
Bachelorarbeit

Performance modeling of one-sided and
two-sided MPI-3 communication

vorgelegt von

Niclas Schroeter

Fakultät für Mathematik, Informatik und Naturwissenschaften
Fachbereich Informatik
Arbeitsbereich Wissenschaftliches Rechnen

Studiengang: Informatik
Matrikelnummer: 6926553

Erstgutachter: Jun.-Prof. Dr. Michael Kuhn
Zweitgutachter: Jannek Squar

Betreuer: Jun.-Prof. Dr. Michael Kuhn
Jannek Squar

Hamburg, 2021-05-09



Abstract
The MPI 3.0 standard introduced numerous changes to its remote memory access
interface. This interface offers support for one-sided communication. In this thesis, the
performance of MPI-3 RMA is compared to the performance of the more traditional
point-to-point communication with MPI. This comparison is conducted on a stencil-
based application for the calculation of partial differential equations using either the
Gauss-Seidel method or Jacobi’s method, involving three versions of said application that
communicate through different means. These versions consist of a point-to-point version
and two RMA versions, one that uses shared memory and one that does not. Results
indicate that neither approach to communication is clearly favored. Therefore, the better
performing communication form has to be determined on a case-by-case approach for
any given application.



Contents
1 Introduction 5

2 Related work 6

3 Background 8
3.1 MPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 MPI windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Communication operations . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4 Memory model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.5 Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.5.1 Fence synchronization . . . . . . . . . . . . . . . . . . . . . . . . 13
3.5.2 General active target synchronization . . . . . . . . . . . . . . . . 13
3.5.3 Passive target synchronization . . . . . . . . . . . . . . . . . . . . 15

4 Approach 17
4.1 Partdiff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2.1 Jacobi’s method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2.2 Gauss-Seidel method . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2.3 Details regarding implementations and order . . . . . . . . . . . . 21

5 Implementation and optimization 23
5.1 Put vs Get . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2 Comparing the different synchronization modes . . . . . . . . . . . . . . 27
5.3 Improving the performance . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.3.1 Residuum calculation . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.3.2 Substituting flags . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.3.3 Different approaches to locking windows . . . . . . . . . . . . . . 41
5.3.4 Combining multiple windows . . . . . . . . . . . . . . . . . . . . . 41
5.3.5 Splitting the communicator . . . . . . . . . . . . . . . . . . . . . 43
5.3.6 Shared memory windows . . . . . . . . . . . . . . . . . . . . . . . 45

6 Results 54
6.1 The improved RMA versions . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.2 WR cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.2.1 Comparing P2P and RMA with OSU benchmarks . . . . . . . . . 56
6.2.2 Strong and weak scaling experiments for Jacobi’s method . . . . . 59
6.2.3 Strong and weak scaling experiments for the Gauss-Seidel method 63

3



6.2.4 Communications overhead and large process numbers . . . . . . . 66
6.3 Mistral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.3.1 Jacobi’s method on Mistral . . . . . . . . . . . . . . . . . . . . . 70
6.3.2 Gauss-Seidel method on Mistral . . . . . . . . . . . . . . . . . . . 73
6.3.3 The ideal scenario for shared memory . . . . . . . . . . . . . . . . 77

7 Tracing 79
7.1 Traces on Mistral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.2 Traces on WR cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

8 Conclusion 88
8.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
8.2 Final conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Bibliography 90

Reproducibilty 92

List of Figures 96

List of Listings 99

List of Tables 100

4



1 Introduction
In today’s environment of large-scale high performance computers, many scientific
developers try to fully utilize a compute node’s potential by introducing parallelization
on the level of shared memory to their applications. This is most commonly done with
OpenMP [2], as its entry barrier is comparatively low due to the compiler-based approach
with pragmas that also allow for incremental parallelization. However, limiting these
applications to a single node limits scalability, as a single node might not provide enough
memory for large-scale problems for example. Introducing parallelism on distributed
memory is considerably more difficult than just adding the pragmas for OpenMP though,
which might be out of scope for many scientific developers.

To tackle this problem, a tool using Clang and LLVM is currently in development,
called CATO [17]. The goal of this tool is to automatically transform the source code of
OpenMP kernels into code that leverages distributed memory via MPI, one of the most
prominent interface specifications that allows for parallel processing on both shared and
distributed memory. This transformation requires the automatic insertion of all necessary
MPI calls, ranging from the initialization of all processes, over the synchronization to
the communication of relevant data. To communicate said data, MPI defines many
different communication functions which will be discussed in greater detail in Section 3.1.
For the purposes of this thesis, the most important distinction is the one between one-
sided communication and two-sided communication, also known as point-to-point (P2P)
communication. P2P communication requires both the sending and receiving processes to
specify the necessary parameters for the communication, while one-sided communication
only requires the sending process to specify these parameters. In order for the final
tool to provide the best performance possible in regards to communication, the goal of
this thesis is to evaluate whether or not the MPI-3’s one-sided communication should
be employed instead of the more traditional point-to-point communication wherever
necessary.

To determine this, a stencil-based PDE solver will be implemented in multiple different
ways with the means provided by MPI-3 RMA. These initial versions will undergo certain
strong and weak scaling experiments. The information gained from these experiments
will be used to create the most optimal RMA version of this PDE solver, which will then
be compared to a version that was implemented with point-to-point communication. This
comparison is once again conducted through multiple weak and strong scaling experiments
on not only different sets of hardware, but also with different MPI implementations.

5



2 Related work
As OpenMP code is comparatively easy to write, many scientists have attempted to
automatically transform OpenMP code. In order to utilize GPUs without having to
recreate the whole application, automatic compiler-based transformations from OpenMP
to CUDA have been investigated in the past. Their goal was to retain the programmability
of OpenMP programs and convert these programs into CUDA based programs to utilize
the performance benefits that GPUs have to offer [15] [21], resulting in considerable
speedups for certain tested kernels. Other efforts included the automatic transformation
from ANSI C with OpenMP directives to SystemC [5].
Transformation into MPI code has been worked on as well, ranging from the devel-

opment of compiler techniques [1] utilizing partial replication, leading to performance
that is comparable to hand-written MPI code, to fully automated compiler-runtime
systems [14]. The particular system mentioned in [14] employs runtime data flow analysis
as well as a novel communication generation scheme alongside certain compiler techniques,
averaging 75% of the performance of hand-written MPI applications during their tests.
However, both papers only utilized point-to-point messages and collective communication
operations, ignoring the possible advantages of RMA entirely.

Regarding a performance comparison between traditional point-to-point communication
and one-sided communication with MPI, multiple papers have been published as well,
covering comparisons on both micro and application benchmarks [13] [4], where many
came to the conclusion that MPI-3 RMA performs at least comparable to P2P, if not
better. For [4], the communication time decreased by 5-10%, but they note that RMA is
not superior in every aspect when compared to P2P, as integrating RMA into existing
code requires multiple optimizations to perform well. The library support of certain
MPI implementations also appears to be lackluster, which emphasizes the importance
of the MPI implementation in use. Considering that [4] is based on a Fortran 2003
application and [13] was conducted on a Blue Gene/Q machine while only exploring one
specific MPI implementation, further work is needed to achieve potentially universal
results in this particular comparison of P2P and RMA. This thesis aims to add to the
aforementioned results by utilizing both different MPI implementations and hardware,
comparing performance via a C-based application benchmark.
MPI-3 also introduced a shared memory model, which would enable the user to

combine both inter- and intra-node communication without having to use two parallel
programming systems at once. According to [9], shared memory performs considerably
better than its MPI-P2P + OpenMP counterpart, as their study on a 5-point stencil
benchmark revealed that using shared memory reduces data movement time by 40%
on average. In [22], MPI-3 shared memory is used to improve the runtime system of
DASH, a C++ template library, by utilizing shared memory for blocking intra-node data

6



transfer. Their results lead to the conclusion that shared memory did indeed improve
the runtime system’s performance of intra-node communication while also performing
comparable to other PGAS approaches like UPC or OpenSHMEM on said intra-node
operations. Once again, while these results are relevant, it is not enough to universally
assess the performance of shared memory, which is why this thesis aims to add to these
results. It should also be mentioned that many years have passed since the release of
these papers ([9] was released in 2013), during which many MPI implementations have
been further improved in multiple aspects, including their implementation of shared
memory.

7



3 Background

3.1 MPI
The Message-Passing interface (MPI) is a library interface specification, first defined in
1994, which mainly employs the message-passing parallel computing model, meaning
that processes cooperate by moving data in between said processes. This is primar-
ily executed with two functions, MPI_Send and MPI_Receive. The first function is
used by a process to send data from its own address space to another process, while
the latter function is used to receive such data. The MPI interface provides many
extensions beyond sending and receiving a message, for example collective operations
that involve multiple processes at once, parallel I/O and remote memory access oper-
ations. These remote memory access operations will be the focus of the following sections.

Remote memory access (RMA) was first introduced to the MPI standard in 1997 with
the release of MPI-2.0. With RMA it is possible to specify all parameters needed for the
communication on one process instead of having to specify them on both the sending and
receiving process, as it is the case with point-to-point (P2P) communication in MPI. This
eliminates the necessity of matching send and receive calls, which in turn reduces the
need to poll for potential communication requests on the receiving process. Another key
difference between P2P and RMA communication is the separation of communication and
synchronization. Transferring data via message-passing incurred both communication
and synchronization with the matching send and receive calls, while RMA was designed
to separate them. Due to this separation, it is expected that RMA operations incur
less synchronization in general, which in turn would improve the overall performance
of communication. Thus, there are communication calls, such as MPI_Put and MPI_Get,
and synchronization calls. Both categories will be explained thoroughly at a later stage.

The functions of the RMA interface were designed specifically to allow implementors
to abuse fast communication mechanisms of the underlying hardware, such as shared
memory or DMA engines [7, Chapter 11.1]. However, due to various reasons MPI-2
RMA was not widely used and played only a secondary role compared to the traditional
message-passing paradigm. Among others, these reasons included an unjustifiable in-
crease in complexity for many otherwise simple programs and that the performance gain
was less significant than initially expected. In 2012, the release of the MPI-3 standard
included a substantial extension to the RMA interface, as “architectural trends, such as
RDMA networks and the increasing number of (potentially noncoherent) cores on each
node, necessitated a reconsideration of the programming model” [10].

8



MPI-3 RMA is also separated into communication calls and synchronization calls,
similar to the previous iteration in MPI-2. Both the communication and synchronization
functions operate on MPI windows.

3.2 MPI windows
MPI windows are used to specify a contiguous memory region that is accessible to
other processes in a given communicator, but not to any other process outside of
this communicator. A communicator contains a group of processes and a context of
communication. These windows can be initialized with different functions, namely MPI_-
Win_create, MPI_Win_allocate, MPI_Win_create_dynamic and MPI_Win_allocate_-
shared. The functions are all similar, as they return an opaque object with certain
attributes. The window can then be accessed via this object, but there are differences in
how these functions are used exactly. Every function is a collective call that allows each
process in a given communicator to specify a nonnegative amount of bytes to expose in
a window alongside a displacement unit to be used for RMA communication operations.
The type of memory that can be exposed in a window depends on the function used for
the initialization.
If a user initializes a window via MPI_Win_create, the user would expose already

existing memory (previously allocated with malloc for example), whereas a call to
MPI_Win_allocate would allocate new memory. This means that depending on which
initialization function is called, the user has to either manage memory by themselves or
passes that responsibility on to MPI.

The third function, MPI_Win_create_dynamic, does not allocate memory to a window
nor does it create a window on previously existing memory. Instead, MPI_Win_create_-
dynamic binds only the group of processes in the given communicator. Each process
can then attach and detach memory to that window locally via MPI_Win_attach and
MPI_Win_detach respectively.
The last function, MPI_Win_allocate_shared, is used to create shared memory be-

tween the processes of a communicator. This allows processes on the same node to share
their memory directly, which in turn enables local load/store actions on this memory for
each process in this window. This should lead to a lower communication overhead than
using the otherwise necessary RMA operations to access data in a window.

Once a window is no longer needed for RMA operations it should be destroyed with
MPI_Win_free. If memory was allocated by creating the window, for example with
MPI_Win_allocate, that memory will be deallocated upon destroying the window.

9



3.3 Communication operations
From now on, the calling process will be referred to as the origin, while the targeted
process will be referred to as the target.

The two most basic communication operations are MPI_Put and MPI_Get. MPI_Put
transfers data from the origin to the target, whereas MPI_Get transfers data from the
target to the origin. Neither operation provides guaranteed ordering, facilitating an
efficient implementation of these functions.
The function MPI_Accumulate also transfers data from the origin to the target, but

instead of just overwriting the specified target buffer, the data is combined into that
buffer according to the operation defined in the arguments. If the operation used is
MPI_REPLACE, MPI_Accumulate acts as an atomic put.
Another similar function is MPI_Get_accumulate. This function first fetches the

data from the specified target buffer, storing it in a different buffer at the origin, and
then performs an accumulate at the target buffer. Using MPI_Get_accumulate with
the operation MPI_NO_OP acts as an atomic get, whereas a call with the operation
MPI_REPLACE can be used to atomically swap the contents of the target and the origin
buffer.

However, these atomic reads and writes only guarantee their atomicity at an element-
wise level, meaning that two simultaneous calls to MPI_Accumulate with the operation
MPI_REPLACE, both targeting the same set of two elements, could lead to the set contain-
ing one element from the first call and one element from the second call. Furthermore,
the ordering of accumulates is only specified for accumulates to the same or overlapping
memory locations at another process on an element-wise level. Per default, this ordering
is strict, meaning that overlapping updates from the same origin are committed in
program order (the order of executions in a single threaded program). This ordering
can be relaxed while creating the window to increase performance. Outside of this, no
guaranteed ordering applies to accumulates.

There is also a request-based version of every communication function previously
mentioned (for example MPI_Rget) that allows the user to wait for the operation to com-
plete locally via MPI_Test or MPI_Wait. The only difference between the request-based
version of a function and the normal version is an MPI_Request object, which is also used
for non-blocking P2P communication. Local completion for operations that fetch data
indicates that the data is now available in the origin buffer. For operations that write
data, local completion indicates that the origin buffer used for this operation can now be
updated safely. This MPI_Request object enables the user to overlap communication and
further computation. For example, after initiating the communication with MPI_Rget,
the user can compute additional information unrelated to the data that is supposed to
be fetched. After completing the additional computation, the user can wait for the local
completion of MPI_Rget by passing the request object to MPI_Wait.

Two more communication functions are defined for one-sided communication in the

10



MPI-3 standard. One of them is MPI_Fetch_and_op, which is a specialized version
of MPI_Get_accumulate. MPI_Fetch_and_op only accumulates a single element to the
target buffer after fetching the previous content, allowing for a faster implementation of
a certain subset of the functionality of MPI_Get_accumulate.
The last function is MPI_Compare_and_swap. This function is used to atomically

compare a single value in the target buffer with a value from the origin. If the values
are equal, the target value is replaced with a different value that was specified in the
arguments, while the original value is stored in a buffer at the origin process, thus
atomically swapping the two values.

3.4 Memory model
MPI-3 defines two different memory models. Each window is separated into a public
copy (accessed by RMA operations) and a private copy (accessed by local load and
store operations). This is also reflected in the hardware of many systems, as there is
a public memory region that is accessible by other processes and process-local private
buffers (caches or explicit communication buffers for example). These buffers are either
coherent or non-coherent. A coherent buffer reflects all updates to the public memory
in the private copies of that region consistently, whereas a non-coherent buffer needs
to explicitly synchronize the private copies to reflect changes to the exposed memory
region. These explicit synchronizations are performed with RMA functions, meaning that
the coherency of the non-coherent buffers is dependent on software, while the coherent
buffers rely on their hardware to maintain coherence.
The two different memory models of MPI were defined to properly accommodate

for these differences. The first model is the separate model. It models systems with
non-coherent buffers, where the public copy of a window is separate from the private copy.
In order to ensure the correctness of a program while using the separate memory model,
additional synchronization must be performed, either with the usual synchronization
functions (see Section 3.5) or with MPI_Win_sync, which synchronizes the public and
private copy of the window passed as the argument, as depicted in Figure 3.1 (b).

11



Figure 3.1: The unified memory model (a) and the separate memory model (b) [10].

The second memory model is the unified model. In this model, the local and the public
copy of a window are identical (due to hardware-managed coherency). Updates to the
public copy of a window via RMA operations are eventually observable by local load
operations without the need for additional synchronization calls. This allows the user to
potentially omit certain synchronization calls to improve performance, also depicted in
Figure 3.1 (a).

However, to maintain the portability of an MPI program, the user should program for
the separate model, as a correct program in the separate model is always correct in the
unified model as well, whereas the opposite is not always true, since the same program
in the separate model might require additional synchronization. Therefore, in order to
maintain portability while also not giving up on potential performance increases of the
unified model, the user is advised to query the model used for each window and handle
it accordingly.

3.5 Synchronization
The RMA communication operations are organized in epochs. An origin process can only
communicate with the target if the origin is within an access epoch for the window that is
supposed to be the target of the communication. Likewise, a window can only be accessed
if it is within an exposure epoch. A process can simultaneously be in an access epoch
and an exposure epoch for the same window. Access and exposure epochs for different
windows may overlap. Two distinct access epochs for one window at the same process
have to be disjoint. This is also true for exposure epochs. Upon closing an epoch with
a synchronization operation, all outstanding communication operations are completed
both locally and remotely. MPI provides multiple synchronization modes, namely active
and passive target synchronization, their main difference being the involvement of the
target process in synchronization. Furthermore, active target synchronization can be
split into fence synchronization and general active target synchronization.

12



3.5.1 Fence synchronization
In fence synchronization mode, the MPI_Win_fence call is used to open both an exposure
epoch and an access epoch for all processes associated with the window that is passed as
the argument to the fence call. The same function is also used to close these epochs again,
completing all outstanding communication operations. MPI_Win_fence is a collective
call on all processes in the group of the targeted window and also implies a barrier
synchronization of the aforementioned processes, as a process only completes the call to
MPI_Win_fence once all other processes in the group have entered their respective fence
call. The barrier synchronization can be circumvented for specific fence calls, namely
a call to MPI_Win_fence that starts an epoch. In that case, an assertion argument
can be passed to the fence call, disabling the barrier-like functionality for that specific
MPI_Win_fence. Fence synchronization is useful in many situations, for example if the
algorithm is separated into distinct communication and computation phases, as depicted
in Figure 3.2.

Figure 3.2: Example of active target synchronization. All processes open an epoch with
the fence call, then various communication calls can occur until the epoch is
closed again with another call to fence [10].

3.5.2 General active target synchronization
Compared to the fence synchronization mode where the fence calls have to include every
process associated with a window, the general active target synchronization allows for
a more fine-grained approach. Every process is able to define to which other process
it opens an access epoch or an exposure epoch. This circumvents the entailed barrier
synchronization in MPI_Win_fence, thus reducing the overall synchronization needed.

13



There are four functions for general active target synchronization: MPI_Win_post,
MPI_Win_start, MPI_Win_complete and MPI_Win_wait. To start an access epoch, the
origin calls MPI_Win_start, to which a group argument is passed that contains all the
processes whose windows the origin wants to access. These processes have to match the
call with the non-blocking MPI_Win_post, starting an exposure epoch to the processes
specified in their group argument. To close the access epoch of the origin, MPI_Win_-
complete is called. This call only returns once all communication operations have
completed at the origin. Similarly, to close the exposure epoch, the target process calls
MPI_Win_wait. This call will block until all matching calls to MPI_Win_complete have
occurred, guaranteeing completion at the origin of all RMA operations on the local
window. Once the call to MPI_Win_wait returns, all of the RMA operations issued will
be completed at the target window as well.
There is also a non-blocking variant called MPI_Win_test. If the accesses have not

been completed this function returns flag = false. If the accesses have completed,
the function behaves exactly like MPI_Win_wait. This matches the behaviour of the
functions MPI_Wait and MPI_Test, which are used to test or wait for the completion of
request-based communication operations like MPI_Irecv or MPI_Rget.
General active target synchronization works best if the communication pattern is

mostly fixed and each process only communicates with a small number of other processes,
for example with stencil-based algorithms.

Figure 3.3: Example of general active target synchronization. Processes 1, 2 and 3 start
an exposure epoch in which they can be accessed by process 0. Meanwhile,
process 0 first starts an access epoch with process 1 and 2 as the targets,
communicates with them before ending the epoch to start a new access epoch
on process 3. After all communication is complete, processes 1, 2 and 3 end
their exposure epoch by calling the wait function [10].

14



3.5.3 Passive target synchronization
In passive target synchronization, any window can be accessed at any time, making the
concept of exposure epochs obsolete, as a window is in such an epoch constantly. In
this synchronization mode the origin is the only process that is explicitly involved in
communication and synchronization. Access epochs are started with MPI_Win_lock and
end with a call to MPI_Win_unlock. When locking a window, the origin process can
choose between a shared lock or an exclusive lock, similar to those used in reading and
writing. Locking a window exclusively ensures that other lock-protected accesses to the
same window do not occur concurrently. However, unlike regular read-write locks, a
call to MPI_Win_lock does not need to wait for the lock to be acquired before returning,
unless it is used to lock a local window to protect local load and store actions. Due to
this, the user cannot rely on these locks for mutual exclusion and has to ensure said
exclusion through other means, if necessary.

Instead of locking and unlocking only a single process per call, the MPI_Win_lock_all
and MPI_Win_unlock_all functions can be used to acquire a shared lock to all other
processes associated with that window or unlock them respectively. As with the other
synchronization modes, a call to close the access epoch blocks until all outstanding
communication operations have completed. In passive mode, this would also entail
releasing any potentially exclusive locks. To circumvent that problem MPI provides
multiple functions that allow the user to flush any outstanding RMA operations without
releasing said locks. There are four functions, the first pair being MPI_Win_flush and
MPI_Win_flush_all. Calling these will complete any outstanding RMA operations both
locally and at the target. The second pair of functions is MPI_Win_flush_local and
MPI_Win_flush_local_all, which complete all outstanding communication operations
at the origin but not necessarily at the target. This may be useful if the user wishes to
reuse a buffer that was used in a previous accumulate or put call for example.
This synchronization mode is useful for many applications that access the data of

other processes at irregular times.

15



Figure 3.4: Example of passive target synchronization. Note that an origin process can
be in multiple access epochs at once, but only if the target processes are
distinct [10].

It is possible to use multiple synchronization modes at once, for example using fence
synchronization for all regular communication and using passive target communication
for any irregular updates. Though it should be noted that a window cannot be in an
exposure epoch and be locked at the same time. This is considered erroneous behaviour.

16



4 Approach
In order to investigate whether or not MPI-3 RMA performs better than traditional point-
to-point communication, multiple versions of a solver for partial differential equations
(called Partdiff) were implemented. One version uses exclusively message passing and
collective communication operations where necessary, while the other versions utilize
exclusively RMA operations and also some collective communication operations as well.
The RMA versions are split into three categories, one for each synchronization mode. A
Partdiff version of the Fence category exclusively uses MPI_Win_fence for synchronization,
while a version of the Passive category only utilizes passive target synchronization. The
reasoning for using only one synchronization mode per version of Partdiff is to determine
whether one synchronization mode performs better than the others.

4.1 Partdiff
Partdiff calculates the solution of the Poisson equation in [0, 1] × [0, 1], discretized in
an equidistant square grid with a size of (N + 1)× (N + 1), where N is the number of
intervals in every direction. In order to achieve that, either the Gauss-Seidel method or
Jacobi’s method is employed, depending on the user’s input at the start. Both algorithms
iterate over the entire matrix by using the average of the four nearest neighbours of a
point and the point itself (see Figure 4.1), also known as a five-point stencil of a certain
point, and then storing the result. This is done until convergence. If Jacobi’s method is
employed, the result is stored in a second matrix, not affecting the other results of the
current iteration. If the Gauss-Seidel method is used, the result will overwrite the old
value in the matrix, thus affecting the results of its neighbours in the current iteration.
For more information consult [16], as any further explanation is out of scope for this
thesis.

17



Figure 4.1: Example of a five-point stencil. In order to calculate the result of the yellow
matrix entry, both the yellow entry itself and the four neighbouring red
entries are taken into consideration.

Regarding Partdiff, the user can specify multiple options at startup. As previously
mentioned, the user can specify the method used to solve the partial differential equations.
The user can also set the size of the equidistant square grid via the interlines argument.
The size of the grid depends on the interlines I in such a way that N = I · 8 + 9.
Furthermore, the user can decide between two disturbance functions to be used in the
Poisson equation. The first function is f(x, y) = 0; 0 < x < 1, 0 < y < 1, where x and y
are the coordinates of the value in the matrix divided by N . The second disturbance
function is f(x, y) = 2π2 sin(π · x) sin(π · y); 0 < x < 1, 0 < y < 1, with x and y being
defined as before. Lastly, the user can decide upon the convergence criterion. The user
can either provide a number of iterations that Partdiff will execute or a precision that
has to be surpassed.

4.2 Implementation
The original sequential version of Partdiff was provided to students of the High-Performance
Computing course at Universität Hamburg. This version serves as a base for the imple-
mentations with MPI. As previously mentioned, Partdiff offers both the Gauss-Seidel
method and Jacobi’s method to solve the partial differential equations.

4.2.1 Jacobi’s method
As explained in Section 4.1, Jacobi’s method stores the results of the average of a
point and its neighbours in a second matrix. Therefore, two matrices are used for the
implementation. In every odd iteration, Partdiff iterates over the first matrix and stores
the results in the second matrix. Conversely, the results of every even iteration are stored
in the first matrix.

18



For the parallel implementation with MPI, the matrices are split into lines. Every
process stores a certain number of contiguous lines of the complete matrices, depending
on the size of said matrices and the number of processes involved (see Figure 4.2). Each
process then calculates the results of their lines and stores them in the appropriate
matrix. In order to be able to calculate the results for the top and bottom rows of the
process-local matrices, a process needs to access the lines above the top row and below
the bottom row, globally speaking (see Figure 4.3). These halo lines are received from
the neighbouring processes that contain these lines in their memory. For example, if
the second process in a communicator wants to start the computation of any iteration,
this process first has to receive the last line of the first process, as the values that are
stored within this line are needed for the computation of the results of the first line in
the second process. The same conditions apply to the last line of the second process. To
calculate the results of that line, the second process needs access to the first line of the
third process. These halo lines are communicated between processes via MPI. Swapping
these halo lines has to be done at the start of each iteration.

Therefore, the parallel version of Jacobi’s method can be split into two distinct phases:
a communication phase in which halo lines are exchanged between processes, and a
computation phase in which the halo lines and the rest of the local matrix of every
process are used to calculate the results of that iteration.

Due to this split, terminating at the correct time is trivial. If the termination criterion is
the number of iterations, every process stops after the necessary iterations are completed.
If a certain precision needs to be surpassed, a collective communication operation is
performed at the end of each iteration, in which the so-called residuum of every process
is reduced to the maximum value of all processes. This maximum is then communicated
to every process involved and once the necessary precision is reached, each process exits
the calculation.

Figure 4.2: Example for the distribution of matrix lines between multiple processes. In
this particular example, five lines are distributed between three ranks as
evenly as possible.

19



Figure 4.3: Example of a process using the values of a neighbouring rank’s halo lines
for local calculations. In order for rank 1 to calculate the results of the
entry marked in yellow, it needs to know the value of a matrix entry that is
stored by rank 0. Due to this, communicating the halo lines is necessary to
successfully complete computation.

4.2.2 Gauss-Seidel method
Compared to Jacobi’s method, the Gauss-Seidel method is more difficult to parallelize
efficiently, as there is no global split into two distinct phases. As mentioned, all values
are stored in a single matrix, which includes both the old values of the previous iteration
and the new values that have already been calculated in the current iteration. Thus,
exchanging the halo lines at the start of an iteration is not possible, as the last row of
the preceding rank of any process has to be updated first before it can be sent to said
process.
In order to have every process compute something at every point in time, a different

approach to the parallelization is required. The lines of the matrix are partitioned
between processes in the same way as before, the actual computation of the results is
done differently though. Consider the following example: the first process (rank 0) starts
the computation. Rank 0 processes its local matrix until it reaches its last line. In order
to continue, the first row of the next process (rank 1) is required. Once rank 0 receives
this line, it can finish the computation for this iteration. Once finished, the updated last
line of rank 0 is sent to rank 1. Now, rank 1 can start its computation of the local matrix
until it reaches its last line as well, repeating the swap of the respective halo lines with
the next process (rank 2) and so forth. Meanwhile, rank 0 can start the computation for
the next iteration and only has to stop once it reaches its last line once again, repeating
the process that was illustrated previously.

If the Gauss-Seidel method is parallelized as such, every process computes something
at every point in time while waiting times are minimized, not considering the short

20



startup period. While this approach utilizes the resources given to Partdiff in an efficient
manner, terminating correctly is more challenging than it is with Jacobi’s method.

If the termination criterion is a certain number of iterations, terminating correctly is
still trivial. However, terminating once a certain precision is reached is more difficult, as
every process is in a different iteration compared to the other processes at almost every
point in time. In order to minimize waiting times, using a collective operation to reduce
the residuum at the end of every iteration is only feasible if the operation is non-blocking.
This operation will not complete until the last process of the communicator executes
this operation. If the result of that operation meets the termination criterion, every
process should theoretically terminate immediately. However, as the other processes have
continued their computation while the last process matched the collective communication
operation, the other processes are in different iterations altogether. At this point the
process with rank 0 will be the process that has completed the most iterations. As soon
as this process is notified that the termination criterion has been surpassed, the first
process has to inform every other process of the number of iterations that they have
to complete to catch up to the first process. Otherwise, the local matrices will contain
results of different iterations upon termination, which leads to incorrect results overall.

For this reason, the parallelized Gauss-Seidel method terminates some iterations later
than the sequential version with the same input at the start. The negative impact
of increasing the number of iterations is outweighed by the performance gained from
parallelization though.

4.2.3 Details regarding implementations and order
The first parallel Partdiff version to be built is the version using point-to-point commu-
nication. All communication is done via non-blocking sends and receives, which contain
the necessary halo lines, alongside some collective communication operations wherever
necessary. All following mentions of the P2P version of Partdiff refer to this version.
Afterwards, the first RMA versions are built. To determine whether MPI_Put and

MPI_Get perform comparably, multiple benchmarks will be executed first, and then two
Partdiff versions using fence synchronization are created. The only difference between
the versions is that one uses exclusively MPI_Put for any communication necessary, while
the other utilizes only MPI_Get. Depending on the communication operation that is
utilized, different parts of the local matrices have to be exposed in MPI windows. The
version communicating via MPI_Get exposes the local matrices’ halo lines themselves
with MPI_Win_create while the version using MPI_Put allocates new memory via MPI_-
Win_allocate in which every process can buffer the necessary halo lines.

Based on the results, the better version of the two will be used for further testing and
the versions using general active target and passive target synchronization, which will be
built afterwards, will utilize the better-performing communication operation wherever
feasible.

It should also be noted that hints are passed wherever possible. These hints are used to
provide additional information regarding the function they are called with, allowing the
MPI implementation to potentially deliver increased performance in some way. However,

21



an implementation is free to ignore these hints. But in order to create an efficient
program regardless of the actual MPI implementation used, the decision was made to
pass as many hints as possible. If the implementation that is used does not support them,
the hints will not have any negative impact on the performance whatsoever. Therefore,
providing these hints has no drawbacks.
Examples for functions that offer hints are the window initialization functions, such

as MPI_Win_create. Hints for this function include no_locks, which can be passed
if passive target synchronization is not used on the created window at any time, or
accumulate_ordering, which is used to control the ordering of accumulates on this
window, if necessary.

Many synchronization functions offer hints as well. For example, the hint MPI_-
MODE_NOPRECEDE can be passed to MPI_Win_fence, which indicates that this particular
synchronization call does not end an epoch. This information could be used to disable
the barrier-like behaviour for this particular call of MPI_Win_fence.

22



5 Implementation and optimization
Unless specified otherwise, the following experiments are conducted on multiple AMD
Opteron 6344 nodes with 48 cores each on the cluster provided by the research group
Scientific Computing (WR) of Universität Hamburg. All nodes are connected via
Infiniband. The MPI implementation used is MPICH version 3.3.2, unless explicitly
stated otherwise. Every version was compiled at optimization level 3 (-O3). Every
measurement was taken three times, the results displayed are the average of these
three measurements, alongside their respective standard deviations. In Section 4.1 it is
mentioned that the user can choose one of two disturbance functions. The disturbance
function used for all following tests is the first one (f(x, y) = 0; 0 < x < 1, 0 < y < 1),
as it will take less time to locally compute every single result, which emphasizes the
communication times.

This chapter explores different implementation approaches with MPI RMA and provides
a subsequent evaluation of these approaches. No comparisons to P2P communication
are conducted in this chapter. Instead, these comparisons can be found in Chapter 6.

The content of this chapter is separated into three sections:

• Section 5.1 compares MPI_Get and MPI_Put to determine if one offers performance
advantages over the other.

• In Section 5.2, Partdiff is implemented thrice, one version per synchronization
mechanism. These versions are then compared across multiple experiments.

• Section 5.3 proposes possible optimizations for the different Partdiff versions and
explores their impact.

5.1 Put vs Get
To determine if MPI_Get and MPI_Put perform differently, multiple tests are conducted.
The first tests involve the utilization of the OSU Micro Benchmarks [20], version 5.7. The
first set of benchmarks involve a latency test. For these, the default options were used,
meaning that the windows were allocated via MPI_Win_allocate and the synchronization
was done with MPI_Win_flush. During the benchmark, OSU tests different message
sizes. For each message size, several iterations are done in which one process uses
either MPI_Get or MPI_Put, depending on the specific benchmark, to communicate with
a second process. The time measured in these benchmarks includes both the actual
communication and the following synchronization.

23



These benchmarks were executed for both basic RMA communication operations with
two different setups, one that involved intra-node communication and one that involved
inter-node communication. The benchmarks revealed that inter-node communication
incurs higher latencies than intra-node communication, which is to be expected. They
also revealed that neither communication operation is superior. The latencies for all 23
different sizes were within 10 - 20µs of each other across both the inter- and intra-node
benchmarks, save for a single exception.

The next set of benchmarks involved a bandwidth test. Once again, the default options
were used, meaning that the same window allocation and synchronization operations were
used for these benchmarks as well. To calculate the bandwidth, multiple back-to-back
calls to MPI_Get or MPI_Put are made, followed by MPI_Win_flush in this particular
case. The elapsed time until completion and the bytes read or written are then used to
determine the bandwidth.
Once again the intra-node benchmark revealed no difference between the two com-

munication operations. The highest bandwidths were achieved while communicating
messages of 4096 to 8192 bytes (around 11000MB/s). Both smaller and bigger messages
resulted in smaller bandwidths.
Inter-node communication produced differing results though. MPI_Get hit its maxi-

mum bandwidth at similar message sizes as previously. The maximum bandwidth for
inter-node communication was around 2800MB/s. This bandwidth did not decrease
as the messages got larger, as it was the case for the intra-node benchmark. MPI_Put
hit a maximum at a larger message size. For messages of 16384 Bytes and above, the
bandwidth plateaued at roughly 2000MB/s. This difference of roughly 800MB/s is
observable for all of the nine tested message sizes of 16384 Bytes or larger, indicating
that MPI_Get achieves better results for large messages when communicating between
multiple nodes. In all other cases, both communication operations perform comparably.

To determine whether or not this difference is observable outside of a benchmark
environment, the Partdiff versions mentioned previously will be investigated now.

Figure 5.1 pictures the runtime of Partdiff while using Jacobi’s method on a matrix with
4105 lines, terminating after 5000 iterations. This demonstrates that the use of MPI_Get
or MPI_Put does not make a noteworthy difference in terms of runtime on the given hard-
ware and with the current MPI implementation, as the differences are within the natural
variance. It should be noted that the entire matrix contains 16,851,025 entries, which
amounts to a size of 134.8 MB. However the messages sent are only 32.84 kB in size. This
is most likely the reason for the increase in runtime between using 72 and 96 processes,
as the problem size is too small for higher numbers of processes. To test whether or not
bigger messages result in different runtimes and to investigate how well both MPI_Get
and MPI_Put scale in general, the same test has been conducted with different parameters
while also increasing the size of the matrix proportionally to the number of processes used.

As opposed to the previous experiment that utilizes strong scaling (the total problem
size is fixed), the next experiment features weak scaling, for which the problem size scales

24



Figure 5.1: Runtimes of Partdiff using the Jacobi method with 4105 lines and 5000
iterations (using n nodes and p processes per node)

with the number of processes, as each process is assigned a fixed problem size. For this
particular experiment, every local matrix of a process contains roughly 1 GB of data or
125,000,000 entries respectively. It should be noted that increasing the overall problem
size also increases the message size. The message sizes vary from 179 kB while using
4 processes to 876 kB with 96 processes. The exact problem sizes for each number of
processes are displayed in Table 5.1. Conducting this experiment with the initial versions
of RMA-driven Partdiff resulted in the runtimes shown in Figure 5.2.

As with the strong scaling experiments, MPI_Put and MPI_Get achieve similar results.
The only irregularities are the results while using 72 and 96 processes respectively. For
these, using MPI_Put achieves faster runtimes. The differences in the other runtimes are
within natural variance.

25



no. of
processes interlines entries size of one matrix in GB

1 1396 124,925,329 1.00
4 2794 500,014,321 4.00
8 3951 999,634,689 8.00
16 5588 1,999,252,369 15.99
24 6844 2,998,767,121 23.99
48 9679 5,997,108,481 47.98
72 11855 8,996,332,801 71.97
96 13689 11,994,849,441 95.96

Table 5.1: Problem sizes used in the weak scaling experiments

Both the results from the initial Partdiff versions and the benchmark results seem
to indicate that neither MPI_Put nor MPI_Get grants a performance advantage when
compared to each other. The observed difference in inter-node communication band-
width does not affect Partdiff either. This might be due to the fact that inter-node
communication rarely takes place, as only the first and last process of a node have to
send messages between different nodes at most. So while it appears that there is no
performance difference between the two operations, it should be noted that they cannot
be used interchangeably without certain repercussions.

Consider the following example: one process, called rank 0 now, wants to communicate
with another process called rank 1. The synchronization mode used is the passive mode.
Rank 0 wants to access a certain variable that rank 1 contains. This scenario presents
the user with two options. Either rank 0 uses MPI_Get to access the memory on its own,
granted that the memory was exposed in a window previously, or rank 1 uses MPI_Put
to write the variable’s content into previously exposed memory of rank 0.
When going for the first option, rank 0 knows exactly when the communication is

complete, as it has to call MPI_Win_unlock to end its access epoch. Once the call to this
function returns, the communication is complete and rank 0 can use the value read from
rank 1’s memory.
When going for the second option, a problem regarding the synchronization arises.

Rank 1 starts an access epoch, uses MPI_Put to write the value into the window of rank
0 and then ends the access epoch. Meanwhile however, rank 0 has no way of knowing
when this operation is complete, as it is not involved in any of the synchronization.
Assume that this example is extended into a loop. Rank 0 can never determine whether
or not rank 1 executed a call to MPI_Put, as rank 1 does not necessarily write a different
value into the window during each iteration. Therefore rank 0 cannot determine if any
communication has taken place even if the value is monitored constantly. If rank 0 had
to act on the value sent in each iteration in any way, it could not do so without further
synchronization. For example, rank 1 could send a message to rank 0 after the call to
MPI_Win_unlock has returned. This would however add an extra message to the entire

26



Figure 5.2: Runtimes of Partdiff using the Jacobi method with weak scaling and 100
iterations (using n nodes and p processes per node)

communication when compared to the usage of MPI_Get.
This problem also affects the Gauss-Seidel implementation, given that passive synchro-

nization mode is used, which is why future versions of Partdiff will utilize MPI_Get over
MPI_Put when passive mode is used, as it requires one message less per communication
step.

To conclude, while neither communication operation outperforms the other one, using
MPI_Put is not viable in some scenarios involving passive target synchronization, as
each communication in such a scenario would need to be accompanied by additional
synchronization, which is why MPI_Get is used instead in these events. For other
scenarios than the one described, including the usage of the other synchronization modes
for example, the communication operations can be used interchangeably, given that the
memory which is either read or written to is managed accordingly.

5.2 Comparing the different synchronization modes
The next step is the implementation of Partdiff with each synchronization mode, resulting
in the first three RMA-driven Partdiff versions. All windows are allocated using MPI_Win_-
create. The communication and synchronization of Jacobi’s method was comparatively
easy to implement, as it only required to swap the sends from the P2P version to MPI_Put

27



or MPI_Get while removing all receives and also adding the appropriate synchronization
functions.
The implementation of the Gauss-Seidel method has proven to be more challenging,

with the general active target synchronization being the exception. As previously
explained in Section 4.2.2, the computing processes are not in the same iteration at all
times. Due to this, using active target synchronization properly becomes difficult. Under
normal circumstances, MPI_Win_Fence is used to start or end an epoch respectively. The
function call to end this epoch entails a global barrier synchronization. Considering that
every process is in a different iteration, using MPI_Win_Fence before and after every
communication operation is highly inefficient, as it forces the first process to wait for the
completion of the last process before it can continue its calculations. In order to prevent
this from happening, MPI_Win_Fence is called once before the first iteration starts to
begin an epoch. The call to close the epoch is made after the last iteration is finished.
Using the fences as described leads to every communication operation happening in the
same epoch.

However, due to the special usage of the fences, synchronizing the processes has to be
done differently. In order to test whether or not a communication call has completed,
the request-based version of the call is used, in this case MPI_Rget. As described in
Section 3.3, these calls have a request object attached to them, which allows the user
to test or wait for the completion of said operation. While this solved the problem of
knowing when the communication is completed, another problem regarding the proper
synchronization of the processes remained.

Consider the following example: the first process (rank 0) reaches the end of the first
iteration and needs to access the first line of rank 1. Using MPI_Rget, rank 0 can fetch
said halo line, finish computing the first iteration and begin the second one. Suppose
rank 0 reaches the point at which it needs to access rank 1’s halo line again before rank
1 finishes the computation of its first line. In this scenario, rank 0 would access the
unfinished halo line and continue its computation with erroneous values.
In order to inhibit such behaviour, the neighbouring processes have to communicate

information about their current state. In this version of Partdiff, each process creates
one new window per halo line, in which it exposes a single integer, used as a flag. This
flag contains either the value 0 if the halo line is not ready to be accessed yet or a 1 once
it is ready. These flags are initialized with 0 and once a process finishes calculating the
results for its own halo line, the value is then set to 1. Meanwhile, the neighbouring
process accesses the flag corresponding to the specific halo line once said process reaches
the point in computation at which it needs access to the line. If the flag is set to 0,
the neighbouring process enters a loop in which it continuously reads that flag until it
contains the value 1. Only then will the process read the halo line via MPI_Rget and wait
for the completion. After MPI_Rget is completed, the accessing process overwrites the
flag with the value 0 via MPI_Put, signaling the completion of the access and ensuring
that said process cannot access the line again until the accessed process updates the flag.
While this approach achieves the correct results, it should be noted that the usage

of request based RMA operations is only valid in passive target epoch, according to [7,
Chapter 11.3.5]. Therefore, this version of Partdiff is not valid and it is not guaranteed

28



to work with other MPI implementations. However, using the request-based operations
was the only option to efficiently implement the Gauss-Seidel method using active target
synchronization. Due to this and the fact that the calculations are correct regardless, the
Partdiff version that is described above will still be considered in some of the following
experiments involving the Gauss-Seidel method, though using active target synchroniza-
tion for similar algorithms is not advised, as the other synchronization modes are better
suited for such.

While passive synchronization is better suited for the implementation of the Gauss-
Seidel method compared to active target synchronization, it still suffers from some similar
problems. Communication and synchronization are simpler, as the origin process is the
only one to issue any calls for that. This means that once a process needs to access a
halo line, it can lock the appropriate window, issue a call to MPI_Get and end the access
epoch by unlocking the window. As mentioned, the communication will be complete once
the call to MPI_Win_unlock has returned. However, using passive target synchronization
alone does not rule out the potential race condition that was described above. To solve
that problem, the same strategy involving the flags is used once again, the only difference
being that the use of request-based operations is not necessary, as locking the window
and then using MPI_Win_flush where appropriate offers the same functionality.

General active target synchronization turned out to be the most suitable synchro-
nization mode for an algorithm such as the Gauss-Seidel method due to its fine-grained
synchronization approach. As explained in Section 3.5.2, the origin process starts its
access epoch by calling MPI_Win_start. After that, any necessary communication oper-
ation can be issued. To close the epoch and therefore guarantee that the communication
is complete, the MPI_Win_complete function is called. Since the target process has
to explicitly open an exposure epoch via MPI_Win_post, the previously described race
condition is not possible anymore, as the target process only starts its exposure epoch
for a halo line once the computation for the line is complete. That access epoch ends
shortly before the start of the next access epoch for the next iteration. This guarantees
that the origin process can only access any halo line once per iteration and therefore
eliminates any race conditions.

These three versions of Partdiff were then used in experiments similar to the previous
ones. Each version was subjected to eight distinct experiments, four of them for each
method. These experiments are divided by the termination criterion, either a set number
of iterations or a precision that has to be surpassed. Then they are divided again into one
using weak scaling and the other using strong scaling. For weak scaling, the same problem
sizes as for the previous experiment apply. In order to be able to properly compare
the results of the experiments with a differing termination criterion, the precision was
chosen in such a way that the necessary iterations to reach that precision are equal to the
iterations defined as the termination criterion for the other experiment. During the weak
scaling experiments, these precisions vary between experiments with differing numbers
of processes, as the underlying matrix changes, which leads to different precisions being

29



necessary to require 100 iterations.

Figure 5.3: Runtimes of the first Partdiff versions using Jacobi’s method with 4105 lines
and 5000 iterations (using n nodes and p processes per node)

The results in Figure 5.3 show that the version using general active target synchro-
nization is the fastest out of the three for Jacobi’s method. Increasing the number of
nodes also led to an increase in the difference between general mode and the rest. Active
and passive target synchronization achieve very similar results, although the version
using passive target synchronization appears to scale better, as the difference in runtime
between these two increases with the number of processes used. However, that difference
is comparatively small with roughly 3 seconds.
These results were expected, because the use of active target synchronization entails

implicit barriers, which will slow down the runtime for large numbers of processes, as
the waiting time at these barriers increases since every process has to reach it before
continuation. The version using passive target synchronization also necessitates the
use of explicit barriers, because the fact that only the origin process takes part in
synchronization and communication leads to a race condition in which multiple pro-
cesses can be in different iterations and access halo lines that were not meant to be
accessed at that point in time. General active target synchronization does not suffer
from these problems, as the blocking synchronization calls are not global and there-
fore do not impact the runtime as much due to decreased waiting times. Since both
the origin and the target process are involved in the synchronization, the use of any
explicit barriers is not necessary either, leading to the fastest runtime of the three versions.

30



Figure 5.4: Runtimes of the first Partdiff versions using Jacobi’s method with 4105 lines
and a target precision of 7.0637e-5 (using n nodes and p processes per node)

However, this trend does not continue in the next experiment. The results depicted in
Figure 5.4 show that using precision as the termination criterion increases the overall
runtime. This was to be expected since a collective operation (MPI_Allreduce for
this case in particular) is needed to determine the residuum after each iteration. That
collective operation is the only difference between using precision or a number of iterations
as the termination criterion for all three versions. Regardless of that, general active
target synchronization is not the fastest in this experiment. Only while using less than
16 processes it remains the fastest, afterwards the runtimes of general active target
synchronization are on par with active target synchronization, while passive target
synchronization scales the best and achieves the lowest runtimes of the three versions at
higher numbers of processes. It should be noted that the aforementioned barriers for the
version using passive synchronization are not necessary if precision is the termination
criterion. Instead, a call to MPI_Allreduce is applied. While collective communication
operations are not required to synchronize [7, Chapter 5.1], the results of all previous
and all following experiments were always correct. Whether this happens because all
tested MPI implementations synchronize all processes as a side effect of invoking MPI_-
Allreduce or if it happens because the Partdiff implementation is robust enough cannot
be determined at this time, because testing this would require many experiments with
many different MPI implementations, which is out of scope.

31



It is most likely due to this difference that the passive target version achieves the
best results at higher numbers of processes, as the use of the collective communication
operation did not make any of the synchronization calls of the other two versions obsolete.

It should be noted that the increase in runtime for 96 processes compared to 72
processes is once again most likely due to the problem size being to small for such a high
number of processes, much like in Figure 5.1.

Figure 5.5: Runtimes of the first Partdiff versions using Jacobi’s method with weak
scaling and 100 iterations (using n nodes and p processes per node)

The results of the strong scaling experiments that terminated after a fixed number of
iterations are similar to the results of the same experiment with weak scaling (Figure 5.5).
General active target synchronization performs the best, with the absolute and also the
relative difference increasing alongside the number of processes, indicating that general
active target synchronization works best for both small and large problem sizes while
using Jacobi’s method and using iterations as the termination criterion. Once again
the other two modes are almost equal, with a few exceptions while using 16 or 24 processes.

32



Figure 5.6: Runtimes of the first Partdiff versions using Jacobi’s method with weak
scaling and a varying precision that requires 100 iterations to reach (using n
nodes and p processes per node)

The results of the weak scaling experiment that uses precision as the termination
criterion differ from the previous ones though, as displayed in Figure 5.6. The runtimes
that were achieved indicate that active target synchronization performs the best on
large problem sizes with only one exception. The strong scaling counterpart of this
experiment placed passive target synchronization as the fastest one. The other two
modes achieved similar results while only being marginally slower than the passive mode.
Considering that the corresponding standard deviations of the respective results are quite
high compared to the absolute differences of the mean values, repeating the experiment
with a much higher number of individual measurements would be advised to test whether
or not these results repeat themselves or if the results turn out to be closer to each other.

Next, the results of the experiments with the Gauss-Seidel method will be inspected.

33



Figure 5.7: Runtimes of the first Partdiff versions using the Gauss-Seidel method with
4105 lines and 5000 iterations

Both experiments (Figure 5.7 and Figure 5.8) produce similar results, as the three
synchronization modes achieve runtimes that are almost equal to each other, with only
very few and small exceptions (like the runtime for 8 processes in Figure 5.7). Once again,
the runtimes for using precision as the termination criterion surpass their respective
counterparts in the other experiment. It should also be noted that the number of itera-
tions needed to reach the specified precision is 5000 for the sequential version of Partdiff,
but due to the specific implementation for the parallel Gauss-Seidel method, the parallel
Partdiff versions execute a few extra iterations after reaching the targeted precision,
as explained in Section 4.2.2. The number of extra iterations also increases with the
number of processes used, as the maximum possible difference in iterations between the
first and the last ranked process increases. As an example, two specific measurements
of the Partdiff version using general active target synchronization are considered. The
first measurement is from the experiment using 4 processes. After terminating, 5005
iterations were completed. Meanwhile, using 96 processes led to Partdiff iterating over
the entire matrix 5162 times.

To see whether or not one mode is better suited than the others in regards to the
performance, the weak scaling experiments depicted in Figure 5.9 and Figure 5.10 have
to be evaluated.

34



Figure 5.8: Runtimes of the first Partdiff versions using the Gauss-Seidel method with
4105 lines and a target precision of 7.0753e-5

Once again, the results from the two experiments are similar. Although this time
the version using passive synchronization seems to perform the worst by 1-2% for every
configuration. Even though this difference occurs consistently, it is small enough that it
could still be attributed to natural variance. Active and general active target synchro-
nization achieve results that are for the most part almost equal.

Looking at the results from all experiments involving Gauss-Seidel, a preliminary
conclusion regarding the best performing synchronization mode can be drawn. All three
modes produce very similar results. As previously noted, the specific implementation of
the Gauss-Seidel method using active target synchronization is not valid due to the use
of request-based one-sided communication operations. Due to this and because active
target synchronization only performed equal to the others, it will not be considered
anymore for further experiments involving the Gauss-Seidel method. From this point
onward, only the passive and the general active target mode will be investigated further
for the final implementation of the Gauss-Seidel method.

Regarding the results from the experiments with Jacobi’s method, preliminary con-
clusions can be drawn as well, albeit not as clear cut. For both the strong and the

35



Figure 5.9: Runtimes of the first Partdiff versions using the Gauss-Seidel method with
weak scaling and 100 iterations

Figure 5.10: Runtimes of the first Partdiff versions using the Gauss-Seidel method with
weak and a varying precision that requires 100 iterations to reach

weak scaling experiments that involved terminating after a set number of iterations,

36



general active target synchronization performed the best, especially with higher num-
bers of processes. However, the results of the experiments terminating after reaching
a targeted precision produced different results. During the strong scaling experiment
with a comparatively small problem size, the passive mode achieved the best results,
while the results of the weak scaling counterpart saw active target synchronization as
the best performing mode, although these results should be considered inconclusive due
to previously mentioned reasons. Going forward, all three synchronization modes will
still be subjected to different experiments.

5.3 Improving the performance
These first RMA-based versions will now be improved upon through various means, as
their implementations are rather naive and pose much room for possible improvements,
which is why the aforementioned conclusions are only preliminary.

This section is separated into multiple subsections, each testing a different approach
to potentially increase the performance of Partdiff:

• Section 5.3.1 examines a better approach for the calculation of the residuum.

• In Section 5.3.2, the passive version’s synchronization outside of the locks is
improved.

• Section 5.3.3 investigates the passive version as well. This subsection investigates
different possibilities regarding the exact use of MPI_Win_lock and MPI_Win_-
unlock.

• The advantages and disadvantages of combining multiple windows into a single
one are discussed in Section 5.3.4.

• Section 5.3.5 features an experimental approach to active target synchronization,
aimed at reducing the global nature of MPI_Win_fence by introducing multiple
small communicators instead of one large communicator.

• Section 5.3.6 explores the options of shared memory in MPI RMA.

5.3.1 Residuum calculation
After comparing these initial RMA-based versions to their point-to-point counterpart, it
was found that the Gauss-Seidel method with precision as the termination criterion was
performing the worst. As an example, the runtime for the general active target version
with 16 processes was 206.14 seconds, while the P2P version only needed 166.58 seconds
(more thorough comparisons are conducted in Chapter 6). The reason for this difference
is the calculation of the residuum. After calculating the residuum for its local matrix,

37



each process would send that residuum to the last process, which would then locally
determine the maximum residuum from these values for a given iteration and inform
the first process if the termination criterion has been met. Due to this, the last process
served as a bottleneck for the runtime.

To stop this from happening, the load of the communication has to be evenly distributed.
In order to achieve this, each process sends its local residuum not to the last process,
but to its successor. The successor then compares the residuum of the predecessor to its
own local residuum once the iteration over the matrix is completed and sends the higher
value to the next rank. Once the last rank receives the residuum from its predecessor, it
also compares the received residuum to its own local residuum and then informs the first
process, if necessary.

Both the P2P version and the RMA version initially calculated the residuum in the way
that is described first, however the performance of the P2P version was not negatively
impacted by this, as comparing the runtime of both approaches with both weak and
strong scaling shows no meaningful difference (all runtimes differ by 1% at most). The
difference for the runtime of the RMA versions was much higher, as the results in
Figure 5.11 from a strong scaling experiment show.

Figure 5.11: Runtimes of the different approaches to residuum calculation using 4105
lines and a target precision of 7.0753e-5

The results of a similar weak scaling experiment reinforce these findings, as the run-
times observed in this experiment differ by at least 120 seconds for any tested number of
processes, indicating that the new approach to residuum calculation is superior on both

38



small and large problem sizes.

Another approach to residuum calculation was the usage of MPI_Accumulate. For this,
a new window was created that was empty on most processes, excluding the last one.
The last process exposed two times the number of overall processes worth of memory
in double values. The other processes accumulated their local residuum in one of these
entries, depending on their current iteration. Once the last process reaches the end of
its iteration, it only has to read the corresponding entry of the window and compare it
to its local residuum. Afterwards the first process can be notified if necessary. While
this approach yielded better results than the original one, it is still vastly inferior to the
previously evaluated approach during which the residuum is always sent to the successor.

Therefore the optimal one-sided version will calculate the residuum during the Gauss-
Seidel method by having each rank send the minimum of the residuum of the predecessor
and its local residuum to their successor.

5.3.2 Substituting flags
The next improvement, among others, was inspired by [4]. During their implementation
of a halo swap with passive target synchronization, they also encountered the problem
that passive mode lacks any synchronization at the target process. Their solution to
this problem was to send an empty message via point-to-point communication once the
one-sided communication operation was finished.
To determine whether this approach is superior to the method used for Partdiff,

a version using point-to-point messages instead of flags was created. This explicit
synchronization was necessary for the Gauss-Seidel method, as the absence of any
synchronization led to possible race conditions in which a process could potentially read
the same halo line twice for different iterations. In regards to performance, no version
was superior to the other in both a strong and a weak scaling experiment. However,
using P2P messages is still considered as the better alternative, as it increases readability
substantially. A comparison of both approaches is displayed in Listing 5.1.

1 //old version trying to read the last line of the
↪→ predecessor:

2 //check if the last line is ready to be used by this
↪→ process , wait if it's not

3 int ready;
4 MPI_Win_lock ( MPI_LOCK_EXCLUSIVE , pre , MPI_MODE_NOCHECK ,

↪→ winLastLineReady );
5 MPI_Get (& ready , 1, MPI_INT , pre , 0, 1, MPI_INT ,

↪→ winLastLineReady );
6 MPI_Win_flush_local (pre , winLastLineReady );
7 while(ready == 0){
8 MPI_Get (& ready , 1, MPI_INT , pre , 0, 1, MPI_INT ,

39



↪→ winLastLineReady );
9 MPI_Win_flush_local (pre , winLastLineReady );
10 }
11
12 //once ready , get the line and inform the other process

↪→ that the last line can now be overwritten again
13 MPI_Win_lock ( MPI_LOCK_EXCLUSIVE , pre , MPI_MODE_NOCHECK ,

↪→ winLastLine );
14 MPI_Get ( bufferForLineFromPrecedingRank , N+1, MPI_DOUBLE ,

↪→ pre , 0, N+1, MPI_DOUBLE , winLastLine );
15 ready = 0;
16 MPI_Put (& ready , 1, MPI_INT , pre , 0, 1, MPI_INT ,

↪→ winLastLineReady );
17 MPI_Win_unlock (pre , winLastLine );
18 MPI_Win_unlock (pre , winLastLineReady );
19
20 //new version with P2P:
21 //Once this message is received , the desired halo line is

↪→ ready to be read
22 MPI_Recv (NULL , 0, MPI_INT , pre , results -> stat_iteration ,

↪→ MPI_COMM_WORLD , MPI_STATUS_IGNORE );
23 MPI_Win_lock ( MPI_LOCK_EXCLUSIVE , pre , MPI_MODE_NOCHECK ,

↪→ winLastLine );
24 MPI_Get ( bufferForLineFromPrecedingRank , N+1, MPI_DOUBLE ,

↪→ pre , 0, N+1, MPI_DOUBLE , winLastLine );
25 MPI_Win_unlock (pre , winLastLine );

Listing 5.1: Using P2P messages for necessary synchronization at the target process
instead of flags

For the approach using flags, a process first queried the state of the flag for the
respective halo line (lines 3-6). If the flag is set to 0, the querying process then enters a
loop (lines 7-10) that can only be exited once the flag is set to 1 by the neighbouring
process. Once this section is completed, the querying process can then access the halo
line (lines 13, 14, 17), but it also has to reset the flag to 0 (lines 15, 16, 18) in order
to guarantee that this particular halo line will not be accessed before the neighbouring
process is finished with said line.

The approach using P2P messages is considerably shorter. Instead of having to repeat-
edly access the flags, the origin process instead waits for a message from the neighbour
via MPI_Recv (line 22). Since this function blocks until the corresponding message is sent
by the neighbouring target process, the line cannot be accessed before the target process
is finished with said line. After receiving the message, the halo line can be accessed just
as before (lines 23-25).

Another approach to eliminate the use of flags was to lock the windows locally if a

40



process has not finished the calculations of its own halo lines. This would block any
remote accesses until the local lock is released, at which point the remote access would
take place. This approach was not successful though, as this did not eliminate the
possibility of the aforementioned race condition, it only stopped the access of incomplete
halo lines.

Therefore, any previous implementations that relied on the flags now use point-to-point
messages to greatly increase readability without sacrificing performance.

5.3.3 Different approaches to locking windows
Another key aspect of the design of the passive mode version described in [4] was the
proper usage of the MPI locks. During their experiments they came to the conclusion that
acquiring all locks at the start with MPI_Win_lock_all and only releasing these locks at
the very end in the finalization procedure yields better results compared to locking and
unlocking a window repeatedly. Usually calling MPI_Win_unlock and therefore ending
an epoch is necessary to guarantee completion of the communication operations issued,
but this need can be circumvented by using MPI_Win_flush to flush any outstanding
RMA operations.
This approach to locking the windows was tested on Partdiff in the implementation

of the Gauss-Seidel method. A strong scaling experiment revealed that neither version
was superior to the other. The runtimes for both did not differ outside of a few seconds
which can be attributed to natural variance. The same can be said for a subsequent
weak scaling experiment.

There are multiple possible reasons for the absence of a performance difference. For
example, the MPI implementation used in the aforementioned paper is Cray MPICH
v7.5.5. They also executed it on different hardware, starting their experiments with
no less than 128 processes. The underlying algorithm they used to test RMA involves
many more neighbours per process than any process in Partdiff as well, resulting in
potentially skipping many more locking and unlocking procedures compared to Partdiff.
Also, Partdiff is written in C, whereas their modeling framework in use is written in
Fortran 2003, which could also lead to potential differences.

In conclusion, the different approach to locking the windows did not lead to a perfor-
mance advantage for Partdiff, most likely due to the reasons given above, but this different
approach is certainly worth investigating for any RMA-based program, considering the
potentially tremendous difference in runtime, as described in the aforementioned paper.

5.3.4 Combining multiple windows
The next attempt to increase performance was to reduce the number of windows. Consider
the following example: while using Jacobi’s method with fences, each process has to issue
two calls to MPI_Win_fence, one for each window, as the halo lines are stored in two
different windows. By decreasing the number of windows, the calls to MPI_Win_fence

41



would also decrease by 50%, resulting in fewer global synchronization calls. Decreasing
the number of barriers should lead to a substantial increase in performance, however the
following experiment shows that this is not the case.

Figure 5.12: Runtimes of the different approaches to the window setup using 4105 lines
and 5000 iterations

While using just one window instead of two indeed seems to increase the performance,
especially with rising numbers of processes, the impact is comparatively small. But
considering that the performance increase is not the only advantage, it is still an
improvement nonetheless, as using only one window minimizes the amount of necessary
calls to MPI_Win_create as well. This is most likely not going to heavily impact the
runtime of Partdiff, but on algorithms that require more than 2 lines of a matrix
to be accessible it is likely to be best practice, as it reduces code size while also
presumably minimizing setup time, alongside the reduction of necessary synchronization
calls. Whether or not using only a single window increases readability has to be decided
on a case by case basis though. For some scenarios and users, substituting the long,
but descriptive names for a high number of windows with a single window, enabling
and enhancing the array-like access of RMA communication operations, can increase
readability by deflating the code. But this might not be the case for every scenario and
user.

42



5.3.5 Splitting the communicator
In an attempt to decrease the amount of global synchronization operations while using
MPI_Win_fence, a new implementation for Jacobi’s method was created that does
not communicate over one global communicator, but over many small ones. One
communicator was created for every process. Each communicator contained up to three
processes, one distinct process and its neighbours. For example, if Partdiff is run with
16 processes, 16 communicators are created before the first iteration begins. The first
one contains rank 0 and rank 1, the second one contains rank 0, rank 1 and rank 2,
the third one contains rank 1, rank 2 and rank 3 and so on. In using this, the calls to
MPI_Win_fence do not act as global barriers anymore, but as smaller ones that involve
only the neighbouring processes. This approach does however increase the overall number
of MPI_Win_fence calls that a process has to issue, but since they are not global anymore,
this might still increase the overall performance. Splitting the communicator in the way
that is described above therefore turns the global barriers into something akin to the
synchronization mechanisms of general active target synchronization for this algorithm.
The usual strong and weak scaling experiments that use up to 96 processes on 3

nodes did not show any conclusive differences between the approach with the many small
communicators and the approach with the global communicator. An experiment with 200
processes using Jacobi’s method and terminating after 5000 iterations on a square matrix
with 24009 lines however resulted in a runtime of 1310.16 seconds (standard deviation:
5.59) for the version with the split communicator, while the same version without the split
needed 1398.64 seconds (standard deviation: 4.70) to terminate. Considering this result
and that the runtimes on smaller numbers of processes were comparable, splitting the
communicator does improve the performance. It should be noted that this improvement
comes at the cost of readability, as creating multiple windows for different overlapping
communicators involves the creation of dummy windows, as depicted in Listing 5.2.

1 for(int x = 0; x < worldSize ; x++)
2 {
3 if( allSmallComms [x] != MPI_COMM_NULL )
4 {
5 if(rank == x)
6 {
7 MPI_Win_create (NULL , 0, 1, info , ownComm ,

↪→ & winHaloLines );
8 }
9 else if(rank == x -1)
10 {
11 MPI_Win_create (haloLines , sizeof(double) * 2 *

↪→ (N+1) , sizeof(double) * (N+1) , info ,
↪→ successorComm , & winPost );

12 }
13 else
14 {

43



15 MPI_Win_create (haloLines , sizeof(double) * 2 *
↪→ (N+1) , sizeof(double) * (N+1) , info ,
↪→ predecessorComm , &winPre);

16 }
17 }
18 }

Listing 5.2: Creating windows for multiple overlapping communicators

The array allSmallComms holds worldSize entries of communicators. If the process
that is currently executing this loop is not part of the communicator in one of the entries,
that entry holds the value MPI_COMM_NULL. If that is the case for this specific process,
nothing has to be done. If this process is part of the communicator, a window has to be
created. For this, three cases have to be differentiated. Before the different cases are
explained though, it should be mentioned that MPI_Win_create is a collective call over
the entire communicator specified in the second to last argument.
The first case is that the communicator is the process’s own communicator. For

example, the process rank 1 would consider the entry at allSmallComms[1] its own
communicator, as this communicator only contains rank 1 and its neighbours. In that
case, rank 1 would create a window without exposing any of its memory, the only
important thing is the last argument, a window variable. This variable will be used
to access the windows of its neighbours in this specific communicator. Meanwhile, the
neighbouring processes are also executing this loop. If rank 1 is currently in the iteration
where x = 1, then rank 0 and rank 2 will also be in that iteration, as they are both part
of the communicator in allSmallComms[1].
For rank 0, it is the communicator of the successor, hence passing the argument

successorComm when creating the window, while rank 2 passes predecessorComm. Both
of these processes do expose memory during their window creation. Due to this, rank 1
can access that memory by accessing its window called winHaloLines, either reading
the halo lines from its predecessor or its successor. Meanwhile, both rank 0 and rank
2 will never access winPost or winPre respectively. These window variable were only
defined because MPI_Win_create requires the last argument to be non-null.
Note that the number of necessary dummy windows rises with each window created

for these communicators. Every new window would spawn two new dummy windows in
this particular example.

In conclusion, while this approach does increase the performance if a high number
of processes is used, the example given above shows that splitting the communicator
into many small ones that have to overlap is most likely not feasible for most programs
outside of Partdiff, as the window creation makes the code increasingly unreadable the
more windows are needed or the more processes are part of these split communicators.
For example, consider a data distribution that leads to processes having four neighbours.
In that case, each communicator would contain five processes, which would lead to five
different cases in the loop while each process has to define 5 dummy window variables
per window.

44



5.3.6 Shared memory windows
The last possible improvement to the RMA versions of Partdiff is the introduction of
shared memory windows. These windows allow for the creation of a shared memory
segment that enables a process to operate on memory of other processes via usual load
and store accesses. To create these windows, MPI_Win_allocate_shared is called which
then allocates the memory specified in the arguments. Before calling this function
though, it has to be ensured that the processes of the communicator that is passed as an
argument to the window allocation function are able to create a shared memory segment.
To guarantee this, the MPI_Comm_split_type function is called beforehand, splitting the
initially global communicator if necessary.

After creating the windows, a process can query the process-local address of the memory
segments of any other process in its communicator by using the MPI_Win_shared_query
function, which returns a base pointer for that memory region, the size of the region
and a displacement unit. This allows for the use of C pointer arithmetic to access any
entry inside this shared memory region. However, these windows can solely be accessed
by the processes in the shared memory capable communicator. If any communication
has to happen between processes that do not have the ability to create shared memory
between them, other global windows or P2P communication are necessary. An example
for such a scenario would be the usage of two different nodes. The communication
between processes on different nodes would necessitate means of communication other
than shared memory.

Any following Partdiff version in this section will communicate via RMA to exchange
their halo lines. Once again, multiple versions were created with the different synchro-
nization modes to investigate whether or not one is superior to the others in terms of
performance. They were then subjected to the same strong and weak scaling experiments
that were used throughout this thesis. Considering that the communication outside of
these shared windows happens only between the last process of one shared communicator
and the first of another one, the assumption that the usage of different synchroniza-
tion modes only impacts the runtime minimally, if at all, seems reasonable. While the
experiments featuring the Gauss-Seidel method indeed show only minimal differences,
the experiments involving Jacobi’s method produced results that show considerable
differences between the three modes.

45



Figure 5.13: Runtimes of the shared memory Partdiff versions using Jacobi’s method
with 4105 lines and 5000 iterations

The results in Figure 5.13 do not show a clear best mode. The results for the first two
configurations seem erratic, especially due to the comparatively high standard deviation.
The results for higher numbers of processes are more even, with small standard deviations
as well and no single mode consistently surpassing the others. One can assume that
increasing the number of measurements for the first two configurations would even these
runtimes out as well, considering the other results.

46



Figure 5.14: Runtimes of the shared memory Partdiff versions using Jacobi’s method
with 4105 lines and a target precision of 7.0637e-5

The runtimes displayed Figure 5.14 lead to similar assumptions, although the version
using active target synchronization seems to be slightly faster considering the results
while using 16 and 24 processes. The runtime for 4 processes also has a compara-
tively small standard deviation while being considerably faster at the same time, so the
runtime is probably going to stay around that level if more measurements were taken,
while it is unlikely for the other two modes to reach the same level after more experiments.

Before any conclusions on the performance of Jacobi’s method are drawn, the weak
scaling experiments will once again be considered first.

47



Figure 5.15: Runtimes of the shared memory Partdiff versions using Jacobi’s method
with weak scaling and 100 iterations

The results from the weak scaling experiment do not allow for any reliable conclusions
either. The best mode in Figure 5.15 varies too much, while the standard deviation of
most measurements is also very high in relation to the runtime overall. Perhaps longer last-
ing experiments with more individual measurements could lead to more conclusive results.

The runtimes displayed in Figure 5.16 still have comparatively large standard devia-
tions attached to them, however not as drastically and not as frequently either. If one
was to only consider the runtimes, passive mode would seem to perform the best, however
given that the differences are mostly between 1 and 2 seconds and that the standard
deviations are still higher than these differences, such an assumption could prove to be
misleading. The measurements were only taken thrice, which means that any further
experiments are likely to considerably change the displayed mean runtimes and standard
deviations, considering that the standard deviations are as large as they are after these
three measurements.

Therefore, forming a conclusion on the best mode for the implementation of Jacobi’s
method while using shared memory is not possible with the available test data. In order
to potentially be able to produce more conclusive results, the experiments would have to
be performed over a larger sample size.

48



Figure 5.16: Runtimes of the shared memory Partdiff versions using Jacobi’s method
with weak scaling and a varying precision that requires 100 iterations to
reach

Once again, the Gauss-Seidel method was used in the same experiments. This time, the
runtimes matched the previous expectation that the different modes should not influence
the performance heavily, as inter-communicator communication is rarely necessary.

Figure 5.17: Runtimes of the shared memory Partdiff versions using the Gauss-Seidel
method with 4105 lines and 5000 iterations

49



Figure 5.18: Runtimes of the shared memory Partdiff versions using the Gauss-Seidel
method with 4105 lines and a target precision of 7.0753e-5

As mentioned, the resulting runtimes are almost exactly equal (see Figure 5.17 and
Figure 5.18), showing that both modes work equally well on a matrix of the given size,
no matter which termination criterion is used. During the weak scaling experiments a
slight difference occurred though, as seen in Figure 5.19 and Figure 5.20.

Figure 5.19: Runtimes of the shared memory Partdiff versions using the Gauss-Seidel
method with weak scaling and 100 iterations, figure scale starting at 200
seconds

During both of the weak scaling experiments, the passive mode appears to perform
slightly better. Regarding the results displayed in Figure 5.19, passive mode’s mean
was lower by at least 3 seconds except for the measurement involving only 8 processes.
This difference is small enough that it could be considered natural variance, however
the fact that it occurred on every measurement except for one alongside the small
standard deviations of all measurements involved leads to believe that the passive mode

50



Figure 5.20: Runtimes of the shared memory Partdiff versions using the Gauss-Seidel
method with weak scaling and a varying precision that requires 100 iterations
to reach

indeed performs slightly better than the general active target mode. Similar observations
can be made with the results of the experiment displayed in Figure 5.20 that used
precision as the termination criterion. The measurements to the right that involved
a higher number of processes show a growing difference, albeit a relatively small difference.

Combining the observations made in both weak scaling experiments involving Gauss-
Seidel, the assumption can be made that the passive target mode is indeed slightly
better suited than the general active target mode. However it should be noted that this
difference is very marginal. Experiments with bigger sample sizes could produce different
results, but given that the runtimes are as close together as they are alongside their
comparatively small standard deviations, it is unlikely that one mode outperforms the
other one by a considerable amount.

Another option that has been tried in this context is the use of P2P messages to handle
inter-communicator message passing. For the experiments involving Jacobi’s method, the
results for this P2P version with shared memory are as erratic as the previous ones while
displaying similar runtimes. For the experiments involving the Gauss-Seidel method, the
results of the P2P version were similar to the presented ones as well while not surpassing
them. Considering these results, the usage of point-to-point messages for the necessary
communication between multiple shared communicator is a viable alternative to RMA
calls, as they seem to perform on a similar level while also not requiring any window
setup or explicit synchronization calls.

Before moving on to the next section, an interesting bug was discovered in the OpenMPI
implementation of shared memory windows. The OpenMPI version in question is 3.1.6.

51



This was discovered during the weak scaling experiments. Initially, the weak scaling
experiments were constructed in such a way that every process would store 2GB worth
of matrix data. Problems arose for Jacobi’s method though, as the execution of Partdiff
with 48 or more processes was not possible with this experiment setup on the given
hardware. The error messages given from MPICH were lacking critical information
though and therefore a different MPI implementation was used to narrow down the cause
of the problems for higher process numbers with Jacobi’s method. The error messages
from OpenMPI were much more useful and due to these, the error was discovered.

The amount of memory that was supposed to be exposed in shared memory exceeded
the hardware’s limitation, which is why the weak scaling experiments were adjusted
accordingly, decreasing the size of the matrices to the ones previously explained. This
did solve the problem for Partdiff when using MPICH, however it appears that OpenMPI
was still not able to execute Partdiff with the adjusted matrix sizes. The error message
displayed in Listing 5.3 was produced while using OpenMPI.

1 It appears as if there is not enough space for
↪→ /dev/shm/osc_sm.abu4. cdc50001 .0.4 (the shared -memory
↪→ backing

2 file). It is likely that your MPI job will now either abort
↪→ or experience

3 performance degradation .
4
5 Local host: abu4
6 Space Requested : 133105378760 B
7 Space Available : 67367100416 B
8 --------------------------------------------------
9 [abu4 :54385] *** An error occurred in

↪→ MPI_Win_allocate_shared
10 [abu4 :54385] *** reported by process [3452239873 ,0]
11 [abu4 :54385] *** on communicator MPI COMMUNICATOR 3

↪→ SPLIT_TYPE FROM 0
12 [abu4 :54385] *** MPI_ERR_INTERN : internal error
13 [abu4 :54385] *** MPI_ERRORS_ARE_FATAL ( processes in this

↪→ communicator will now abort ,
14 [abu4 :54385] *** and potentially your MPI job)

Listing 5.3: Error message while creating shared memory windows with OpenMPI

Prior to the creation of this error message, Partdiff was supposed to executed with
11400 interlines on two nodes. As the method in question is Jacobi’s method, two
matrices of that size would need to be allocated, which would amount to a total of about
133.1GB worth of matrix data. This data would however be split across two nodes,
meaning that each node would store about 66.55GB of data in their shared memory. The
available space for shared memory is slightly higher than 67GB per node, as displayed in
the error message above as well. Considering these numbers, executing Partdiff like this

52



would not exhaust the available memory and, as previously mentioned, the execution
with MPICH was successful. For OpenMPI though, it appears that their shared memory
window creation tries to allocate the entirety of the shared memory on a single node,
instead of spreading the memory across the nodes. The reason for this remains unclear,
however it heavily impedes the use of shared memory when utilizing OpenMPI and
should be addressed, if it has not happened already.

53



6 Results

6.1 The improved RMA versions
Using the results gathered from the experiments on the different versions of Partdiff, an
optimized version of Partdiff will be created. However, given that the results from the
Partdiff versions using shared memory and the results from those that do not utilize
that feature were considerably close, two versions will be built, one using the optimal
modes and approaches for shared memory and one using the normal windows. These will
then be compared to the P2P version of Partdiff during multiple different experiments to
determine whether or not the usage of RMA provides a performance improvement. Any
memory used for communication within the RMA versions will be allocated with MPI
functions to enable any possible performance advantages that an MPI implementation
may provide.

First, the non-shared memory version will be considered. Looking at the results from
the initial Partdiff versions and the following attempts to improve performance, general
active target mode still seems to be suited the most for Jacobi’s method, especially
considering the results while using the iterations as the termination criterion. These
runtimes have not been surpassed by any other version and since the experiments using
precision as the termination criterion did not produce a clear winner on any version of
Partdiff, using general active target for that is feasible as well.

The number of windows will be reduced to one, according to the results of Section 5.3.4.
While these experiments were conducted on an active target version, the usage in a
general active version should entail no drawbacks, as it decreases the number of necessary
synchronization calls.

The Gauss-Seidel method will also utilize the general active target mode, as both the
general active target and the passive mode produced similar runtimes, but since the
general active target mode seemed to perform marginally better, passive mode will not
be utilized, although this difference could be attributed to natural variance, as it is quite
small. In any case, using general active target mode shows no drawbacks when compared
to passive mode, which is why it is a viable choice regardless.
Acting in line with the results from Section 5.3.1, the residuum will be calculated

by passing the minimum of the local residuum and the predecessor’s residuum on to
the successor, given that precision serves as the termination criterion. Passing these
residuum values on will also utilize the general active target mode, as it also provides
the necessary synchronization operations.
It is worth mentioning that the other synchronization modes (barring active target

54



synchronization for Gauss-Seidel) do not perform significantly worse, which is why the
usage of these other modes is feasible if the user is more comfortable with their utilization
or has any other reason to use a different synchronization mode.

Now the shared memory version will be constructed. In the previous section, the data
retrieved from the experiments did not allow for a clear decision on what mode performs
the best for Jacobi’s method. Therefore, the choice for which mode to choose is almost
arbitrary.
The active target synchronization mode will be used for the shared memory version

of Jacobi’s method, as it lends itself more naturally to an algorithm such as Jacobi’s
method than the other two modes. Once again, all memory that has to be exposed for
inter-communicator message passing is part of a single window to reduce the amount of
necessary synchronization calls.

The Gauss-Seidel method will be implemented with passive target synchronization, as
it appears to perform marginally better than general active target mode for this specific
context. The residuum calculation will utilize the same approach as the non-shared
version, but the values will be sent via P2P messages, since the passive mode does not
provide any synchronization operations for the target process. Due to this, manual
synchronization via P2P messages would be necessary if the values were to be sent with
RMA operations. So instead of using RMA operations or reading it from shared memory
and then sending a P2P message to confirm that the communication is completed, the
value will be sent directly with the P2P message, skipping the RMA operation entirely.

Once again, it should be noted that the usage of the other synchronization modes is
also a viable option since they did not perform much worse than the ones that are now in
use, especially considering the results from the experiments involving Jacobi’s method.

The final versions have also undergone certain refactorings that were learned of during
the creation of said versions. These refactorings can also be a reason for differences
between results from previous experiments and upcoming results, alongside the various
adjustments mentioned above.

6.2 WR cluster
In the following, the point-to-point version will be compared to the two improved RMA
versions, one that is using shared memory and one that is not. For this, all versions
will undergo a set of experiments, starting with the already familiar setup for strong
and weak scaling experiments. The results produced in these experiments will be used
to determine whether or not using RMA provides a performance advantage over the
more traditional point-to-point communication for the tested algorithms. Before this
comparison, the OSU Benchmarks will be used again to determine whether one- or
two-sided communication performs better in a micro benchmark environment.

55



6.2.1 Comparing P2P and RMA with OSU benchmarks
As the results from MPI_Get were marginally better than those of MPI_Put after the
previous execution of these benchmarks in Section 5.1, both the latency and the band-
width from MPI_Get and point-to-point communication will be compared. As before, the
benchmarks were executed twice to cover both inter- and intra-node communication.

The first set of results regarded will be from the latency benchmark. The latency
benchmark for point-to-point communication is executed in a ping-pong-like manner.
One process sends a message of a certain size to the other one and waits for a reply with
the same size. The average one-way latency is then calculated over many iterations per
message size. For an explanation of the MPI_Get latency benchmark, refer to Section 5.1.

Figure 6.1: Comparing P2P and RMA intra-node latency with the OSU Micro Bench-
marks (logarithmic scales)

As previously mentioned, both inter- and intra-node communication are differentiated
in this experiment. In Figure 6.1, the intra-node latency is displayed on a logarithmic
scale. In this scenario, the latency of MPI_Get is lower at all times, regardless of message
size.
The results from the inter-node benchmark differ though (see Figure 6.2), as both

forms of communication are on par for many different message sizes. For message sizes
between 1 and 128 bytes, point-to-point communication is slightly faster, although this
difference is a lot smaller than it appears due to the logarithmic scale. The absolute
difference amounts to less than a microsecond. Messages ranging from 256 bytes to
roughly 10 kB are sent with roughly the same latency. Message sizes ranging between 10
kB and close to 1 MB barely favor P2P again. For message sizes beyond 1 MB both
communication forms are roughly on par again.

This leads to the conclusion that intra-node communication heavily favors RMA,

56



Figure 6.2: Comparing P2P and RMA inter-node latency with the OSU Micro Bench-
marks (logarithmic scales)

whereas inter-node communication barely favors P2P, although RMA produced competi-
tive results for many message sizes. Note that intra-node communication incurs smaller
latencies, which is to be expected, as the communication overhead should be smaller than
the overhead for inter-node communication. The lower latency of MPI_Get in Figure 6.1
is also according to previous expectations, as the one-sided communication requires less
synchronization and only requires the origin to actively participate in this communi-
cation. However, the reason as to why P2P is able to surpass RMA during inter-node
communication remains unknown. Possible options include the MPI implementation, as
the RMA operations could potentially be less optimized for inter-node communication
than point-to-point messages.

Figure 6.3: Comparing P2P and RMA intra-node bandwidth with the OSU Micro Bench-
marks (logarithmic scales)

57



Figure 6.4: Comparing P2P and RMA inter-node bandwidth with the OSU Micro Bench-
marks (logarithmic scales)

Regarding the bandwidth benchmark, the point-to-point version is similar to the one
for MPI_Get as well. The sending process sends a fixed number of messages to the receiver
and waits for a reply, which will only be sent after all previously mentioned messages
have arrived. This process is repeated multiple times. The elapsed time and the number
of bytes sent are then used to calculate the bandwidth.

As before, the intra-node bandwidth will be investigated first, displayed in Figure 6.3.
The bandwidth for point-to-point communication plateaus after reaching a message
size of roughly 32 kB, at around 2500 MB/s. The bandwidth for RMA not only starts
off higher, but its increase is also stronger, reaching a peak at message sizes of 4 kB,
with a bandwidth of more than 10000 MB/s. For larger message sizes, the bandwidth
declines until it reaches roughly the same level as P2P communication at the largest
tested message sizes.
For inter-node communication (see Figure 6.4), both communication forms achieve

similar bandwidths throughout most message sizes, with multiple exceptions around
1 kB messages. For these, MPI_Get achieves higher bandwidths, but these differences
disappear at the highest tested message sizes just as before.

Once again RMA, or rather MPI_Get, performs better than P2P communication in
terms of bandwidth. For inter-node communication, both are mostly on par with a
few exceptions, but the results from intra-node communication clearly indicate that the
usage of MPI_Get allows for larger bandwidths. Combining the results from the latency
and bandwidth benchmarks, using MPI_Get is superior to traditional point-to-point
communication in a micro benchmark environment. This statement is only valid for
this particular hardware and MPI implementation though, as the benchmarks were not
executed for a different setup.

58



6.2.2 Strong and weak scaling experiments for Jacobi’s method

Figure 6.5: Runtimes of the different Partdiff versions using Jacobi’s method with 4105
lines and 5000 iterations

The first two experiments involved Jacobi’s method (see Figure 6.5 and Figure 6.6).
In the first one, the non-shared memory RMA and the P2P version are on par for most
configurations, barring the first one. Surprisingly, the shared memory version is by far
the worst, especially for the configurations that involve only a small number of processes.
With rising process numbers, the difference between the shared memory version and the
others diminishes, until they are almost equal at 96 processes.

59



Figure 6.6: Runtimes of the different Partdiff versions using Jacobi’s method with 4105
lines and a target precision of 7.0637e-5

The experiment involving the same method but terminating after a certain precision
is reached shows similar results. The P2P and the non-shared RMA version are almost
equal for every configuration, disregarding the first one. The shared memory version is
once again inferior with small process numbers, but catches up significantly at higher
process numbers, where it performs comparably to the other two versions, similarly to
the previous experiment.

60



Figure 6.7: Runtimes of the different Partdiff versions using Jacobi’s method with weak
scaling and 100 iterations

Figure 6.8: Runtimes of the different Partdiff versions using Jacobi’s method with weak
scaling and a varying precision that requires 100 iterations to reach

For the weak scaling experiments, the observations made are different compared to

61



the results of their respective strong scaling counterparts. The runtimes for the P2P and
the non-shared RMA version are not on par anymore for most configurations. Instead,
the RMA version is superior while Partdiff is only executed on a single node, while the
P2P version is faster on almost all configurations involving 2 or more nodes. The shared
memory version is once again inferior, especially on the later measurements to the far
right of Figure 6.7.

For the weak scaling experiment where precision acts as the termination criterion,
different observations are made yet again. As before, the non-shared RMA version is the
fastest of all three while executing on a single node, however this time this advantage
can also be observed on the first two configurations involving 2 nodes. From there on
though, the P2P version overtakes the non-shared RMA version again, as it appears to
scale better with rising numbers of processes and a proportionally rising problem size.
The shared RMA version seems to perform better on this experiment, as the produced
runtimes are either at a similar level compared to the other versions or even slightly
better, as it is the case for the configuration using 48 processes. However this statement
can only be made if the first and the last measurements in Figure 6.8 are disregarded, in
which the shared version performs the worst again.

From these experiments, the following preliminary conclusion about the best approach
for the implementation of Jacobi’s method can be drawn. For small numbers of processes,
using a non-shared RMA version in Jacobi’s method seems to perform the best, whereas
bigger cluster configurations and also bigger problem sizes seem to benefit point-to-
point communication. The shared memory version rarely produced competitive results,
surprisingly, which is why it is deemed to be the worst approach in this preliminary
conclusion.

62



6.2.3 Strong and weak scaling experiments for the Gauss-Seidel
method

Figure 6.9: Runtimes of the different Partdiff versions using the Gauss-Seidel method
with 4105 lines and 5000 iterations

For the experiments involving the Gauss-Seidel method, different observations can be
made yet again. In the strong scaling experiment involving termination with iterations
as the criterion, the P2P version performs the best on the measurements taken on a
single node. For all measurements involving more than one node, the shared memory
version is at least on par with the P2P version, indicating that the shared version might
scale the best with higher process numbers out of the three test candidates. The non-
shared RMA version appears to be the worst at all tested configurations, disregarding
the very first, although the difference becomes less significant with rising process numbers.

63



Figure 6.10: Runtimes of the different Partdiff versions using the Gauss-Seidel method
with 4105 lines and a target precision of 7.0753e-5

The runtimes involving termination after a certain precision is reached do not allow
for a similar observation, as displayed in Figure 6.10. The P2P version performs the
best for all configurations, whereas the shared memory version performs significantly
worse compared to the previous experiment. It is only with higher process numbers that
the shared version catches up to the others. The non-shared RMA version produced
runtimes that are always marginally worse than their respective counterparts of the P2P
version. Once again, it appears that the shared memory version scales better with higher
process numbers than the others, although this scaling did not enable the shared version
to surpass the other two candidates on just 96 processes.

64



Figure 6.11: Runtimes of the different Partdiff versions using the Gauss-Seidel method
with weak scaling and 100 iterations

Figure 6.12: Runtimes of the different Partdiff versions using the Gauss-Seidel method
with weak scaling and a varying precision that requires 100 iterations to
reach

65



A look at the first weak scaling experiment (results displayed in Figure 6.11) corrobo-
rates the assumption that the shared memory version scales better than its competitors.
The first runtimes differ within an interval that is presumed to be natural variance,
but the difference seems to increase for the later configurations, for which the shared
memory version performs slightly better. However this difference is still marginal and
could dissipate over a larger sample size of measurements. If that would be the case,
the three candidates would most likely still perform comparably, given the previous results.

The next and therefore last weak scaling experiment shows vastly different results,
as the three versions produce wildly differing runtimes while using precision as the
termination criterion when compared to the previous results. The reason for this
behaviour is currently unknown. If precision acts as the termination condition, all three
versions end any given iteration by sending their residuum to the successor, as previously
explained in Section 5.3.1. This is the only significant difference in the implementation
of the two termination conditions, and these differences are consistent across all three
examined Partdiff versions, which is why this result is not only unexpected, but also
currently inexplicable.
In this experiment, the non-shared RMA version performs the best on all occasions,

although that difference decreases with larger process numbers. The P2P and the shared
memory candidates perform comparably for small numbers of processes, but as the
process numbers increase, so does the difference in runtime, as the P2P version appears
to perform better when subjected to the scaling problem and cluster size.

As before, a preliminary conclusion regarding the Gauss-Seidel method can be drawn.
If it was not for the results of the last experiment, this conclusion would unequivocally
have been that the P2P version performs the best for small process numbers and problem
sizes, whereas the best results for large process numbers and problem sizes are produced
by the shared version. That difference is very small though, but even if it is caused
by natural variance, both versions perform comparable at the very least. However,
the results from the last weak scaling experiment differ greatly, as it appears that the
non-shared RMA version performs the best when all candidates are subjected to large
problem sizes while using the Gauss-Seidel method and using precision as the termination
criterion.

6.2.4 Communications overhead and large process numbers
The purpose of the next experiment is to determine whether or not inter-node communi-
cation and intra-node communication incur different message overheads. To investigate
this, the different Partdiff versions are once again executed with a square matrix of 4105
lines and 5000 necessary iterations. However, the cluster setup is different this time. For
every version, four different configurations were tested. All of them involved 36 processes,
but each configuration involves a different number of nodes. The first one involves one
node and 36 processes, the second one involves 2 nodes with 18 processes each and so on.
The results are displayed in Figure 6.13 and Figure 6.14. Note that the y-axes for the

66



following figures do not start at 0 seconds.

Figure 6.13: Runtimes of the different Partdiff versions using Jacobi’s method with 4105
lines and 5000 iterations while using 36 processes in total (using n nodes)

Figure 6.14: Runtimes of the different Partdiff versions using the Gauss-Seidel method
with 4105 lines and 5000 iterations while using 36 processes in total (using
n nodes)

Starting with the experiment involving Jacobi’s method (Figure 6.13), it appears
that intra-node communication takes more time compared to inter-node communication.
Apparently, this is especially the case for the shared memory version. The runtimes
for this version decrease further the more nodes are involved, whereas the other two
versions only saw a decrease when going from one node to two, leading to the assumption
that intra-node communication incurs the larger overhead. This result is unexpected,
especially for the shared memory version, as shared memory should excel at computing
on just one node, as all of the necessary data is accessible as shared memory, which
should allow for faster accesses compared to having to send the data via messages.

67



The previous results do not appear to be an outlier, as the runtimes displayed in
Figure 6.14 lead to a similar conclusion. Once again, all versions experience a decrease
in runtime when shifting to running the computation on two nodes instead of one. This
time however the runtime for the shared memory version does not decrease further with
an increase in the number of nodes. Note that the differences in runtimes between the
three versions all match with previous observations from the strong scaling experiments.

These results could lead to the conclusion that intra-node communication is somehow
less efficient than inter-node communication. This would however contradict the earlier
findings during the application of the OSU benchmarks in Section 6.2.1. While it is
possible that the change of circumstances, namely the usage of an application benchmark
instead of a micro benchmark, could cause different results, it seems much more likely
that this effect is caused by something else. The suspected reason for this behaviour is
the underlying hardware and AMD’s proprietary core boosting technology. Chapter 7
further expands on this topic.

The next experiment involves testing with high numbers of processes. To determine
which version scales the best with many processes, all versions are subjected to an
experiment in which Partdiff is executed with 200 processes across five nodes, iterating
5000 times over a square matrix with 24009 lines. The results are displayed in the
following graph.

Figure 6.15: Comparison of the runtimes of the different Partdiff versions while iterating
5000 times over a 24009 line square matrix using 200 processes across 5
nodes. These values were obtained by dividing the respective runtime of
the RMA version by the runtime of the P2P version.

The values displayed in Figure 6.15 were obtained by dividing the respective runtime
of the RMA version by the runtime of the P2P version. Therefore, the P2P version

68



serves as a baseline and is represented by the dotted horizontal line. Thus, a value lower
than 1, such as the value of the non-shared RMA version on the far left, means that this
particular runtime is lower than the corresponding runtime of the P2P version by the
factor displayed above the bar. Conversely, a value larger than 1 means that the RMA
version needed more time than the corresponding P2P version, meaning it was slower
than the P2P version.

The result on the far left involving Jacobi’s method shows that the non-shared RMA
version seems to perform best when Partdiff is executed with such a high number of
processes. This result is only partially in line with the previous observations from the
strong and weak scaling experiment. During the strong scaling experiment, the P2P
version and the non-shared RMA version showed similar results for high process numbers,
while the weak scaling experiment revealed that the P2P version scales better with the
problem size than the RMA versions. This leads to the assumption that the non-shared
RMA version scales better with rising process numbers on comparably small problem
sizes, but as soon as the problem size reaches a certain threshold, the P2P version
performs better. The performance of the shared memory version is consistent with the
previous observations in both experiments though, as it still performs the worst out of
all three.
Switching the termination condition changes the results though, as the P2P version

achieves the best runtimes under these conditions. The non-shared RMA version still
performs the worst, but the difference diminishes. These results are somewhat in line
with previous observations, as the P2P version performed better on high process numbers
during both the corresponding strong and weak scaling experiment. The shared memory
version’s results are also consistent, as it performed the worst during these experiments
as well, while it was also able to decrease the gap to its competitors when compared to
the previous experiment’s results.

The experiment with the Gauss-Seidel method when terminating after a certain number
of iterations also produced results that are consistent with previous observations. During
the previous experiments involving this method, the shared RMA version performed just
as well as the other versions, if not marginally better. The results from this particular
experiment seem to confirm the previous assumption that the shared memory version
scales the best with high process numbers while using the Gauss-Seidel method and this
termination condition.

Lastly, the experiment involving precision as the termination criterion will be regarded.
During the previous strong scaling experiment with this method, the P2P version was
slightly superior on high process numbers, as it is in this experiment as well. The
respective weak scaling experiment revealed that the non-shared RMA version performed
the best on all configurations. Combining these previous findings with the result from
the experiment displayed in Figure 6.15 leads to the assumption that the P2P version
scales best on small problem sizes, but as soon as the problem size exceeds a certain limit
the non-shared RMA version is superior. The results from the shared memory version
are also consistent with previous observations, as it performed slightly worse than the
P2P version on all previous occasions regarding the Gauss-Seidel method and precision
as the condition.

69



6.3 Mistral
In order to increase the available data to ultimately come to a conclusion, similar
tests with the three Partdiff versions were conducted on Mistral, the high-performance
computing system of the DKRZ, which occupies the 109th rank of the Top500 list as of
November 2020. The nodes used for these tests consist of two Intel Xeon E5-2695 v4
CPUs, amounting to 36 physical or 72 logical cores per node with 64 GB main memory.
The MPI implementation that was used to compile and execute the Partdiff versions
is OpenMPI 2.0.2p2_hpcx-gcc64, a high-performance implementation of OpenMPI.
Additionally, MellanoX Messaging [19] is utilized to further accelerate message passing.
As before, both Jacobi’s method and the Gauss-Seidel method were subjected to similar
strong and weak scaling experiments. Note that for these experiments, the shared
memory version was slightly changed. In the previous versions, the entire local matrix
was exposed in shared memory. The new version only exposes the halo lines in shared
memory to accommodate for the lower amount of shared memory on the Mistral nodes
in use. The new shared memory version was also tested on the same hardware that
was used for the previous experiments, however the results were similar to the previous
version, which is why neither version is strictly better than the other one. Therefore,
presenting these results will be omitted.
Note that the following experiments utilize the same process configurations as the

previous experiments on the WR cluster. The reason for this choice is to maintain
comparability between the experiments on the two different hardware setups.

6.3.1 Jacobi’s method on Mistral
The results from the previous experiments involving Jacobi’s method indicated that the
non-shared RMA version performs better on small cluster configurations and problem
sizes, but is overtaken by the P2P version for setups involving larger cluster configura-
tions, especially with increasing problem size. The shared memory version performed
the worst on all occasions.

The results from strong scaling experiments on Mistral differ slightly from these
previous observations. In both Figure 6.16 and Figure 6.17, the point-to-point version of
Partdiff and the non-shared RMA version differ by fractions of a second on every tested
cluster configuration. The shared memory version however performs the worst again,
especially when using the number of iterations as the termination condition, although
the severity of the difference has decreased when compared to the previous experiments.
When using precision as the termination criterion, this difference becomes even smaller,
as the shared memory version only performs worse when using four processes and a single
node. For all other configurations, the runtimes of all three versions are essentially equal.

The results from the weak scaling experiments are vastly different when compared
to the results from the previous experiments. As seen in Figure 6.18, all three versions
perform comparably when using a single node. However, increasing both the number of

70



Figure 6.16: Runtimes of the different Partdiff versions using Jacobi’s method with 4105
lines and 5000 iterations on Mistral

Figure 6.17: Runtimes of the different Partdiff versions using Jacobi’s method with 4105
lines and a target precision of 7.0637e-5 on Mistral

processes and nodes seem to negatively affect the P2P version, as it performs the worst

71



Figure 6.18: Runtimes of the different Partdiff versions using Jacobi’s method with weak
scaling and 5000 iterations on Mistral

Figure 6.19: Runtimes of the different Partdiff versions using Jacobi’s method with weak
scaling and a varying precision that requires 100 iterations to reach on
Mistral

72



on three of the four configurations that use more than one node. The shared memory
version also appears to perform worse when subjected to higher process numbers and
problem sizes, but only once subjected to 48 or more processes and their respective
problem size. The non-shared RMA version however seems to perform the best when
subjected to increasing problem sizes, as the respective runtimes are at least equal to the
other two versions, or even smaller than the others with regards to the last configuration.

The previous statements regarding the weak scaling experiment with iterations as the
termination condition also apply to the usage of precision as the condition, as displayed
in Figure 6.19. All versions perform equally well on a single node, but an increase in
process numbers and problem size negatively affects both the P2P version and the shared
memory version.

In conclusion, when running on Mistral, the Partdiff implementation of Jacobi’s
method that performs the best is the non-shared RMA version. This difference is only
noticeable on larger problem sizes though, as the runtimes for both the P2P version and
the RMA version were equal during the strong scaling experiments, but diverged on larger
problem sizes during the weak scaling experiments. The shared memory version per-
formed at best comparably to the non-shared RMA version, however it could not keep up
on all tested configurations, which leaves the non-shared RMA version as the superior one.

Note that the results from the weak scaling experiments do not feature a configuration
with 96 processes across 3 nodes. This is due to a lack of memory on the Mistral nodes
used for these experiments. As outlined in Table 5.1, the local matrix consists of 1 GB
of data per process for this particular weak scaling experiment. This number is doubled
when using Jacobi’s method, as two matrices are necessary to conduct the calculations.
This leads to 64 GB of matrix data per node, which is barely too much for the memory
available.

6.3.2 Gauss-Seidel method on Mistral
The results from the previous experiments involving the Gauss-Seidel method indicated
that the P2P version performs the best on small problem sizes, whereas shared memory
achieves the best results on large problem sizes out of the tested versions. There was an
outlier though, as the non-shared RMA version performed the best when using precision
as the termination condition on large problem sizes.

Some of these previous results are also observable on Mistral. As it was the case
with the former strong scaling experiment, the best runtimes are achieved by using
point-to-point communication (see Figure 6.20). Shared memory performs equally on
a single node, however increasing the number of nodes involved does not improve the
performance of the shared memory version as much as it improves the P2P version’s.
Note that the non-shared memory RMA version achieves the worst results, especially on
low process and node numbers.
Similar results are produced when precision serves as the termination condition, as

73



Figure 6.20: Runtimes of the different Partdiff versions using the Gauss-Seidel method
with 4105 lines and 5000 iterations on Mistral

Figure 6.21: Runtimes of the different Partdiff versions using the Gauss-Seidel method
with 4105 lines and a target precision of 7.0637e-5 on Mistral

displayed in Figure 6.21. Using point-to-point achieves the lowest runtimes on every

74



tested configuration or is at least on par with the other tested versions. Once again
shared memory achieves similar runtimes on a single node, but increasing the number
of nodes also increases the gap between the P2P and the shared memory version. The
non-shared RMA version still performs the worst when using a single node, but is able
to catch up significantly while using higher node and process numbers, as it produces
similar results when compared to the P2P version on 48 processes and up.

Figure 6.22: Runtimes of the different Partdiff versions using the Gauss-Seidel method
with weak scaling and 5000 iterations on Mistral

Applying weak scaling when using the number of iterations as the termination criterion
allows for the same observation that was made during the former weak scaling experiment
with the Gauss-Seidel method. Referring to Figure 6.22, both point-to-point and shared
memory achieve similar runtimes, closing the gap that was observed in Figure 6.20. This
indicates that shared memory scales better with an increasing problem size and could
possibly overtake the P2P version on even larger problem sizes than the ones used for
these particular experiments. As before, using regular RMA without shared memory
achieves the worst results by far.
When using the other termination condition, a similar effect cannot be observed, as

the results displayed in Figure 6.23 show that the P2P version performs the best on
all occasions. The difference to its competitors is comparatively small on low process
numbers, but as both the problem size and the number of processes increases, so does
the difference in runtime.

In conclusion, when using the number of iterations as the terminating factor, the results

75



Figure 6.23: Runtimes of the different Partdiff versions using the Gauss-Seidel method
with weak scaling and a varying precision that requires 100 iterations to
reach on Mistral

from the Mistral experiments are similar to the results from the former experiments, as
the P2P version performs better on small problem sizes but is matched by the shared
memory version on larger problem sizes, leading to the assumption that shared memory
will overtake point-to-point on even larger problems. However when using precision as
the termination condition, using point-to-point appears to be superior on both small
and large problem sizes, regardless of the number of processes or nodes used, as both
RMA version perform equally at best, but also considerably worse on multiple occasions.

The last experiment was conducted to determine whether or not inter- and intra-node
communication perform comparably. Similar experiments were conducted on the previ-
ously used hardware, resulting in the conclusion that intra-node communication is less
efficient. The experiment on Mistral utilizes the same setup, all Partdiff versions were
executed with 36 processes in total and varying numbers of nodes, ranging from one to
four nodes. The method used is the Gauss-Seidel method with the number of iterations
serving as the termination condition. The runtimes displayed in Figure 6.24 lead to the
conclusion that both inter- and intra-node communication perform at a similar level
for both the P2P version and the non-shared memory RMA version. However when
using shared memory, the performance decreases significantly once more than one node
is involved, which is the expected result, as shared memory should work best when every
process can access the necessary halo lines via local read operations from shared memory
instead of having to send the necessary data via other MPI calls.

76



Figure 6.24: Runtimes of the different Partdiff versions using the Gauss-Seidel method
with 4105 lines and 5000 iterations while using 36 processes in total on
Mistral (using n nodes)

The results from the Mistral experiments are as previously expected and show that the
efficiency of inter- and intra-node communication are dependent on the specific hardware
in use, which explains the differing results from the experiments on the different hardware
setups.

6.3.3 The ideal scenario for shared memory
Combining these observations regarding the performance of shared memory, one could
deduce that running a job on a single node at maximum capacity is the ideal environment
for shared memory. To determine whether or not shared memory performs better than
point-to-point communication in this scenario, another experiment has been conducted on
Mistral. Both the shared memory version and the P2P version of Partdiff were executed
on a single node with 72 processes using Hyper Threading, executing the Gauss-Seidel
method on a matrix with 8385 lines, which equates to roughly 0.5 GB of matrix data
per process.

As the results in Table 6.1 show, shared memory performs better than the P2P version
in this particular scenario. But once again, as soon as more nodes are involved, splitting
the 72 processes across two nodes and therefore making Hyper threading obsolete as
well, point-to-point communication proves to be superior in regards to runtime. So
while the deduction that shared memory performs the best when using a single node at
full capacity seems correct and even better than point-to-point communication, shared
memory still does not seem feasible, as its performance decreases significantly compared
to P2P when using more than one node. It should be noted that a similar experiment
has been conducted without the use of Hyper Threading, using only 36 processes per

77



node, but the results remained the same.

no. of nodes shared P2P
1 29.14 (0.18) 31.58 (0.53)
2 29.55 (0.05) 21.66 (0.03)

Table 6.1: Runtime in seconds of shared memory and P2P version when using 72 processes
in total. Standard deviations are displayed in parentheses.

78



7 Tracing
To further investigate the differences in runtime between the Partdiff versions, all three
of the final ones were instrumented via Score-P [12] and the resulting traces were then
observed with Vampir [11]. The goal is to discern whether or not the lacking performance
of the shared memory version is caused by improper usage of synchronization and
communication that could lead to processes being idle for extended periods of time. The
traces displayed in the following are all generated by using Jacobi’s method with 512
interlines and using 5000 iterations as the termination condition. To ensure that the
traces are not disrupted by excessive process migration, certain flags have been used to
ensure that the processes are bound to their respective core (-bind-to core for mpiexec
and --cpu_bind=cores for srun respectively). Traces have been generated on both the
WR cluster and Mistral.

7.1 Traces on Mistral
First, the traces generated on Mistral will be investigated. It should be noted that
both the compiler and the MPI implementation used to generate the traces differ from
the ones used for the previous experiments, as there was no matching Score-P version
available on Mistral at the time. The previous experiments used gcc and OpenMPI
2.0.2p2_hpcx-gcc64. To generate the traces, Partdiff was built with intel 18.0.4 and
openmpi/2.0.2p2_hpcx-intel14 and instrumented with scorep 4.1-openmpi-intel16.

Figure 7.1: Overview of the trace data of the shared memory version on Mistral. Partdiff
was executed on two nodes with 8 processes each.

The runtimes of the instrumented versions are all similar at roughly 20 seconds

79



(20.134 seconds for shared memory, 20.451 seconds for non-shared memory RMA).
Figure 7.1 displays the overview of the traces for the shared memory version. Apart from
the initialization done by MPI_Init, the processes are rarely waiting, as indicated by the
few red lines in the graphic.

Figure 7.2: Inspecting a singular epoch of the trace data of the shared memory version
on Mistral. Partdiff was executed on two nodes with 8 processes each.

Zooming closer (Figure 7.2) enables the separation into different epochs. The shared
memory version used active target synchronization and therefore barrier-like fences for its
synchronization. Zooming even closer would reveal that the processes with the numbers 7
and 8 communicate via MPI_Put just before the next epoch begins. Every other process
is able to access the necessary halo lines via shared memory. Note that a singular epoch
lasts roughly 0.003 seconds.

Figure 7.3: Overview of the trace data of the RMA version on Mistral. Partdiff was
executed on two nodes with 8 processes each.

The global overview of the non-shared memory RMA version appears to be quite similar
to the shared memory version’s. The only difference being that there are a few more
red lines present, indicating that processes have to wait more often. This observation

80



is also supported by the function summary of Vampir. According to this summary, all
processes spent an accumulated 11 seconds blocked by either MPI_Win_fence or MPI_Put,
while the processes of the non-shared version are blocked by MPI_Put and the respective
synchronization functions for roughly 23 seconds. To reiterate, the non-shared memory
version used general active target synchronization for the calculations with Jacobi’s
method. This means that the non-shared memory version’s processes are blocked about
12 seconds longer than the processes of the shared memory version are. Dividing this
number by the number of processes involved shows that every process is blocked for about
0.75 seconds longer when compared to those of the shared memory version. However, the
non-shared memory version’s processes spend less time overall to calculate the results.
The shared memory version spent 282.454 seconds in the calculateJacobiMPI function,
while the non-shared version only needed 274.271 seconds. Due to this difference during
the calculation, the overall runtime between the two versions only differs by 0.3 seconds.

Figure 7.4: Inspecting a singular epoch of the trace data of the RMA version on Mistral.
Partdiff was executed on two nodes with 8 processes each.

Zooming closer at a similar point in time as previously reveals that even though there
is no global synchronization, one can still discern singular epochs in the traces, although
the processes do not start a particular epoch all at the same time. Note that an epoch
lasts roughly 0.003 seconds once again.

To summarize, the traces generated on Mistral are mostly in line with what is to be
expected. All processes need roughly the same amount of time to complete an epoch,
regardless of the synchronization mechanism and also regardless of the use of shared
memory. Apparently the communication without shared memory is fast enough to
produce competitive results. Only a small share of the overall runtime is spent waiting
for other processes or the completion of communication operations. Note that these
observations slightly differ from the ones previously made in Section 6.3.1, where the
shared memory version was slower by 2 seconds on the same node setup. As previously
mentioned though, the MPI implementation used was a different one. The traces of the
P2P version were omitted in this section, as they are very similar to the traces of the
non-shared RMA version and would not provide any additional insight.

81



7.2 Traces on WR cluster
The traces created on the WR cluster show different characteristics. The instrumented
runs of Partdiff were executed under the same conditions as before, barring the different
MPI implementation (MPICH), compiler (gcc) and general hardware. In this section,
only the traces from the shared memory version will be displayed, as the others produced
such similar traces that analyzing each one of them independently would be redundant.
An overview of the first traces is displayed in Figure 7.5.

Figure 7.5: Overview of the trace data of the shared memory version on WR cluster.
Partdiff was executed on two nodes with 8 processes each.

Compared to the overview of the Mistral traces, multiple things differ greatly. Not
only is the overall runtime more than four times as long as it was on Mistral, but the
processes spent much more time being blocked, as indicated by the red marks. The
black dots on processes 7 and 8 are visualizations of MPI_Put, as these two processes are
on the borders of their respective shared memory communicator. There also seems to
be a pattern in this overview, a right-pointing arrow. Starting on processes 2 and 13,
some iterations take much longer than the same iterations on other processes. These
longer lasting iterations seem to wander towards the processes in the middle over the
course of the 5000 iterations, until they reach processes 7 and 8 at the end. As previously
mentioned, the traces for the non-shared memory RMA version and the P2P version also
display such a pattern, leading to the assumption that this pattern is caused by the data
of the calculation.

When executing Partdiff as it has been for this particular run, the underlying matrix
is symmetrical at the start. The borders of the matrix contain values between 0 and
1, while every other entry of the matrix is set to 0. In the beginning, only the first
and the last process have comparatively complicated calculations to make, while the
other processes mostly add zeroes together. As the iterations go by though, these more
challenging calculations wander towards the middle from the top and the bottom. If one
was to visualize this movement over time, a similar arrow-shaped pattern would be the
result. Therefore, the assumption that this pattern is caused by the composition of the

82



underlying matrix seems plausible.

Figure 7.6: Traces of the first iterations of the shared memory version on WR cluster.
Partdiff was executed on two nodes with 8 processes each.

A closer look at the traces of the first iterations (Figure 7.6) reveals a rather strange
pattern. Processes 0-5 and 8-13 take more time to complete a single iteration than the
processes 6, 7, 14 and 15. Partdiff was executed on two nodes with 8 processes each. This
phenomenon can be observed for multiple iterations, going further beyond the depicted
iterations in said figure. This pattern is most likely caused by the underlying hardware.
Each node consists of an AMD Opteron Processor 6344, as previously mentioned.

This processor contains four sockets and 12 cores per socket. Furthermore, it consists of
eight NUMA nodes. The combination of the observed pattern and the hardware details
leads to the following assumption. Processes 0-5 are executed on the first NUMA node.
The other two processes, process 6 and 7, are executed on the second NUMA node,
meaning that there are four less processes than the node could potentially run. Due to
this circumstance, the AMD Turbo Core Technology (ATC) [3] boosts the frequency of
the cores in use, which in turn leads to the faster completion of the iterations compared
to the other processes. This theory is based on the assumption that each NUMA node
is considered as a separate unit for the purposes of ATC. Other traces for a different
process configuration further fortify this theory. These traces will be discussed later on.
For now though, the previously displayed traces will be investigated further.

After roughly half of all iterations are completed, the traces result in the patterns
shown in Figure 7.7. Processes 5 and 10 need much longer to complete their iterations
than the others. These spikes align with the previous theory, stating that they are caused
by the underlying matrix data. However, process 10 seems to consistently take more
time than process 5. This phenomenon has also been observed on the other versions.
This pattern was also reproducible on different nodes with the same hardware and also
on nodes with different hardware that were available on the WR cluster, consisting of
an Intel Xeon CPU X5650 per node. Since these nodes consist of Intel hardware, the

83



Figure 7.7: Traces of the middle iterations of the shared memory version on WR cluster.
Partdiff was executed on two nodes with 8 processes each.

underlying boosting technology differs as well (Intel Turbo Boost). This consistency leads
to the assumption that this phenomenon is not coincidental, however there is currently
no explanation available.

Figure 7.8: Traces of the final iterations of the shared memory version on WR cluster.
Partdiff was executed on two nodes with 8 processes each.

Back to the AMD cores, the traces of the iterations close to completion once again
fortify the theory regarding the arrow-like pattern. Process 8 takes considerably longer
to complete its iteration. According to this theory, process 7 should also take much
longer to complete its iterations, but due to the aforementioned ATC, the calculations
are finished considerably faster in comparison to process 8. Comparing processes 6 and 7
confirms this, as these processes have previously both been on par in regards to their
time per iteration. The only other exception to this was a few seconds prior to the traces
displayed in Figure 7.8, during which process 6 took longer to complete its iterations,
which is also in line with the theory regarding the arrow-like pattern.

84



As previously mentioned, other traces have been generated that further fortify the
assumption regarding the impact of ATC. To confirm whether or not the pattern at the
start (first 6 processes need more time than the last two per node) is caused by ATC, the
instrumented version of Partdiff has been executed with 24 processes across two nodes.
This ensures that two NUMA nodes are fully utilized on both nodes.

Figure 7.9: Overview of the trace data of the shared memory version on WR cluster.
Partdiff was executed on two nodes with 12 processes each.

The overview once again reveals the arrow-shaped pattern. When executing Partdiff
as such, the processes 11 and 12 are on the borders of their respective shared memory
communicator, hence they communicate their halo lines via MPI_Put.

A closer look at the first iterations seems to confirm that ATC was the reason for the
difference between the first 6 and the last two processes on each node. Fully utilizing
both NUMA nodes instead of under-utilizing one negates the previously observed effects.
Now, all processes that are executed on the same node need almost the exact same
amount of time for an iteration at the start. Considering this newly attained information,
manually binding all processes when not utilizing a node at its maximum capacity could
enable faster runtimes due to the boost in CPU frequency provided by ATC. While this
should be investigated to minimize runtimes further, it is out of scope for this particular
thesis.

Note that the differences in runtime between the two nodes that were used to generate
the traces depicted in Figure 7.10 are most likely caused by the particular hardware in
use, as executing Partdiff on a different pair of nodes with the same hardware led to the
disappearance of said difference.

85



Figure 7.10: Traces of the first iterations of the shared memory version on WR cluster.
Partdiff was executed on two nodes with 12 processes each.

Figure 7.11: Traces of the middle iterations of the shared memory version on WR cluster.
Partdiff was executed on two nodes with 12 processes each.

The iterations in the middle once again show two processes that need longer than the
others to complete their calculations, as displayed in Figure 7.11. This is in accordance
with the theory regarding the underlying matrix as the cause once again. Note that, as be-
fore, the first of these two processes needs slightly less time than the latter one. This effect
did not disappear when using a different pair of nodes, unlike the difference in Figure 7.10.

86



Figure 7.12: Traces of the final iterations of the shared memory version on WR cluster.
Partdiff was executed on two nodes with 12 processes each.

The final iterations once again act in accordance with the previously stated theory
that the nature of the underlying matrix and the particular calculations performed on
it lead to more difficult calculations wandering from the outside towards the middle,
resulting in the spike in time taken per iteration for processes 10-13. With this much
evidence, the theory regarding the arrow-like shape of the traces will be considered to
be true. However, given that this pattern did not appear on Mistral, either the specific
hardware or the MPI implementation used on the WR cluster is responsible for said
pattern. While this should be investigated further, for example by using different MPI
implementations, it is once again out of scope for this particular thesis.

In conclusion, generating traces of Partdiff and investigating them did not lead to
any new discoveries as to why the shared memory version performs so much worse than
anticipated, as the trace data for all three Partdiff versions was very similar. However,
the traces did once again reinforce that the hardware used has a major impact on multiple
aspects of performance. Execution on Mistral led to very little time blocked and an
even pattern throughout the entire run, while the execution on the WR cluster led to
much more blocking and also to an arrow-like shape of all traces caused by the particular
calculations and the structure of the matrix. It also revealed that undersubscribing to a
node and only using a few particular cores in order to boost the frequency of the CPU
could be an interesting avenue to further increase performance and should certainly be
further investigated at another time.

87



8 Conclusion

8.1 Limitations
The results from the experiments are not universally applicable to all algorithms and
their performance with MPI-3 RMA, as the experiments only involved a PDE solver
that uses a 5-point stencil with one of two algorithms, namely the Gauss-Seidel method
or Jacobi’s method. Therefore, no statements about other algorithms can be made.
Furthermore, it is possible that the tested implementations of Partdiff are not optimal,
as there might be potentially missed hints or other techniques regarding MPI that were
not used. The general C code of Partdiff outside of the MPI function calls is most likely
not optimal either, as there are certain keywords (like restrict) that were not used,
but they could potentially increase performance in some shape. This also applies to the
comparisons of the different RMA versions, as the tried methods to increase performance
might not have been optimally executed either, whereas other approaches might have
been left out entirely.

There are limitations regarding the measurements as well. Each measurement has only
been taken three times. Increasing this number would lead to more precise results and
also allow for the proper calculation of confidence intervals, but doing so was not feasible
with many runs taking more than 10 minutes to complete once. The measurements have
also not been taken at the same time of day, on the exact same nodes and with the exact
same usage of the entire cluster either, affecting both the results and reproducibility.

And lastly, the experiments only involved two MPI implementations. The results might
be vastly different for other MPI implementations. The same is true for the hardware,
as only two different sets of hardware were involved in testing. Considering that the
results already varied significantly depending on the hardware and MPI implementation
used, the assumption that using different hardware or a different implementation would
produce different results yet again seems reasonable.

8.2 Final conclusion
In this thesis, the performance of traditional MPI point-to-point communication was
compared to the MPI-3 RMA approach. For this, a solver for partial differential equations,
using either the Gauss-Seidel method or Jacobi’s method, was implemented in various
ways. To create the best RMA version possible, multiple different approaches regarding
the specific implementation have been tested. These approaches differed mainly in their
employed synchronization mechanism.

88



Initial experiments on these versions suggested that the different mechanisms achieve
different runtimes on the tested application. These versions have then been refined further
and put through similar experiments once again, leading to the first final RMA-based
version of Partdiff, which employed general active target synchronization for both the
Gauss-Seidel method and Jacobi’s method, as this synchronization mechanism performed
the best during the experiments.

A second RMA version utilizing shared memory was created as well. As the communi-
cation between two communicators that are not able to utilize shared memory together
has to be implemented with either P2P or the standard RMA communication calls, the
same experiments have been conducted on the shared memory approach as well. Multiple
versions using the different synchronization mechanisms were tested in said experiments,
leading to the final version employing active target synchronization for Jacobi’s method,
while using passive target synchronization for the Gauss-Seidel method.

These final RMA versions were then tested in extensive weak and strong scaling
experiments, comparing the resulting runtimes to those of a P2P version of Partdiff.
During these experiments, no clear superior approach was found. For the most part
though, the shared memory version performed worse than the other two and therefore
stays vastly behind previous expectations regarding the performance of shared memory.
The P2P version and the non-shared memory RMA version performed better on

most occasions. However regarding these two versions, none outperformed the other
one consistently. Considering that these differences were also not consistent across
different sets of hardware and MPI implementations, no universal statement regarding a
superior approach can be made. Therefore, the best communication form for any given
application or kernel has to be determined through a case-by-case approach with multiple
experiments.

89



Bibliography
[1] Ayon Basumallik and Rudolf Eigenmann. Towards automatic translation of OpenMP

to MPI. In Proceedings of the 19th annual international conference on Supercom-
puting, pages 189–198, 2005.

[2] OpenMP Architecture Review Board. OpenMP Application Programming In-
terface version 5.1, 2020. https://www.openmp.org/wp-content/uploads/
OpenMP-API-Specification-5-1.pdf.

[3] Alexander Branover, Denis Foley, and Maurice Steinman. AMD Fusion APU: Llano.
IEEE Micro, 32(2):28–37, 2012.

[4] Nick Brown, Michael Bareford, and Michèle Weiland. Leveraging MPI RMA to
optimize halo-swapping communications in MONC on Cray machines. Concurrency
and Computation: Practice and Experience, 31(16):e5008, 2019.

[5] Piotr Dziurzanski, Wlodzimierz Bielecki, Konrad Trifunovic, and M Kleszczonek. A
system for transforming an ANSI C code with OpenMP directives into a SystemC
description. In 2006 IEEE Design and Diagnostics of Electronic Circuits and systems,
pages 151–152. IEEE, 2006.

[6] Message Passing Interface Forum. MPI 2.0 documents, 1997. https://www.
mpi-forum.org/docs/mpi-2.0/mpi2-report.pdf.

[7] Message Passing Interface Forum. MPI 3.1 documents, 2015. https://www.
mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf.

[8] Torsten Hoefler. MPI remote memory access programming (MPI3-RMA) and
advanced MPI programming. http://hpac.cs.umu.se/teaching/pp-18/Hoefler.
pdf. Presented at RWTH Aachen, Jan. 2019, last access on 05.01.2021.

[9] Torsten Hoefler, James Dinan, Darius Buntinas, Pavan Balaji, Brian Barrett, Ron
Brightwell, William Gropp, Vivek Kale, and Rajeev Thakur. MPI+ MPI: a new
hybrid approach to parallel programming with MPI plus shared memory. Computing,
95(12):1121–1136, 2013.

[10] Torsten Hoefler, James Dinan, Rajeev Thakur, Brian Barrett, Pavan Balaji, William
Gropp, and Keith Underwood. Remote memory access programming in MPI-3.
ACM Transactions on Parallel Computing (TOPC), 2015.

90

https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-1.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-1.pdf
https://www.mpi-forum.org/docs/mpi-2.0/mpi2-report.pdf
https://www.mpi-forum.org/docs/mpi-2.0/mpi2-report.pdf
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
http://hpac.cs.umu.se/teaching/pp-18/Hoefler.pdf
http://hpac.cs.umu.se/teaching/pp-18/Hoefler.pdf


[11] Andreas Knüpfer, Holger Brunst, Jens Doleschal, Matthias Jurenz, Matthias Lieber,
Holger Mickler, Matthias S. Müller, and Wolfgang E. Nagel. The Vampir Performance
Analysis Tool-Set. In Michael Resch, Rainer Keller, Valentin Himmler, Bettina
Krammer, and Alexander Schulz, editors, Tools for High Performance Computing,
pages 139–155, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[12] Andreas Knüpfer, Christian Rössel, Dieter an Mey, Scott Biersdorff, Kai Diethelm,
Dominic Eschweiler, Markus Geimer, Michael Gerndt, Daniel Lorenz, Allen Mal-
ony, Wolfgang E. Nagel, Yury Oleynik, Peter Philippen, Pavel Saviankou, Dirk
Schmidl, Sameer Shende, Ronny Tschüter, Michael Wagner, Bert Wesarg, and
Felix Wolf. Score-P: A Joint Performance Measurement Run-Time Infrastructure
for Periscope,Scalasca, TAU, and Vampir. In Holger Brunst, Matthias S. Müller,
Wolfgang E. Nagel, and Michael M Resch, editors, Tools for High Performance
Computing 2011, pages 79–91, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[13] Sameer Kumar and Michael Blocksome. Scalable MPI-3.0 RMA on the Blue Gene/Q
supercomputer. In Proceedings of the 21st European MPI Users’ Group Meeting,
pages 7–12, 2014.

[14] Okwan Kwon, Fahed Jubair, Rudolf Eigenmann, and Samuel Midkiff. A hybrid
approach of OpenMP for clusters. ACM SIGPLAN Notices, 47(8):75–84, 2012.

[15] Seyong Lee, Seung-Jai Min, and Rudolf Eigenmann. OpenMP to GPGPU: a
compiler framework for automatic translation and optimization. ACM Sigplan
Notices, 44(4):101–110, 2009.

[16] William H Press, Saul A Teukolsky, William T Vetterling, and Brian P Flannery.
Numerical recipes in C. Cambridge University Press Cambridge, 1988.

[17] Jannek Squar, Tim Jammer, Michael Blesel, Michael Kuhn, and Thomas Ludwig.
Compiler Assisted Source Transformation of OpenMP Kernels. In 2020 19th Inter-
national Symposium on Parallel and Distributed Computing (ISPDC), pages 44–51.
IEEE, 07 2020.

[18] Erich Strohmaier, Horst Simon, Martin Meuer, and Jack Dongarra. TOP500 list.
https://www.top500.org/lists/top500/list/2020/11/, November 2020.

[19] Mellanox Technologies. MellanoX Messaging Library User Manual Rev 3.0, 2014.
https://www.dkrz.de/en-pdfs/en-docs/en-docu-mistral/en-Mellanox_MXM_
User_Manual.pdf.

[20] Ohio State University. OSU micro-benchmarks. https://mvapich.cse.
ohio-state.edu/static/media/mvapich/README-OMB.txt. last access on
16.02.2021.

[21] Chenle Yu, Sara Royuela, and Eduardo Quiñones. OpenMP to CUDA graphs: a
compiler-based transformation to enhance the programmability of NVIDIA devices.

91

https://www.top500.org/lists/top500/list/2020/11/
https://www.dkrz.de/en-pdfs/en-docs/en-docu-mistral/en-Mellanox_MXM_User_Manual.pdf
https://www.dkrz.de/en-pdfs/en-docs/en-docu-mistral/en-Mellanox_MXM_User_Manual.pdf
https://mvapich.cse.ohio-state.edu/static/media/mvapich/README-OMB.txt
https://mvapich.cse.ohio-state.edu/static/media/mvapich/README-OMB.txt


In Proceedings of the 23th International Workshop on Software and Compilers for
Embedded Systems, pages 42–47, 2020.

[22] Huan Zhou, Kamran Idrees, and José Gracia. Leveraging MPI-3 shared-memory
extensions for efficient PGAS runtime systems. In European Conference on Parallel
Processing, pages 373–384. Springer, 2015.

92



Reproducibility
This section provides all necessary information to reproduce the results from the previously
conducted experiments. In its current state Partdiff consists of three files, namely
partdiff.c, partdiff.h and askparams.c. The Makefile for the compilation is displayed in
Listing 1.

1 CC = mpicc
2
3 CFLAGS = -std=c11 -Wall -Wextra -ggdb -O3
4 LIBS = -lm
5
6 TGTS = partdiff
7 OBJS = partdiff .o askparams .o
8
9 all: partdiff
10
11 partdiff : $(OBJS) Makefile
12 $(CC) $(CFLAGS) -o $@ $(OBJS) $(LIBS)
13
14 partdiff .o: partdiff .c Makefile
15
16 askparams .o: askparams .c Makefile
17
18
19 %.o: %.c
20 $(CC) -c $(CFLAGS) $*.c
21
22
23 clean:
24 $(RM) $(OBJS)
25 $(RM) $(TGTS)

Listing 1: Makefile for Partdiff

The job scripts for the experiments differ depending on the platform. The first set of
experiments was conducted on the cluster provided by the Scientific Computing research
group at Universität Hamburg. An example of a job script is provided in Listing 2.
The parameters passed to Partdiff and the number of nodes and processes used differ
depending on the specific experiment. The compiler used on this cluster is gcc 9.3.0 and

93



the MPI implementation is MPICH 3.3.2, as previously mentioned.
1 #!/ bin/bash
2
3 #SBATCH --time =02:00:00
4 #SBATCH --partition =abu
5 #SBATCH --nodes =2 --tasks -per -node =8
6 #SBATCH --error= Strong_GS_Iter_2_16 .err

↪→ --output= Strong_GS_Iter_2_16 .out
7
8 mpiexec -n 16 ./ partdiff 1 1 512 1 2 5000
9 mpiexec -n 16 ./ partdiff 1 1 512 1 2 5000
10 mpiexec -n 16 ./ partdiff 1 1 512 1 2 5000

Listing 2: Example job script for the Scientific Computing cluster

The second set of experiments was conducted on Mistral, the high performance
computing system of the DKRZ. The job scripts for this hardware set up the environment
for the proper use of MellanoX Messaging before any computation is started. The stack
size and core file size are also set beforehand. The MPI implementation that was used
on this hardware is OpenMPI 2.0.2p2_hpcx-gcc64, a high-performance implementation
of OpenMPI. The compiler that was used is gcc 9.1.0.

1 #!/ bin/bash
2
3 #SBATCH --time =02:00:00
4 #SBATCH --partition = compute2
5 #SBATCH --nodes =2 --tasks -per -node =8
6 #SBATCH --error= Strong_GS_Iter_2_16 .err

↪→ --output= Strong_GS_Iter_2_16 .out
7 #SBATCH --account =*******
8
9 ulimit -s 102400
10 ulimit -c 0
11
12 module load gcc /9.1.0 - gcc -7.1.0
13 module load openmpi /2.0.2 p2_hpcx -gcc64
14
15 export OMPI_MCA_pml =cm
16 export OMPI_MCA_mtl =mxm
17 export OMPI_MCA_mtl_mxm_np =0
18 export MXM_RDMA_PORTS =mlx5_0 :1
19 export MXM_LOG_LEVEL =ERROR
20
21 export OMPI_MCA_coll =^ ghc
22

94



23 srun --propagate =STACK ,CORE ./ partdiff 1 1 512 1 2 5000
24 srun --propagate =STACK ,CORE ./ partdiff 1 1 512 1 2 5000
25 srun --propagate =STACK ,CORE ./ partdiff 1 1 512 1 2 5000

Listing 3: Example job script for Mistral

95



List of Figures
3.1 The memory models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Example of active target synchronization . . . . . . . . . . . . . . . . . . 13
3.3 Example of general active target synchronization . . . . . . . . . . . . . . 14
3.4 Example of passive target synchronization . . . . . . . . . . . . . . . . . 16

4.1 Example of a five-point stencil . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2 Example for the distribution of matrix lines . . . . . . . . . . . . . . . . 19
4.3 Using the neighbour’s halo lines for local calculations . . . . . . . . . . . 20

5.1 Comparison of MPI_Put and MPI_Get (strong scaling) . . . . . . . . . 25
5.2 Comparison of MPI_Put and MPI_Get (weak scaling) . . . . . . . . . . 27
5.3 Comparing the runtimes of the first versions using Jacobi’s method (strong

scaling, iteration) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.4 Comparing the runtimes of the first versions using Jacobi’s method (strong

scaling, precision) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.5 Comparing the runtimes of the first versions using Jacobi’s method (weak

scaling, iteration) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.6 Comparing the runtimes of the first versions using Jacobi’s method (weak

scaling, precision) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.7 Comparing the runtimes of the first versions using the Gauss-Seidel method

(strong scaling, iteration) . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.8 Comparing the runtimes of the first versions using the Gauss-Seidel method

(strong scaling, precision) . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.9 Comparing the runtimes of the first versions using the Gauss-Seidel method

(weak scaling, iteration) . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.10 Comparing the runtimes of the first versions using the Gauss-Seidel method

(weak scaling, precision) . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.11 Runtime comparison of the different approaches to residuum calculation . 38
5.12 Runtime comparison of the different approaches to window setup . . . . . 42
5.13 Comparing the runtimes of the shared memory versions using Jacobi’s

method (strong scaling, iteration) . . . . . . . . . . . . . . . . . . . . . . 46
5.14 Comparing the runtimes of the shared memory versions using Jacobi’s

method (strong scaling, precision) . . . . . . . . . . . . . . . . . . . . . . 47
5.15 Comparing the runtimes of the shared memory versions using Jacobi’s

method (weak scaling, iteration) . . . . . . . . . . . . . . . . . . . . . . . 48
5.16 Comparing the runtimes of the shared memory versions using Jacobi’s

method (weak scaling, precision) . . . . . . . . . . . . . . . . . . . . . . . 49

96



5.17 Comparing the runtimes of the shared memory versions using the Gauss-
Seidel method (strong scaling, iteration) . . . . . . . . . . . . . . . . . . 49

5.18 Comparing the runtimes of the shared memory versions using the Gauss-
Seidel method (strong scaling, precision) . . . . . . . . . . . . . . . . . . 50

5.19 Comparing the runtimes of the shared memory versions using the Gauss-
Seidel method (weak scaling, iteration) . . . . . . . . . . . . . . . . . . . 50

5.20 Comparing the runtimes of the shared memory versions using the Gauss-
Seidel method (weak scaling, precision) . . . . . . . . . . . . . . . . . . . 51

6.1 Comparing P2P and RMA intra-node latency with the OSU Micro Bench-
marks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.2 Comparing P2P and RMA inter-node latency with the OSU Micro Bench-
marks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.3 Comparing P2P and RMA intra-node bandwidth with the OSU Micro
Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.4 Comparing P2P and RMA inter-node bandwidth with the OSU Micro
Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.5 Comparing the runtimes of the P2P and RMA versions on Jacobi’s method
(strong scaling, iteration) . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.6 Comparing the runtimes of the P2P and RMA versions on Jacobi’s method
(strong scaling, precision) . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.7 Comparing the runtimes of the P2P and RMA versions on Jacobi’s method
(weak scaling, iteration) . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.8 Comparing the runtimes of the P2P and RMA versions on Jacobi’s method
(weak scaling, precision) . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.9 Comparing the runtimes of the P2P and RMA versions on the Gauss-Seidel
method (strong scaling, iteration) . . . . . . . . . . . . . . . . . . . . . . 63

6.10 Comparing the runtimes of the P2P and RMA versions on the Gauss-Seidel
method (strong scaling, precision) . . . . . . . . . . . . . . . . . . . . . . 64

6.11 Comparing the runtimes of the P2P and RMA versions on the Gauss-Seidel
method (weak scaling, iteration) . . . . . . . . . . . . . . . . . . . . . . . 65

6.12 Comparing the runtimes of the P2P and RMA versions on the Gauss-Seidel
method (weak scaling, precision) . . . . . . . . . . . . . . . . . . . . . . . 65

6.13 Investigating the difference in message overhead between inter- and intra-
node communication for Jacobi’s method . . . . . . . . . . . . . . . . . . 67

6.14 Investigating the difference in message overhead between inter- and intra-
node communication for the Gauss-Seidel method . . . . . . . . . . . . . 67

6.15 Runtime comparison for all methods with 200 processes . . . . . . . . . . 68
6.16 Mistral: Comparing the runtimes of the P2P and RMA versions on Jacobi’s

method (strong scaling, iteration) . . . . . . . . . . . . . . . . . . . . . . 71
6.17 Mistral: Comparing the runtimes of the P2P and RMA versions on Jacobi’s

method (strong scaling, precision) . . . . . . . . . . . . . . . . . . . . . . 71
6.18 Mistral: Comparing the runtimes of the P2P and RMA versions on Jacobi’s

method (weak scaling, iteration) . . . . . . . . . . . . . . . . . . . . . . . 72

97



6.19 Mistral: Comparing the runtimes of the P2P and RMA versions on Jacobi’s
method (weak scaling, precision) . . . . . . . . . . . . . . . . . . . . . . . 72

6.20 Mistral: Comparing the runtimes of the P2P and RMA versions on the
Gauss-Seidel method (strong scaling, iteration) . . . . . . . . . . . . . . . 74

6.21 Mistral: Comparing the runtimes of the P2P and RMA versions on the
Gauss-Seidel method (strong scaling, precision) . . . . . . . . . . . . . . 74

6.22 Mistral: Comparing the runtimes of the P2P and RMA versions on the
Gauss-Seidel method (weak scaling, iteration) . . . . . . . . . . . . . . . 75

6.23 Mistral: Comparing the runtimes of the P2P and RMA versions on the
Gauss-Seidel method (weak scaling, precision) . . . . . . . . . . . . . . . 76

6.24 Investigating the difference in message overhead between inter- and intra-
node communication for the Gauss-Seidel method on Mistral . . . . . . . 77

7.1 Overview of the trace data of the shared memory version on Mistral . . . 79
7.2 Inspecting a singular epoch of the trace data of the shared memory version

on Mistral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
7.3 Overview of the trace data of the RMA version on Mistral . . . . . . . . 80
7.4 Inspecting a singular epoch of the trace data of the RMA version on Mistral 81
7.5 Overview of the trace data of the shared memory version on WR cluster

(16 processes) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
7.6 Traces of the first iterations of the shared memory version on WR cluster

(16 processes) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
7.7 Traces of the middle iterations of the shared memory version on WR

cluster (16 processes) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
7.8 Traces of the final iterations of the shared memory version on WR cluster

(16 processes) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
7.9 Overview of the trace data of the shared memory version on WR cluster

(24 processes) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.10 Traces of the first iterations of the shared memory version on WR cluster

(24 processes) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
7.11 Traces of the middle iterations of the shared memory version on WR

cluster (24 processes) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
7.12 Traces of the final iterations of the shared memory version on WR cluster

(24 processes) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

98



List of Listings
5.1 Using P2P messages for necessary synchronization at the target process

instead of flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2 Creating windows for multiple overlapping communicators . . . . . . . . 43
5.3 Error message while creating shared memory windows with OpenMPI . . 52

1 Makefile for Partdiff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
2 Example job script for the Scientific Computing cluster . . . . . . . . . . 94
3 Example job script for Mistral . . . . . . . . . . . . . . . . . . . . . . . . 94

99



List of Tables
5.1 Problem sizes used in the weak scaling experiments . . . . . . . . . . . . 26

6.1 Runtime in seconds of shared memory and P2P version when using 72
processes in total. Standard deviations are displayed in parentheses. . . . 78

100


	Introduction
	Related work
	Background
	MPI
	MPI windows
	Communication operations
	Memory model
	Synchronization
	Fence synchronization
	General active target synchronization
	Passive target synchronization


	Approach
	Partdiff
	Implementation
	Jacobi's method
	Gauss-Seidel method
	Details regarding implementations and order


	Implementation and optimization
	Put vs Get
	Comparing the different synchronization modes
	Improving the performance
	Residuum calculation
	Substituting flags
	Different approaches to locking windows
	Combining multiple windows
	Splitting the communicator
	Shared memory windows


	Results
	The improved RMA versions
	WR cluster
	Comparing P2P and RMA with OSU benchmarks
	Strong and weak scaling experiments for Jacobi's method
	Strong and weak scaling experiments for the Gauss-Seidel method
	Communications overhead and large process numbers

	Mistral
	Jacobi's method on Mistral
	Gauss-Seidel method on Mistral
	The ideal scenario for shared memory


	Tracing
	Traces on Mistral
	Traces on WR cluster

	Conclusion
	Limitations
	Final conclusion

	Bibliography
	Reproducibilty
	List of Figures
	List of Listings
	List of Tables

