
Masterarbeit

Support for external data transformation
in ZFS

vorgelegt von

Niklas Behrmann

Fakultät für Mathematik, Informatik und Naturwissenschaften
Fachbereich Informatik
Arbeitsbereich Wissenschaftliches Rechnen

Studiengang: Informatik
Matrikelnummer: 6324995

Erstgutachter: Prof. Dr. Thomas Ludwig
Zweitgutachter: Dr. Michael Kuhn

Betreuer: Dr. Michael Kuhn, Anna Fuchs

Hamburg, 2017-04-06





Abstract
While computational power of high-performance computing systems doubled every two
years over the last 50 years as predicted by Moore’s law, the same was not true for
storage speed and capacity. Compression has become a useful technique to bridge the
increasing performance and scalability gap between computation and Input/Output
(I/O). For that reason some local filesystems like ZFS support transparent compression of
data. For parallel distributed filesystems like Lustre this approach does not exist. Lustre
is frequently used in supercomputers. The Intel Parallel Computing Centers (IPCC)
for Lustre filesystem project is aiming for compression support in Lustre at multiple
levels. The IPCC are universities, institutions, and labs. Their primary focus is to
modernize applications to increase parallelism and scalability. A prior thesis started the
implementation of online compression with the compression algorithm LZ4 in Lustre.
The focus of this implementation was to increase throughput performance. The data is
compressed on clientside and send compressed to the server. However the compression
leads potentially to a bad read performance.

This problem might be solved through modifying the ZFS filesystem which is utilized
by Lustre servers as a backend filesystem. ZFS already has a compression functionality
integrated which provides good read performance for compressed data. The idea is
to make use of this and store the Lustre’s data in ZFS as if it was compressed by
ZFS. Therefore a new interface that takes the necessary information has to be created.
Implementing this is the purpose of this thesis. The goal is to enable the Lustre
compression to save space on disk and most importantly fix the bad read performance.
Throughout this thesis the necessary modifications to ZFS are described. The main task
is to provide information to ZFS about the compressed size and the uncompressed size
of the data. Afterwards a possible implementation of the specified feature is presented.

First tests indicate that data which is compressed by Lustre can be read efficiently by
ZFS if provided with the necessary metadata.
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1 Introduction
This chapter first introduces high performance computing and describes the importance
and role of compression. Following that an introduction to file systems is given. Then
the goals and structure of this thesis are presented.

Motivation
Many computations in science, engineering or business cannot be done with a simple
desktop computers. The field of high performance computing (HPC) is dedicated to
provide the computational power and the algorithms to solve these problems in a short
period of time. Computers used in HPC are called supercomputers. A modern super-
computer is composed of thousands individual computers called nodes. This results
in supercomputers having millions of cores and costing several hundred million Euros.
While also costing millions each year because of the immense electricity consumption as
well as maintenance. The performance of these computers are measured in floating-point
operations per second (FLOPS). The TOP 500 list keeps track of the 500 most powerful
supercomputers. Computers on this list are usually petascale meaning they reach perfor-
mance past one petaflops. For example Mistral at the Deutsches Klimarechenzentrum
(DKRZ) reaches 3.0 PFLOPS [dkr]. Mistral provides 54 PB of usable disk space and
has an aggregated main memory of about 266 TB. Supercomputers are commonly used
for scientific computations that need high computing performance. These computations
often need excessive input and output. So I/O as well as network throughput can be a
bottleneck.

Especially given the fact that storage speed grew much slower than computation speed.
While latter grew by a factor of 300 every 10 years and storage capacity by a factor of 100
in the same amount of time, storage speed only grew by a factor of 20 in 10 years [MK16].
This trend can be supported by comparing Mistral’s performance with Blizzard’s [bli10],
the former supercomputer of the DKRZ from 2009 to 2015. The performance increased
by a factor of 20, while the capacity is only 8 times higher in the new supercomputer.
Even though climate research is especially data extensive, and thus the DKRZ is laying
the focus on data capacity and throughput. This is shown in the storage throughput
which could be increased by a greater factor than storage capacity.

This development leads to a need to perform I/O operations as efficiently as possible.
Data reduction like compression is a rising approach to increase the I/O speed. For this
reason some modern filesystems like btrfs [btr] and ZFS support compression of files.
Data written to these filesystems will be transparently compressed with a choosable
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Blizzard (2009) Mistral (2015) Growth rate
Performance 150 TFLOPS 3 PFLOPS 2000%
Storage capacity 5.6 PB 45 PB 804%
Storage throughput 30 GB/s 400 GB/s 1333%

Table 1.1: Comparsion of Mistral and Blizzard [JMK14].

algorithm. Not only saves this disk storage it will also increase performance [Leo09].
This is the case because modern compression algorithms like LZ4 combined with the fast
computation speed compress and decompress the data faster than it would take to read
and write the uncompressed data.

In high performance computing having parallel distributed access on data is a necessity
for efficent I/O. A commonly used filesystem for this purpose is Lustre. Over 70% of the
supercomputers in the TOP 500 are using Lustre. Whereas 9 out of them are in the top
10. Several of these supercomputers have a Lustre filesystem with more than 50 PB of
storage, providing more than 1TB/s of throughput to more than 20000 clients. Lustre
was developed with focus on providing high performance on large distributed clusters. It
uses a local filesystem as backend. For that either ldiskfs or ZFS are available.

The goal of the IPCC project for enhanced adaptive compression in Lustre is to
implement compression support in Lustre. Compression on the clientside should allow to
use the available network and storage capacity more efficiently. Additionally applications
should provide hints to Lustre that are useful for compression. With adaptive compression
it should be possible to choose appropriate settings depending on performance metrics
and projected benefits. The project is carried out by the the Scientific Computing group
located at the Universität Hamburg [ipc].

Lustre compression prototype
The thesis [Fuc16] proposed a basic compression functionality in Lustre. This basic
functionality comprises asynchronous buffered write and read operations of user data.
Thereby the most common use cases are covered. The focus of the design lays on
increasing the network throughput. Therefore the data is compressed transparently on
clientside and send compressed to the server.

The current state of the implementation only is able to cope with compressible data
and includes no metadata send to the server. So while reading decompression is applied
blindly. However, the goal is to send metadata containing the compression algorithm
used and the compressed size of the data to the server. But even if the server has
information about the compressed data, the underlying local filesystem has none. This
ultimately will lead to bad read performance.
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Thesis goals
To resolve this problem the idea is to make use of the compression functionality of ZFS.
ZFS should be provided with enough information by Lustre to store the data like they
were compressed by ZFS itself. This way the compression done by Lustre is able to
save storage on disk while simultaneously increase the read performance since less data
needs to be read in and effective readaheads can be made. The implementation should
keep the wanted adaptive compression by Lustre in mind, and thus provide flexibility
on the choice of the algorithm. Over the course of this thesis it is analyzed and later
implemented how the data compressed by the Lustre client can be correctly integrated
into ZFS.

Structure
First an overview of relevant topics for this thesis is given. It starts with a brief
introduction on compression and its applications. Afterwards an introduction to the
Lustre filesystem is presented. Then with ZFS the most important subject gets introduced.
All significant features are described as well as the internal structure. The design how
to integrate compressed data into ZFS is presented in Chapter 3. Chapter 4 displays
related works done in transparent compression and the usage of ZFS as a backend of
Lustre. Chapter 5 presents the implementation. For that detailed information about
ZFS’s I/O path are given. Followed by a description of the implementation for writing
as well as reading Lustre’s pre-compressed data. Chapter 6 evaluates the performance
for reading the compressed data. At last Chapter 7 concludes the thesis and suggests
future works.
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2 Overview
This chapter provides an overview of all relevant topics for this thesis. First basic
introductions to compression algorithms are conducted. The focus lies on algorithms that
are available in ZFS. The following section presents essential information and features
of Lustre. The next section deals with ZFS. Information about the features of ZFS and
basic information is followed by a description of the internal functioning of ZFS.

2.1 Compression
The overall goal of compression is to encode information in a way that data can be
represented with fewer bytes. Generally there are two types of compression lossless or
lossy.

2.1.1 Lossy compression
Lossy compression reduces the data with discarding partial information and through
approximations. This compression method is mostly used for multimedia data like video,
images or audio files. Prominent examples are the mp3 format for audio files or JPEG for
images. In the best the data reduction made by the lossy compression is not recognizable
by the user. If speed and data reduction is the focus also a quality loss of the data
might be acceptable for the user. Lossy compression is irreversible. The compressed data
cannot be restored into its inital state. This makes lossy compression not applicable
for filesystems. In filesystems the compression should be transparent to the user. This
means that the data should be returned to the user in the same state as it was stored.
However, this is not possible once the data is compressed using lossy algorithms.

2.1.2 Lossless compression
In difference to that lossless compression aims to compress data in a way that all infor-
mation can still be retrieved through decompressing the data. This type of compression
is used in a lot of areas. For text documents and executable programs as well as in some
media formats like PNG for images. Lossless compression is applicable for filesystems as
it can be used transparently. ZFS supports transparent lossless compression with various
algorithms. In following the use and functioning of these compression algorithms are
described.
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Zero Length Encoding (ZLE)

Run-Length Encoding (RLE) is a very simple compression algorithm. Generally it will
search through the data to find sequences of repeating data values. A detected sequence
is replaced by a tuple of an identifier for the data value and the length of this sequence.
So for example the sequence aaaabbb would be stored as a4b3. For bit patterns this
algorithm simplifies because only two different values are possible. Hence, only the length
of a sequence has to be stored. For example the sequence 1111011000 would be stored as
4123. Additionally the first value of the first sequence has to be saved for decompression.
Mostly this algorithm is done as preliminary step for other compression algorithms.

ZFS supports a variation of this algorithm which only compresses continuous runs of
zeros called ZLE.

Lempel Ziv 4 (LZ4)

The compression algorithms LZ77 and LZ78 by by Abraham Lempel and Jacob Ziv are
the bases of many widely used compression algorithms. The LZ77 algorithm builds up a
dictionary of sequences.

It replaces repeated occurrences of sequences with a reference to the same sequence
earlier in the uncompressed data stream. Instead of the reoccurred sequence a triple is
stored with position of the sequence in the uncompressed data, the sequence length and
the first differing symbol [wikc].

(pos, len, char)
abrakadabra (0,0,a)
a brakadabra (0,0,b)
ab rakadabra (0,0,r)
abr akadabra (3,1,k)
abrak adabra (2,1,d)
abrakad abra (7,4,-)

Table 2.1: Example LZ77 compression of abrakadabra [lz7].

Table 2.1 shows an example of the LZ77 compression with the word abrakadabra.
The first three chars are new, and thus have address and sequence length 0. The following
a already occurred three chars to the left and the next char is a k. Hence the following
triple is (3,1,k). The final sequence abra begins 7 positions to the left and leads to a
triple (7,4,-).

LZ4 belongs to the family of Lempel-Ziv algorithms and was developed by Yann
Collet [Col11]. It’s high compression and especially decompression speeds made LZ4 a
widely used algorithm. Since version 3.11 the Linux kernel supports LZ4 natively [Cor11].
In ZFS it replaced the former default compression algorithm LZJB. It outperforms LZJB
especially on incompressible data and decompression [Kis13].
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GZIP

The GZIP algorithm was created by Jean-Ioup Gailly and Mark Adler. The first release
was on 31 October 1992. The newest stable release is version 1.8 which was released on
26 April 2016. GZIP is released under the GNU General Public License.

GZIP is based on the DEFLATE algorithm. GZIP first compresses the data with the
LZ77 compression. The output is compressed again using Huffman coding.

Huffman coding reduces the data by representing frequently occurring symbols (or
sequences) with a lower number of bits than less frequent symbols. Figure 2.1 shows an
example of a Huffman code for the sequence ABABBAACCAA.

Figure 2.1: Huffman tree generated from the sequence ABABBAACCAA.

For computing the Huffman encoding the algorithm builds up a tree. First the number
of occurrences for each symbol are counted. In this case A occured six, B three and C
two times. Then a parent node is created for the two least frequent occurring symbols.
The numbers of those symbols summed up. Now A and the parent of B and C are
the least frequent. For those another parent node is created. Each branch to the left
is assigned with a "0" and each to the right with a "1". This leads to the code "0" for
A, "10" for B and "11" for C. This way instead of representing each letter with a 8-bit
American Standard Code for Information Interchange (ASCII) encoding the symbols
can be represented with one bit (A) or two bits (B and C ) [huf].

Due to using two different algorithms sequentially on a file the GZIP algorithm has
relatively slow compression and decompression speed but on the other hand provides
better data reduction than algorithms only using compression based on LZ77 like LZ4.
The GZIP algorithm offers different levels as options for compression ranging from 1 to
9, whereby higher levels provide better compression at the expense on runtime.
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Comparison of compression algorithms

Table 2.2 shows a comparison of the compression algorithms supported by ZFS. The
algorithms were applied to a large set of input data from the Max Planck Institute’s
Global Ocean/Sea-Ice Model (MPI-OM) [ML15]. The simple ZLE algorithm yields the
shortest runtime but on the other hand is only able to save around 10% of the data.
LZJB and LZ4 were developed to provide fast compression and decompression times,
and thus have a significantly worse compression ratio than GZIP-1. GZIP-1 has the
drawback of more than doubling the processor utilization. The highest compression level
of GZIP provides only a slightly improved compression ratio at the expense of a high
runtime.

Algorithm Compression Ratio Processor Utilization Runtime Ratio
none 1.00 23.7% 1.00
ZLE 1.13 23.8% 1.04
LZJB 1.57 24.8% 1.09
LZ4 1.52 22.8% 1.09
GZIP-1 2.04 56.6% 1.06
GZIP-9 2.08 83.1% 13.66

Table 2.2: Comparison of compression algorithms supported by ZFS. Table taken
from [ML15].

However the presented comparison only covers a single data set. For differing data the
compression ratio might also differ significantly. For some data mainly containing zeros
ZLE compression might be enough. Which algorithm is the best for a data set not only
depends on the data but also on the goal. When performance is important a algorithm
with a short runtime is preferred. On the other hand when high compression rates are
the goal a compression algorithm providing that is the better choice.

Therein lies a wish to chose the algorithm adaptively based on the data or focus of
the compression. In the thesis [Ehm15] a prototype of adaptive compression for ZFS
was implemented. The compression algorithm is chosen based on the file type and three
modes: performance, energy and archive.

2.2 Lustre
Lustre is a distributed file system licensed under GNU. It is widely used among the
TOP500 supercomputers. In 1999 development of Lustre started as a research project by
Peter Braam with the release of the first version being in 2003. In 2007 Sun Microsystems
bought Peter Braam’s Cluster File Systems corporation and continued the development
of Lustre until Oracle ceased the development after they acquired Sun Microsystems. The
work on Lustre was then continued by other companies like Xyratex and Whamcloud.
The latter was afterwards acquired by Intel which continued working on Lustre. Xyratex
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purchased the original Lustre trademark, logo, website and associated intellectual property
by Oracle. Currently many organizations are working on Lustre to integrate new features
and improvements of Lustre. In December 2016 the latest version of Lustre 2.9.0 was
released. This release of Lustre for example introduced barge bulk I/O to get a more
efficient network to disk I/O. Also additional serverside advise and hinting about the
nature of the data access were implemented [lusb]. For the next release 2.10.0 snapshot
support for Lustre using the ZFS backend is in development [lusa]

2.2.1 Basics
Lustre is a kernel file system developed to enable high performance on thousands of
nodes and petabytes of storage. On serverside Lustre only supports enterprise kernels
like Red Hat Enterprise Linux (RHEL) and Community Enterprise Operating System
(CentOS). In contrast to the clientside which also supports newer kernels.

Traditional network file systems are only able to use one central server that is connected
via one single network path to the clients. The obvious backdrops of this approach are
that the server is a single point of failure and the bandwidth has a limited scalability.
For this reason Lustre was designed to support distributed servers that can be accessed
in parallel.

2.2.2 Architecture
Lustre consists of three main functional units which are Metadata Server (MDS), Object
Storage Server (OSS) and clients. In addition to that a single Management Target (MGT)
is connected to one Management Server (MGS). As Figure 2.2 shows Lustre allows to
have different number of servers as well as volume sizes for OSTs and MDTs.

network

MGS

MGT

Client ClientClient Client

MDS

MDT

MDS

MDT

OSS

OST

OSS

OST

OSS

OST

Figure 2.2: Lustre architecture. (Graphic taken from [Fuc16])
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Management server

The MGS stores and retrieves the global configuration of Lustre cluster systems from the
MGT. The configuration contains information like network identifiers and target lists. It
also acts as a registration point for all components. Often the MGS is paired on one
machine with an MDS and shares its storage. But due to special critical recovery issues
the MGT should not be located together with metadata targets.

OSS

Lustre is an object-based file system. The object storage service consists of nodes called
OSS and storage devices called Object Storage Target (OST). They are used for storing
and retrieving data in Lustre. For a single file system Lustre allows up to 1000 OSS
nodes with up to 32 OSTs per node. The total count is limited to 4000 OSTs [lusc].

Metadata server

Like the OSS the metadata services are made up of two components, nodes and storage
devices. The MDS is a node that manages all metadata operations. It stores names and
location of files and directories. Up to 256 MDSs and up to 256 MDTs per file system
are supported.

Client

Up to 100000 clients can communicate with one Lustre system. Clients run computation,
visualization or desktop nodes that mount Lustre and communicate with the filesystem’s
servers. The clients run a Portable Operating System Interface (POSIX) compliant file
system that never has direct access to the underlying file storage. But still the files
can be handled on mounted clients as if they were stored locally. Since Lustre provides
storage a client does not need to have its own. Lustre supports transaction logic as well
as logs for redoing and recovering operations.

2.2.3 Internal functioning
This section gives a basic overview of the functionality of Lustre. Clients have no access
to the on-disk file structure of the servers. Clients first send a request like a read or write
operation to the MDS. The MDS then sends it’s respond back to the client. Now the
MDS is able to grant permission for the requested operation. Subsequently the required
locks, metadata attributes and the unique file layout are returned to the client.
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Client

MDS

operation request
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transfer

transfer

acknowledgement

Figure 2.3: Request processing in Lustre. Picture taken from [Fuc16]

File striping

In Lustre file data is distributed in file stripes across multiple OSTs. This increases
throughput because I/O operations are accessed in parallel. Lustre offers various options
for striping the data over OSTs. The user is able to either specify the number of OSTs
to stripe the data over or give a list with specific OSTs to use. It is also possible to state
that every OST is used. As default files are not striped and stored on a single OST.
The stripe offset determines which OST is used first during the striping process. Per
default a random OST is selected. Additionally one is able to set the size of a stripe in
multiple of 64KiB. Here the default is set to 1 MiB. These options are configurable per
file, directory, tree or data pool. However they cannot be changed once the file is created.

Backend

For storing the data locally on metadata and object servers Lustre uses an underlying
local file system. For that reason Lustre uses a layer called Object Storage Device (OSD)
which is fully transparent to the client. The OSD provides object storage services for
either ldiskfs or ZFS. ldiskfs is a Lustre-patched version of the Extended File System
4 (ext4) filesystem. All allocation and block metadata is handled by the OSD for the
underlying filesystem [EB14]. Targets are formatted to either one of the local filesystems.
It is also possible to use combinations of these filesystems for different servers. Lustre is
able to use the features like compression, deduplication or snapshotting provided by ZFS.
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2.3 ZFS
2.3.1 Basics
The development of ZFS started in 2001 by Matthew Ahrens, Bill Moore and Jeff Bonwick
before the source code was released in 2005 [his]. Originally ZFS was developed by Sun
Microsystems for the Solaris operating system. Three years later ZFS was issued in
FreeBSD 7.0. After Oracle bought Sun Microsystems contribution to the source code for
ZFS was stopped. In the same year Illumos was founded as the truly open successor to
OpenSolaris and the development of ZFS continued as a open-source project. In 2013 the
native Linux support of ZFS started. Also the different ZFS projects for all operating
systems banded together to form OpenZFS. The goal of this is to reduce code differences
and coordinate development between the different platforms.

ZFS is a modern 128-bit filesystem. It is a transactional copy-on-write filesystem
designed for easy administration and large capacities. In difference to traditional
filesystems ZFS offers many additional features and functions. In the following the
most important are listed and described.

Copy on write

ZFS is realized as a hashtree of blockpointers with the actual data as its leaves. For
every block a checksum is computed. At every read the integrity of the block is verified.
To make metadata reconstructible copies of the data are held by ZFS.

Figure 2.4: Copy-on-write process in ZFS.
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ZFS holds an array of 128 uberblocks which is used in a round robin manner. If the
filesystem is mounted the uberblock with the highest transaction number is used while
the integrity of the uberblock is checked with the checksum. This array is replicated
multiple times throughout the pool to ensure data integrity. Data in ZFS is structured
as a Merkle tree. A Merkle tree labels every non-leaf node with the hash of the hashes of
its child nodes. ZFS starts a copy-on-write with creating modified copies of the affected
leaves which represent the data blocks. Then the hashes of the leaves and higher levels
up the uberblock are computed. In the last step ZFS updates the uberblock in an atomic
operation. This procedure guarantees that ZFS is never in an inconsistent state.

Pooled storage

Traditional file systems reside on a single physical device. These filesystems need an
volume manager in order to span over multiple devices or to provide data redundancy.
This additional layer between the filesystem and the physical storage devices not only
increases complexity it also detains the filesystem from knowing the physical placement
of the data on the virtualized volumes.

Figure 2.5: Architecture of a traditional filesystem.

Figure 2.5 shows an example of a Redundant Array of Independent Disks (RAID)
architecture created with a traditional filesystem. Two RAIDs are created consisting of
two disk each. With the volume manager these RAIDs are then merged into a physical
volume. Which again are pooled into a single volume group (VG). This VG can be
concatenated together into logical volumes (LV)s. LVs are virtual disk partitions that
act just like raw block devices and can be used to create file systems on them [log].

In difference to this approach the volume manager is integrated in ZFS. ZFS filesystems
use virtual storage pools called zpools. A zpool consists of vdevs, which are virtual
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Figure 2.6: Example of a virtual device.

devices that are either a physical device or a composition of them. These compositions
can be either a mirror or a RAID system. Vdevs are structured in a tree with physical
disks as leafs. Figure 2.6 shows an example of such a tree. Here two 100GB disks are
concatenated. The concatenated disks and another 200GB disk are making up a mirrored
storage.

This simplifies the creation of a filesystem architecture. The architecture shown in
figure 2.7 is able to describe the same architecture as figure 2.5. All four disks are added
to the zpool. At the same time each two disks are configured to two RAIDs. One is able
to create new sub-filesystems on top of the zpool.

Figure 2.7: ZFS pool architecture

Capacity

Originally ZFS stood for "Zettabyte File System" referring to the potential capacities on
zettabyte level possible because of the 128 bit architecture. In the following theoretical
limits in ZFS are listed [ZFSa].

Entries per directory: 248

Maximum size of a single file: 264 bytes (16 EiB)1
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Maximum size of a pool: 278 bytes (256 ZiB)2

Maximum number of devices: 264 bytes
Maximum number of pools: 264

Maximum filesystems per pool: 264

RAID-Z

ZFS maintains its own software implementation of RAID systems for compositions of
virtual devices. Additionally to mirroring the data ZFS offers RAID-Z, RAID-Z2 and
RAID-Z3 as options. For all RAID-Z systems uses striping over all devices to increase
throughput similar to RAID 0. RAID-Z works similar to RAID 5 using distributed parity
bits while RAID-Z2 is similar to RAID 6 using double parity. Since 2009 RAID-Z3 using
triple-parity was implemented in ZFS [Lev09]. Due to the transactional copy-on-write
semantics and the usage of dynamic RAID stripe width ZFS overcomes the problem of
write-holes [Bon05a].

Snapshots and clones

Due to the copy-on-write property creating snapshots and clones becomes easy and
cheap. The read-only snapshot can be created by simply not dropping the reference
to the blocks and pointers. These snapshots can be rolled back and used as backups.
Clones can be created from snapshots. In contrast to snapshots clones are writable and
can be promoted to a filesystem which will turn the current filesystem to a clone.

Data integrity

Data integrity plays a major role in the design of ZFS. Compared to filesystems like ext4
which checksums only for metadata ZFS uses checksums for metadata as well as data
blocks. Either Fletcher-based checksums or Secure Hash Algorithm (SHA)-256 hashes
are available. As explained in 2.4 the checksums are creating a Merkle-tree. Also as
shown in 2.8 checksums are stored in the block pointer rather than at the actual block.
Thus, every block in the tree contains the checksums for all its children. All blocks can
be checked against the checksum of their parent. The parents checksum is validated by
its parent. This ensures end-to-end data integrity. When there is a mismatch of the
data and the checksum in the pointer, it is known that the checksum is correct and the
data corrupted. The checksum was already validated by its parent’s checksum. This
enables ZFS not only to detect all kinds of data corruption but also to repair it. If a
redundant copy of that block exists in a mirror or RAID-Z system ZFS tries to access
the copy of that block and heals the corrupted block by overwriting it with the accessed
copy [Bon05b].

This is an important advantage to RAID systems alone. Some errors for example
through HDD malfunctions are unnoticed and unrecoverable without end-to-end data
integrity. Such errors are called silent data corruption. A study by European Organization
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for Nuclear Research (CERN) showed that over six months and involving about 97
petabytes of data 128 megabytes became permanently corrupted [LNB07].

Data reduction

ZFS supports transparent compression of data. At the moment ZLE, GZIP, LZJB or LZ4
can be enabled for all data at filesystem level. Furthermore deduplication is supported.
Reoccurring records are stored once and referenced. In case deduplication is activated
ZFS changes the checksum algorithm to SHA-256 to correctly detect the duplicate blocks.
The downside of deduplication is that a table containing the blocks and checksums has
to be held in main memory. This table has to be accessed for every write operation.

ZFS design trade-offs
To close the listing features the trade-offs made in the design of ZFS are shortly discussed.
The focus of ZFS was to provide data integrity, recoverability and easy administration.
Because of that ZFS checksums everything to ensure better integrity. However this exten-
sive checksumming costs performance. The pooled storage provides easy administration.
Because of the copy-on-write property ZFS accumulates data in memory and thus is
able to combine many small random write operations into one large sequential operation.
On the other hand copy-on-write requires smarter block allocation and leads to bad
throughput performance for nearly full disks. For the best performance at least a quarter
of a pool should be free. In contrast to overwriting filesystem which still work well when
95% of a disk is full. That all additional features like the RAID-Z system and the volume
manager are integrated into ZFS the implementation still is relatively simple. In the
CPU and memory extensive design of ZFS it was assumed that many fast 64-bit CPUs
combined with large amount of memory are available. If this prerequisites are fulfilled
ZFS is able to manage even enormous filesystems performantly. On the downside it is
problematic to use ZFS on smaller systems using 32-bit CPUs with less than 8 Gbyte
memory and one small nearly-full disk.

2.3.2 Internals
This section introduces the internal structure and architecture of ZFS. First a detailed
description of the ZFS block pointer is given. Afterwards the modules of ZFS and their
purpose are described. Followed by a presentation of the organization of ZFS.

Block pointer

The ZFS block-pointer is a 128 byte structure. Its contents are shown and in figure 2.8.
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Figure 2.8: Block pointer

vdev virtual device ID
offset offset into virtual device
LSIZE logical size
PSIZE physical size
ASIZE allocated size
GRID RAID-Z layout information (reserved for future use)
cksum checksum function
comp compression function
G gang block indicator
B byteorder (endianness)
D dedup
X encryption
E blkptr_t contains embedded data
lvl level of indirection
type Data Management Unit (DMU) object type
phys birth txg of block allocation; zero if same as logical birth txg
log. birth transaction group in which the block was logically born
fill count number of non-zero blocks under this bp
checksum[4] 256-bit checksum of the data this bp describes

Block sizes

The block pointer stores three different sizes. The logical size (lsize), the physical size
(psize) and the allocated size (asize). All are stored in terms of 512 byte sectors. Whereby
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a size equal 0 represents 512 bytes, size 1 represents 1024 bytes and so on. The exact size
in bytes is rounded up to the next sector. If compression is turned off the lsize always
equals the psize.

lsize and psize are 16 bit number and therefore theoretically able to store up to 32
MiB. The asize is a 24 bit number and consequently capable of storing larger values.
This is necessary because of RAID-Z parity and gang block headers that possibly end up
increasing the block size that needs to be allocated. Also the asize may vary for each
data copy and hence is stored for every copy that is allocated.

Data virtual address

The combination of the vdev and the offset make up a Data Virtual Address (DVA). A
DVA uniquely identifies the block adress of the data it points to. The physical block
address is specified as:

physical block address = (offset << 9) + 0x400000 (2.1)
The offset is multiplied by 29 = 512 because it is stored as the number 512 byte blocks.

Additionally 0x400000 which represents 4 Mbyte is added to take two vdev labels and
the boot block at the beginning of the vdev into account. The block pointer is able to
store up to three unique DVAs and thus three copies of the data pointed to by the block
pointer. Per default ZFS will replicate metadata and thus two of the three DVAs set.
Furthermore filesystem may be configured to replicate file data. In this case metadata
will be triplicated. The number of of DVAs used per block pointer is called "wideness".

Gang blocks

The G stands for the gang block bit. This bit indicates that the block pointed to is a gang
block. Gang blocks are used when there is not enough space available to store a contiguous
block. In this case the block will be portioned into several smaller blocks. Gang blocks
are handled transparently and will be depicted as a single block to requesters.

Modules
Figure 2.9 shows all modules and their connection to one another. The modules of ZFS
can be assigned to three layers, the Interface Layer, the Transactional Object Layer and
the Pooled Storage Layer. In the following ZFS’ individual modules are described.
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Figure 2.9: Modules of ZFS and their association to each other. (Based on graphic
from [MKM14].)

Virtual File System (VFS)

The Virtual Filesystem creates an abstraction layer for filesystem operations. User
programs specify their operations according to this generic interface. All file systems
provide an implementation for the VFS interface. Thus operating systems like Linux are
able to support multiple filesystems [Ker10].
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ZFS Posix Layer (ZPL)

The ZPL implements the POSIX compliant VFS Interface. It provides a filesystem
abstraction of files and directories. It manages the tree-structured directory structure.
Also it manages the znode which keeps track of the metadata required to support POSIX
semantics.

ZFS Intent Log (ZIL)

ZFS always remains in a consistent state. Hence ZFS does not need to log information
that is needed to bring a filesystem back into a consistent state. But still for changes
that need to be persisted, for example due to a fsync call, need to be logged. In this
cases changes can be lost due to a panic or power failure. Hence the ZFS intent log
was introduced. It saves all system calls on a ZPL-level that change will change files
in memory. Enough information is saved to replay these changes to disk. Logs can be
removed as soon as a checkpoint was committed to disk. They only need to be flushed
to the stable log (SLOG) when required due to a fsync or other synchronous operations.

ZFS Volume (ZVOL)

ZVOLs are logical volumes that appear as traditional fixed-size disk partitions. They
can be used like a normal block device.

ZFS Attribute Processor (ZAP)

The ZFS Attribute Processor is a module on top of the DMU. A ZAP object is a
key-to-value hashtable foremost used to map directories to their object number and thus
to the location on disk. Since it provides fast entry lookup, new entry insertion, old
entry deletion and full-directory scanning ZAP objects are also used for other metadata
like dataset and storage pool properties.

ARC and Level 2 Adaptive Replacement Cache (L2ARC)

Instead of a Least Recently Used (LRU) ZFS uses an extended ARC that was proposed
in [NM03] by Megiddo and Modha. A LRU uses a single list of elements that inserts new
elements at the beginning and entries at the end of the list are evicted. In difference
to that ARC uses four lists. The Most Recently Used (MRU), Most Frequently Used
(MFU) and a so-called ghost list for both MRU and MFU. The ghost lists are used to
track recently evicted objects. They are not holding the data itself but provide metadata
about the block [Wika].

If a block is accessed it is added to the top of the MRU list. New entries in the MRU
will push other caches to the bottom until they are evicted and added to the MRU ghost
list. If an entry of the MRU cache is accessed again it will be moved to the top of the
MFU cache. New entries will push other entries to the bottom just like in the MRU
list. Subsequent hits will push an entry in the MFU list back to the top of the list. The
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Figure 2.10: ARC

ARC cache as a whole has a fixed size but the cache sizes of the MRU and MFU lists
are adaptively adjusted. Hits in the ghost list of the MRU will increase the size of the
MRU cache because it shows that least recently used elements are evicted too early. The
same goes for the MFU ghost list [Eva14].

Modifications of the ARC for ZFS

ZFS uses a modified variant of the ARC. In difference to the model by Megiddo and
Modha in ZFS elements can be made unevictable. This is the case if there is a active
reference to the object. So a cache might be unevictable but lowest in the list. In this
case the entry lowest in the list that is evictable is chosen. This can lead to the situation
that not enough space for new caches can be freed. Thus, the flow of new data is slowed
down.

In addition to that the ARC in ZFS has a variable cache size as well as variable
block sizes. The cache size increases with high use. Cache size will decrease if system
memory is tight. Because of the variable block sizes caches might not be replaced one to
one. Instead as many blocks are evicted to approximate the needed space as closely as
possible.

Additionally to the Level 1 Adaptive Replacement Cache (L1ARC) in Random-access
Memory (RAM) ZFS is able to use a L2ARC. This cache is stored on Solid-state Drive
(SSD)s or other devices with substantially faster read latency than disks. Mainly the
L2ARC is intended to increase performance of random read workloads. The L2ARC is
populated by a thread that scans the L1ARC and searches for caches that are soon to be
evicted from the MRU or MFU list. Data that is read from the L2ARC it is integrated
into the L1ARC [arc]

DMU

The Data Management Unit implements the transactional object model of ZFS. It is a
general-purpose transactional object store. The copy-on-write property is realized by
the DMU. Blocks are consumed from the Storage Pool Allocator (SPA) and exported
to objects. These objects are part of an object set. In ZFS object sets are referred
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Figure 2.11: L2ARC

to as objset. An objset is the set of objects in a filesystem, a snapshot, a clone or
a ZVOL. Operations on objects like creation or a writing are always attached to a
transaction [Dil10].

Dnode

Dnods are an important data structure in ZFS managed by the DMU. In ZFS the dnode
has many use cases. It describes various objects in the Meta Object Set Layer like
filesystems, snapshots, clones, ZVOLs, space maps, property lists and dead-block lists.
Similar to an inode in traditional filesystems like Unix File System (UFS) or ext4 a
dnode also is used to hold metadata for files and directories. In this cases the dnode
embeds a znode. The znode is managed by the ZPL and contains the required metadata
to support POSIX semantics.

Block size

The block size of datablocks is in ZFS referred to as recordsize. It can be set via a
filesystem property. ZFS supports recordsizes from 512 bytes to 16 Mbytes. However,
the size is limited per default the maximal recordsize to 1 Mbyte. Larger recordsizes
would have a negative impact on I/O latency and memory allocation. So one is able
to change the recordsizes of one block by a filesystem property from 512 bytes to 1
Mbyte. The default recordsize is 128 Kbyte. For smaller files ZFS is able to dynamically
change the record size. Highly compressible files compressed to less than 112 bytes are
embedded directly into the block pointer except deduplication is active. For files smaller
than the recordsize the dnode will point to one direct block pointer. This block pointer
will reference a record with a size that equals the file size. So for example a 42 Kbyte file
would be stored in a 42 Kbyte record.
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Indirection levels

Bigger file sizes are handled by dnodes analogous to inodes using indirect blocks. If the
file outgrows one record a 16 Kbytes indirect block is created that the dnode points to.
A block pointer is 128 bytes in size. Thus the indirect is able to reference 128 pointers. If
these 128 records are not enough a second level of indirection is introduced. The dnode
will reference an indirect block which again will reference up to 128 indirect block. Hence
providing place for 1282 data blocks. For higher file sizes the indirection is increased
similarly. For files with more than one block the record sizes are set to the maximum
record size at creation time. Therefore if the default record size of 128 Kbyte is used for
a 129 Kbyte file two blocks with 128 Kbyte are allocated.

Figure 2.12: Object with 3 levels. (Based on graphic from [SM06].)

Figure 2.12 shows an object with 3 levels. The dnode is able to store at most three
block pointers. In this example for metadata the wideness 3 is used. Hence all three
DVAs of the dnode and block pointer in level 2 and level 1 are used. They all point to a
copy of the same metadata block. Level 2 and 1 are indirect blocks containing the block
pointer. For the user data (level 0) a wideness of 1 is used.

Dbuf Cache

Additionally to the ARC cache an LRU cache exists in the DMU layer. It holds the
buffers used in the DMU. These buffers are referred to as dbufs and are representing one
block. It contains dbufs that are not currently held by any caller for reading or writing.
If the last hold of a dbuf gets released it is added to the head of the list. Dbufs accessed
from the cache get removed from the list and added to the top of the list as soon as they
are released. Cached dbufs cannot be evicted form the ARC. Per default the size of the
dbuf cache is limited to 1

32nd of the ARC size. Increasing the cache size has to be done
via changing the tunable dbuf_cache_max_shift in the source code.
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Figure 2.13: The dbuf cache.

Figure 2.13 symbolizes the eviction strategy used by the dbuf eviction thread. The
low water mark signals that the thread should stop evicting dbufs from cache. When the
mid water mark is reached the thread will start evicting. Reaching the high water mark
indicates that callers adding elements to the cache will evict dbufs directly from cache.
Per default the low water mark is set to 90% of the dbuf cache and the high water mark
to 110%.

ZFS I/O (ZIO)

The ZFS I/O pipeline is the centralized I/O framework. I/Os are executed in pipelines.
This allows to reorder and combine operations to increase performance. Compression,
checksums and data redundancy are managed by ZIO. Also the ZIO is responsible for
creating gang blocks and filling in the block pointer.

Block allocation

Block allocation is a central part for a filesystem. In ZFS the SPA manages allocation of
blocks. Space maps are used to identify free space. A pool is divided up into regions of a
fixed size called metaslabs. Usually around 200 metaslabs are used for a disk. When
allocating new blocks the SPA first will try to use the disk with the most free space of a
pool. On the chosen disk the metaslab providing the highest available bandwidth will be
used to allocate the new blocks. Decisive for that is how fragmented the data on the
metaslab is. Also the outer regions on a HDD are faster and therefore have a higher
bandwidth [Bon06].

ZFS organization

Figure 2.14 gives an overview of how ZFS is organized. The organization of ZFS is
based on object sets. Commonly referred to as objset. An objset describes an array of
dnodes. The uberblock points to an object set in the Meta-Object Set (MOS) layer.
The MOS is managed by the Dataset and Snapshot Layer (DSL) and the SPA. This
object set contains an array of meta-objects like filesystems, ZVOLs, snapshots, clones.
It also contains one master object at the beginning of the array and a single space map
describing allocated and free blocks of the pool. For creating a new meta-objects like
filesystems they just have to be added to the object set.

All blocks of a pool are shared among all meta-objects. Therefore it is possible to
move space between filesystems. When a filesystem needs more space the space map
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Figure 2.14: Organization of ZFS. (Based on graphic from [MKM14].)

is able to find available free blocks and grant them to the filesystem which requested
it. The same way these blocks can be returned to the pool when a filesystem does not
need the blocks anymore. This way a filesystem potentially may use all available space
of a pool. For this reason it is possible to limit the maximum amount of space usable
for a filesystem, or on the other hand set a minimum amount of space reserved for a
filesystem.

Meta-objects are themselves object sets which make up the Object Set layer. For
example in a filesystem this object set describes an array of files, directories and other
filesystem items. The ZPL is responsible for creating the POSIX compliant tree structure
from this object set array.

Figure 2.15: Structure of a filesystem. (Based on graphic from [MKM14].)

Figure 2.15 shows the structure of a filesystem in more detail. The object set contains
three dnodes. Two of them are ZAP objects that record the user and group space
usage for a filesystem. The filesystem’s array of files and directories is referenced by the
remaining dnode. This array starts with the master node. It is a ZAP object containing
the object number of the root inode, the object numbers for the user and group quota
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files as well as the set of files hat have been unlinked but still referenced by an open file
descriptor. Hence are first removed when they become unreferenced.

2.3.3 Tools
ZFS offers some tools for monitoring and debugging. This section gives a short overview
of these tools.

zpool iostat

The zpool command for configuring ZFS pools provides through zpool iostat a tool to
view statistics on the performed I/O operations. Listing 2.1 shows the output of zpool
iostat 1 for a few seconds.

1 capacity operations bandwidth
2 loc free read write read write
3 --- ----- ----- ----- ----- -----
4 37G 6,57G 17 6 2,18M 605K
5 37G 6,57G 0 0 0 0
6 37G 6,57G 556 0 69,5M 0
7 37G 6,57G 730 0 91,3M 0
8 37G 6,56G 585 120 73,0M 5,35M
9 37G 6,56G 574 0 71,8M 0

Listing 2.1: Output of zpool iostat 1 while reading a file

arcstat.py

The arcstat tool prints out ARC statistics [Gre12]. Among many others information
about ARC hits and misses or the ARC size can be printed. All fields are shown in
listing 1. Listing 2.2 shows an output for arcstat.py 1 while reading a file.

1 time read miss miss% dmis dm% pmis pm% mmis mm% arcsz c
2 3:14 3 3 100 3 100 0 0 0 0 115M 845M
3 3:15 680 667 98 667 98 0 0 6 31 200M 845M
4 3:16 624 624 100 624 100 0 0 0 0 278M 845M
5 3:17 844 802 95 388 90 414 100 2 66 377M 845M

Listing 2.2: Output of arcstat.py 1 while reading a file

arc_summary.py

The tool arc_summary.py shows general and overall statistics for the ARC. Six different
pages of information are available. Listing 2.3 shows the output of the first page.

1 ------------------------------------------------------------------------
2 ZFS Subsystem Report Tue Apr 04 16:47:21 2017
3 ARC Summary : ( HEALTHY )
4 Memory Throttle Count: 0

32



5
6 ARC Misc:
7 Deleted : 4.24m
8 Mutex Misses : 1.21k
9 Evict Skips: 1.21k

10
11 ARC Size: 99.88% 5.85 GiB
12 Target Size: ( Adaptive ) 100.00% 5.86 GiB
13 Min Size (Hard Limit): 0.53% 32.00 MiB
14 Max Size (High Water): 187:1 5.86 GiB
15
16 ARC Size Breakdown :
17 Recently Used Cache Size: 99.73% 5.85 GiB
18 Frequently Used Cache Size: 0.27% 16.00 MiB
19
20 ARC Hash Breakdown :
21 Elements Max: 139.28 k
22 Elements Current : 34.81% 48.49k
23 Collisions : 180.80 k
24 Chain Max: 3
25 Chains : 595

Listing 2.3: Output of arc_summary.py -p 1

dbufstat.py

Information about the dbuf cache can be obtained with dbufstat.py. The dbufs
currently in cache can be either printed for each dnode -d or for each dbuf -b. Additional
extended statistics are shown with -x. Listing 2.4 shows an output for dbufstat.py -d.

1 pool objset object dtype cached
2 test 0 10 DMU_OT_SPACE_MAP 4.0K
3 test 0 61 DMU_OT_BPOBJ 16K
4 test 0 1 DMU_OT_OBJECT_DIRECTORY 32K
5 test 0 0 DMU_OT_DNODE 48K
6 test 0 9 DMU_OT_SPACE_MAP 4.0K
7 test 0 8 DMU_OT_SPACE_MAP 4.0K
8 test 51 0 DMU_OT_DNODE 656K
9 test 51 7 DMU_OT_PLAIN_FILE_CONTENTS 24M

10 test 51 8 DMU_OT_PLAIN_FILE_CONTENTS 128K

Listing 2.4: Output of dbufstat.py -d

ZFS Debugger (ZDB)

Zdb is a powerful utility for displaying the on-disk structure of a pool. Additionally
some consistency checking can be performed. The option -C displays the configuration
of all pools, -u displays the uberblock of a specified pool [zdb15]. zdb -b poolname
first verifies all checksums of blocks and prints information about the number and size of
blocks. While zdb -c poolname does the same for metadata blocks. Information about
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datasets is shown with zdb -d dataset. For each repetition of the options -b or -d the
verbosity of the output increases [Roc08].

• zdb -d dataset: Output list of datasets with some metadata like size and number
of objects in dataset.

• zdb -dd dataset: Output list of objects within dataset together with for example
object ID, logical size or the type.

• zdb -ddd dataset: Same output as for -dd.

• zdb -dddd dataset: This puts out detailed information of every object. For files
all POSIX metadata like size, atime and filepath.

• zdb -ddddd dataset: Additionally prints the DVAs for every object.

Listing 2.5 shows an excerpt of the output of zdb -ddddd test. Here metadata for
/file is shown. At the top it begins with information about the object number, the
indirection level of the file and the data sizes. In this case the logical size of the file is
640 Kbyte and the physical size called "dsize" is 120 Kbyte. In the middle metadata
for POSIX compliance are shown. Amongst others the size of the file in bytes (size =
581842 bytes).

1 Object lvl iblk dblk dsize dnsize lsize %full type
2 12 2 128K 128K 120K 512 640K 100.00 ZFS plain

↪→ file
3 168 bonus System

↪→ attributes
4 dnode flags: USED_BYTES USERUSED_ACCOUNTED USEROBJUSED_ACCOUNTED
5 dnode maxblkid : 4
6 path /file
7 uid 0
8 gid 0
9 atime Sat Mar 25 16:08:58 2017

10 mtime Sat Mar 25 16:08:58 2017
11 ctime Sat Mar 25 16:08:58 2017
12 crtime Sat Mar 25 16:08:58 2017
13 gen 649
14 mode 100644
15 size 581842
16 parent 4
17 links 1
18 pflags 40800000004
19 rect blocks :
20 0 L1 0:12805 ce00 :400 20000L/400P F=5 B =649/649
21 0 L0 0:12803 f600 :1 e00 20000L/1 e00P F=1 B =649/649
22 20000 L0 0:128041400:1 a00 20000L/1 a00P F=1 B =649/649
23 40000 L0 0:128042 e00 :7800 20000L/7800P F=1 B =649/649
24 60000 L0 0:12804 a600 :4600 20000L/4600P F=1 B =649/649
25 80000 L0 0:12804 ec00:e200 20000L/e200P F=1 B =649/649
26
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27 segment [0000000000000000 , 00000000000 a0000) size 640K

Listing 2.5: zdb -ddddd test

Taking the output of the DVAs for a file from zdb -ddddd pool the file contents can
be displayed. Listing 2.6 shows the contents of a file. zdb -R pool vdev:offset:size.

1 $ zdb -R test 0:6 c380600 :200
2 Found vdev: /dev/sdb1
3
4 0:6 c380600 :200
5 0 1 2 3 4 5 6 7 8 9 a b c d e f 0123456789 abcdef
6 000000: 48656 c6c6f20576f 726 c64210a000000 Hello World !....
7 000010: 0000000000000000 0000000000000000 ................
8 000020: 0000000000000000 0000000000000000 ................
9 000030: 0000000000000000 0000000000000000 ................

10 000040: 0000000000000000 0000000000000000 ................
11 ...

Listing 2.6: zdb -R pool 0:6c380600:200
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3 Design
This chapter proposes a way how the compressed data stripes can be properly integrated
into ZFS. First the implemented prototype for compression in Lustre and the compression
functionality of ZFS is described. This motivates and specifies the design and behaviour
of the wanted feature to storing pre-compressed data efficiently in ZFS. For that first the
desired behaviour is described followed by a characterization of the necessary metadata
and the interface for the pre-compressed data.

3.1 Lustre clientside compression
The compression design implemented in the prototype is based on the stripes. A stripe
is per default 1 MiB. The stripes are chunked and then each of the chunks is compressed
independently. This is done because compressed data is logically coherent and indivisible.
Modifications cannot just be written into the compressed data. The stripe whole stripe
first has to be read, decompressed, than modified and compressed again before finally
writing it back to disk. This problem is shown in figure 3.2.

So by dividing the data into smaller chunks when modifying the data only the affected
chunk has to be decompressed. Figure 3.1 shows how compression is conducted on a
single stripe. After the stripes are compressed there are two ways to write the chunks.
Either approach B to move all chunks together or approach A to leave the chunks at
their original place in the stripe. Approach B has the problem that a mapping from

1MiB stripe

0 255 256 511 512 767 768 1023

compress

write

A

B

block 0 block 1 block 3 block 4

Figure 3.1: Chunking a 1 MiB stripe into 4 sub-stripes and approaches to store them on
disk. (Graphic taken from [Fuc16].)
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original offsets and the offsets of the compressed data indexes is needed. Also when the
size of the compressed chunk changes through modification all following chunks have to
be shifted which creates high overhead.

In difference to that the sparse stripe of approach A mitigates this problem. Here
only one chunk has to be read, decompressed, modified, compressed and written back
to disk. However, when storing the stripe with gaps in between the chunks has to be
explicitly handled, otherwise the read performance reduces significantly and no storage
can be saved on disk. Unhandled, without any metadata, the underlying filesystem has
no knowledge that the data is stored compressed and where a compressed chunk starts
and where it ends. To the filesystem the stripe would look like a normal 1MiB data
sequence. So either the Lustre server reads in the whole 1 MiB or makes several smaller
read operations. But since the underlying filesystem has no information about where the
next chunk starts, no readahead can be done. For both the read performance would be
worse than storing the data without gaps. But, if the underlying filesystem could handle
the compressed sparse stripes the approach is superior.

Figure 3.2: Read-modify-write problem with clientside compression support. (Graphic
taken from [Fuc16].)

Here the idea is to use the infrastructure of ZFS which is able to handle compressed
data. All necessary metadata should be passed to ZFS to make smart readaheads possible.
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To figure out how the the compressed chunks are best stored and which metadata is
necessary in the following ZFS’s compression functionality is explored.

3.2 Compression in ZFS
Compression in ZFS is set with a filesystem property. This way compression is set on a
per-filesystem basis.

1 $ zfs set compression=on pool/filesystem

The option on will set the compression algorithm to LZ4. To use other compression
algorithms the corresponding value must be specified. Valid are lzjb, lz4, gzip, gzip[1-
9] and zle. With off the compression is deactivated. Compression can be either set for
an entire pool or for a sub-filesystem by specifing it. This leads to an static approach
where every file is compressed with the same algorithm that is currently set. Also
changing the compression applies only to newly written data, it does not work retroactive
on old data.

3.2.1 Metadata compression
ZFS metadata is compressed with LZ4 per default but can be disabled through the
tunable zfs_mdcomp_disable in the source code. This might be beneficial if SSDs are
used for primary storage which perform better with aligned blocks. Compressed blocks
could be unaligned [zfsb].

3.2.2 User data compression
Though compression of user data is set on filesystem-level the actual compression is
conducted on data blocks. This means every block is compressed independently. When
less than 12.5% of the data or no 512 byte sector is saved due to compression of a block
the block is stored uncompressed. These conditions are fixed in the source code.

Storage of compressed blocks

Figure 3.3 shows how the data is stored when ZFS compresses the data. In this example
the recordsize is set to 128 Kbyte and 600 Kbyte of data should be either read or written.
The data is passed to ZFS in one portion. In buffer the data is divided into fixed size
blocks. Before these blocks are written to disk they are compressed separately. On disk
ZFS will, if suitable and possible, write sequentially without gaps. When the data is
read from disk the blocks are decompressed into buffer and then returned to the user
as one portion. Here the size stored on disk is given as the physical size but RAID-Z
parity information or gang-block headers might increase the actual data written to disk.
Therefore the block pointer additionally stores the allocated size.
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Figure 3.3: Compression behaviour in ZFS.

Metadata of a compressed block

The on-disk information stored to correctly handle compression is stored in the block
pointer. There both the used compression algorithm and the physical size are stored.

1 0 L1 0:12805 ce00 :400 20000L/400P F=5 B=649/649
2 0 L0 0:12803 f600:1e00 20000L/1e00P F=1 B=649/649
3 20000 L0 0:128041400:1 a00 20000L/1a00P F=1 B=649/649
4 40000 L0 0:128042 e00 :7800 20000L/7800P F=1 B=649/649
5 60000 L0 0:12804 a600 :4600 20000L/4600P F=1 B=649/649
6 80000 L0 0:12804 ec00:e200 20000L/e200P F=1 B=649/649

Listing 3.1: Output of metadata for blocks of an example file.

Listing 3.1 shows an excerpt of an output by the ZDB. With this tool one is able to
print out information of the data stored in a ZFS pool. This example shows metadata of
all blocks of a compressed file with five data blocks and one indirect block. For every
block the logical offset in the file, the indirection level, the DMU (vdev:offset:asize),
the logical size and the physical size, the fill count and the birth time of the block are
shown. Table 3.1 lists the variables against the first data block.

It shows that the user data with level 0 is written on disk sequentially without gaps.
The indirect block is written afterwards on disk.

ZFS compressed send/receive

The commands zfs send and zfs receive allow to copy a file system from one system
to another system. zfs send creates a stream representation of a snapshot that is written
to standard output while zfs receive creates a snapshot whose contents are specified in
the stream that is provided on standard input [Ora]. One advantage of that method is to
change properties like the RAID-Z replication of the newly created filesystem. To increase
network throughput of the send operation the option –compressed was introduced [Kim].
This opens the possibility to send the file data of a filesystem in a compressed state
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Variable Value
Offset in file 0
Level of indirection L0
vdev ID 0
Offset on vdev 12803f600
Allocated size 1e00
Logical size/physical size 20000L/1e00P
Fill count F=1
Logical birth time/physical birth time B=649/649

Table 3.1: Variable listed against the value for the first block in listing 3.1.

without decompressing it. For this purpose allocating and writing a compressed ARC
buffer was added to ZFS.

3.3 Functionality for pre-compressed data in ZFS
This section lays out how pre-compressed data can be handled by ZFS. The requirements
on the data that is passed to ZFS in order to correctly integrate it into a filesystem.
Present new interface that is needed to write and read the data.

ZFS should be able to handle externally compressed data is if it was compressed by
ZFS itself. The compression should be flexible and applied on a block level. So a file
can consist of uncompressed and compressed blocks. In addition to that it should be
possible that the compressed blocks are compressed with different algorithms. ZFS itself
should not compress or decompress the blocks. When a block is written to disk it ZFS
should not try to compress the block. When a block is read the data should be returned
in the same state as it is written to disk. As described in the compression functionality
of ZFS the compression will be disabled if not enough space is saved. But since the data
is already compressed by Lustre ZFS should be forced to write the data compressed even
if only a few bytes are saved.

3.3.1 Behaviour
The flowchart in Figure 3.4 gives an overview of the desired behaviour. The values used
are exemplary and could be changed but they reflect the default cases for Lustre and
ZFS.
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Figure 3.4: Flowchart of the desired behaviour.

A write operation starts with the Lustre client striping the data into 1 MiB parts.
These stripes are divided into chunks and each block is compressed independently. The
compressed chunks are send over the network to a Lustre server. For each chunk metadata
about the compression algorithm used, the offset, the logical size and the physical size are
provided. The Lustre server uses the ZFS backend and passes the data chunk together
with the metadata to ZFS. There ZFS sets the provided metadata for each record in the
block pointer.

For read operations ZFS is able to make use of the physical size. As ZFS knows how
many bytes have to be read. With the additional information about the physical size
of the block ZFS should be able do readaheads and reach a good read performance.
After reading the compressed blocks into the buffer they are passed to the Lustre server.
Additionally the physical size and the compression algorithm used for each block are sent
to the Lustre server. Afterwards the compressed chunks together with their psize and
compression algorithm are send over the network to the client. Here the client makes
use of the physical size and the algorithm to decompress each block. Hence the stripe is
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uncompressed and can be returned to the application.

Modifying pre-compressed blocks

As shown in Figure 3.2 for updating a compressed chunk the whole chunk is passed to
the Lustre client. Where it is decompressed, modified, compressed and then written back
to ZFS. So every write operation made to ZFS by Lustre is a whole compressed block.
This compressed block always has the same logical size as ZFS’s recordsize. Therefore
logically overwriting the whole block. Which means that there are no read-modify-write
operations within ZFS. For the pre-compressed data an update of a block will replace
the old block.

Behaviour of pre-compressed blocks in ZFS

Figure 3.5 shows the behaviour for pre-compressed data records in difference to figure
3.3. The data records are already passed compressed to ZFS and stay compressed in
buffer as well as on disk.

Figure 3.5: Compression behaviour for pre-compressed data in ZFS.

Every compressed chunk should be mapped to a data record. For that there are two
main requirements that would need to be fulfilled for every data record.

1. The original uncompressed chunk size of the data for a file has to equal the
recordsize in ZFS.

2. The offset for these chunks has to be aligned. So every offset passed to ZFS is a
multiple of the recordsize.

Compression specific metadata

For compressed data ZFS internally needs to know the physical compressed size and
the compression algorithm used to compress the data. In ZFS all sizes (logical size,
physical size, allocated size) in the block pointer are stored in 512 Byte steps. Meaning
for example a psize of 2 stored in the block pointer equals 1024 Bytes. When ZFS
compresses a block and the algorithm returns the physical in bytes which is immediately
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rounded up and stored into the block pointer. But for decompression LZ4 needs the
uncompressed size in bytes. Therefore in ZFS the compressed size is encoded at the
at the beginning of the block in front of the data. In difference to that practice the
other possible algorithm in ZFS GZIP, LZJB and ZLE either store the compressed size
transparently or do not need the compressed size for decompressing.

On disk the only size ZFS stores in bytes is the uncompressed size of the whole file.
This size is stored in a znode managed by the ZPL. So when reading the file uncompressed
it is obvious that all blocks have the same size except the last block which can easily
be computed from the file size. But when reading the file with compressed blocks the
precise size in bytes of every block needs to be known. As explained this poses a problem
because this is only available for blocks compressed with LZ4.

Figure 3.6: Pre-compressed data record with header.

One approach would be to change the block pointer to store the physical size in bytes
but changing the on-disk format is a expensive task. The layout of the block pointer
would have to be changed.

The better approach is to encode the compressed size in bytes at the beginning of
the data block like ZFS is already doing it for LZ4 compression. The other compression
algorithms (GZIP, LZE, LZJB) would become incompatible for decompression. Hence
they have to be marked as not decompressible. For this issue instead of storing the
specific algorithm in the block pointer the block is marked as externally compressed.
The downside is that for a possible reader of the compressed block the used algorithm
becomes unknown. Therefore the algorithm is also stored in front of the data block.
Thus, creating a header consisting of a tag for the used algorithm and the compressed
size in bytes. A data record with a header is shown in Figure 3.6.

Recordsize

The recordsize is set in ZFS with a system property on filesystem level. Recordsizes from
512 bytes to 1 Mbyte are possible. Changing the recordsize will only apply to new files.
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For files smaller than one record the uncompressed size or logical size is set dynamically.
Meaning the file size is rounded up to the next 512 Byte step and set as logical size for
the block. If the file is bigger than one record block sizes are immediately set the to the
recordsize. So for example a 10 bytes file the lsize is set to 512 bytes. A 130 KByte file
with a recordsize of 128KB the logical size for both blocks is set to 128 KB. Thus, ZFS
allocates 256 KB for this file.

The variable block size should be turned off for writing the pre-compressed data. So it
is expected that the logical size for all blocks equals the recordsize.

3.3.2 Interface
A new interface is necessary to distinguish operations for pre-compressed data with usual
operations.

Write interface

For every block in ZFS a logical uncompressed size and the physical compressed size has
to be assigned. Hence for an operation writing a pre-compressed block the new interface
would have to take an parameter containing the physical size of the record. For the
logical size of a block the maximum block size set for the file is expected. But it might
be useful to also pass the logical size for checking purposes. So for every logical and
physical size at most one record can be written. Obviously it would also be possible to
provide an array of physical sizes to write multiple records.

Because the compression algorithm will be saved in the header the used compression
algorithm does not need to be passed to ZFS. It should only be ensured that data
written to this interface is marked as pre-compressed in the block pointer. Though if the
pre-compressed data could be made compatible to ZFS the compression algorithm has
to be passed to ZFS explicitly.

Read interface

For read operations it cannot be known up front if the data is compressed or uncompressed.
Although the information if the block is compressed is stored in the block pointer, and
thus it can be determined if a block is compressed without actually reading the block.
Also the physical size of data blocks is unknown. Hence both must be provided for
every block to the Lustre frontend. Therefore it should be possible that the interface for
reading files is able to read compressed and uncompressed blocks and report which block
holds compressed data. The actual compression algorithm as well as the physical size in
bytes is stored in the header. For read operations it would not make much sense to read
a block partially because it could not be decompressed and therefore not read. So a read
will cover at least one block.
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ZPL Integration
In this thesis the functionality is only described and implemented in regard to Lustre
using ZFS as backend. However writing pre-compressed blocks and reading the blocks
compressed could also be used for other consumers of ZFS. A natural choice would be
an integration into ZPL. However this is problematic because the ZPL implements the
VFS layer. For the needed change of ZPL to pass the physical size or to tag data as
compressed also changes to the VFS layer would have to be made.
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4 Related work
This chapter explores existing transparent compression functionality. Mainly other
filesystems are examined but also an approach for SSD-based compression and in HDF5
file format is introduced. Furthermore an existing design document making use of ZFS’s
end-to-end data integrity by Lustre is presented.

4.1 Transparent compression
The increasing performance gap of I/O and computation continuously decreases the
overhead for transparent compression. Hence making it more and more promising for
the use in file systems. While already some local filesystems besides ZFS are offering
some implementation of transparent compression, the same is not true for parallel
distributed filesystems. However, for example OrangeFS and BeeGFS [Hei14] are able
to support ZFS as a backend, and thus can use its compression functionality on the
server like Lustre currently can. Although in opposite to Lustre they use ZFS through
the POSIX compliant interface. This approach gains flexibility because it can use any
POSIX compliant filesystem as backend. On the other hand Lustre’s implementation of
the DMU interface makes better use of ZFS’s features possible. Hence an feature like
implemented in this thesis seems only feasible for Lustre without conducting changes to
the VFS layer.

4.1.1 btrfs
Alongside ZFS the btrfs may be the most popular file system providing transparent
compression. Btrfs currently supports ZLIB and Lempel-Ziv-Oberhumer (LZO) which
are similar to gzip and LZ4, respectively. btrfs is an extent-based copy-on-write filesystem.
Extent-based filesystems reserve an contiguous area of storage for a file. They do not
need a pointer to every block but rather one pointer to the beginning of the extent and
it’s length. This way for large files metadata overhead for the block-allocation tree is
saved also sequential I/O speed increases due to the data being in one consecutive area
on disk [wikb]. Compression in btrfs is set on a per-extent level, and thus on a file level.
This makes having uncompressed files, files compressed with ZLIB and files compressed
with LZO on a single mountpoint possible. Compression in btrfs is only conducted on
each page individually which is a drawback because it leads to inferior compression ratios
in comparison to ZFS.
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At the Lustre User Group conference 2015 Ihara and Xi presented a prototype for
btrfs-OSD [SI15]. The goal is to make btrfs usable as a backend for Lustre. The initial
benchmark results showed good performance. With a btrfs backend it might be possible
to use it for clientside compression in Lustre like shown in this thesis for the ZFS backend.

4.1.2 NTFS
NTFS is proprietary file system only available for Windows operating systems. It
compresses files using a variant of LZ77 called LZNT1. Files are compressed in chunks
up to 64 Kbytes. A chunk consists of 16 (4Kbyte) clusters. Space can be saved if a
compressed chunk needs less clusters to store a data. For example a chunk compressed to
58 Kbyte will save one cluster, and thus 4 Kbyte on disk. Compression can be activated
von drive, directory and directory tree level.

4.1.3 APCFS
In [KKK10] Kella and Khanum present the APCFS. It is a virtual layer inserted over
existing file system, compressing and decompressing data by intercepting kernel calls.
This layer is implemented as a FUSE file system and compresses the files uses LZ77
and Hufmann coding in parallel. They aim for compression support for multimedia
files. Each media type (e.g. images, videos, audio) is classified and a different lossless
algorithm is applied. For example images should be compressed with a wavelet transform
followed by quantization and different linearization schemes.

4.1.4 HDF5
The HDF5 file format used for storing large scientific data supports transparent compres-
sion with GZIP and SZIP. But also provides the option to use thrid-party compression
methods. For compression the data is chunked into equally sized chunks each of which
is stored separately in the file. Each chunk is compressed individually. Thus, for
I/O operations only chunks containing the accessed data have to be decompressed or
compressed [hdf15].

FlaZ
Many storage systems make use of SSDs as a cache due to it’s superior performance
over hard disk drives but have a limited capacity. To increase the latter for SSD-based
caches Makatos et al. present FlaZ in [TM10]. FlaZ is an I/O system that operates at
block-level and is transparent to filesystems. It provides support variable-size blocks,
mapping of logical to physical blocks, block allocation, and cleanup. This way both
transparent online compression and high performance can be achieved. FlaZ uses the
Lempel-Ziff-Welch (LZW) algorithm.
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4.2 End-to-End Data Integrity for Lustre
As part of the DARPA High Productivity Computing Systems program in 2009 several
design documents for Lustre were prepared. Deskmukh, Dilger and Dawson proposed
a way to combine Lustre’s data checksumming with the ZFS on-disk data checksum-
ming [RD09]. By doing this Lustre would profit from the end-to-end data integrity of
ZFS. The Lustre client computes the data checksum on write and sends it to the server
with the RPC. The server verifies the data checksum once and re-use the same checksum
for the disk blocks in ZFS. For reads the ZFS backend is able to skip the checksum
verification completely and let the Lustre client verify the checksum. In case of a bad
checksum a re-read could be issued which verifies the checksum with the end-to-end data
integrity of ZFS.
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5 Implementation
In this chapter the implementation of the described functionality from chapter 3 is

discussed. First the ARC and dbuf datastructures are described. Followed by a detailed
presentation of the I/O paths of a write and a read operation in ZFS. On this basis
the necessary changes that have to be made are shown. Beginning with the metadata
for the pre-compressed data. Afterwards the implementation for writing and reading
pre-compressed blocks is presented.

5.1 Datastructures
5.1.1 ARC buffer
When a block is cached in the ARC it is tracked by an ARC header arc_buf_hdr_t.
The ARC header consists of fields common to L1- and L2ARC, the header for a buffer
in the L2ARC and the header for a buffer cached in L1ARC. Common fields are for
example the DMU that the header is tracking and the logical size as well as physical
size. For recently evicted blocks these common fields can provide information about the
block. The sub-structure l2arc_buf_hdr_t holds information to retrieve the block from
the L2ARC device.

For blocks in the L1ARC the header contains a structure called l1arc_buf_hdr_t
which points to the data block in memory. When an ARC is cached in L1ARC the
fields for the L2ARC are undefined. The L1ARC has a private data block stored in a
b_pabd. This data block is a copy of the on-disk physical block. When a data block
is compressed on-disk the b_pabd is also compressed. In addition to that the data is
also cached in a list of ARC buffers arc_buf_t. So a header is able to hold multiple
buffers. The arc_buf_t is the structure that is actually accessed by consumers of the
ARC. Every consumer references its own buffer in the list. The consumer either requests
the buffer compressed or uncompressed. Currently compressed buffers are only requested
by zfs send. This allows the buffer for sharing the data with the b_pabd. Otherwise
the buffer will hold an uncompressed copy of the data [arc].

Figure 5.1 shows an example of a block that is cached in the ARC and the relation
between the header and buffers. In this case the ARC is cached in L1ARC. Hence the
L2ARC header is undefined. The header b_pabd is referencing a copy of the compressed
data which is currently stored on disk. The ARC buffer referenced by the header is
requested with compressed data, and thus able to share the data with the header. The
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Figure 5.1: Example of a ARC header referencing two ARC buffers

second buffer in the list was requested with uncompressed data and holds its own un-
compressed copy.

Writing to the ARC

First before writing to disk the ARC header will drop the data stored in b_pabd due
to the fact that the physical data is about to be rewritten. Either loaned ARC buffer
or a released ARC buffer are filled with the updated data that should be written to
disk. Loaned ARC buffers are newly created, and thus cannot have any other readers.
For a released buffer a new header is created if there were other readers of the buffer.
This ensures that only one buffer and one header have to updated conducting a write
operation. After the data is written to disk the b_pabd is filled with the data block that
was just written.

Reading from the ARC

Consumers can only read blocks cached in the l1arc_buf_hdr_t. So first it has to be
checked if the ARC header tracking the block exists. If the header either does not exist
or the L1ARC was evicted, the data has to read from disk and a l1arc_buf_hdr_t has
to be created. For the case of data cached in L2ARC the data cannot be accessed directly.
When retrieved from the L2ARC the data will be integrated into the L1ARC and read
from there. If it exists a new ARC buffer will be created. Three options for the data the
new buffer will reference are possible.

1. If a uncompressed buffer already exists the data of the existing are copied and
referenced by the new buffer.

2. The data of b_pabd is decompressed and copied into a new buffer.
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3. The data of b_pabd can be shared and is referenced by the new buffer. Sharing
uncompressed data is only possible if the buffer is the last buffer in the list. However
compressed buffers can be anywhere in the header’s list.

5.1.2 Dbuf
The buffer in the DMU layer is a structure called dmu_buf_impl_t which is referred to as
dbuf. Every dbuf represents one block either direct or indirect blocks on disk. It inherits
a publicly visible structure called dmu_buf_t shown in listing 5.1. db_data points to the
data buffer of an ARC buffer.

The dmu_buf_impl_t holds, among others, additional information about the indirec-
tion level and the block id. So for example a dbuf with level 0 and block id 0 describes
the first block in the file, level 0 and block id 1 describes the second block in the file.

1 typedef struct dmu_buf {
2 uint64_t db_object; /* object that this buffer is

↪→ part of */
3 uint64_t db_offset; /* byte offset in this object */
4 uint64_t db_size; /* size of buffer in bytes */
5 void *db_data; /* data in buffer */
6 } dmu_buf_t;

Listing 5.1: dmu_buf struct

States

The state of a dbuf is also stored in dmu_buf_impl_t. Figure 5.2 shows a simplified
transition diagram for dbufs. First when a dbuf is allocated it is uncached. Then a dbuf
can either be read, filled or not filled. NOFILL is used for blocks embedded in a dnode or
preallocated blocks. FILL is set when a full block is written. In this case the dbuf is not
first read in but just filled with the data. When reading a block the state changes to
READ.

After the dbuf is filled with either through a FILL or a READ the dbuf is added to the
dbuf cache. When the dbuf is evicted from the cache it first enters the EVICTING state
until it is freed.

Retrieving and creating a dbuf

For retrieving a dbuf from the cache or for creating a dbuf the function dbuf_hold
is used. On the basis of a provided dnode, block id and level a block on disk can be
uniquely identified. Either the dbuf for that block already exists in the cache and is
retrieved or the dbuf is created. Also the hold count for that dbuf is incremented. A
hold count indicates that the dbuf is currently accessed by some caller.
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Figure 5.2: Transition diagram for the states of a dbuf [dbu].

5.2 Write I/O path
Lustre’s OSD layer implements the DMU interface of ZFS. In the following it is described
how Lustre makes use of the DMU interface for reading and writing. The osd_object
structure has a reference to a dbuf from the DMU. The structure niobuf_local shown
in Listing 5.2 is used to get or write the data to the DMU layer. It holds an array of (4
Kbyte) pages which hold the data.

1 struct niobuf_local {
2 __u64 lnb_file_offset;
3 __u32 lnb_page_offset;
4 __u32 lnb_len;
5 __u32 lnb_flags;
6 int lnb_rc;
7 struct page *lnb_page;
8 void *lnb_data;
9 };

Listing 5.2: niobuf_local structure

5.2.1 OSD layer
The function osd_bufs_get_write fills in the pages in niobuf_local. Here generally
two cases have to be considered, a partial block write and a full block write.

Full block write

If a write covers a full block Lustre is able to make use of the zero-copy approach.
Zero-copy has the advantage that the buffer allocated in Lustre does not have to be
copied into a buffer in ZFS. The function dmu_request_arcbuf "borrows" an ARC buffer.
This is done before a transaction is entered. This avoids the possibility of holding up the
transaction if the data copy hangs up on a pagefault (e.g., from an Network File System
(NFS) server mapping). The lnb_data pointer is set to reference this ARC buffer. The
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data is now copied into the ARC buffer and a transaction is entered and the data can be
written to the DMU.

In osd_write_commit first calls osd_grow_blocksize. As explained in Chapter 2 for
small files with only one block ZFS is able to adjust the blocksize dynamically. If the
write operation will increase the block size osd_grow_blocksize increases the block
accordingly. For files with more than one block all blocks already have the recordsize,
and thus osd_grow_blocksize will not do anything. Afterwards a for loop iterates over
the data and calls dmu_assign_arcbuf for every full block that should be written.

Partial block write

For partial block writes the path is mostly the same. However osd_bufs_get_write
does not request an ARC buffer. Instead it fills in the data for as much pages as needed
in niobuf_local. The zero-copy approach only makes one call for the whole data block.
Partial block writes result in calls of dmu_write for every page individually.

5.2.2 ZFS write I/O path
Updates within a ZFS pool are first accumulated in the ARC cache and later written to
disk via a sync operation. Usually this is triggered until a specified time has passed or
64 Mbyte of dirty data have been accumulated. The sync operation can also be started
through system calls like a fsync or administrative action like an export of a pool. But
before the data in memory is flushed to disk ZFS has to create a checkpoint to ensure
the filesystem always transitions from a consistent state to another consistent state.
Therefore all writes and updates are assigned to a specific Transaction Group (TXG).
Synchronizing all data in a TXG may take several seconds. To be able to modify data
while synchronizing new write operations are tagged with a new TXG. When a block
is modified in this new TXG that was also modified in the currently syncing TXG the
block has to be copied in memory and the modification have to be conducted on this
copy. As a result of this proceeding writing to disk in ZFS is done in two phases referred
to as open context and syncing context.

Open context

In the open context the data from the user’s buffer is copied into ZFS. Figure shows 5.3
a simplified program flow for the open context [Mac14].
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Figure 5.3: Write operation in open context.

Full block write

As explained for the OSD layer for full block writes the zero-copy approach is possible.
For this case dmu_assign_arcbuf is called. The ARC buffer created by dmu_request_-
arcbuf and then filled with the data is provided to dmu_assign_arcbuf.

In dmu_assign_arcbuf first the dbuf associated with the requested ARC buffer is
retrieved. For example if the third block of a file should be written, the dbuf with level 0
and block id 2 is retrieved.

If the offset is not aligned and the ARC buffer is not the same size as the dbuf
the function falls back to dmu_write. Otherwise dbuf_assign_arcbuf is called. This
function assigns the ARC buffer to the dbuf so that the dbuf points to the data of the
ARC buffer. If the dbuf already pointed to an ARC buffer this buffer is destroyed. At
the end the data is marked dirty for this transaction.

Full block writes are also possible with dmu_write. With the Lustre interface this
only happens when the function osd_grow_blocksize grows the block size and dmu_-
assign_arcbuf falls back to dmu_write. Also this path is mostly analogous for a partial
block write. The only difference is that dbuf first does not have to be read in.

Partial block write

For partial block writes dmu_write is called. dmu_write first calls dmu_buf_hold_array.
This function basically fetches all dbufs that will be affected by the write operation and
returns buffers for them in an array. So dmu_write is able to write to more than one block.

Next iterating over all dbufs for full block writes dmu_buf_will_fill is called or for
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partial writes dmu_buf_will_dirty is called. A partial write requires a read-modify-write
operation so the dbuf first is needed to be read in. dmu_buf_will_fill allocates a new
ARC buffer associated with the dbuf. Now both functions call dbuf_dirty to mark the
dbuf dirty in this transaction. dbuf_dirty adds the dbuf and the dnode associated with
it to a list of dirty records. These dirty records then later are written to disk in syncing
context. After marking the dbuf as dirty it is save to actually modify them with the
new data. So after that the data passed to dmu_write is memcopied into db_data which
points to the ARC buffer allocated in dmu_buf_will_fill or dmu_buf_will_dirty.

Dirtying dbufs

The main use of dbuf_dirty is to keep track of multiple versions of this dbuf’s dirty
data. Figure 5.4 shows how the dbufs are dirtied. When a dbuf is first dirtied in a
transaction a dbuf_dirty_record_t is created which points to the ARC buffer holding
the data. If the ARC buffer’s data is modified in the same transaction it will just be
overwritten. If the dbuf is dirty for an old transaction the ARC buffer is copied, a new
dbuf_dirty_record_t created and the dbuf assigned to the copied ARC buffer. This
ARC buffer then safely can be modified.

At most three transaction can be active at the same time, one in open context, one
in syncing context and one quiescing. A quiescing transaction is used as an additional
buffer for heavy workloads.
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Figure 5.4: Dirtying a dbuf.
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Syncing context

In syncing context all dirty data blocks of one TXG is written to disk. Since existing
data is never overwritten, modified blocks are written to a new location on disk. If a
data block is updated the block pointer in an indirect block also has to be updated. For
indirect block goes the same as for data blocks – they are never overwritten. Hence
indirect blocks have to be written to a new location. This on the other hand requires that
the block in a higher level referencing the just updated block also needs to be modified.
This way ZFS walks up the file tree until the dnode is reached and updated. After all
files are updated the synchronization operation walks up the ZFS data structure tree
until the uberblock is updated and the syncing is done.

The syncing of a file is triggered by the function dnode_sync. Subsequently dbuf_-
sync_list will go through the list of all dirty records and either call dbuf_sync_indi-
rect for indirect and dbuf_sync_leaf for data blocks. Then the function dbuf_write
will issue an I/O to commit the provided dirty buffer to disk. Here dmu_write_policy
is called which fills in the zio_prop_t structure. It keeps track of properties concerning
write operations of a block. These properties are for example the type of the object that
is written, the used checksum algorithm and the compression algorithm. Usually the
compression algorithm will be set to the algorithm set for the object set (e.g. filesystem).
But also an option for overriding the compression algorithm is provided. This is used
when a compressed ARC buffer will be written to disk. In this case the same algorithm
used for compressing the ARC buffer is adopted.

After the properties are set arc_write is called. Mainly this function will just pass
the data from the ARC buffer to zio_write. Also callbacks are created that will store
the physical on-disk compressed or uncompressed data into the header’s data buffer after
the data was written to disk by the ZIO. As explained after the write to disk the header
will be written with the physical on-disk data.

1
2 zio = zio_write (pio , spa , txg , bp ,
3 abd_get_from_buf (buf ->b_data , HDR_GET_LSIZE (hdr)),
4 HDR_GET_LSIZE (hdr), arc_buf_size (buf), zp,
5 arc_write_ready ,
6 ( children_ready != NULL) ? arc_write_children_ready : NULL ,
7 arc_write_physdone , arc_write_done , callback ,
8 priority , zio_flags , zb);

Listing 5.3: zio_write call in arc_write

Figure ?? shows how arc_write calls zio_write. Among others the block pointer bp
that is written to, the transaction txg or pointer to the data abd_get_from_buf(buf-
>b_data, HDR_GET_LSIZE(hdr)) are passed. Important variables for compression are
highlighted in red. HDR_GET_LSIZE(hdr) and arc_buf_size(buf) define the logical
size and the physical size that is written to the block pointer. arc_buf_size(buf)
returns the size of the ARC buffer. If the ARC buffer is compressed it returns the
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rounded up physical size of the header. zp holds a zio_prop_t where the compression
algorithm is set. In zio_flags flags with information about the zio are passed. The
ZIO_FLAG_RAW flag marks an I/O operation as "raw" and therefore is neither compressed
or decompressed. When writing a compressed ARC buffer the ZIO_FLAG_RAW is always set.

Having the data passed to zio_write this function will fill the zio_t structure by
calling zio_create. The structure holds all relevant data to carry out the zio operation.
This are for example the physical size, logical size and the stages of the pipeline.
The ZIO works the way that it creates all operations and structures them in a tree. In
doing so thousands of zios can be accumulated under a zio_root. A call of zio_wait
will enqueue these zios into the pipeline and executes them.

5.3 Read I/O path
5.3.1 OSD layer
In case of a read Lustre calls the function osd_bufs_get_read. For a read Lustre always
uses a zero-copy approach. The function dmu_buf_hold_array_by_bonus retrieves all
dbufs directly that hold the wanted data directly from the DMU. Only now in the
subsequent for-loop which iterates over the dbufs the buffers are memcopied into Lustre.
For each dbuf the data is divided into pages and copied into pages of a niobuf_local
structure.

5.3.2 ZFS read I/O path
Figure 5.5 shows a simplified I/O path for a read operation in ZFS.

Figure 5.5: Reading a file.
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Just like in the write path dmu_buf_hold_array_by_dnode will be called which should
identify all dbufs that need to be read and return them in an array. But instead of just
returning them they are filled with the data of that block. Therefore for every dbuf
dbuf_read is called. So when a 1 Mbyte should be read in with a block size of 128 Kbyte
an array of 8 dbufs will be returned to Lustre [Ahr16].

In dbuf_read the dbuf is either in CACHED, UNCACHED state or the dbuf is currently
written or read by another caller. If a dbuf is cached it is already filled and nothing has
to be done. Although one special case exists for the compressed zfs receive. In this
case the data is compressed in the buffer and has to be decompressed to read it.

When another caller currently writes or reads the dbuf will be cached afterwards. So
in this case it only has to be waited for the dbuf to change into the cached state. If
the dbuf is uncached dbuf_read_impl is called which will initiate the read by calling
arc_read.

arc_read first checks in the hash table if the ARC header is in cache for the specified
block. If the block is available in L1ARC the data can be returned. Otherwise the data
has to be read from disk. In this case a zio has to be performed. zio_read creates a
zio and fills in all parameters for reading the block.

After every dbuf_read returned to dmu_buf_hold_array_by_dnode the prefetcher is
notified. Following the function zio_wait is called. This function executes all I/Os
created for the read operation and waits for them to complete. If all I/Os are done
and every dbuf is filled with it’s data the data can be returned. The block is not in
the cache and the data has to be retrieved from disk via a zio_read. If the user data
is compressed ZIO_FLAG_RAW is set. This triggers a "raw" read and the data is not
decompressed in zio_done. Hence the data is stored compressed in the buffer of the
ARC header (b_pabd).

In arc_read_done arc_buf_alloc_impl is called. This function will allocate an ARC
buffer and fill it with data. If the header points to compressed data the data might
be uncompressed in another ARC buffer. Whenever this is the case the uncompressed
version is copied into the allocated buffer, otherwise the data has to be decompressed.
Finally the dbuf_read_done sets the dbuf to CACHED, if no error occurred.

5.4 Metadata for pre-compressed data
5.4.1 Header
As described in the design all pre-compressed blocks should be stored on-disk with a
header containing the used compression algorithm and the physical size of the block in
bytes. The desirable approach would be to write and read the header transparent in ZFS.
For writing Lustre would pass the compressed data record together with parameters for
psize and algorithm to ZFS. Here first ZFS would write both parameters to a buffer.
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Then the compressed data record is memcopied with a offset providing enough space for
the header into the same buffer. For reading a compressed data record ZFS would read
in the header and return both parameters back to Lustre. The data record would be
memcopied without the header to the Lustre buffer.

However Lustre is using a zero-copy approach for reading the data and also for writing
a zero-copy approach is possible. Zero-copy means in this case that Lustre and ZFS
share the same buffer. Thus, the buffer is not memcopied. Therefore the better approach
is to let Lustre handle the header.

5.4.2 Alignment shift
The alignment shift referred to as ashift is a property of a pool that is set at creation
time and is immutable [ash]. 2ashift defines the smallest possible I/O on a vdev meaning
that I/O operations will be made aligned to this size. Valid values are from 9 to 13 (512
byte to 8 Kbyte). For optimal performance the value should be equal or greater than the
sector size of the child vdevs. Per default it is set to a special value 0 that auto-detects
the best ashift by calculating the maximum physical sector size of all child vdevs. But
that may change if new vdevs are added to the pool using are bigger physical size sector.
So at pool creation it should be taken into account if new vdevs will be added in the
future.

The physical size of any block in ZFS is always a multiple of the smallest ashift of a
vdev in a pool. Thus, when setting the physical size in ZFS it has to be rounded up to
the next 2ashift. So for example when the ashift is set to 12 (4096 Kbyte) and a block
with a physical size of 5000 Kbyte should be written to disk the psize stored in the block
pointer is set to 8192Kbyte.

5.4.3 Block size
For pre-compressed blocks the logical size should always equal the recordsize. Usually a
new file is created the block size is set to the page size in osd_mkreg. Here the block
size should be set directly to the recordsize. This way osd_grow_blocksize becomes
obsolete because the maximum size for a block is already set. This also ensures that the
zero-copy approach does not fall back to dmu_write because the block size always stays
the same.

5.4.4 Flag for pre-compressed blocks
On-disk the compression algorithm of every record is stored in the block pointer. It is
persisted as a number of one byte length. ZFS uses the enum zio_compress to map the
algorithms to the numbers stored in the pointer. As explained a new number is needed
to identify that the data is pre-compressed by Lustre. So an additional constant called
ZIO_COMPRESS_EXTERNAL is added. Leading to an updated enum shown in Listing ??.

1 enum zio_compress {
2 ZIO_COMPRESS_INHERIT = 0,
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3 ZIO_COMPRESS_ON ,
4 ZIO_COMPRESS_OFF ,
5 ZIO_COMPRESS_LZJB ,
6 ZIO_COMPRESS_EMPTY ,
7 ZIO_COMPRESS_GZIP_1 ,
8 ZIO_COMPRESS_GZIP_2 ,
9 ZIO_COMPRESS_GZIP_3 ,

10 ZIO_COMPRESS_GZIP_4 ,
11 ZIO_COMPRESS_GZIP_5 ,
12 ZIO_COMPRESS_GZIP_6 ,
13 ZIO_COMPRESS_GZIP_7 ,
14 ZIO_COMPRESS_GZIP_8 ,
15 ZIO_COMPRESS_GZIP_9 ,
16 ZIO_COMPRESS_ZLE ,
17 ZIO_COMPRESS_LZ4 ,
18 ZIO_COMPRESS_EXTERNAL ,
19 ZIO_COMPRESS_FUNCTIONS
20 };

Listing 5.4: enum zio_compress

ZIO_COMPRESS_FUNCTIONS is used for checking purposes and determine the length
of the zio_compress_table which maps each specifier to a level and function for
compression and decompression. So for example ZIO_COMPRESS_LZ4 is mapped to the
functions lz4_compress_zfs and lz4_decompress_zfs. For ZIO_COMPRESS_FUNCTIONS
the compression and decompression function is mapped to NULL.

1 zio_compress_info_t zio_compress_table [ ZIO_COMPRESS_FUNCTIONS ] = {
2 {" inherit ", 0, NULL , NULL},
3 {"on", 0, NULL , NULL},
4 {" uncompressed ", 0, NULL , NULL},
5 {"lzjb", 0, lzjb_compress , lzjb_decompress },
6 {"empty", 0, NULL , NULL},
7 {"gzip -1", 1, gzip_compress , gzip_decompress },
8 {"gzip -2", 2, gzip_compress , gzip_decompress },
9 {"gzip -3", 3, gzip_compress , gzip_decompress },

10 {"gzip -4", 4, gzip_compress , gzip_decompress },
11 {"gzip -5", 5, gzip_compress , gzip_decompress },
12 {"gzip -6", 6, gzip_compress , gzip_decompress },
13 {"gzip -7", 7, gzip_compress , gzip_decompress },
14 {"gzip -8", 8, gzip_compress , gzip_decompress },
15 {"gzip -9", 9, gzip_compress , gzip_decompress },
16 {"zle", 64, zle_compress , zle_decompress },
17 {"lz4", 0, lz4_compress_zfs , lz4_decompress_zfs },
18 {" external ", 0, NULL , NULL}
19 };

Listing 5.5: Mapping of each specifier to a level and algorithms.
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5.4.5 Flag for compressed dbufs
To identify that a dbuf currently holds compressed data the publicly visible structure
of the dbuf is extended by a boolean called db_compressed. Also the extra parameter
boolean_t compressed passed to dbuf_create is added. While writing pre-compressed
data this parameter is set to TRUE and passed through to dbuf_create. This will
ultimately set db_compressed to TRUE. For all other cases while writing db_compressed
is set to FALSE. When a pre-compressed block is read and the dbuf exists the block is
already marked as compressed. In the current implementation the externally compressed
data cannot be decompressed. So a compressed dbuf is not able to be read decompressed.
Thus, an error has to be returned for this operation. If a pre-compressed block is read
for which a dbuf does not exist the information can be retrieved from the block pointer.
So if the block pointer references a pre-compressed block ZIO_COMPRESS_EXTERNAL is set
as compression algorithm. If ZIO_COMPRESS_EXTERNAL is set db_compressed is set to
TRUE.

1 typedef struct dmu_buf {
2 uint64_t db_object;
3 uint64_t db_offset;
4 uint64_t db_size ;/
5 boolean_t db_compressed;
6 void *db_data;
7 } dmu_buf_t;

Listing 5.6: The extended dmu_buf struct

5.5 Writing pre-compressed blocks
The goal is to write a pre-compressed block and store the logical size and the physical size
passed by Lustre. Additionally these blocks have to tagged as externally compressed with
ZIO_COMPRESS_EXTERNAL. Ultimately this information is decided by what arc_write
passes to zio_write as shown in figure ??. The logical size and physical size is retrieved
from the header of the ARC buffer that is written. Additionally the compression algo-
rithm is overriden in dmu_write_policy by what compression algorithm is set in the
same ARC header.

So the idea is to allocate an compressed ARC buffer with the physical size, logical size
and compression algorithm and fill this buffer with the pre-compressed data block. In the
I/O path for writing it was shown that two possible ways exist to write blocks through
the DMU, either with dmu_write or dmu_assign_arcbuf. Writing through dmu_as-
sign_arcbuf expects to write a full block. When writing a pre-compressed block this
block obviously never is a full block. But the block logically represents a full block. So it
is known that there can be no other concurrent writes to this block. This makes it possi-
ble to also use the zero-copy approach. Both could be used to write pre-compressed blocks.
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However, the zero-copy approach fits the purpose of writing the pre-compressed blocks
better. As shown in the design for the read-modify-write case the whole block is rewritten.
The zero-copy approach does this per default as a new ARC buffer is allocated and filled
by Lustre. Subsequently this ARC buffer overwrites the block without reading it first.

dmu_write on the other hand is called for every (4 Kbyte) page. If for example a
block with a physical size of 12 Kbyte three calls of dmu_write would be made. This
leads to partial block writes that read the old data from disk first. A lot more changes
would have to made for realizing the implementation with this approach. If the block
is rewritten in the same transaction with another physical size a new compressed ARC
buffer with the new physical size has to be created and the old destroyed. Which would
also hold up the write as no new page can be written as long as the ARC is allocated. If
the block is rewritten when the block is not cached, the block would be first read from
disk. This behaviour ideally also would have to be changed. Moreover for writing with
dmu_write additional checks whether the block is aligned and only updates one block
would have to be made.

Consequently this lead to the decision to use and implement the zero-copy approach
with dmu_assign_arcbuf. Furthermore the zero-copy approach saves memcopying the
data into ZFS, and thus might provide better performance anyway. In the following the
implementation for writing the pre-compressed blocks is described.

Zero-copy approach

The idea is to instead of allocating an ARC buffer with dmu_request_arcbuf an com-
pressed buffer is allocated using the new function dmu_request_compressed_arcbuf.
The physical size is handed to the function. It is assumed that the logical size is equal
to the recordsize of the current file. The physical size is provided in bytes and thus must
be rounded up to the smallest ashift of the device to be stored on disk. The function
calls to loan out an compressed ARC buffer with the provided logical size, the rounded
up physical size and the compression set to ZIO_COMPRESS_EXTERNAL. Loaned out ARC
buffers are always anonymous. Thus, not in the cache. Allocating an ARC buffer will first
lead to allocating a header. In this header the parameters psize, lsize, and compression
are stored. Afterwards for this header the actual buffer is allocated. Since the header
only is associated with the newly allocated buffer and both are set to hold compressed
data, it is possible to share the data buffer.

After allocating the data buffer is still empty. This buffer will be filled by Lustre.
Leaving a compressed ARC buffer like shown in 5.6. In this example the logical blocksize
is 128 Kbyte and the physical 80 Kbyte. In the header the compression algorithm is set
to ZIO_COMPRESS_EXTERNAL. In the ARC buffer also compression is set to TRUE.

But to write this buffer to disk in the syncing context, the buffer has to be associated
with a dirty dbuf. This is done in a function dmu_assign_compressed_arcbuf that is
introduced and will replace dmu_assign_arcbuf. Because of the padding of the physical
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Figure 5.6: The compressed ARC buffer after requesting.

size the remainder between the rounded up psize and the exact psize is zeroed out
explicitly. Otherwise the function is able to work mainly analogous to it’s counterpart for
uncompressed ARC buffers. The dbuf that is retrieved by dbuf_hold has to be tagged
as compressed. Following that dbuf_assign_arcbuf assigns the retrieved dbuf to the
ARC buffer. If the dbuf is cached it is already assigned to another ARC buffer this buffer
has to be destroyed. If the old buffer created in the same transaction and already tagged
dirty, this buffer should not be written to disk. Thus, also the dirty dbuf is overwritten
with the new ARC buffer. Then finally the allocated ARC buffer can be assigned to the
dbuf and dirtied.

This way after dbuf_assign_arcbuf there will be a new allocated ARC buffer con-
taining the compressed data. This ARC buffer has the correct physical size passed to
dmu_assign_compressed_arcbuf. In syncing context arc_write passes the logical and
physical size of the buffer to zio_write. Furthermore for every writing a compressed
ARC buffer ZIO_FLAG_RAW is set which will ensure the data is not compressed again
before written to disk.

Synchronous write

The write operations called by Lustre are asynchronous but in ZFS these writes might
still be executed synchronous. For example when the pool is exported while writing data
to disk. In this case dmu_sync is called. This function is provided with a single dbuf that
should be written. Analogous to a asynchronous write it has to be made sure that the
compression algorithm is set to ZIO_COMRPESS_EXTERNAL and ZIO_FLAG_RAW is set. With
db_compressed it is possible to check whether the dbuf contains pre-compressed data. If
so dmu_write_policy is called with ZIO_COMRPESS_EXTERNAL to override the inherited
algorithm. And the "raw" flag is passed to the subsequent to a call of arc_write.
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Figure 5.7: Assign allocated ARC buffer to the dbuf.

5.6 Reading pre-compressed blocks
A read operation of a pre-compressed block should return the compressed block as well as
providing information about the physical size of the block and the compression algorithm.
As the physical size and the compression algorithm is stored in the header the main goal
is to suppress the decompression and return information back to Lustre for blocks that
are compressed.

dmu_buf_hold_array_by_bonus retrieves all dbufs filled with its data and returns
them back to Lustre. For reading the data compressed this function is replaced with
dmu_buf_hold_array_by_bonus_compressed. This function works analogous to the
original function except that dmu_buf_hold_array_by_dnode is called with a flag indi-
cating that the dbufs should be returned in a compressed state.
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It has to be made sure when reading a record marked as ZIO_COMPRESS_EXTERNAL
is not decompressed. Here arc_read has to be called with a ZIO_FLAG_RAW flag. This
triggers a compressed read.

ZIO_FLAG_RAW sets acb_compressed to true which leads to filling the buffer with
compressed data in arc_buf_alloc_impl.

Notify the prefechter

The problem here is that the prefetcher will only read the data into the ARC buffer
without creating a dbuf, and thus does not set db_compressed and ultimately ZIO_-
FLAG_RAW.

When reading ZFS will try to prefetch data. Either indirect blocks or data blocks can be
prefetched. Figure [?] shows the call sequence for prefetching a data block. In dmu_buf_-
hold_array_by_dnode the function dmu_zfetch is called. There a for-loop iterates over
a calculated number of blocks and calls dbuf_prefetch for every block. Subsequently
for data blocks the function dbuf_issue_final_prefetch is called. This function calls
arc_read for the specified block. To ensure the ARC buffer is not decompressed the
block a boolean is passed down the call sequence that, if true, sets ZIO_FLAG_RAW.

Figure 5.8: Call sequence for prefetching a data block.
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6 Evaluation
This chapter presents performance tests that were conducted and subsequently the results
are evaluated. First the infrastructure on which the tests are made is described. Afterwards
the preparatory work that had to be made to realize the tests is shown. Finally the results
are evaluated.

6.1 Infrastructure
The tests are done on a nehalem node at the cluster of the Scientific Computing group
at the DKRZ [neh]. The node has 8 Intel Xeon X5560 CPUs with 2.80 GHz and 12 GB
RAM of main memory. The operating system on the node is Ubuntu 16.04.2 LTS. A
500GB partition of a 2TB HDD is used for the ZFS filesystem. All tests were repeated
five times and the results averaged.

6.2 Measurements
6.2.1 Test data
The goal of this evaluation is to test the read performance of the implemented feature.
For testing the default recordsize of 128 KB is used. 100000 blocks are written for each
file which are filled 25%, 50%, 75% and 100%. So four files are tested which have 3.28 GB,
6.55 GB, 9.83 GB and 13.11 GB of data. Figure 6.1 illustrates both cases for the tested
data. These cases should represent the two approaches shown in Figure 3.1 for storing the
compressed data. The data written without gaps is tested with the default version of ZFS.
The files with gaps in between the blocks for aligned access are tested with the modified
version. First the ARC is emptied with echo 3 > /proc/sys/vm/drop_caches so that
it is ensured the data is read from disk.

Figure 6.1: The two test cases. The data id written with or without gaps.
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6.2.2 Preparatory work
Because the integration of the implemented feature in Lustre was not finished during the
work on this thesis a workaround using a modified ZPL layer is used to write and read the
data. This was also used for basic functionality tests. The ZPL layer is modified in such
a way that it simulates the behaviour of Lustre’s OSD layer for the pre-compressed data.
The data is written to und read from ZFS like Lustre would do it for the pre-compressed
blocks. Therefore it is possible to use ZFS’s infrastructure for the data in the intended
way. The results should work as a first indication for the performance of the implemented
feature.

Writing transformed blocks

zfs_write is modified in a way that writes are forced through dmu_assign_compressed_-
arcbuf. First the block size is set to the recordsize (128 KB) with zfs_grow_blocksize.
This equals the disabled variable block size. Afterwards with dmu_request_compressed_-
arcbuf a compressed ARC buffer is allocated and subsequently written to the DMU
with dmu_assign_compressed_arcbuf. Just like the calls Lustre should make in the
OSD layer when writing pre-compressed blocks.

The files are written with a simple C program. This program writes a given amount
of blocks of a block size with random data. The blocks written should resemble the
pre-compressed blocks written by Lustre. After a block is written a seek to the next
multiple of the recordsize is executed. If for example three blocks with a size of 50 KB
are written, the first block is written to the file from offset 0 KB to 50KB, the second
block from 128 KB to 178KB and the third from 256KB to 306KB.

Reading transformed blocks

The function zfs_read iterates over the data and calls dmu_read_uio_dbuf until the
whole data is read. For reading files dmu_read_uio_dbuf has to be modified. This
function is the equivalent to Lustre’s osd_bufs_get_read. It copies the dbuf’s data into
a structure called uio.

Usually dmu_read_uio_dbuf would return uncompressed blocks. If the user wants
to read 100KB, 100KB of data are returned. But in this case the "compressed" block
is returned, and thus less bytes. So if the user wants to read a 128 KB block, the
function returns the compressed block that for example only has 50 KB. This is the same
behaviour wanted when reading compressed data to Lustre.

But if just 50 KB instead of 128 KB are read, the offset returned to zfs_read also
only increases by 50 KB. The next read would start at offset 50 KB. Therefore the offset
is rounded up manually to the full block size of 128 KB.

Because of the issue with the offset reading the file is problematic. Tools like dd do
not seem to work. Maybe when dd expects a certain number of bytes, but fewer bytes
are returned, it repeats the read. When 128KB should be read in but only 50KB are
returned dd tries to read the missing 78KB again, but at this point there are no bytes
and nothing is returned. This might then just lead to another repeat. However, the read
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system call does work. So for testing the read performance a C program is used. It calls
read for a specified amount of blocks.

Apart from being an ideal solution for testing it still allows to utilize the implemented
feature like Lustre would, and thus testing the read performance for pre-compressed
blocks.

6.2.3 Results
Figure 6.1 shows the comparison of both test cases. The grey bars depict the time for
reading the files with full blocks. The green bars show the times for reading the files
with partial blocks. Table 6.1 shows the growth of the times with the modified ZFS.
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Figure 6.2: Comparison of times for reading the densely written files with the sparsely
written files.

The results show that for the modified ZFS version a roughly constant overhead exists.
Even for reading the 13.11GB file for which both ZFS versions should write full blocks.
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Here an equal time would be expected since both write without gaps and readaheads
should not be a problem anyway. Further investigations have to be done to find the
source of this overhead. Maybe some improvements for allocating the blocks is done for
uncompressed data which are not done for the modified ZFS because all data is tagged
as compressed. A test for reading the 3.11 GB file from the ARC for both versions
showed only a slight increase in time with 1.3 s for the unmodified ZFS and 1.6 s for the
modified ZFS. For the half-filled blocks with 6.55 GB the difference between the files
without gaps and with gaps is the largest. This might relate to the fact that the ARC
used in the test is 6 GB large. Here the densely written file might be able to reuse some
metadata which is still in the ARC, which cannot be done for the sparsely written file
because of the additional overhead for the indirect blocks.

Overall the results show that ZFS is able to do efficient readaheads for the files with
partial blocks. For every 3.11 GB that is added the time for reading increases by roughly
40 seconds. Hence the performance is entirely dependent on the bytes which are read.

File size Full blocks Partial blocks Growth
3.28 GB 33 s 38 s 5 s
6.55 GB 66 s 78 s 12 s
9.83 GB 101 s 108 s 7 s
13.11 GB 141 s 149 s 8 s

Table 6.1: Growth of time for reading the data with the modified ZFS.
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7 Conclusion and future work
This chapter conludes the work done over the course of this thesis. Moreover some ideas
for future work are given.

Conclusion
The overall goal of the IPCC project for enhanced adaptive compression in Lustre is
to bring adaptive transparent compression support to Lustre at multiple levels. To
bring such a feature to a parallel distributed filesystem like Lustre is a extensive and
complex task. But still the performance gains possible with compression are promising.
Especially on distributed system where not only I/O is a bottleneck but also the network
throughput. On top of this providing storage for petabytes of data is a costly undertaking
in terms of storage devices as well as energy consumption by those devices. So reducing
the data through compression also is able to reduce costs.

That makes clientside compression in Lustre a long wanted and desired feature as a
discussion from 2006 shows [PJB06]. Back then one problem was that the local filesystem
could not handle compressed data and blocks growing on rewrites. The layout and
allocation functions would need big changes. Today Lustre allows ZFS as a backend
filesystem which resolves the mentioned problems. This thesis tried to use this and
combine the prototype of compression in Lustre with ZFS’ compression functionality.

During the course of this thesis a prototype for writing pre-compressed blocks was
implemented. To properly integrate those the compressed and the uncompressed size
have to be known to ZFS. Because in ZFS the compressed size of a block is only available
in 512 byte steps a header containing the compression algorithm as well as the compressed
size in bytes was proposed.

It was described that generally two ways can be used by the OSD layer to write blocks
to a ZFS filesystem. One using a zero-copy approach writing a whole block and one
writing several pages for a block. Due to it’s better suitability the zero-copy approach
was chosen.

An existing implementation for sending and receiving compressed ZFS filesystems
could be utilized. The implementation includes the ability to create compressed ARC
buffer. Using this for every write a new compressed ARC buffer containing the physical
size of the block is created. This passes the compressed size down to the I/O operation.

The main task for reading compressed data was essentially to suppress decompression.
This was achieved with the help of a flag that is set when calling the introduced interface.
This flag makes sure a block is not decompressed but instead returned to Lustre in it’s
compressed state
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It became apparent that integrating pre-compressed data requires more changes to
Lustre’s OSD layer than expected. These changes were not implemented during the
course of this thesis. Because of that for functionality and performance testing the ZPL
layer was modified to simulate the wanted behaviour of Lustre’s OSD layer.

With the first test results it could be shown that with the modified ZFS efficient
readaheads are possible for the sparse data stripes written by Lustre. The tests showed
that the time for reading the files decreases linear with higher compression rates. So for
example if the compression by Lustre is able to decrease the data by 50% the time for
reading the data from ZFS also decreases by almost 50%.

Future work
A working prototype for ZFS could be implemented. However, there is some work to do
to in Lustre’s OSD layer to make use of this prototype. The evaluation in this thesis is
inadequate since it was only conducted through an modified ZPL Layer. To prove the
results tests using the implemented feature in collaboration with Lustre have to be made.
Additionally further functional and regression tests have to implemented to guarantee
that the implementation is functioning.

Having ZFS not know the specific compression algorithm used and thus making the
data not decompressible and effectively unreadable by ZFS is a downside of the current
implementation. It would be desirable to make ZFS deal with the specified header
containing compression algorithm and physical size, and thus making the pre-compressed
data decompressible by ZFS. This way the data could be decompressed on the serverside
without making changes to the Lustre server. It would be feasible fort Lustre to update
small modification of the data via the normal write interface of ZFS. So for a read-
modify-write case Lustre sends the data uncompressed to the server. ZFS decompresses
the data on the server modifies it and writes it compressed to disk. On the other hand
the current approach by storing the necessary information for decompression within the
data increases the flexibility. Any transformed data block with a smaller physical size
than logical size can be stored. Any compression algorithm could be used without caring
if ZFS currently supports this particular algorithm.
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Acronyms
APCFS The Autonomous and Parallel Compressed File System. 5, 48

ARC Adaptive Replacement Cache. 5, 26, 27, 29, 32, 41, 51–53, 55–57, 59–61, 64–68,
70, 71, 73, 74, 86

ASCII American Standard Code for Information Interchange. 13

btrfs B-tree filesystem. 5, 7, 47, 48

CentOS Community Enterprise Operating System. 15, 83

CERN European Organization for Nuclear Research. 21

DKRZ Deutsches Klimarechenzentrum. 7, 70

DMU Data Management Unit. 23, 26–29, 40, 47, 51, 53–55, 60, 65, 71

DSL Dataset and Snapshot Layer. 30

DVA Data Virtual Address. 24

ext4 Extended File System 4. 17, 21, 28

FLOPS floating-point operations per second. 7

HDF5 Hierarchical Data Format 5. 5, 47, 48

HPC high performance computing. 7

I/O Input/Output. 3, 6–9, 15, 17, 28, 30, 32, 47, 48, 51, 54, 55, 59, 60, 62, 65, 74

IPCC Intel Parallel Computing Centers. 3, 8, 74

L1ARC Level 1 Adaptive Replacement Cache. 27, 51–53, 61

L2ARC Level 2 Adaptive Replacement Cache. 26–28, 51–53, 86

LRU Least Recently Used. 26, 29

LV logical volumes. 19
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LZ4 Lempel Ziv 4. 12

LZO Lempel-Ziv-Oberhumer. 47

LZW Lempel-Ziff-Welch. 48

MDS Metadata Server. 15, 16

MFU Most Frequently Used. 26, 27

MGS Management Server. 15, 16

MGT Management Target. 15, 16

MPI-OM Max Planck Institute’s Global Ocean/Sea-Ice Model. 14

MRU Most Recently Used. 26, 27

NFS Network File System. 55

NTFS New Technology File System. 5, 48

OSD Object Storage Device. 17

OSS Object Storage Server. 15, 16

OST Object Storage Target. 16, 17

POSIX Portable Operating System Interface. 16, 26, 28, 31, 34, 47

RAID Redundant Array of Independent Disks. 19, 21

RAM Random-access Memory. 27, 70

RHEL Red Hat Enterprise Linux. 15

RLE Run-Length Encoding. 12

SHA Secure Hash Algorithm. 21

SPA Storage Pool Allocator. 27

SSD Solid-state Drive. 27, 47, 48

TXG Transaction Group. 56, 59

UFS Unix File System. 28

VFS Virtual File System. 25, 26, 46, 47
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ZAP ZFS Attribute Processor. 26, 31

ZDB ZFS Debugger. 33, 40

ZIL ZFS Intent Log. 26

ZIO ZFS I/O. 30

ZLE Zero Length Encoding. 12, 14, 22, 44

ZPL ZFS Posix Layer. 26, 28, 31, 44, 46, 71, 75

ZVOL ZFS Volume. 26, 28
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Building ZFS
This section shows the installation of ZFS on CentOS 7 [ins].

1 $ sudo yum groupinstall "Development Tools" parted lsscsi
↪→ wget ksh

2 $ sudo yum install kernel -devel zlib -devel libattr -devel
↪→ libuuid -devel libblkid -devel libselinux -devel
↪→ libudev -devel

First the Solaris Porting Layer (SPL) needs to be installed which provides core
interfaces required for OpenZFS on Linux.

1 $ git clone https:// github.com/zfsonlinux/spl.git
2 $ cd spl
3 $ ./ autogen.sh
4 $ ./ configure --with -spec=redhat
5 $ make pkg -utils pkg -kmod
6 $ sudo yum install *.<arch >.rpm

Afterwards ZFS can be installed.
1 $ cd ..
2 $ git clone https:// github.com/zfsonlinux/zfs.git
3 $ cd zfs
4 $ ./ autogen.sh
5 $ ./ configure --with -spec=redhat
6 $ make pkg -utils pkg -kmod
7 $ sudo yum install *.<arch >.rpm

For additional correctness tests and enabling all asserts ZFS can be configured with
–enble-debug

Debugging ZFS
Debug messages

For printing debug messages dprintf() can be used. The output of those messages has
to be explicitly enabled with:

1 $ echo 1 > /sys/module/zfs/parameters/zfs_dbgmsg_enable

The output can be shown with:
1 $ cat /proc/spl/kstat/zfs/dbgmsg
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ztest

The tool ztest is a ZFS unit test. It runs by default 10 minutes and uses files stored in
/tmp for creating pools. The option -V increases the verbosity. Additional Vs will further
increase the output. During the run ztest creates ztest. files which can be removed
after ztest finished [Geb09]. Properties of the pools ztest creates can be changed form
the default value with various options. For example with -s the size of each vdev can be
changed.

In-tree build

For developing and debugging ZFS can also be installed in-tree [BB]. The steps until
after configuring stay the same but ZFS is installed with:

1 $ make -s -j$(nproc)

For this build additonal helper scripts have to be executed. zfs-helpers.sh creates
symlinks on the system from the installation location. zfs.sh loads the kernel modules
and unloads them the option -u.

1 $ sudo ./ scripts/zfs -helpers.sh -i
2 $ sudo ./ scripts/zfs.sh

zloop.sh repeatedly runs ztest with randomized options.
1 $ sudo ./ scripts/zloop.sh

ZFS also provides a test suite which does extensive regression and functionality testing.
It is executed with:

1 $ ./ scripts/zfs -tests.sh -vx

Fields of arcstat.py

1 Field definitions are as follows :
2 l2bytes : bytes read per second from the L2ARC
3 l2hits : L2ARC hits per second
4 read : Total ARC accesses per second
5 dmis : Demand misses per second
6 mru : MRU List hits per second
7 mread : Metadata accesses per second
8 c : ARC Target Size
9 ph% : Prefetch hits percentage

10 l2hit% : L2ARC access hit percentage
11 pm% : Prefetch miss percentage
12 mfu : MFU List hits per second
13 mm% : Metadata miss percentage
14 pread : Prefetch accesses per second
15 miss : ARC misses per second
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16 mrug : MRU Ghost List hits per second
17 dhit : Demand hits per second
18 mfug : MFU Ghost List hits per second
19 hits : ARC reads per second
20 dm% : Demand miss percentage
21 miss% : ARC miss percentage
22 mhit : Metadata hits per second
23 dh% : Demand hit percentage
24 mh% : Metadata hit percentage
25 pmis : Prefetch misses per second
26 l2asize : Actual ( compressed ) size of the L2ARC
27 l2miss % : L2ARC access miss percentage
28 l2miss : L2ARC misses per second
29 mmis : Metadata misses per second
30 phit : Prefetch hits per second
31 hit% : ARC Hit percentage
32 eskip : evict_skip per second
33 arcsz : ARC Size
34 time : Time
35 l2read : Total L2ARC accesses per second
36 l2size : Size of the L2ARC
37 mtxmis : mutex_miss per second
38 dread : Demand accesses per second

Listing 1: Overview of fields arcstat.py is able to print.
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