.3 Create/open dataset . 46
6.4 Total I/O Performance . 47
6.5 Close Performance . 48

54

List of Listings
2.1 Creating an HDF5 file using read-write modus 15
2.2 Initialization the file for parallel access 16
2.3 VOL class . 19
2.4 Group class . 20
2.5 Group get function . 21
2.6 Enum group get . 21

5.1 Create the database connection and the data file 33
5.2 Creation arguments for attribute data . 34
5.3 Structure for dataset . 34
5.4 Initialization of values in a dataset structure 35
5.5 Part of the Insert operation for the Dataset table 36
5.6 Dataset get callback . 37
5.7 Dataset write routine . 38
5.8 Attribute read database function . 39

6.1 Create the file in parallel . 43
6.2 Select hyperslab . 43
6.3 Writing dataset by rows . 43
6.4 Create memory space . 43
6.5 Collective dataset write . 43
6.6 Register the Database VOL Plugin . 44
6.7 Data and metadata [EB] . 48

55

List of Tables
2.1 The HDF5 Objects . 10
2.2 The HDF5 Datatypes . 13
2.3 The HDF5 API naming scheme . 14
2.4 File Access Modes . 15
2.5 Mapping the HDF5 API to the Callbacks 19

6.1 Experiment environment . 42

56

Eidesstattliche Versicherung
Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit im Studiengang
Wirtschaftsinformatik selbstständig verfasst und keine anderen als die angegebenen
Hilfsmittel – insbesondere keine im Quellenverzeichnis nicht benannten Internet-Quellen –
benutzt habe. Alle Stellen, die wörtlich oder sinngemäß aus Veröffentlichungen entnommen
wurden, sind als solche kenntlich gemacht. Ich versichere weiterhin, dass ich die Arbeit
vorher nicht in einem anderen Prüfungsverfahren eingereicht habe und die eingereichte
schriftliche Fassung der auf dem elektronischen Speichermedium entspricht.

Ort, Datum Unterschrift

Veröffentlichung
Ich bin damit einverstanden, dass meine Arbeit in den Bestand der Bibliothek des
Fachbereichs Informatik eingestellt wird.

Ort, Datum Unterschrift

	Introduction
	Self-Describing Data Formats
	Hierarchical Data Format 5 (HDF5)
	HDF5 Virtual Object Layer (VOL)
	Motivation
	Contribution
	Structure

	Technical Background
	The HDF5 Data Model
	The HDF5 File
	The HDF5 Group
	The HDF5 Dataset
	The HDF5 Dataspace and Datatype
	The HDF5 Attribute

	The HDF5 Programming Model
	The HDF5 Library
	Working with an HDF5 File
	Working with an HDF5 Group
	Working with an HDF5 Dataset and with an HDF5 Attribute

	The Database VOL-Plugin for HDF5
	VOL Structure
	Mapping the API to the Callbacks

	Related Work
	Separation of metadata and data for other file formats
	Storage of HDF5 Objects in separate locations

	Design
	Model of the Database VOL Plugin
	Storage of HDF5 Metadata in a Relational Database
	Representation of HDF5 Objects
	Working with the Database VOL Plugin

	Implementation
	The Main Components
	Create/Open/Close the Database and the Data File
	Dataset Create Routine
	Dataset Open Routine
	Dataset Get Routine
	Dataset Read/Write Routine
	Attribute Read/Write Routine
	The barrier synchronization

	Evaluation
	Test Environment
	Test Configurations
	Test Results and Evaluation
	Metadata performance
	Data performance
	Metadata: HDF5 vs. scientific applications

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	List of Figures
	List of Listings
	List of Tables

