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Abstract
This thesis evaluates the improved use of data compression to reduce storage space,
increase throughput and reduce bandwidth requirements. The latter is an interesting field
of application, not only for telecommunication but also for local data transfer between
the CPU and the storage device.
The choice of the compression algorithm is crucial for the overall performance. For

this reason part of this work is the reflection of which algorithm fits best to a particular
situation.
The goal of this thesis comprises the implementation of three different features. At

first, updating the existing lz4 algorithm enables support for the "acceleration" called
lz4fast. This compression speed-up, in lieu of compression ratio, increases write speed on
fast storage devices such as SSDs.

Second, an automatic decision procedure adapts the compression algorithms gzip-(1-9)
and the new updated lz4 to the current environment in order to maximize utilization of
the CPU and the storage device. Performance is improved compared to no compression
but is highly depends on the hardware setup. On powerful hardware the algorithm
successfully adapts to the optimum.
The third and last feature enables the user to select a desired file-write-throughput.

Scheduling is implemented by delaying and prioritizing incoming requests. Thereby
compression is adjusted to not impair the selected requirements while reducing storage
space and reducing bandwidth demand respectively. By preferring "fast" files over "slow"
files - high throughput over low throughput - the average turnaround time is reduced
while maintaining the average compression ratio.
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1 Introduction
Purpose of this thesis is the evaluation of opportunities for the improved use of existing
compression algorithms in ZFS. ZFS was initially developed by Sun Microsystems and
commercialized more than 10 years ago. This flexible file system is capable to process
very large quantities of data especially targeting storage applications. Today ZFS is
synonymous for data management software used in large server pools which is said to
combine high performance, ability for logical partitioning, volume manager software, and
data protection algorithms [MNNW14].

The development of fast and efficient compression algorithms make data compression
more and more attractive. Meanwhile compression throughput performed on commodity
hardware exceeds hard drive throughput while reducing the amount of data by half.
Reviewing the latest trend, computational speed is developing faster than storage speed
which will improve data compression capabilities even more in the future [KKL16]. The
use of compression reduces the amount of data to save storage capacity. On the other
hand read and write throughput can also increase as less bytes are transferred. Most
file systems provide, if any at all, only a subset of compression algorithms. The ZFS
file system supports gzip-(1-9) for high data compression at long runtime, lzjb for fast
compression at decent compression ratio, lz4 "a high-performance replacement for the
lzjb algorithm" and zle for sparse files [zfsb]. However, the software version of lz4 is
outdated. Even faster compression is possible in the new version. This makes an update
worthwhile.

The default compression settings in ZFS is "OFF". To enable compression for ZFS
datasets the choice of a single data compression algorithm is required. Gzip results in
good compression ratios but takes a long time for compression while lz4 is much faster but
achieves less compression ratio. The choice of the fastest compression algorithm usually
results in an increase of write throughput however not necessarily the best possible result.
A complex analysis of the system and the data is necessary to meet the optimal setting.

Due to the fact that further compression algorithms will be added in the future an
automatic selection algorithm can save time and effort. Furthermore the periodic update
is no longer necessary to adjust change in file compressibility and write throughput
caused by fragmentation. The auto compress algorithm is designed as part of this thesis
to automatically choose the optimal compression algorithm for the current hardware and
data. Fast algorithms are preferred for fast storage devices, low computational power and
good compressible data, while slow algorithms, which yield better compression ratios,
significantly increase throughput for slow storage devices and fast CPUs.
Recent network routing devices present "quality of service" capabilities to distribute

bandwidth individually and prioritize real time traffic to make, for example, video streams
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unproblematic in a multi-person household. This management of limited resources has
not yet found its way into the file system. However, complex internal scheduling for
prioritizing read over write is already implemented for optimal performance in the general
case.
Simultaneously running applications share the disk equally. The prioritization of

individual data could be useful to separate into time critical grades and increase the
overall performance. The additional use of data compression reduces the required
bandwidth. Unfortunately this is a time consuming procedure. It has to be fine tuned to
not reduce the write throughput.
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2 Background

2.1 Data compression
Data compression reduces the number of bytes by eliminating redundancies. A variety
of compression algorithms exist. They have often been developed and optimized for a
single field of application.
Table 2.1 gives an overview of the already supported algorithms and shows how the

new lz4fast throughput exceeds lz4.

Algorithm Ratio Compress MB
s

Decompress MB
s

lz4fast 1.7.5 -17 1.61 785 2601
lz4fast 1.7.5 -3 1.98 522 2244
lz4 1.7.5 (fast -1) 2.10 452 2244
lzjb 2010 1.73 218 402
zlib 1.2.11 -1 2.74 66 250
zlib 1.2.11 -6 3.11 20 267
zlib 1.2.11 -9 3.13 8 269

Table 2.1: Comparison of compression algorithms [lzb]

Compression ratio is defined as uncompressed
compressed

.

Lz4

lz4 is used for compression and decompression of data files. It is available in a free
program library and based on the LZ77 algorithm. A small sliding window searches for
redundancies. The substitution table is kept small to fit in the very fast L1 cache and
thereby is tuned for speed. The inner workings of LZ4 are described in [lz4c].

Gzip

Gzip is also based on LZ77. The additional used combination with the Huffman encoding
achieves a higher compression ratio at an increase in time [gzi].
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2.2 ZFS Internal structure
2.2.1 Block size
The default maximum block size for ZFS is 128 KiB. This is not a fixed value but
the upper limit for big files. If small files are written in ZFS they are chunked into
smaller pieces. Any power from 2 to 512 bytes are possible [?]. In comparison to a static
block size the variable block size uses storage space more efficient especially for block
compression where the ratio is also variable.

2.2.2 File structure
The data in ZFS is stored as a large tree of blocks. Each parent block has block pointers
for their children. The bottom level of the tree where the data is stored is called L0 [dno].
The above parent blocks called indirect blocks have a block size up to 128 KiB [ind].
With a block pointer size of 128 byte one indirect block can address up 1024 children.

2.2.3 ZFS transaction groups
ZFS processes data in so called transaction groups [txg, 39] that are uniquely identifiable
and pass through three transaction group states one at a time. These are called open,
quiescing and syncing.

Whenever data is to be written or modified these request are assigned to the current
open transaction group. The size limit is given by a partial amount of available memory.
If the transaction group is full no more data is accepted until the current transaction
group enters the next state and a new transaction group is opened.

Quiescing is a buffer state where the transaction group waits before it enters the ZFS
pipeline.

In syncing state all the data are passed through the pipeline. In this stage all the IO
requests are managed as ZIOs. In this ZIO struct all information whether it is a read or
write, synchronous or asynchronous, the size before and after compression and which
compression algorithm should be used is stored. All ZIOs are ordered hierarchically.
This tree is the representation of all the modified (dirty) data in the file system [vid].

2.2.4 ZFS pipeline
When looking at the zio pipeline the data through-passes 3 main stages most relevant for
writing. First the data is compressed by the compression algorithm. Then the compressed
data is enqueued where it waits in case the storage is busy. Finally the reduced amount
of data is written to storage.
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Figure 2.1: Write behavior of compression turned off

In this section data collected from a single file write is analyzed and visualized to
demonstrate the pipeline write behavior in ZFS. In Figure 2.1 the change in number
of ZIOs in the queue over time is shown in blue on all sub-figures. Shown red in each
sub-figure is the delay of: first the duration of how long it took to compress the ZIO
and second the time a ZIO has spent in the queue waiting to be written. Each peak
represents a transaction group in syncing state. "Transaction groups enter the syncing
state periodically so the number of queued asynchronous writes will quickly burst up and
then bleed down to zero"[vde, 77]. Even though compression is turned off, the meta-data
is compressed by lz4 causing the compression delay. The allocation delay is negligibly
small and has no effect on the queue. The spent time in the queue is steadily increasing
as the requests are processed after each other.
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Figure 2.2: Write behavior of lz4

As compression and writing happen in parallel the queue grows if the throughput of
the compression algorithm is higher than the transfer rate to the storage device as shown
in 2.2. The Lz4 compression only takes place in the beginning of the syncing process and
during subsequent writing no CPU resources are required. The ordering of sequential
blocks might get mixed up when compressing in parallel but the queue tries to keep the
logical block addressing order for asynchronous writes [vde].
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Figure 2.3: Write behavior of gzip-1

When using gzip-1 (Figure 2.3) the storage device is not running at full capacity
because the data is too much delayed during compression. The compression takes four
times as long as lz4. There is almost no queue, the queue delay is very small.
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Figure 2.4: Write behavior of gzip-9

Gzip-9 compression (Figure 2.4) takes three times longer than gzip-1. There are a lot
of outliers causing high variance. Write requests are delayed even more.
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Figure 2.5: Write behavior of lz4 with throttle

When more than one storage device is part of the system the data must be distributed
properly. When allocating the data equally in the beginning, fast disks will finish early
and have to wait for the slow disks. This is prevented by "throttling block allocations in
the ZIO pipeline"[zio]. This feature limits the number outstanding allocations - allocated
but not yet written. A small portion is continuously allocated to provide data on demand.
Auto compression is an extension to the ZIO write throttle as compression is used to
delay the pipeline but with main focus on a single device. Either way the advantages
for multiple disks occur. As can be seen in Figure 2.5 the number of ZIOs in the queue
hits a limit at 100 block write requests. Compression is not delayed through the throttle.
Even though allocations are delayed, the allocation delay measured in Figure 2.5 / 2 is
negligibly small.
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3 Design
In this chapter the design theory is discussed. First it is analyzed how data throughput
can be increased by using the lz4fast algorithm. Second it is described how the auto feature
chooses the compression algorithm byitself. In the last section the benefits of the QoS
feature are described and a possible design concept is proposed.

3.1 How lz4fast compression increases throughput
Lz4 is a very fast compression algorithm. The actual version 1.7.5 supports acceleration
noted as lz4fast and achieves compression speed even higher than the basic lz4. By
passing an integer value to the algorithm the compression throughput is increased by
about 3-4% [lz4e] for the cost of a decrease in compression ratio. Since lz4 support
was added in 2013 the main algorithm of lz4 has been unchanged. By updating to the
newest version, ZFS will benefit from the additional acceleration factor to increase write
performance. The decompression is unaffected and fully compatible to the improved code.
For this reason the lz4fast feature can be implemented read-only backward compatible.

The equations below were designed by approximating lz4 benchmark values taken
from [lzb] and [lz4e]. This gives an overview of the compression behavior of lz4fast for
nowadays typical data types [sil]. The z4fast-1 algorithm is the same as lz4.

compress_through = lz4throuth+ lz4throuth ∗ acceleration ∗ (n− 1)a ∗ b (3.1)

ratio = 1 + (lz4ratio− 1) ∗ e(−(n−1)∗acceleration) (3.2)

transfer_throughput = storage_throughput ∗ ratio (3.3)

The compression throughput (Figure 3.1a) and ratio (Figure 3.1b) is calculated
visualized based on Equation (3.1) and Equation (3.2) and the data from Table 2.1. The
staight line is the approximation of an increase of 4% per acceleration factor (a=1 and
b=1). The exponential approximation (a=0.85 and b =1.75) shown in blue is used for a
better representation for this particular benchmark where a and b were calculated by
regression. The compression throughput varies on different systems and the compression
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ratio is dependent on the data. As the transfer throughput (Equation (3.3)) is dependent
on the ratio it can be controlled by compression.
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Figure 3.1: Compression throughput and ratio as function of the acceleration factor n

Single file approach

If only a single file needs to be compressed and transfered the Equation (3.4) holds
for the throughput. The overall time needed is calculated as sum of compression and
transfer.

datathroughput = amount_of_data
compress_duration+ transfer_duration

compress_duration = amount_of_data
compression_throughput

transfer_duration = amount_of_data
ratio ∗ storage_throughput

Shortend:

datathroughput = 1
1

compression_throughput
+ 1

ratio∗disk_throughput

(3.4)
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Figure 3.2: Throughput behavior for lz4fast as function of acceleration factor n

The write throughput behavior is demonstrated in Figure 3.2a. The values are again
based on the same Table 2.1. The algorithm speed starts at 452 MB/s and the acceleration
is 4%. Storage speed is chosen to be 200 MB/s to demonstrate the benefit of lz4fast. The
data throughput transcends the physical disk throughput of 200 MB/s. This is possible
if the compression algorithm can reduce the amount of data faster than the storage
can write. Figure 3.2b demonstrates how fast the compression algorithm processes
the data based on how much data is saved at current compression rate calculated by
Equation (3.5).

data_reduction_throughput = compression_throughput ∗ (1− 1
ratio

) (3.5)

For sequential data transfer, in this scenario, gzip (zlib) will only become effective
for storage throughput below 42 MB/s. A further statement reflected in Table 3.1 is
that lz4fast-17 is the most efficient algorithm and the efficiency drops with ascending
compression ratio. Also for values above fast-17 there is a loss in efficiency for the lz4
algorithm. Choosing lz4fast-17 over lz4 increases speed by factor 1.7 for the increases in
storage requirement by 15%.

Algorithm Data reduction throughput
lz4fast 1.7.5 -17 297MB/s

z4fast 1.7.5 -3 258MB/s

lz4 1.7.5 237MB/s

zlib 1.2.11 -1 42MB/s

zlib 1.2.11 -6 14MB/s

zlib 1.2.11 -9 6MB/s

Table 3.1: Calculated data reduction throughput based on Table 2.1
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Multiple file approach

A filesystem is designed to handle multiple files in parallel. In ZFS even a single file
is split up into multiple smaller blocks to add parallelism. The idea is justified that
smaller blocks have less redundancies and the benefit of compression is destroyed. But
the results of a small user-space benchmark in Table 3.2 show that lz4 achieves a good
compression ratio even on small block sizes. A one megabyte file results in almost the
same compression ratio as a one gigabyte file. The same holds for the gzip compression
algorithm. This makes it possible for ZFS to perform block compression and block writes
in parallel to achieve higher throughput improvements describe in the following.

Filesize Ratio lz4 without acceleration Ratio gzip-6
1MB 1.71 2.69
1GB 1.74 2.73

Table 3.2: User space compressed file with lz4 and gzip

From the view of a single block, it first has to wait until CPU resources (tcr) for
compression are available and then apply the compression (tc) itself. Then again wait for
resources to write to storage (tsr) and finally the writing/transfer to disk (ts) itself. On
one hand slowing down compression increases the write throughput but can also slow
down succeeding data blocks by blocking the resources. On the other hand slowing down
compression is useful to bridge the time spent anyway in the write queue and would
in addition increase write throughput for following data blocks because the amount of
data is reduced. The duration the block takes can be calculated by summing up all the
four stages as demonstrated in Equation (3.6). Considering a continuous data flow of
multiple blocks passing through a pipeline, the throughput is described by a minimum
of compression throughput and transfer throughput (Equation (3.7)).

throughput = amount_of_data
tcr + tc + tsr + ts

(3.6)

= min(compression_throughput, transfer_throughput) (3.7)

With higher compression ratio the compression throughput is decreasing and the
transfer is increasing. The maximum throughput can be achieved when the compression
throughput is equal to the transfer throughput. This behavior is demonstrated in
Figure 3.3. The algorithm speed again is starting at 452 MB/s for lz4fast-1. The storage
throughput is chosen to be 500 MB/s. This could be a fast sata 3 SSD hard drive [sat].
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Figure 3.3: Parallel throughput in MB/s on the y axis as function of the acceleration
factor n

For lz4, the data throughput is reduced because the compression is the bottleneck.
At about lz4fast-3 the compression throughput reaches the same value as the storage
throughput. At about lz4fast-20 compression throughput is equal to the transfer through-
put and has reached the highest write throughput. Further acceleration will reduce the
compression ratio because than the transfer throughput is the bottleneck.
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3.2 Auto compression feature
In Section 3.1 the throughput behavior has already been discussed. The result has shown
that the maximum write throughput can be achieved when compression throughput
is equal to storage transfer throughput. Both CPU and storage will be running at
maximum capacity. The auto compression algorithm uses a queue based design. If the
queue between compression and transfer is alway kept at a constant level the throughput
condition is satisfied. For this approach it is important that compression does not impair
the transfer rate to achieve the theoretical gain. The on disk write caches should be
helpful to receive enough data to perform the actual data writing independent of the
CPU. The goal is to keep the queue at a constant small level by spending as much time
on compression as the data would spend in the queue.

3.2.1 Estimation of the queue delay
The more data is waiting in the queue the more time is available. When the ZIO enters
the queue it is likely that the data that are already waiting in the queue are served
first. The time that has to be waited can be estimated by how fast the queue processed
(Equation (3.8)). The queue_size in bytes is summed up every time compressed data
is added to the queue. The avg_storage_throughput is approximated from previous
measurements between the average time a ZIO has left the queue and the finish response.

est_queue_delay = queue_size
avg_storage_throughput (3.8)

Queue offset

A reasonable large queue size is very important to maximize throughput. In case of a
too large queue less compression is applied to fill the queue resulting in less compression
ratio and less data throughput respectively. If the queue is kept too small there is a
high risk of it running dry and the storage becomes idle. Furthermore as compression
is parallised on multicore systems the logical block addressing order is mixed up. For
asynchronous writes the queue is reordered to LBA [vde] restore sequential order.

if(queue_size >= buffer)
queue_size− = buffer (3.9)

else

queue_size = 0;

A pre defined offset (buffer) is used to simulate a smaller queue size as demonstrated
in Procedure 3.9. This manipulation effects the queue delay estimation to a lower value
hence a faster algorithm will be chosen and the queue will grow. The size of the buffer
used in the implementation is discussed in Section 5.3
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Handling multiple storage devices

The compression is applied before allocating space on the storage device, as the compressed
size is smaller. When assessing the available time for compression all devices must be
regarded as it is unclear which one will be chosen to write the data to. Each device keeps
track of its own queue and throughput. The auto compression algorithm determines
the minimum_queue_delay of all devices demonstrated in Equation (3.10). This is the
shortest possible case a data block has to wait the before it is transfered to storage.

forall storage devices
est_min_queue_delay = min(est_min_queue_delay, est_queue_delay)

(3.10)

3.2.2 Estimation of the compression throughput
Every time a data block is compressed the time between the compression start (tcst) and
the finish(tcend) is measured. In Equation (3.11) this delay is converted into throughput
to handle variable block size (Section 2.2.1). Each algorithm has its own entry. To
eliminate variance the average of a small number of blocks is calculated (details in 5.3).

compress_troughput[algorithm] =uncompressedsize
tcend− tcst

(3.11)

3.2.3 Auto controller
The auto controller has a subset of compression algorithms available to choose from
listed in Table 3.3. They are in ascending ordered in terms of compression duration and
in descending order in term of compression ratio respectively. Lz4fast-100 is the fastest
available algorithm and gzip-10 the slowest available to cover a big range of adaptiveness.

level: level-0 level-1 level-2 level-3 level-4 level-5 level-[6-14]
Algorithm: lz4fast-100 lz4f-20 lz4f-10 lz4f-5 lz4 gzip-1 gzip-[2-10]

Table 3.3: Chosen compression algorithms

The goal is to keep the queue at a constant small size by estimating the available
duration a data block would stay in the queue. The selection algorithm is based on a
proportional control system[pco]. The more time available the longer the compression
can take as demonstrated in Equation (3.12).

y =Kp ∗ e (3.12)

y is the duration for compression. The error e represents the available time that is
minimized. The more time available the more time can be spent on compression. Kp is
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the proportional factor. It is <= 1 because the algorithm is only selected if more time is
available than the duration the algorithm needs for compression. To prevent oscillation
between very slow and very fast algorithms, the last selected compression algorithm that
has been applied is memorized. Only the next slower algorithm can be selected if the
condition is fulfilled (Procedure 3.13). Big jumps to faster algorithms are allowed in case
the queue empties fast (Procedure (3.14).

if ( uncompressedsize

avg_compress_troughput[level] < est_min_queue_delay) (3.13)

level + +
else

while( uncompressedsize

avg_compress_troughput[level] > est_min_queue_delay) (3.14)

level −−

3.2.4 Expected behavior
As there is no algorithm available for every throughput the alternation of two algorithms
converges to the desired throughput. The average duration and the average ratio model
the new compression properties shown in Equation (3.15) and Equation (3.16). 1 over
throu1 is the time needed to compress with compression algorithm one. The average
time used for two compression algorithms is the sum of both compression durations
divided by 2. The average time is then re-converted into throughput. The expected
compression ratio is the average of both ratios.

newthrough = 1
1

throu1 + 1
throu1

2

(3.15)

newratio = ratio1 + ratio2
2 (3.16)
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3.2.5 Summary
The control system visualized in Figure 3.4 is subdivided into three cyclic steps:
Measure, compare and control.

Measure:

1. the compression thoughput per algorithm
by subtracting finish time tcst and start time
tcend
2. the queue size of each storage device by
summing up incoming data
3. the disc speed by averaging the duration a
block needs to be transferred to storage.

Compare:

if there is more time availabe
than one of the algorithms out of
lz4fast and gzip need for compres-
sion.

Control:

to a faster or slower algorithm
stepwise depending on if more or
less time is availabe.

Figure 3.4: Auto feature control system
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3.3 QoS compression feature
This feature is divided into two main parts. The first idea is to choose compression by
the throughput it can achieve. This could be useful if the user or some application is
interested in saving storage but demands less write bandwidth than available. A possible
use case is that data is generated or collected slower than it can be stored. The minimal
requirements can be defined individually to the current demand.

Second, these chosen requirements should be scalable for multiple applications. Each
application can write to its own dataset with its individual bandwidth demand described
later in this Section 3.3.2.

3.3.1 Single dataset
Table 3.4 lists the algorithms that are used to approximate the selected throughput.
The expected behavior of combining multiple algorithms has already been discussed in
Section 3.2.4.

level: level-0 level-1 level-2 level-3 level-4 level-5 level-[6-14]
Algorithm: lz4fast-100 lz4f-20 lz4f-10 lz4f-5 lz4 gzip-1 gzip-[2-10]

Table 3.4: Chosen QoS compression algorithms

The pipeline model described in Section 3.1 has shown that if compression is slower
than the transfer throughput, this compression also defines the pipeline throughput. With
this in mind the overall write speed can be controlled by compression. Procedure 3.17
demonstrates the controlling algorithm. In case the average pipeline speed (avg_pipe)
is higher than the requested QoS throughput the compression level is reduce and vice
versa.

if (avg_pipe < QoS) (3.17)
level + +

else if (avg_pipe > QoS)
level −−

There are multiple ways to determine the pipeline speed. The easiest approximation
would be to measure the compression duration and calculate the throughput. This
would only be possible if multiple blocks are not compressed in parallel. To estimate
the throughput for parallel execution the measurement needs to be performed over a
period of time(Equation (3.18)). ∑

uncompressedsize is the amount of data that passed
through the compression stage and δt is the interval t2− t1 between measurement start
t1 and measurement end t2.

pipespeed =
∑
uncompressedsize

δt
(3.18)
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If the size of the interval δt is small the selection algorithm can adapt fast to the
current data stream. If δt is large more data blocks will be taken into the average.
Different QoS parameters are settled at this point. For example it can be declared to
provide throughput for a single file from the time it is created until it is destroyed but
these guaranties are more difficult to be fulfilled.
In this approach δt is the time difference between a start of a transaction group

synchronization and the current time after compression. This could achieve improved
results.

3.3.2 Multiple datasets
QoS compression should not only meet the requirements for a single dataset but also for
the use of many datasets in parallel. Because the datasets share the same storage they
also need to share the storage write throughput with each other.

QoS bandwidth

The QoS property value can also be interpreted as bandwidth that is allocated for a
dataset. The maximum available bandwidth is equal to the maximum transfer throughput
that can be achieved.

The use of lower QoS bandwidth results in a higher ratio and therefore more bandwidth
is available for other datasets as Equation (3.19) shows.

used_bandwidth = QoS ∗ 1
ratio

(3.19)

Hierarchical structure

ZFS datasets allow data organization in separate folders with additional functionality.
Properties, like compression, can be set for each dataset individually. Datasets can also
be nested into other datasets and form tree structures. The properties are being handed
down the hierarchy. Child datasets inherit from their parents. For performance relevant
datasets more bandwidth can be assigned than for the irrelevant. In case of inheritance,
parents share allocated bandwidth with their children. But nested child dataset can
overwrite "inherit" with its own value. It is then treated independently from its parent.
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Scheduling

The idea that compression can be used to prioritizes the data is exemplified later in
the Related Work 4.2. The user typically uses lz4 for high throughput and gzip to save
storage. Lz4 needs less time to compress than gzip. When compression happens in
parallel the lz4 data would overtake the gzip data during its long compression. The same
would be applied for qos compression. At this point no further work would have to be
done.
Unfortunately, this behavior could not be shown in ZFS. The reason for this is the

use of transaction groups (Section 2.2.3). Data is collected in memory as TXG before
entering the ZIO pipeline. Only one single group at the time can write out data and is
finished when all data in the group has passed the pipeline.
When writing the same amount of data into multiple datasets they will finish at the

same time. For this reason prioritization has to be done right before the transaction
group assignment.
If too much high throughput dataset data occupies the TXG the low throughput

dataset writes are delayed and cannot achieve their throughput goals. On the other hand
if too much low throughput data is assigned to the TXG the sync can not be done in
time to meet the criteria for high throughput datasets. The right ratio of "fast" and
"slow" data is achieved by fitting the TGX assignment throughput to the compression
throughput which is also equal to the TGX synchronization throughput.
The dataset writes can be approximated as running in parallel because each one of

them performs its controlling individually.

Example
Given are 2 datasets with different QoS settings.
Dataset 1: QoS 100 MB/s
Dataset 2: QoS 10 MB/s

During one second, 100MB from dataset 1 is assigned to the TGX and 10MB is
assigned from dataset 2.
To fulfill the requirements dataset 1 needs 100MB/s throughput for the TGX sync. The
time the data for dataset 1 spent in pipeline because of compression is 100MB/100MB/s

= 1
second . Dataset 2 processes 10MB at 10MB/s compression throughput and also needs
1 second. The TGX synchronization finishes after 1 second and the throughput criteria
is fulfilled for both datasets.

25



4 Related work
This chapter provides a short overview of concepts around the use of compression algo-
rithms relevant for the context of this thesis.

4.1 Automatic selection of different compression
algorithms

The paper [OOOY13] uses dynamic switching of compression to fully utilize the network
bandwidth. The algorithms lzo-(1,5,9,99), zlib-(1,3,5) and lzma-(0,4) are refered to the
compression level 1 to 9. Different kinds of file types are transferred through a variety of
network bandwidth. Figure 4.1 shows the schematic setup.

Figure 4.1: Queue based schematic setup

The data passes through the compressor and is stored inside a buffer. When network
resources are available the size of the buffer is determined and all the data is sent at once.
The controller decides whether the compression level should be increased or reduced
depending on a defined threshold for the recent measured buffer size. The subsequent
paper [OYO16] chooses different subsets of the available compression algorithms called
configurations and compares them on low, middle and high throughput network.
[WWZ16] presents an auto-adaptive model for the Hadoop Distributed File System.

Compression rate CR, compression ratio R and transmission rate TR are estimating
from historic data. Then the compression algorithm that minimizes following formula is
selected:

|CR ∗R− TR| , CR > TR and R < 0.8
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The compression algorithms used here are snappy, qicklz and zlib. If none of the
algorithms satisfy the constrains compression is turned off for a certain number of batch
writes.

[Ehm15] uses a cost function to determine the quality of a currently applied compression
algorithm. Important aspects that were considered are the duration of compression, the
energy consumed and the achieved compression ratio.
The auto compression designed in this paper combines the ideas of estimating the

available time based on compression throughput and transmission and considering the
size of the queue.

4.2 QoS and compression
The paper "Design of a QoS Gateway with Real-time Packet Compression"[HLCY07]
uses LZSS compression to prioritize network packets. For high priority applications
the algorithm uses a small sliding window. Low priority applications are compressed
longer by a large sliding window. "Because the fast compression algorithm consumes
less processing time than the slow compression algorithm, the high priority application
can obtain more transmission chances and more network bandwidth". This approach
could not be realized in the ZFS pipeline but would be possible in other parts of the file
system.
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5 Implementation

5.1 ZFS features per dataset property
ZFS features are an "alternative to traditional version numbering"[zfsa]. When the
on disk format is changed by new implementations this is noted as feature to prevent
incompatibility to older versions. This section describes how to integrate a feature that
is activated by setting a dataset property and deactivated at dataset destruction.

5.1.1 Adding a new compression property value
Dataset property values are stored in a table. Each compression algorithm input string
is represented by its own constant value ZIO_COMPRESS_X.

When extending the property list atLine 9 and Line 12, previous ZFS versions are not
able to handle the "new" values and might crash. To prevent damage, a feature guards
the pool as soon as a dataset uses the "new" property value.

1 void zfs_prop_init (void)
2 {
3 ...
4 static zprop_index_t compress_table [] = {
5 { "on", ZIO_COMPRESS_ON },
6 { "off", ZIO_COMPRESS_OFF },
7 ...
8 { "lz4", ZIO_COMPRESS_LZ4 },
9 { "!! NEW !!", ZIO_COMPRESS_NEW },
10 { NULL }}
11 ...
12 zprop_register_index ( ZFS_PROP_COMPRESSION , " compression ",

↪→ ZIO_COMPRESS_DEFAULT , PROP_INHERIT ,
↪→ ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME , "on | off |
↪→ auto | lzjb | gzip | gzip -[1 -9] | zle | lz4 |
↪→ !! NEW !!", " COMPRESS ", compress_table );

13 ...
14 }

Listing 5.1: module/zcommon/zfs_prop.c : Adding a new property value
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5.1.2 Adding a new feature
First of all a new feature is created. The list of available features is extended by lz4fast,
auto and qos compression.

1 typedef enum spa_feature {
2 SPA_FEATURE_NONE = -1,
3 ...
4 SPA_FEATURE_LZ4_COMPRESS ,
5 ...
6 SPA_FEATURE_LZ4FAST_COMPRESS ,
7 SPA_FEATURE_COMPRESS_AUTO ,
8 SPA_FEATURE_COMPRESS_QOS ,
9 SPA_FEATURES
10 } spa_feature_t ;

Listing 5.2: module/zfs/zfs_ioctl.c: List of features

These features depend on existing features that are essential. Lz4fast is an extension
of lz4 feature and both "auto" and "qos" make use of lz4 and lz4fast respectively.
The extensible dataset feature takes care of setting the dependent feature from active
back to enabled after all datasets that have ever used feature are destroyed to restore
full compatibility to older versions [zpo].
In case the feature is active the pool can allow read only backward compatibility if
agreeing with the implementation.

1 void zpool_feature_init (void)
2 { ...
3 static const spa_feature_t lz4fast_compress_deps [] = {
4 SPA_FEATURE_LZ4_COMPRESS ,
5 SPA_FEATURE_EXTENSIBLE_DATASET ,
6 SPA_FEATURE_NONE };
7 zfeature_register ( SPA_FEATURE_LZ4FAST_COMPRESS ,

↪→ "org. zfsonlinux : lz4fast_compress ",
↪→ " lz4fast_compress ", " LZ4fast compression algorithm
↪→ support .", ZFEATURE_FLAG_PER_DATASET |
↪→ ZFEATURE_FLAG_READONLY_COMPAT ,
↪→ lz4fast_compress_deps );

8 ...
9 zfeature_register ( SPA_FEATURE_COMPRESS_AUTO , ... )
10 zfeature_register ( SPA_FEATURE_COMPRESS_QOS , ... )
11 ... }

Listing 5.3: module/zfs/zfeature_common.c
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If the feature is not enabled the user is refused to set the property. This is the case if
a pool is imported that does not support(Line 13) the feature. The implementation is
equivalent for lz4 as for the new implemented values.

1 static int zfs_check_settable (const char *dsname , nvpair_t
↪→ *pair , cred_t *cr)

2 {
3 ...
4 switch (prop) {
5 case ZFS_PROP_COMPRESSION :
6 ...
7 if (intval == ZIO_COMPRESS_LZ4 ) {
8 spa_t *spa;
9 if (( err = spa_open (dsname , &spa , FTAG)) != 0)
10 return (err);
11 if (! spa_feature_is_enabled (spa ,

↪→ SPA_FEATURE_LZ4_COMPRESS )) {
12 spa_close (spa , FTAG);
13 return ( SET_ERROR ( ENOTSUP ));
14 }
15 spa_close (spa , FTAG);
16 }
17
18 if (intval >= ZIO_COMPRESS_LZ4FAST_1 && intval <=

↪→ ZIO_COMPRESS_LZ4FAST_100 ) {...}
19 if (intval == ZIO_COMPRESS_AUTO ) {...}
20 if (intval >= ZIO_COMPRESS_QOS_10 && intval <=

↪→ ZIO_COMPRESS_QOS_1000 ) {...}
21 }
22 }

Listing 5.4: module/zfs/zfs_ioctl.c: Refuse property
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The LZ4 feature is instantly activated when a pool is created ( ZFEATURE_FLAG_-
ACTIVATE_ON_ENABLE ). Usually the activation is performed at first use of the
feature. This would make no difference for lz4 as the initial meta data is already lz4
compressed. For extensional compression algorithms it would be a possible approach to
activate the feature after the first file is compressed by the new algorithm as applied in
[lz4b]. Unfortunately, the current ZFS version is designed to message an error if unknown
compression values are used. Using the new compression property without activating
the feature(writing data) will cause an error. For this reason the feature is activated
instantly when setting the property.

1
2 static int zfs_prop_set_special (const char *dsname ,

↪→ zprop_source_t source , nvpair_t *pair)
3 {
4 const char * propname = nvpair_name (pair);
5 zfs_prop_t prop = zfs_name_to_prop ( propname );
6 ...
7 switch (prop) {
8 case ZFS_PROP_COMPRESSION :
9 if (intval >= ZIO_COMPRESS_LZ4FAST_1 && intval <=

↪→ ZIO_COMPRESS_LZ4FAST_100 ){
10 dsl_dataset_activate_lz4fast_compress (dsname);
11 } else if (intval == ZIO_COMPRESS_AUTO ){
12 dsl_dataset_activate_compress_auto (dsname);
13 } else if (intval >= ZIO_COMPRESS_QOS_10 && intval <=

↪→ ZIO_COMPRESS_QOS_1000 ){
14 dsl_dataset_activate_compress_qos (dsname);
15 }
16 break;
17 }

Listing 5.5: module/zfs/zfs_ioctl.c: Aktivate feature
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Validation

The functionality of the feature implementation has been validated by the following test
procedure.

1. create a pool with old ZFS version

2. import the pool to new ZFS version -> ok
a) zpool get feature -> deactivated
b) zfs set property -> cannot set property for ’pool’: pool and or dataset must

be upgraded to set this property or value
c) zfs get property -> not set
d) zpool upgrade pool
e) zpool get feature -> enabled
f) zfs set property -> ok
g) zfs get property -> value is set
h) zpool get feature -> active

3. import the pool to old ZFS version -> fail

4. import the pool to old ZFS version as read only -> ok

5. import the pool to new ZFS version -> ok
a) zfs destroy dataset -> OK
b) zpool get feature -> enabled

6. import the pool to old ZFS version -> ok

The pool needs to be destroyed to deactivate the feature. It is not sufficient to change
the property so that the dataset is not using the feature. Once activated only the
destruction can do a reset.

32



5.1.3 Adding lz4fast compression algorithm to ZFS
This feature extends the compression property values by lz4fast-(1-100) to make use of
lz4fast compression algorithm.

1 zfs set compression =lz4fast -X

Listing 5.6: How to activate lz4fast compression

How to add a new property and a new feature has already been described in Chapter 5.1.
This section continues with adding and integrating new values for compression algorithms.

Every compression algorithm is represented by its own value. This value is stored
inside each block written to storage to identify the algorithm needed for decompression.
The number of values that can be stored on storage is limited to 128 [lz4a]. For this
reason in this proposed implementation the enum is split into two parts. The first part is
for values that are stored in the block pointer and are written to storage. The second part
is for compression algorithm that do not need an additional identification. The lz4fast
compressed data uses the same for decompression algorithm as lz4 whose identification
value is already existent.

1 enum zio_compress {
2 ZIO_COMPRESS_INHERIT = 0, ZIO_COMPRESS_ON ,

↪→ ZIO_COMPRESS_OFF ,
↪→ ZIO_COMPRESS_LZJB , ZIO_COMPRESS_EMPTY ,
↪→ ZIO_COMPRESS_GZIP_1 , ZIO_COMPRESS_GZIP_ ...,
↪→ ZIO_COMPRESS_GZIP_9 , ZIO_COMPRESS_ZLE ,
↪→ ZIO_COMPRESS_LZ4 ,

3 ZIO_COMPRESS_FUNCTIONS ,
4 ZIO_COMPRESS_LZ4FAST_1 , ZIO_COMPRESS_LZ4FAST_2 ,

↪→ ZIO_COMPRESS_LZ4FAST_ ..., ZIO_COMPRESS_LZ4FAST_100 ,
5 ZIO_COMPRESS_META_FUNCTIONS
6 }

Listing 5.7: include/sys/zio_compress.h: New compression value
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The mapping between compression algorithm and block pointer value is applied after
compression(Line 5). The value for the compression algorithm is overwritten by the
value for the decompression algorithm.

1 static int zio_write_compress (zio_t *zio)
2 {...
3 if ( compress != ZIO_COMPRESS_OFF && psize == lsize) { ...
4 psize = zio_compress_data (compress , zio ->io_abd , cbuf ,

↪→ lsize);
5 compress = zio_compress_table [ compress ]. bp_value ;
6 ... }

Listing 5.8: include/sys/zio.c: Compression pipeline stage

In the zio_compress_table it is defined which compression and decompression algo-
rithm is represented by which block pointer value. As shown in listing 5.9 lz4 and lz4fast
store the same ZIO_COMPRESS_LZ4 value.

1 zio_compress_info_t
↪→ zio_compress_table [ ZIO_COMPRESS_META_FUNCTIONS ] = {

2 ...
3 {"lz4", 0, lz4_compress_zfs , lz4_decompress_zfs ,

↪→ ZIO_COMPRESS_LZ4 },
4 ...
5 {"lz4fast -1", 1, lz4_compress_zfs , lz4_decompress_zfs ,

↪→ ZIO_COMPRESS_LZ4 },
6 ...
7 }

Listing 5.9: include/sys/zio_compress.c: Compression table
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5.2 Floating point and average calculation
The delay is measured by gethrtime delivers high resolution in nanoseconds and the
data is measured in bytes. When calculating throughput data loss might occur at integer
division of bytes and nanoseconds. Floating-point arithmetic is expensive to compute
and is not permitted. A transformation from byte per nanosecond to byte per second is
applied. To minimize errors transformation 5.1 is used.

transform = 1000 ∗ 1000 ∗ 1000

troughputBps = byte
nanosecond
transform

= byte ∗ transform
nanosecond

(5.1)

For moving average calculations without keeping track on the current index equation
Equation (5.2) is used. In case the old value is zero the new value forms the new average.
Zeros as a new value are ignored.

average = (new + old ∗ n− 1)/n (5.2)

5.3 Adding auto compression algorithm to ZFS
This feature extends the compression property values by "auto".

1 zfs set compression =auto

Listing 5.10: How to activate auto compression

The important ZIO pipeline stage where ZFS applies compression is called zio_-
write_compress. The compression property value is accessed at this point to call the
data compression function for the selected algorithm. The auto compression needs
more information than conventional algorithms to adapt to the environment. For
this reason the compress_auto wrapper is explicitly called if the auto compression is
requested. In figure 5.1 a small subset of the call stack is visualized. If compression
is set to one of the existing algorithms the zio_write_compress pipeline stages calls
zio_compress_data both shown in white. If auto compression is chosen the path to goes
though the compress_auto method first. zio_unique_parent is another pre-existing
method which returns the parent of the current ZIO. This parent provides feedback
information from previous blocks such as which compression algorithm has been used last
and how long previous compression took in average. The same parent will be updated
with information of the current ZIO at the end of the auto compression procedure by
compress_auto_update explained last in this section. Before that the implementation
of the minimal queue delay estimation and the main controlling algorithm is explained.
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zio_write_compress

compress_auto

zio_compress_data

zio_unique_parent

compress_auto_min_queue
_delay

auto algorithm selection

compress_auto_update

Figure 5.1: Write compress call stack

5.3.1 Storage speed measurement
The write io_delay for the device is measured between the two pipline stages zio_vdev_-
io_start and zio_vdev_io_done. The device throughput is then calculated by dividing
delay and data block size.

The determination of the device throughput is independent regardless of compression.
The overhead is negligible as the time measurements for the device io_delay are pre-
existent. To compensate fluctuation the proximate average value for the last 1000
measurements is calculated.

1 void
2 vdev_stat_update (zio_t *zio , uint64_t psize)
3 {...
4 if (zio -> io_delta && zio -> io_delay ) {
5 uint64_t trans = 1000*1000*1000;
6 int n = 1000; // average over 1000 zios
7 compress_auto_calc_avg_nozero (( trans * psize) /

↪→ zio ->io_delay , &vsx -> vsx_diskBps [type], n);
8 ...}...}

Listing 5.11: module/zfs/vdev.c: Disk throughput estimation
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5.3.2 Compress_auto_min_queue_delay
Devices (vdev) are ordered in a tree structure. The parent vdevs are logical and have
different purposes depending on the chosen software raid. The vdev leafs represent
physical devices. The root vdev is passed to this function and transversed recursive. As
long as the current vdev is not a leaf all children are asked for their queue delay (Line 9).
The minimum of all answers is chosen and passed on to the control algorithm.

1 uint64_t compress_auto_min_queue_delay (vdev_t *vd , uint64_t
↪→ size) {

2 uint64_t min_time = 0;
3 if (!vd -> vdev_children ) { // is leaf
4 (... to be continied ...)
5 return min_delay ;
6 } else {
7 int i;
8 for (i = 0; i < vd -> vdev_children ; i++) {
9 uint64_t time = compress_auto_min_queue_delay (

↪→ vd -> vdev_child [i], size);
10 if (time) {
11 if ( min_time == 0) {
12 min_time = time;
13 } else if (time < min_time ) {
14 min_time = time;
15 } } } }
16 return ( min_time );

Listing 5.12: module/zfs/compress_auto.c: Queue delay

If the current vdev is a leaf the queue delay can be determined. The queue size and
the throughput is accessed through the vdev.

1 ( continued )
2 if (!vd -> vdev_children ) { // is leaf
3 uint64_t vd_queued_size_write =

↪→ vd -> vdev_queue . vq_class [ ZIO_PRIORITY_ASYNC_WRITE ]
↪→ . vqc_queued_size ;

4 uint64_t vd_writespeed =
↪→ vd -> vdev_stat_ex . vsx_diskBps [ ZIO_TYPE_WRITE ];

5 (to be continued )

Listing 5.13: module/zfs/compress_auto.c: Queue delay part1
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A buffer is used to keep a small amount of data in the queue to prevent it from running
dry. The size must not be chosen to big to not get in conflict with the ZIO write throttle
(Section 2.2). By default the max_queue_depth is 100 blocks before the block allocation
is delayed. To not get in conflict with the write throttle the queue must be kept below
the max queue depth. The auto compression algorithm is configured to keep at least 25
(max/4) times the current block size in the queue which is one quarter of the maximum
queue depth for allocation throttling. In other words, in case of fluctuation compression
can take 25 times as long until the queue runs dry. On the downside the queue size is
defined by the compressed data. In case the compression ratio is higher than 4 there
will be over 100 ZIOs in the queue to preserve the safety mechanism. Consequently the
write throttle is activated. This will cause auto compression to stick with the fastest
algorithm.

1 ( continued )
2 uint32_t max_queue_depth =

↪→ zfs_vdev_async_write_max_active *
↪→ zfs_vdev_queue_depth_pct / 100;

3 uint64_t buffer = size * ( max_queue_depth / 4);
4 if ( vd_queued_size_write >= buffer) {
5 vd_queued_size_write -= buffer;
6 } else {
7 vd_queued_size_write = 0;
8 }
9 (to be continued )

Listing 5.14: module/zfs/compress_auto.c: Queue delay part2

After applying the buffer offset to the queue the function now returns the estimated
delay in nanoseconds. Division through zero is considered.

1 ( continued )
2 if ( vd_writespeed ) {
3 uint64_t trans = 1000 * 1000 * 1000;
4 return (( vd_queued_size_write * trans) / vd_writespeed );
5 }
6 return (0);
7 }

Listing 5.15: module/zfs/compress_auto.c: Queue delay part3
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5.3.3 Auto controller
The throughput table for every compression algorithm is stored in the parent ZIO
(io_compress_auto_Bps). Each parent has up to 1024 children (Section 2.2.2) that
have access to the previous measurements. Using the parent as storage unit keeps the
measurement for the compression and the data stored in the child ZIO logically close
together and is easily accessible. As side effect the table has to be rebuilt periodically
after one parent and its children have finished.

1 struct zio {
2 ...
3 uint8_t io_compress_level ;
4 zio_t * io_temp_parent ;
5 boolean_t io_compress_auto_exploring ;
6 uint64_t io_compress_auto_Bps [ COMPRESS_AUTO_LEVELS ];
7 hrtime_t io_compress_auto_delay ;
8 }

Listing 5.16: module/zfs/zio.h: Feedback information

All compression algorithms that should be considered to be chosen are listed in an
array. The number in total is 14 different levels.

1 #define COMPRESS_AUTO_LEVELS 14
2
3 enum zio_compress ac_compress [ COMPRESS_AUTO_LEVELS ] = {
4 ZIO_COMPRESS_LZ4FAST_100 , ZIO_COMPRESS_LZ4FAST_20 ,

↪→ ZIO_COMPRESS_LZ4FAST_10 , ZIO_COMPRESS_LZ4FAST_5 ,
↪→ ZIO_COMPRESS_LZ4 , ZIO_COMPRESS_GZIP_1 ,
↪→ ZIO_COMPRESS_GZIP_ [2 -9] };

Listing 5.17: Sorted array of compression algorithms
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The following describes the decision procedure also visualized in Figure 5.2. At
the beginning of a file-write there is no information about how long each compression
algorithm takes (vc not existent). Therefore the first algorithm is selected as it is the
fastest. As no control information is available the data is compressed with this algorithm.
The compression time is measured and the calculated throughput stored inside the parent
ZIO. In addition the index of the current algorithm is stored (io_compress_level). The
compressed datablock passes though succeeding pipeline stages until it ends up in the
vdev queue and is written to disc. Meanwhile the next block enters the compression
stage. The throughput vc for the previous compression algorithm is now available. The
expected available queue delay is now determined. The previous datablock has direct
influence on the outcome either if it has not reached, through passed or is waiting in the
queue. The available queue delay tmin is compared to the expected duration tc = size/vc

of the first compression algorithm.
1 ( transform * zio ->io\_size) /

↪→ pio ->io\ _compress \_auto\_Bps[level] <
↪→ exp\_queue\_delay)

Listing 5.18: Compare function of estimated compression and estimated queue delay

In case less time is available than the algorithm needs, there is no other choice than
choosing the first algorithm again as there is no faster one available. If the duration for
compression and queue delay are equal the choice is clear to choose the same algorithm
again. But if more time is available for compression it is determined if there is a
slower algorithm available. If so this slower algorithm is checked if the time needed
tmore = size/vless is below the available duration tmin, before this algorithm is selected.
Otherwise there is no change. An exception is made if there is not yet an entry for the
next slower algorithm. The new algorithm is selected but before compression immediate
feedback is given by marking the parent as "exploring" to prevent multi-core systems to
simultaneously select an algorithm of unknown compress duration.
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Figure 5.2: Decision tree for the controller
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5.3.4 compress_auto_update
After all the steps of the control algorithm have finished, the data has been compressed
and the duration of compression has been measured, feedback is given to subsequent
blocks. The compression duration is transformed to compression throughput and averaged.
In case the compression was an exploration to collect data the current level is not updated
to prevent an immediate second exploration of the succeeding block.

1 void compress_auto_update (zio_t *zio)
2 {
3 zio_t *pio = zio -> io_temp_parent ;
4 int n = 10;
5 uint64_t trans = 1000 * 1000 * 1000;
6 uint64_t compressBps = (zio -> io_lsize * trans) /

↪→ zio -> io_compress_auto_delay ;
7 compress_auto_calc_avg_nozero (compressBps ,

↪→ &pio -> io_compress_auto_Bps [zio -> io_compress_level ],
↪→ n);

8
9 if (zio -> io_compress_auto_exploring ) {
10 pio -> io_compress_auto_exploring = B_FALSE ;
11 zio -> io_compress_auto_exploring = B_FALSE ;
12 } else {
13 pio -> io_compress_level = zio -> io_compress_level ;
14 }
15 }

Listing 5.19: module/zfs/compress_auto.c: Feedback
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5.4 Adding qos compression algorithm to ZFS
This feature extends the compression property values by "qos-X"

1 zfs set compression =qos -X

Listing 5.20: How to activate qos compression

The qos compression is wrapped around the zio_compress_data the same as auto
compression. The array of compression algorithms is also equivalent to Listing 5.17.

1 static int
2 zio_write_compress (zio_t *zio)
3 {
4 ...
5 if ( compress == ZIO_COMPRESS_AUTO ) {
6 psize = compress_auto (zio , &compress , zio ->io_abd ,

↪→ cbuf , lsize);
7 } else if ( compress >= ZIO_COMPRESS_QOS_10 && compress

↪→ <= ZIO_COMPRESS_QOS_1000 ) {
8 psize = qos_compress (zio , &compress , zio ->io_abd , cbuf ,

↪→ lsize);
9 } else {
10 psize = zio_compress_data (compress , zio ->io_abd , cbuf ,

↪→ lsize);
11 }

Listing 5.21: module/zfs/zio.c: Compression wrapper

The wanted_throughput is set by the user. To estimate the current throughput
(exp_pipespeed_avg) the measured compression duration average from auto compression
can not be used because of parallel execution. Hence, all previous bytes that have already
passed the compression stage are divided by the time elapsed so far seen in Line 4.

1 enum zio_compress qos_compress_select (zio_t *zio , int
↪→ wanted_throughput ) {

2 zio_t *pio = DMU_META_DNODE (zio -> io_prop .zp_os)->dn_zio;
3 uint64_t compress_time = ( gethrtime () -

↪→ pio -> io_qos_timestamp );
4 uint64_t exp_pipespeed_avg = (pio -> io_qos_lsize * trans)

↪→ / compress_time ;

Listing 5.22: module/zfs/compress_qos.c: QoS controller part1
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To improve accuracy not the next parent but the most distant reference point is chosen.
The first root ZIO, representing the dataset, that is created at sync call (Line 4) allows
to calculate the average compression throughput for the data of a complete transaction
group for the objset.

1 void
2 dmu_objset_sync ( objset_t *os , zio_t *pio , dmu_tx_t *tx)
3 { ...
4 zio = arc_write (pio , os ->os_spa , tx ->tx_txg , ... , os ,

↪→ ...);
5 /*
6 * Sync special dnodes - the parent IO for the sync is the

↪→ root block
7 */
8 DMU_META_DNODE (os)->dn_zio = zio; ...

Listing 5.23: module/zfs/dmu_objset.c: Dataset parent ZIO

The arc_write method above also calls the zio_create method. Here the current
timestamp is noted at creation time. Here the QoS condition is settled to be for the
single TGX sync.

1 static zio_t *
2 zio_create (zio_t *pio , spa_t *spa , uint64_t txg , ...)
3 {
4 ...
5 zio -> io_qos_timestamp = gethrtime ();
6 ...
7 }

Listing 5.24: module/zfs/zio.c: QoS garanties reference point for single datasets
compression
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The qos control algorithm compares current throughput and wanted throughput and
chooses either a slower or fast algorithm level.

1 uint8_t next_level = pio -> io_compress_level ;
2 if ( exp_pipespeed_avg ) {
3 if ( exp_pipespeed_avg < wanted_throughput ) {
4 if ( next_level > 0) {
5 next_level --;
6 } }
7 else if ( exp_pipespeed_avg > wanted_throughput ) {
8 if ( next_level < QOS_COMPESS_LEVELS - 1) {
9 next_level ++;
10 } }
11 zio -> io_compress_level = next_level ;
12 }
13 return res = qos_compression [ next_level ];

Listing 5.25: module/zfs/compress_qos.c: QoS controller part2

Hierarchy

To compare the throughput across the hierarchy a jointly used structure is required.
Because parent dataset is not accessible through the current one an alternative path is
chosen. The same dsl_dir can be accessed by both parent and child dataset.

Parent
Objectset

parent
dataset

parent
dsl dir

parent
dd
...

dsl dirdatasetobjectset

Figure 5.3: Hierarchal implementation
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Prioritization

All the bytes of all data block entering the ZFS memory are summed up (Line 6) for each
dataset individually in the parent dsl_dir. If the amount of data has been added faster
than the given bandwidth, the current throughput is reduced by delaying the incoming
data (Line 14).

1 int
2 zfs_write (struct inode *ip , uio_t *uio , int ioflag , cred_t

↪→ *cr)
3 {
4 ...
5 mutex_enter (& qos_dd -> dd_lock );
6 qos_dd -> dd_qos_size += nbytes;
7 size = qos_dd -> dd_qos_size ;
8 dur = gethrtime () - qos_dd -> dd_qos_ts ;
9 mutex_exit (& qos_dd -> dd_lock );
10 ...
11 uint64_t trans = 1000;
12 uint64_t delay = (( size * trans) / ( through_MBps ));
13 if (delay > dur) {
14 zfs_sleep_until ( gethrtime () + (delay - dur));
15 }
16 ...
17 }

Listing 5.26: module/zfs/zfs_vnops.c: Prioritisation through delaying

The timer and the counted bytes are reset in the same dmu_objset_sync method
used before where the root ZIO for each dataset is created (see Listing 5.24)

1 void
2 dmu_objset_sync ( objset_t *os , zio_t *pio , dmu_tx_t *tx)
3 {
4 ...
5 mutex_enter (& dmu_objset_ds (os)->ds_dir -> dd_inherit_parent ->

↪→ dd_lock );
6 dmu_objset_ds (os)->ds_dir -> dd_inherit_parent ->

↪→ dd_qos_size = 0;
7 dmu_objset_ds (os)->ds_dir -> dd_inherit_parent ->

↪→ dd_qos_ts = gethrtime ();
8 mutex_exit (& dmu_objset_ds (os)->ds_dir -> dd_inherit_parent ->

↪→ dd_lock );
9 }

Listing 5.27: module/zfs/dmu_objset.c: QoS garanties reference point for multiple
datasets
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6 Evaluation

6.1 Testing environment
All data illustrations for ZFS write behavior such as performance uncritical measurements
like the QoS evaluation are done inside a virtual machine. The specification for the host
systems are 2,4 GHz Intel Core 2 Duo, 8GB DDR 3 main memory, HDD 5400 rpm with
transfer about 50 MB/s. The guest system is running ubuntu 16.04 and is limited to
4GB main memory. The same host is also used in the auto evaluation labeled as low
performance setup.
For the lz4fast and high performance auto evaluation measurements are taken on an

2.80GHz Intel Xeon X5560 with 8 cores and 12 GB main memory and HDD speed at
about 100 MB/s.
The data used is a subset from the English Wikipedia dump [dat]. For high and low

compression ratio testing a database and a binary file from [sil] are chosen.

6.2 Lz4 acceleration
Writing files into a dataset, with the lz4fast compression algorithm enabled, is tested
(Table 6.1). As the lz4fast compression algorithm is deterministic the compression ratio
is unchanged for the same data. From lz4fast-20 upwards the ratio is about zero for
the medium compressible data. For the first test series one CPU core is active and
the available storage has 100 MB/s throughput. The throughput for lz4 is the highest
and drops with more acceleration. The storage throughput is the limiting factor of the
pipeline. For this reason the ratio is important to increase write throughput. Lz4 has
the highest ratio and the measured speed of 191 MB/s almost matches 108*1.71 = 184
MB/s. The second test series only uses one CPU core and to simulate fast storage the
file system is mounted in memory. The compression algorithm is now the bottleneck.
Compression speed starts at 228 MB/s and increases with more acceleration. Lz4fast-10
is 1.6 times faster than lz4 at compression ratio of 1.24. The third test uses 8 cores and
is also preformed in memory. At high speeds other pipeline stages effect the throughput
more significantly. At lz4fast-5 the compression algorithm is most efficient and can
increase throughput. Other compression levels cause inefficient use of CPU resources
and reduce throughput.
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Name Ratio 1 core
100 mb/s disk

1 core
in memory

8 core
in memory

Throughput in MB/s
lz4 1.71 191 228 1210

z4fast-2 1.62 180 249 1277
lz4fast-3 1.54 177 266 1322
lz4fast-4 1.47 170 282 1327
lz4fast-5 1.41 162 298 1339
lz4fast-7 1.32 148 329 1316
lz4fast-10 1.24 140 370 1282
lz4fast-20 1.02 113 469 1205
lz4fast-30 1.01 112 546 1220
lz4fast-50 1.004 110 634 1235
lz4fast-100 1.002 110 690 1245

off 1 108 744 1277

Table 6.1: Lz4fast results for write throughput on different hardware
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6.3 Auto compression
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Figure 6.1: Auto compression between lz4 and gzip

A mixture of lz4 and gzip-1 keeps the queue size at constant level of about 50 ZIOs and
provides maximum utilization for CPU and storage. In Figure 6.1 / 1 the compression
delay is measured. Low values represent lz4 compression and high values represent gzip-1.
The bottom Figure 6.1 / 3 is a direct comparison between the current time spent for
compression (red) and the expected approximated queue delay (blue) at this point in
time. The queue delay never drops below the compress delay.
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Figure 6.2: Auto compression between lz4fast-[100,20,10,5,1] and gzip[1-9]

With more algorithms available there is a high chance of oscillation as demonstrated
in Figure 6.2. The queue is kept to a constant size but there is high switching between
multiple levels of lz4fast and gzip. In bottom Figure 6.2 / 3 a high overlapping between
compress delay and expected queue delay can be seen.
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High performance setup with lz4 and gzip-(1-9)
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Figure 6.3: Fast CPU

Figure 6.3 shows the results for high performance CPU measurement. The best write
throughput could be achieved by gzip-1 with 255 MB/s as it also achieves the best
compression ratio. The throughput gain is equal to the compression ratio.
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Figure 6.4: Slow CPU

With only one core active gzip compression now performs worse than with compression
turned off. Lz4 is the best possible choice. The auto compression throughput is close to
lz4 and the compression ratio slightly better.
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Low performance setup with lz4 and GZIP-1 for different filetypes
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Figure 6.5: Low compressible data

On low compressible data all compression algorithms perform worse than no compression.
Auto compression choses the algorithm with highest throughput.
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Figure 6.6: Medium compressible data

On medium compressible data lz4 performs better than off and gzip worse. Auto
compression is in between off and lz4.
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Figure 6.7: High compressible data

On high compressible data lz4 performs best. Auto compression also choses lz4 as
there is no faster algorithm available for this configuration.
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High compressible data with lz4fast(20,10,5,1) and gzip(1-9)
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Figure 6.8: Low performance setup 2 cores

Auto compression compresses the data less than lz4 but performs worse. Also Lz4fast-5
and lz4fast-10 also cause a reduce in throughput.
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Figure 6.9: Low performance setup 1 cores

If only one CPU is active auto compression choses the slowest compression algorithm.
In this case gzip-9. In this the result is even worse than compression turned "OFF".
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6.4 QoS compression
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Figure 6.10: QoS achievements for the single dataset

For the single dataset the selected QoS troughput is achieved. Low throughput results
in better compression ratio.
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Figure 6.11: QoS achievements for two datasets

Figure 6.11 shows the results of several simultaneous writes into two dataset with
different compression settings. The first two tests demonstrate bandwidth sharing
between parent and child. The selected 10 MB/s are equally divided into 5 MB/s for
the child and 5 MB/s to the other child (test 1) or the parent (test 2). The fourth
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test demonstrates the child with overwritten property value. The throughput is then
reached independently. Most interesting is the comparison between the last (lz4-gzip9)
and "qos10 - qos50". The average compression ratio and average throughput of QoS are
both higher than for non QoS.
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7 Conclusion & future work

7.1 Conclusions
The use of the right compression algorithm can improve writes in ZFS. By automatically
adapting compression to either optimal load distribution or chosen bandwidth, throughput
increases and storage space is saved.
The support of more compression algorithms enables more flexibility to the config-

uration setup. The use of lz4 is most effective for fast storage devices while gzip can
improve writes on slow storage hardware and fast CPUs. Lz4fast can slightly can increase
throughput for fast storage devices while requiring less compression time (=less CPU
resources).
Unfortually, the auto compression did not perform as well on low performance CPU

tests. Fast compression algorithms require less CPU and perform well, while the
autocompression is designed for high CPU utilization. For low computational power it
may be concluded that compression has influence on the measured transfer speed in ZFS
therefore the here proposed method does not consider enough parameters to compensate
this deviation. The error of compression effecting other pipeline stages in front of the
queue should be compensated by the queue offset.

For the use of lz4fast the efficency has to be considered if computational resources are
short. For high compressible data the auto algorithm recognizes the reduction in queue
size for lz4 and chooses the next available lz4fast. Yet the overall throughput is reduced.
The gain in speed is not possible because lz4fast does not achieve higher throughput for
this particular testing environment.
The use of many compression algorithms to chose from may cause the implemented

controller to oscillate over a greater distance. This has negative influence on performance.
An example with values from the lzbenchmark [lzb] demonstrates the problem. Gzip-1
can perform 66 MB/s and achieve a ratio of 2.74. If instead a combination of lz4 with
452 MB/s and gzip-6 with 20 MB/s is used they would achieve a lower throughput at 38
MB/s and a lower ratio at 2.6 as calculated in equation 7.1. This reduces throughput on
both sides of the queue and the control algorithm reduces the overall thoughput. Only
supporting two algorithms can achieve better results but then there is a smaller range
available to adapt to.

throughput = 2
1

452 + 1
20

= 38 (7.1)

ratio = 2.1 + 3.10
2 = 2.6
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In the test case of high available computational power about the same performance
and compression ratio could be achieved as the best single choice algorithm (gzip-1).
When only choosing between lz4 and gzip the auto compress feature could always

increase throughput compared to compression turned off if lz4 was able to increased
throughput by itself.
QoS compression proposed a possible implementation to distribute storage band-

width to multiple datasets. The use of compression is fitted to the transaction based
architecture of ZFS. The throughput requirements that are chosen per dataset can
be successfully achieved. Prioritizing fast compression datasets over low compression
datasets could increase the average throughput and the average ratio because (same as
in auto compression) the usage of CPU and storage resources are spent more wisely.

7.2 Future work
The functionality of the features has only been shown for asynchronous writes. Syn-
chronous writes are handled differently in ZFS. More investigation on this end is required.

Other QoS scheduling mechanisms are possible in future implementations. In special
cases, for example file download, where the incoming data arrives slower than the possible
write speed of the file system, the throughput could be adapted to the current demand.
This would act like an extended version of auto compression in consideration of network
resources to maximize storage saving without reduction in throughput.

The auto and qos feature could be improved by adding more compression algorithms
to fill the gap between lz4 and gzip. These algorithms are available but have to be
integrated in ZFS. For example zstd could replace gzip as it is faster in compression
and decompression and achieves a better ratio[lzb]. However, an interesting aspect
is compression in hardware. Intel’s new processors implement the gzip compression
algorithm in hardware. This offload reduces CPU consumption [qat]. Further throughput
benchmarks are required here to compare to lz4. The fact that even if compression
would take longer than with lz4 less CPU resources are needed. The optimal compression
algorithm then has to be reevaluated.

Without the compression offload the CPU load of other applications should be moni-
tored and taken into account for the compression selection procedure. Another aspect in
saving CPU resources occurs when trying to compress incompressible data. Even if a lot
of time is available for compression it should not be spent useless. A hint to ascending
blocks not to use compression or at least only use lz4 could be beneficial.
Besides compression, the decompression speed can play an important role for appli-

cations. The same aspects as for compression are important. Decompression can be
faster than uncompressed reads but the computational power might be taken away from
other applications. Reads can be any number of times and the time point is uncertain.
Therefore the benefit of compression from this point of view is pure speculation. To
stay on the safe side a configuration of algorithms optimized for decompression could be
used. Besides LZ4, the LZ4HC is a possible candidate. The compression ratio achieved
by this algorithm is not as good as gzip at same throughput but the decompression
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speed is as fast as lz4 with about 2200 MB/s. Data reads will always be the same
speed and less dependent on high system load. In cases where the system load can be
predicted to be low in a later point in time when the data is read algorithms like zstd
could perform better. Compression speeds at 242 MB/s are above simple HDD write
speed and decompression at 636 MB/s is generally faster than read capabilities but both
needs to be checked to be sufficient. Using gzip as it is already implemented in ZFS can
still improve reads and writes if an oversupply of computational resources is available.
Besides acceleration for lz4 there has been another addition in the newest version.

The streaming API [lz4d] enables compression of multiple adjacent contiguous blocks.
However, the block order is important for both compression and decompression. The
benefit emerges in a better compression ratio as more than one block is taken into
account. A possible application could be storing of encrypted data and other files that
are read and modified as a whole.
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A Source code

A.1 Auto compression controller

1 uint64_t compress_auto_min_queue_delay (vdev_t *vd , uint64_t
↪→ size) {

2
3 uint64_t min_time = 0;
4
5 if (!vd -> vdev_children ) { // is leaf
6 uint64_t vd_queued_size_write =

↪→ vd -> vdev_queue . vq_class [ ZIO_PRIORITY_ASYNC_WRITE ]
↪→ . vqc_queued_size ;

7 uint64_t vd_writespeed =
↪→ vd -> vdev_stat_ex . vsx_diskBps [ ZIO_TYPE_WRITE ];

8
9 uint32_t max_queue_depth =

↪→ zfs_vdev_async_write_max_active *
↪→ zfs_vdev_queue_depth_pct / 100;

10
11 uint64_t buffer = size * ( max_queue_depth / 4);
12 if ( vd_queued_size_write >= buffer) {
13 vd_queued_size_write -= buffer;
14 } else {
15 vd_queued_size_write = 0;
16 }
17 if ( vd_writespeed ) {
18 uint64_t trans = 1000 * 1000 * 1000;
19 return (( vd_queued_size_write * trans) /

↪→ vd_writespeed );
20 }
21 return (0);
22 } else {
23 int i;
24 for (i = 0; i < vd -> vdev_children ; i++) {
25 uint64_t time = compress_auto_min_queue_delay (
26 vd -> vdev_child [i], size);
27 if (time) {

63



28 if ( min_time == 0) {
29 min_time = time;
30 } else if (time < min_time ) {
31 min_time = time;
32 }
33 }
34 }
35 }
36 return ( min_time );
37 }

Listing A.1: Queue delay extimation

1 size_t compress_auto (zio_t *zio , enum zio_compress *c,
↪→ abd_t *src , void *dst ,

2 size_t s_len) {
3 size_t psize;
4 spa_t *spa = zio ->io_spa;
5 vdev_t *rvd = spa -> spa_root_vdev ;
6
7 zio_t *pio = zio_unique_parent (zio);
8 uint64_t exp_queue_delay =

↪→ compress_auto_min_queue_delay (rvd ,
9 zio -> io_lsize );
10
11 zio -> io_temp_parent = pio;
12
13 *c = ac_compress [0];
14
15 if (pio != NULL) {
16 int level = pio -> io_compress_level ;
17
18 if (pio -> io_compress_auto_Bps [level] != 0) {
19 uint64_t trans = 1000 * 1000 * 1000;
20
21 if ((zio -> io_lsize * trans) /

↪→ pio -> io_compress_auto_Bps [level] <
22 exp_queue_delay ) {
23 if (level < COMPRESS_AUTO_LEVELS - 1) {
24 if (pio ->
25 io_compress_auto_Bps [level + 1] !=
26 0) {
27 if ((zio -> io_lsize * trans)
28 / pio ->

64



29 io_compress_auto_Bps [level + 1] <
↪→ exp_queue_delay ) {

30 level ++;
31 } // else stay on level
32 } else if (pio ->
33 io_compress_auto_exploring == B_FALSE ) {
34 pio -> io_compress_auto_exploring = B_TRUE;
35 zio -> io_compress_auto_exploring = B_TRUE;
36 level ++;
37 } // else stay on level
38 }
39 } else {
40 while ((zio -> io_lsize * trans) /

↪→ pio -> io_compress_auto_Bps [level] >
↪→ exp_queue_delay ) {

41 if (level > 0) {
42 level --;
43 } else {
44 break;
45 }
46 }
47 } // else stay on level
48 }
49
50 *c = ac_compress [level ];
51 zio -> io_compress_level = level;
52 }
53 hrtime_t ac_compress_begin = gethrtime ();
54 psize = zio_compress_data (*c, src , dst , s_len);
55 zio -> io_compress_auto_delay = gethrtime () -

↪→ ac_compress_begin ;
56 compress_auto_update (zio);
57 return (psize);
58 }

Listing A.2: Auto compression controller
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