UH
_i_ti_
.23 Universitait Hamburg

DER FORSCHUNG | DER LEHRE | DER BILDUNG

Bachelorarbeit

Structured metadata for the JULEA
storage framework

vorgelegt von

Michael Stra3berger

Fakultat fiir Mathematik, Informatik und Naturwissenschaften
Fachbereich Informatik
Arbeitsbereich Wissenschaftliches Rechnen

Studiengang: Informatik
Matrikelnummer: 6527713
Erstgutachter: Dr. Michael Kuhn
Zweitgutachter: Kira Duwe

Hamburg, 2019-05-21

Abstract

Today’s high performance computing produces large amounts of data for scientific research
in different areas. To handle such amounts of data different solutions exists in the HPC
(high performance computing) field.

In the past, most storage solutions lacked the ability to add own user defined metadata to
the files. To accommodate this storage frameworks developed SDDF (self describing data
format) standards which stores the metadata alongside with the object data. While SDDF
provide a solution for storing metadata, it does not solve the issue of searching in large
datasets. A search would have to read every file for its metadata information, instead of
searching in a centralized database.

This thesis provides a concept and implementation for a flexible structured metadata
management based on the JULEA storage framework.

Contents

1. Introduction
1.1. Motivation . .
1.2. Related Work
1.2.1. Lustre

1.2.2. Cephand Rados

1.2.3. LWEFS
1.2.4. SoMeta
1.2.5. HDF5

2. Background
2.1. Filesystem . .

2.1.1. Local Filesystem
2.1.2. Object Store

2.2. Metadata . .

2.2.1. Filesystem Metadata
2.2.2. User Metadata

23. JULEA . ..

2.3.1. Client-Server Model
2.3.2. Object-Store Backend
2.3.3. key-value store backend o000

3. Procedure
3.1. Design
3.1.1. Concept

3.1.2. Application Programming Interface
3.1.3. SMD Backend API
3.1.4. Network Messageso
3.2. Implementation
3.2.1. SMD types
3.2.2. Reference Backend With SQLite3

4. Evaluation
4.1. Benchmarking
4.1.1. Setup
4.1.2. Results

15
15
15
16
16
17
17
18
19
19
20

21
21
21
22
25
26
27
27
28

31
31
32
34

5.

4.1.3. API Overhead Evaluation

Summary, Conclusion, Future Work

5.1 Summary . o.o.o. ..o e
5.2. Conclusion
5.3. Future work

Bibliography

Appendices

List of Figures

List of Listings

List of Tables

A.

Hardware setup
A1 CPU ..o
A2, Memory

Benchmark

B.1. Benchmark script

B.2. Averaged Data
B.2.1. Null ... o
B.2.2. SQLite3

B.3. Raw Data
B.3.1. Null
B.3.2. SQLite3

B.4. GNUplot e

. Network packages

37
37
37
38

39
41
43
45
47

49
49
20

51
51
53
53
54
5}
5}
58
o8

63

1. Introduction

In this chapter, a brief introduction is given. The motivation and the goals of this thesis
are discussed. Also, other solutions in the research field of metadata management in high
performance storage environments are pointed out.

1.1. Motivation

In recent years, the demand for high throughput and capacity storage system has increased
drastically. The reason for this development is the increased processing power due to
Moores-Law and the more common usage of hpc in scientific research.

PByte

45

40

35

30

25

20

15

10

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Figure 1.1.: Storage of DKRZ Tape Archive [dkr19]

One major contributor to these big data amounts is the weather and climate research as
seen in Figure 1.1). It is foreseeable that this will increase even more in the upcoming
years.

One problem of this expansion is the increasing complexity for organizing and searching
those big data storages. Most filesystems don’t have a way of managing user defined
metadata to make those data sources efficiently searchable.

Another big problem is that metadata operations usually tend to be slow and with the
increasing size of clusters result into a bottleneck for the storage performance.

Although there exists abstraction software libraries that provide the user with a way to
add metadata to their data, the problem of making them easily searchable is not solved.

This thesis will make a contribution to solve the problem of a searchable metadata storage
for those scientific data. Other approaches in this field are discussed in Section 1.2.

The metadata will be stored by extending the JULEA storage framework (Section 2.3)
with a module for searchable metadata and a reference implementation with SQLite3. The
objective of this approach is to provide a swift and accessible way to search a tremendous
data source.

At first I will describe what other solutions are to undertake the given problem with
metadata management. After that, a brief introduction of mandatory definitions are given
to better understand the design and implementation of this work. Later I will evaluate the
performance of the reference implementation and give an outlook of future improvements
that can be made to this approach.

1.2. Related Work

Managing filesystem and user-defined metadata in a parallel file system is a difficult
task. There exists different approaches to make metadata operations more scalable in this
environment.

1.2.1. Lustre

Lustre uses a centralized concept of metadata [Bral9, pp 72]. The metadata servers handle
the workload of creating files, directories, symlinks and other known operations from local
file systems.

Lustre offers to load-balance between multiple metadata servers to allow scalability in
high traffic storage environments. The metadata in Lustre also contain information of

the stripe size across multiple object storage servers. This design makes it mandatory to
always contact the metadata server prior to opening, writing or reading a file.

Client Client

MGS

MGS

0SS 0SS 0SS 0SS

MDT MDS

>
= & W =

Figure 1.2.: Lustre cluster, taken from [Thol7, p 12]

A Lustre filesystem cluster consists of three server types as shown in Figure 1.2:

» Management Server (MGS)
« Metadata Server (MDS)

o Object Storage Server (OSS)

Management Server

The MGS stores the necessary information of the cluster state in its Management Target
(MGT). This information contains all active Lustre server, clients and configuration
[lus17].

Metadata Server

The MDS is responsible for providing the file system namespace. It also stores the inodes
of the filesystem onto its Metadata Storage Target (MDT) [lus17].

Object Storage Server

The OSS provides the data storage of the Lustre Cluster. It can manage numerous Object
Storage Targets (OST). Files can be striped across multiple OST to achieve very high
throughput rates [lus17].

1.2.2. Ceph and Rados

Rados is an object store (Section ?7) that tries to eliminate bottlenecks by a highly
distributed concept [WBM™06]. It also reduces the metadata load by making the clients
calculate, with cluster wide known devices mappings and seeds for random number
generators, the location of objects.

In contrast to Lustre, Ceph allows to add additional storage nodes into the cluster and it
handles the redistribution of the objects to the new storage devices.

Client MON Object Storage Node Object Storage Node

— MON

0sD 0sD 0sD OSsD OsSD 0osD
PO 886
MDS MON

Figure 1.3.: Rados cluster, taken from [Thol7, p 16]

An example architecture of a Rados cluster is presented in Figure 1.3. There has to be an
uneven number of Monitoring nodes (MON) in the cluster. This is due to the fact, that
decisions in the cluster are made with on a quorum base, to ensure there exists only one
consistent state of the cluster.

The object storage nodes can have multiple Object Storage Devices (OSD).

Ceph/CephFS is a POSIX compatible filesystem based on the Rados object store. Ceph
treats the mandatory metadata for the hierarchically concept described in Section 2.1.1 as

10

a serialized object in rados itself. The metadata is then managed by a Metadata Server
(MDS) as shown in Figure 1.3.

Rados relies on the user to provide a way to add metadata as described in Section 2.2.2.

1.2.3. LWFS

The Lightweight File System (LWFS) takes the metadata reduction to a bare minimum
[OWR106]. LWFS evaluated a different procedure to tackle the bottlenecks of a PFS by
inverting the client/server behavior. This conveys into the IO server being in the role
of pulling the data from the client for writes and push the data to the clients for reads.
One of the few metadata information in LWFS are authorization and authentication. In
contrast to Ceph and Lustre these metadata operations are processed at the storage node
itself. This design eliminates the bottleneck of a centralized, load-balanced or distributed
metadata management.

Since LWF'S does not provide user defined metadata at all its up to the user to provide an
own metadata source or make use of libraries like HDF5 in Section 1.2.5

1.2.4. SoMeta

Scalable Object-centric Metadata Management for High Performance Computing (SoMeta)
is aimed to extend existing HPC storage solutions like Lustre, LWFS and Rados with a
tag based metadata management [TBD*17].

Metadata Object

Pre-defined Tag User-defined Tag

« Object ID

« Data Object Location

« System Info

« |D Attributes
- Name - Owership
- AppName - TimeStep

* (UserTagl, Valuel)
* (UserTag2, Value2)
* (UserTag3, Value3)

Figure 1.4.: SoMeta metadata object structure [TBD*17]
SoMeta stores with every metadata object pre-defined tags like its ID and system informa-
tion as shown in figure 1.4 The user is able to add own tags to these metadata objects as

key-value pairs. These pairs can be updated, deleted and created dynamically.

SoMeta manages the metadata in memory to provide good performance on all operations
and checkpoints it to persistent storage on given time intervals.

11

In contrast to the approach of this thesis, SoMeta uses a flat namespace.

1.2.5. HDF5

The Hierarchical Data Format (HDF5) is among other similar file formats commonly used
in scientific research applications [FHK*11].

HDF'5 allows the user to specify groups that can contain other groups, datasets or attributes.
The hierarchy of HDF5 is like the directory tree in a POSIX filesystem.

In Figure 1.5 an example group tree is shown for an application that writes its data
as checkpoints. Each checkpoint can be annotated with attributes like configuration of
the application or other metadata useable to either parse the data or continue from the
checkpoint.

Root group /

checkpoint 1

checkpoint 2 datal

checkpoint x — data x

Figure 1.5.: HDF5 group structure on a checkpoint example

HDFS5 file format

The file format of HDF5 consists of a superblock like header with general management
information like allocated space, group root entry and pointer to several other information
objects.

12

HDF5 File Header Attribute

HDF5 Object
Header data type name
data objects > Header > attributes > data type
data information data layout data space
data space data

Figure 1.6.: HDF5 abstract data structure with metadata focus [hdf19]

The HDF5 file consists of numerous HDF5 objects, each with their own header and data
information as seen in Figure 1.6. The header describes how to interpret data information
and additional metadata or pointers to them, either to describe or annotate the object.

The metadata is saved as attribute objects. Attributes are build from:

e A name that is unique within the described object
o The type of data of this attribute for example:

— Integer

— Float

— Date/time

String

e The dimension of the data and the size of each dimension. This can be used to store
small vectors and matrices into the metadata header. For example, a copy of the
data with a reduced resolution to create a preview of the data.

o And the data itself.

Since the attributes are saved into the header of the object itself the size of the attributes
had to be below 64KB until version 1.8.x of HDF5. With version 1.8.x HDF5 introduced
a feature of dense attribute storage. It allows, if a given size threshold is reached, to move
the attributes to another location and leaves a reference in the object header instead of
the attributes. This behavior is handled automatically by the HDF5 library and can be
fine tuned by the user.

13

2. Background

In this chapter, a definition of filesystems and metadata is given. The focus lies on the
difference between metadata produced and needed by the filesystem and user generated
metadata. It also gives a brief understanding what the JULEA storage framework is.

2.1. Filesystem

A filesystem organizes files that contain data and have specific metadata. The data of a
file can be of any type e.g. text, machine code, image. The filesystem specific metadata in
most cases contain information like access rights of users, timestamps of creation and last
modification and the size of the data. (see 2.2.1)

The data and metadata of a filesystem gets usually stored in a block storage device.
Therefore, the data gets split into blocks according the block size of the storage device.
A filesystem may use approaches like extents to efficiently and dynamically store which
blocks belong to which file [TB15, pp 284] [ext19a].

Most filesystems provide a way to organize files in a hierarchical manner in so-called
directories. The file specific metadata gets stored in information nodes or short inodes,
that get stored in a centralized data structure somewhere on the block device [ext19b].

2.1.1. Local Filesystem

A local filesystem is mainly used on single block devices. In some use cases, volume group
managers can be used to either group multiple storage devices into one big block device or
create redundancy to accommodate hardware failure.

The filesystem has access to every data and metadata block at any given time implied there
is no hardware failure preventing access to some blocks of the storage device. Depending
on the used storage technology, mechanical disk drives or flash based chips, the access to
an specific file has certain latencies ranging from sub milliseconds to 20 ms.

15

One key property of the local filesystem is that in general it only has one client at a time.
In most cases, this client is the operating system kernel which provides an interface for
user programs to access the filesystem.

2.1.2. Object Store

Object stores provide a way to access block storage devices as data objects instead of
blocks. An object usually consists of the data itself and in some cases a variable amount of
metadata. The object gets usually addressed with a UUID (universally unique identifier).

In contrast to a filesystem and local filesystem, an object store does not have a hierarchy
and thus requires less management overhead on the running machine [MGRO3]. Object
stores are used in some cases as an abstraction layer for other filesystems or they get
directly accessed from an application.

2.2. Metadata

Metadata provides information about certain aspects of data and describes the content
and structure of them [BS94|. Metadata is a loose term since depending on the perspective
of the context, it is needed and/or created for different reasons. The main advantage
of having good and structured metadata is being able to know what content is in the
associated data and to search for specific content.

Outside of scientific research companies invest large sums of money and time into tuning
their metadata creation and evaluation. Without good searchable metadata services
like web search engines, music catalogues or inventory control systems it would be very
inefficient to search for something in them.

For a better distinction, this thesis will differentiate between metadata created and used

for the management of a filesystem itself and user provided metadata in form of key-value
pairs.

16

2.2.1. Filesystem Metadata

Metadata of the filesystem usually contains information about [TB15, pp 271] [ext19b]:

the file name which is used to access

o the owner of a file
 access rights for the users, who should be allowed to read or write
« temporal aspects like, file creation date, modification date and last access time

e location of the data and its size

This metadata is usually stored in a centralized metadata database, which gets stored like
a file itself onto the underlying block storage.

In most cases, the filesystem does not have information of the stored data itself. Although
some operating systems may implement some sort of full text indexing on top of the
filesystem to speed up certain search operations of the user.

If, for example, one wants to search for specific keywords in a directory with text files, the
application needs to open and read all files to search for those keywords.

2.2.2. User Metadata

User metadata describes information given by the user/creator of a file. The information
provided by this metadata varies heavily depending on the type of data it describes.

Since there is no actual limit for the user metadata, it is difficult for a filesystem or other
metadata storage databases to come up with a way to search it efficiently. Scientific storage
frameworks like HDF5 and ADIOS provide the standard of SDDF (self describing data
format). (see Section 1.2.5) These libraries provide for the user a tool to define metadata
for describing the structure of their data.

17

2.3. JULEA

JULEA is an adjustable storage framework. It provides three contrasting abstracted
backend types to interact with it. JULEA can be considered a distributed parallel
filesystem since one of its basic design principles is a client-server architecture.

One of the design goals of JULEA is to be able to create rAPId prototypes of new object-
or key-value stores in the storage research field. It is also considered to be a learning tool
for students new to this subject.

This is achieved by a polymorphic design pattern known as in OOP (Object Oriented
Programming) [Mey88, pp. 467]. JULEA defines an abstracted API for its backend types.
It then offers multiple interchangeable backend implementations for each backend type. On
runtime, JULEA loads the specified implementation of that API as a library for example
the MongoDB interface for a key-value store (see Fig. 2.1)

Also, a major contributor to this goal is that JULEA is completely written in the user
space. This makes it easy for beginners to write and debug code for the JULEA codebase
without knowledge of kernel space development.

|'. D
Client Server

Application | Application

libjulea-item.so = | libjulea-item.so

1 d
libjulea.so libjulea.so fongo

libmongodb.so — /—T‘—_/—'—\

Server Server

julea-server

julea-server

libjulea.so libjulea.so

libleveldb.so libposix.so

aon aoo

Figure 2.1.: Architecture of Julea with different application configurations [Kuh17]

18

(\]

2.3.1. Client-Server Model

JULEA differentiates between client and server backends:

Client backends are communicating directly with a server running the application itself
like MongoDB. In the upper right of figure 2.1, it can be seen an active server handling a
MongoDB daemon while the client is communicating straight with the daemon.

Server backends are provided by using the included julea-server application which runs
a daemon on the server to provide a network socket for a JULEA client application. This
daemon behavior can be seen in the bottom of figure 2.1 for the key-value store backend
leveldb and the object-store backend posix.

For the communication between a JULEA client application and a julea-server daemon,
the internal JMessage abstraction is used. This abstraction allows to have interchangeable
network implementations or even integrate another network abstraction library.

2.3.2. Object-Store Backend

The object-store backend uses a OOP centralized design of a data structure with for the
user hidden fields. The reference of this structure is then used for all further function calls
to manipulate the object. The API of the object-store backend consists of the following
function calls:

void j_object_create (JObject* object, JBatchx batch)

void j_object_delete (JObject* object, JBatchx batch)

void j_object_read (JObject* object, gpointer data, guint64
<~ length, guint64 offset, guint64* bytes_read, JBatchx
— batch)

void j_object_write (JObject* object, gconstpointer data,
— guint64 length, guint64 offset, guint64* bytes_written,
— JBatch* batch)

void j_object_status (JObject* object, gint64x
< modification_time, guint64* size, JBatch* batch)

Listing 2.1: JULEA object-store backend API

19

The create function is by design mandatory to be called before writing to an object, even
though a backend implementation may ignore this call, some do need to setup an object
first before a write can occur. The behavior if an object gets deleted and a client tries to
write or read from it, is as of now undefined and should be avoided.

The read and write operations provide an interface similar to common Input/Output
libraries like POSIX, with the exception that every function of the object backend is non
blocking and will be scheduled within a batch data structure.

Line 5 of listing 2.1 can be used to retrieve basic metadata of the object like modification
time and size.

2.3.3. key-value store backend

The key-value store backend can be used to store arbitrary bson tree metadata or data
into a KVS (key-value store). It is considered to be used to save small amounts of data
since the object-store backend already provides a efficient interface to operate on large
datasets.

The KVS backend provides just three function calls to operate on key-value pairs:

void j_kv_put (JKV* kv, bson_t* value, JBatch* batch)
void j_kv_get (JKVx* kv, bson_t* value, JBatch* batch)
void j_kv_delete (JKV* object, JBatch* batch)

Listing 2.2: JULEA key-value store backend API

The put operation will either create the new key and save its value or updates the value of
the specified key. The KVS backend does not allow partial updates of the value of a key.
If a key does not exists the get function gives back an empty bson tree.

The KVS backend also provides a way to iterate over all keys in a given namespace or all
keys with a specific prefix in that said namespace.

20

3. Procedure

In this chapter, the design process of the structured metadata interface of JULEA and its
reference implementation with the help of SQLite3 are described.

3.1. Design

Since JULEA uses many aspects of OOP (object oriented programming) like the polymor-
phic and context sensitive objects [Mey88, pp. 467], UML (unified modeling language)
is chosen to create a model of the new SMD (Structured MetaData) interface [Boo05].
Before going deeper into the actual interface design, I will describe the basic concept that
the SMD interface will follow.

3.1.1. Concept

The SMD backend operates on namespaces. For each namespace, the user has to provide
a scheme declaration. This declaration is mandatory to ensure that the used underlying
database engine can optimize inserts, gets and searches on that namespace.

The workflow is outlined in figure 3.1. The application provides one or more namespace
schemes and then can perform metadata operations on that namespace.

g]
I] =
Object Structured Metadata
Backend Application
PP Scheme %
E JULEA - Searchable
il Koy Val Database
ey Value
Backend Metadata

Figure 3.1.: Structured Metadata Concept

21

3.1.2. Application Programming Interface

The API (Application Programming Interface) of SMD continues the OOP approach of
JULEA'’s interfaces. Therefore, three new classes which will later be used to interact with
the SMD backend are introduced.

Namespace Scheme

JSMD_Scheme

ref counted and autofreed with glib macros

-namespace: String

-scheme: bson_t JSMD_Type

+create(in namespace:String): JSMD_Scheme

+add_field(in field_name:String,in type:JSMD_Type) | = -1- _-3=:+t05tring(): String
+get_field(in field_name:String): JSMD_Type +toInt(): int
+apply(inout batch:JBatch)

+get(inout batch:JBatch) - = = JBatch
+delete(inout batch:JBatch) — = =>>|julea Internal
+get_namespace(): String

Figure 3.2.: UML class diagram for Namespace scheme api

A JSMD_Scheme object consist of its namespace name and a scheme definition with the
help of a bson tree. As shown in figure 3.2, the user can differentiate between two sets of
methods:

add_field and get_field are used to manipulate the scheme definition. Those methods
ensure that only valid JSMD_Types are used as field types for the scheme and that there
are no duplicate fields in the definition.

apply, get and delete prepare the JOperations and other requirements of the batch

system of JULEA and do the memory management necessary to complete the given
operation.

22

Metadata Object

JSMD_Scheme

+get_field(in field_name:String): JSMD_Type
+getNamespace(): String

A

1
1
JSMD , I
ref counted and autofreed with glib macros 1 !
-key: String 1 :
-scheme: JSMD_Scheme - - =1 |
-values: bson_t
- = - - SMD_Type !
+create(in scheme:JSMD_Scheme,in key:String): JSMD J - YP |
+se”c_1;izld(tihn dfiif}d_namte:Stdri)cpg(,ji_n svl\%u'ﬁ:<T>): boolean [—;_> +toString(): String |<= — !
overloaded method with every type defined in J. Type : +toInt(): int
+get_field(in field_name:String,out sucess:boolean): <T> |- =
overloaded method with every type defined in [SMD_Type
+insert(inout batch:JBatch) JBatch
+get(inout batch:JBatch) - — =>>| julea Internal
+update(inout batch:JBatch)

+delete(inout batch:JBatch)

Figure 3.3.: UML class diagram for metadata object API

The metadata object class holds three data field, hidden from the client, to manage its
state. The key is a unique identifier in the namespace the object operates on. It also
keeps a reference to the scheme object. The metadata values are saved in a bson tree data
structure.

JSMD offers overloaded methods to either set or get metadata fields in its internal bson
tree. The set_field and get_field operations should also validate with the help of the
scheme reference if a given field name exists and the correct JSMD_Type is used.

The get_field method also provides a call by reference parameter which indicates if the
operation succeeded. If a field does not exists in the scheme or the bson tree, if a reference

is provided, the get_field method will write false into the boolean reference.

The last four methods of JSMD manage the insertion of the appropriate JOperations into
the given batch data structure and also do the mandatory memory management of it.

23

Search Context

JSMD_Scheme

+get_field(in field_name:String): JSMD_Type
+get _namespace(): String

JSMD_Search '?\
ref counted and autofreed with glib macros .
-scheme: JSMD_Scheme - -
-search_terms: bson_t
-result: pointer
. SMD_Type
+create(in scheme:JSMD_Scheme): JSMD |- - = J - ypP
+set field(in field name:String,in value:<T>, -
in comparator:JSMD_Search_Comparator): boolean
overloaded method with every type defined in [SMD_Type
+search(inout batch:JBatch) - = jBatch
+hasNext(): boolean = =>|julea Internal
+iterate(): boolean
+getSMD(): JSMD - -
+asList(): GList<JSMD> - - - — =
| |
JSMD ; L4
. — — | GList<T>
+set_field(in field_name:String,in value:<T>): boolean < - glib

+get_field(in field_name:String,out sucess:boolean): <T>
+update(inout batch:JBatch)
+delete(inout batch:JBatch)

Figure 3.4.: UML class diagram for metadata search API

In figure 3.4 is the proposed search API design for the SMD client API.

The search context consists of a collection of 3-tuple out of field_name, comparator
and value which will be, as most of its other complex data structures, be organized in a
bson tree. The set_field operation checks if for the given field name exists an entry in
the scheme and the correct type is used. It also needs to be checked if the type of the
field is searchable at all, for example arrays and binary data cannot be filtered by most
backends.

After the search has been executed by the batch system of JULEA the search API offers
two ways of getting access to the data:

The iterate operation in combination of getSMD can be used in a loop to access all the
data returned from the backend for the given search result.

The search context also allows to get the results as a GList of metadata objects.

24

3.1.3. SMD Backend API

SMD_Backend

+init(in path:String): boolean
+fini()
+apply_scheme(in namespace:String,in scheme:bson_t): boolean
+get_scheme(in namespace:String,out scheme:bson_t): boolean
+delete_scheme(namespace:String): boolean
+insert(in namespace:String,in key:String,
in object:bson_t): boolean
+update(in namespace:String,in key:String,
in object:bson_t): boolean
+delete(in namespace:String,in key:String): boolean
+get(in namespace:String,in key:String,out object:bson_t): boolean
+get_all namespaces(out schemes:bson_t): boolean
+search(in namespace:String,in search_terms:bson_t,
out result:pointer): boolean
+iterate(in result:pointer,out object:bson t): boolean

Figure 3.5.: UML class diagram for SMD backend API

The SMD_backend class defines the set of operations a backend must offer for the SMD
client and server API to be functional.

The Operation apply_scheme is used to allow the backend to setup necessary data
structures in its used technology. The backend is also required to persistently save this
information so a following call to get_scheme returns the bson tree scheme information.
If a namespace is requested to be deleted it should no longer return a valid result on the
call of get_scheme. However it is the freedom of the backend how to handle the deletion
of the metadata objects by either deleting and cleaning it up or just marking it as deleted
for future overwrites.

The insert operation is required to ensure, that the given bson tree metadata object only
contains valid field names and values for the given namespace. If the given key already
exists in the namespace, insert should do nothing and return false, to inform the client
API that a metadata object with that key is already present.

update should behave just like insert, with the exception, if a key already exists, the
backend should use an appropriate and efficient way to set the changed values for the

metadata object in its storage. If a given key does not exists, update should insert the
provided metadata object and return true on completion.

On deletion of a metadata object with the delete operation, the get function should

25

no longer return a valid metadata object for the deleted key. As with the deletion of
namespaces, the backend can decide how to handle the deletion process.

get_all namespaces should return all non deleted active namespaces, that are managed
by this backend. In a distributed environment the backend only needs to return the
namespaces it is managing and its up to the client API to request the other metadata

server for their namespaces.

The search operation should operate as described in section 3.1.2 and figure 3.4.

3.1.4. Network Messages

Network
JULEA Client JBatch ULEA Server SMD Backend
: : =<createss Pl
New Connection >
<<cCreate>> >
apply(scheme) -
<<execute>>
scheme

apply(scheme) i |
scheme applied <'sc'he'm€ applied = 1
& 55 ohexcuted B

Teert{ object] P
<<execute>>

object

object inserted

& 53 tThexcuted -J

Insert (object) - |
<'o'Bje’ct'Tn?erTeH 1
<<destroy>> >
T |

Figure 3.6.: Simple network communication of the SMD component

Figure 3.6 shows how a interaction between a client and an SMD metadata server should
be implemented.

It is mandatory, that the client has to apply a scheme for a namespace before inserting
metadata objects. This is due to the fact, that most searchable databases need to setup

26

Ot = W

© o0 D>

10

structures for their self management, also it is needed for the validation of metadata
objects before inserting them.

However it is not necessary to execute the batch before scheduling inserts, but the client
application has to ensure, if it is executed in a parallel environment with multiple clients,
that the apply scheme message for that namespace arrives the metadata server before any
inserts, otherwise the inserts, updates will fail.

3.2. Implementation

The implementation consists of four changes that need to be done to the JULEA source
code.

Definition of the api of figure 3.5 as a new backend type

Writing the reference implementation with SQLite3

Writing the client operations of section 3.1.2

Writing the server operations of section 3.1.2

3.2.1. SMD types

JSMD_REGISTER_TYPE(JSMD TYPE INVALID BSON, "ERROR: type of
<> bson value must be of STRING or INTEGER")

JSMD_REGISTER_TYPE (JSMD_TYPE_UNKNOWN, "ERROR: unknown type
< in bson value")

JSMD_REGISTER_TYPE(JSMD TYPE INTEGER, "integer")

[...]

JSMD_REGISTER_TYPE (JSMD_TYPE _UNSIGNED_ INTEGER, "unsigned
<> integer")

[...]
JSMD_REGISTER_TYPE (JSMD_TYPE_FLOAT, "float")
[...]

JSMD_REGISTER_TYPE(JSMD_TYPE TEXT, "text")
JSMD _REGISTER_TYPE(JSMD TYPE DATE TIME, "date time")

Listing 3.1: SMD types for usage in scheme definitions

27

Listing 3.1 describes how SMD handles metadata types. This is necessary to have a
consistent representation of the numerous types available throughout the JULEA project.

JSMD_REGISTER_TYPE is a macro used to create an enumeration in C and a matching
string array.

3.2.2. Reference Backend With SQLite3

SQLite3 is chosen for the reference implementation of a SMD backend. Since SQLite3
is already used as a KV backend it will not add much complexity to JULEA’s building
process. Another advantage is that using SQLite3 is straightforward, since it requires
no upfront configuration from the user and therefore is very good to validate the API
design.

To use the full potential of a relational database (RDB) the bson tree used in the API of
SMD needs to be converted into SQL statements. This is done by implementing a basic

query building function that iterates over the trees.

As an example, the functional principle of the apply_scheme and insert operations of
the SMD backend will be explained.

Apply Scheme

.—)(CREATE TABLE)—)Gamespace-namm

field-name)—)(JSMD_Type

has more fields?

Figure 3.7.: create table builder

Figure 3.7 shows the used algorithm for building the SQL statement of applying a
namespace scheme. It consists of the static fragment CREATE TABLFE in combination of
the namespace-name.

28

It then proceeds to iterate over the whole bson tree. For every bson tree leaf it inserts the
field-name and the JSMD _TYPE. The builder operates on a closest match principle for
the requested type and if no matching SQLite33 is present falls back to saving it as binary
into the database.

The built SQL statement will be used to create the table. If the execution of it was
successful it proceeds to save the bson tree as a blob into the SMD management lookup
table. The management lookup table is used if a client request the scheme of a namespace.

Insert metadata object

‘—)C INSERT INTO)—)Gamespace-nam%-)@-
S —

field-name

as more fields?

—)C) VALUES (field-value)7

has more fields?

Figure 3.8.: insert builder

Preparing a SQL statement to insert into a namespace is, as can be seen in figure 3.8,
already more complex than creating the namespace table structure.

The first loop inserts the field names into the query and checks if they exist in the
namespace scheme definition. If the above succeeded it continues by comparing the type
of the values in the metadata object with the type declarations in the scheme and inserts
them into the query string.

The query gets executed by the SQLite3 engine and the return values are checked. If for
example the key was already present in the namespace it sets the return value of the insert

29

to false as described in section 3.1.3.

30

4. Evaluation

In this chapter, I will introduce a way to measure the performance of the newly implemented
SMD client, server and backend. I then proceed to compare the null and sqlite backends of
the smd backend type and kv backend type to get an understanding of the performance and
overhead of SMD.

4.1. Benchmarking

JULEA already provides a framework for measuring operations per second and throughput
of data. The JULEA benchmark suite extended for all major operations of the namespace
scheme and metadata object API.

e namespace API
— apply
— delete
— get
» metadata object API
— insert
— update
— delete

— get

31

10

11

12

4.1.1. Setup

The following benchmark runs are done with a Lenovo Thinkpad T480 with an intel
i5-8250U processor and 8GB of DDR4 memory in single channel mode. Further hardware
details, such as applied CPU microcode patches, can be found in Appendix A.

To ensure a consistent performance, the CPU dynamic frequency scaling is disabled and
fixed at the maximum frequency of 3.4GHz. To further reduce fluctuations of the processor,

all powerlimits, which are transparent to the linux kernel, are set to their maximum.

The used Linux kernel version is 5.1.2 as compiled by the arch linux distribution.

sudo tee
— /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor
— <<< "performance"

sudo tee /sys/devices/system/cpu/cpux*x/cpufreq/scaling *_freq
— <<< "3400000"

sudo tee /sys/devices/system/cpu/cpux*/cpufreq/
— energy_performance_preference <<< "performance"

Set Timings
sudo tee
— /sys/devices/virtual/powercap/intel-rapl/intel-rapl:1/
— constraint 1 time window_us <<< "10000"
sudo tee
— /sys/devices/virtual/powercap/intel-rapl/intel-rapl:0/
— constraint_1_time_window_us <<< "10000"
sudo tee
— /sys/devices/virtual/powercap/intel-rapl/intel-rapl:1/
— constraint O _time window_us <<< "1000000"
sudo tee
— /sys/devices/virtual/powercap/intel-rapl/intel-rapl:0/
— constraint_O_time window_us <<< "1000000"
sudo tee
— /sys/devices/virtual/powercap/intel-rapl/intel-rapl:0/
< intel-rapl:0:0/constraint_O_time_ window_us <<< "5000"
sudo tee
— /sys/devices/virtual/powercap/intel-rapl/intel-rapl:0/
< intel-rapl:0:1/constraint_O_time_window_us <<< "5000"
sudo tee
— /sys/devices/virtual/powercap/intel-rapl/intel-rapl:0/
< intel-rapl:0:2/constraint_O_time_window_us <<< "5000"

32

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

28

29

30

31

32

33

WATT=50

convert watt to microwatt
UW=3$ (($WATT*1000%1000))

Power limit of the whole CPU
PACKAGE=$UW

Power limit of the CPU cores
CORE=$UW

Power limit of CPU cache, MMU
UNCORE=$UW

Power limit of the memory
DRAM=$UW

Write power limits to the exported intel rapl registers
sudo tee
— /sys/devices/virtual/powercap/intel-rapl/intel-rapl:1/
< constraint_1_ power_limit_uw <<< $PACKAGE
sudo tee
— /sys/devices/virtual/powercap/intel-rapl/intel-rapl:0/
— constraint_1 power_limit_uw <<< $PACKAGE
sudo tee
— /sys/devices/virtual/powercap/intel-rapl/intel-rapl:1/
< constraint_O_power_ limit_uw <<< $UW
sudo tee
— /sys/devices/virtual/powercap/intel-rapl/intel-rapl:0/
<5 constraint O _power limit_uw <<< $UW
sudo tee
— /sys/devices/virtual/powercap/intel-rapl/intel-rapl:0/
< intel-rapl:0:0/constraint_O_power_limit_uw <<< $CORE
sudo tee
— /sys/devices/virtual/powercap/intel-rapl/intel-rapl:0/
< intel-rapl:0:1/constraint_O_power_limit_uw <<< $UNCORE
sudo tee
— /sys/devices/virtual/powercap/intel-rapl/intel-rapl:0/
< intel-rapl:0:2/constraint_O_power_limit_uw <<< $DRAM

Listing 4.1: commands for maxing out the cpu performance under linux

33

4.1.2. Results

The benchmark was run three times and the average of all runs are taken for the evaluation.
The raw benchmark data can be seen in section B.3. The runs were scheduled with a shell
script, that also generated the averages and is listed in section B.1 The visualization was
done in gnuplot with the scripts found in section B.4

L B i -
40000 o T B O [— | BN BN e = .
(2]
2
S 30000 e e S e el -
©
g
& 20000 - B .. - = B == | BN BN B - = .
Al Al N~ (o)} o <t © 1o} 1o} — o N~ o To}
10000 HE @I {8 8l 18 B 18 & & B2 88 ¢
o [ep] (9p) o] — (ap) < (2] (qV] < Yo} < (s2] <
(ap] < < < <t <t (ep] (ap] < < <t < <t <
o\ & o) AS o\ o\ & o\ e o\ AN o\
:a»QQ\\\ B 288 @Y o 2 \(\58“ o8 an’»\ R -
o «© QQ\\‘ PN 0\(\@6‘ ,Q,é\ ‘ 63‘\ OV 2@ \&® eV
S @ ° < P) NS @
< x© ©

Figure 4.1.: Benchmark null smd backend

Figure 4.1 shows the upper bound for the operations per second of the smd backend. The
client and server were run on the same machine. In figure 4.2 the achieved operations per
second of the SQLite3 reference implementation are plotted.

1 S i i i .
1 S i i i i it i Cr Eri L il = .
)
2
S B0000 [.
o
g
B 20000 [t .
10000 |gprmm g = g ,,,,, 8 ,,,,,,,, Q. D USSR O % ,,,,, 9 ,,,,, % ,,,,, 8 .
< — <t o - < [e)) Al — < (o2} o O o
< Yo ™D o o o — To] N~ e 0} o ~— To] Lo
» » » — [a\} AN [o0] [o0] co) o) — — ~— —
QQ“ \0,2;\0 e\e\e 3\0\(\ e " \0,2;\0 RS 6e\e,’\e 2 QG\ ,a»\\o‘(\
3 g - s N\ '\ O 3 N\
N O &
50“8 & o° 0‘(\6‘(\ 3 oL o) o &
" e o°
© 9

Figure 4.2.: Benchmark sqlite smd backend

The namespace apply and delete operations perform the worst in the SQLite3 backend. A

34

possible reason for this behavior is, that on creation of a new table SQLite3 has to grow
the database file and preallocate storage for the table structure and its data. In contrast
to apply scheme, the insert operation with 8500 OP /s performs pretty decent. Since its
more common in a database to insert, update, delete or get table entries than creating
new tables, it is not surprising that SQLite3 tradeoffs create table performance in favor of
managing table entries.

Compared to the kv SQLite3 backend in figure 4.3, the overhead of the query builder used
by the SQLite3 backend, seems to be much less than expected, with only a difference of
1500 OP/s (smd- insert / kv-put).

L -
T i O -
@
2
S BOOQD [-
]
(0]
§ 20000 [8
10207 10509 10681 10752 10953 11024
10000 [~—
0 . e o o\
Q\) :09"\0 e\e\ \06"\0 e\e,\ :09"\0
X ¢ .
° Q€Y y® o
o 8 \)’\'6
& (eeyQ
«°

Figure 4.3.: Benchmark sqlite kv backend

35

4.1.3. APl Overhead Evaluation

12 T T T I T
SQLite3
10.608 10523 10-756 NULL s
9.995

ST NN e eilttiiaiiiEa'i B siiiinlb .

8 | D B B BN]
) 6.105
c 5.866 5737 5653
5 6 0 NN 0 B0 R R W e -]
£ 4566 4.542

n B B B D BN B T 31193 31159

21 B B B 1447 | or 2 1an . N W W W N

- 1.257
0497 0.488 1.186 1.122 1.108 1.118 1.158 1.125
0.256 0.228 0.230 0.220 0.239 0.230
A\ N
,QQQ\\; 30'8\0 6e\e,’\ev o %\g\\ e’ge. o ’&\G\\ ‘\(\%e(\ o 6\0\(\ Qd,é’_\e o Q\G\(\ 66\6\0 o d\g\(\ of G
e((\ Q\\x N 2 \6\8 G\(\G K oV . 63(\ O N2 \G\e ge\

ARG A NN © W o
Y 29 <

Figure 4.4.: API Overhead SMD

Figure 4.4 shows the difference of elapsed benchmark time between the SQLite3 (blue)
and NULL backend (red). The measurement includes the time spend in the client and
server API, since the call in the null backend also go through the entire network stack of

JULEA.

The insert, update and delete operation
expected, because of the polymorphic des
a JMessage and extract it at the server.

JULEA’s own wrapping libraries.

36

s spend nearly 30 % of their time in functions
responsible for the communication between client and server. This performance loss is
ign we need additional memory management for
the wrapping data structs. Another aspect is that we need to package the client data into
A SQL database which already comes with a
optimized server daemon might lower the performance loss, because less time is spend in

5. Summary, Conclusion, Future Work

In this chapter, a summary of the thesis and its outcome will be given. Also an outlook is
presented to what needs to be done next to further increase the value of the newly introduced

SMD backend.

5.1. Summary

This thesis introduced a new concept of storing user defined metadata for HPC storage
applications. In contrast to other solutions, like the ones mentioned in Section 1.2, the
SMD backend for JULEA uses a polymorphic design, instead of a fixed database setup.

The interface of the SMD backend was designed with the help of concepts from OOP (object
oriented programming) and UML (unified modelling language) to reduce the possibility of
API/ABI breaks in future iterations.

Section 3.2 implemented the concept and design of Section 3.1. To test its applicability a
reference implementation of a SMD backend was developed with the help of SQLite3. A
set of automated test cases were built to help others implement their own backends and
ensure they follow the API design of SMD.

Chapter 4 initiates a reproducible way to measure the performance of a given backend
and further provides a testing environment to ensure the correctness of an SMD backend
implementation.

5.2. Conclusion

To answer the question, if the newly designed and implemented SMD backend for JULEA,
is a suitable candidate to solve the metadata problem of todays HPC storage cluster
systems, further work has to be done.

37

The polymorphic design of JULEA allows it to adapt to new object, key-value and database
technologies for its backends. This is a major benefit compared to other solutions, since
with this design it is able to further increase its performance, without breaking older
applications build with JULEA.

A drawback of this design is the introduced overhead of managing the JULEA objects and
states. It would need further research and benchmarks to investigate if the performance
loss of this approach outweighs its flexibility and practicality.

5.3. Future work

With the basic functionality set, SMD now needs a implementation of the in section 3.1
proposed search API. It will also need to be evaluated, if the API overhead found in section
4.1.3 can be reduced with more sophisticated memory management and/or algorithms.

Implementing more SMD backends with, for example PostgreSQL or MongoDB, would
be beneficial. These two database technologies have builtin cluster, replication and scale
options, which would be interesting to examine.

The currently builtin HDF5 connector of JULEA also needs to be extended, to use the
SMD API for the attributes of HDF5. This would allow, to test the SMD API with real
work application built on HDF5.

Also JULEA needs internal support for various data types, for example 128bit float values.
This would ensure a consistent handling of all the data types supported by SMD throughout
the project.

In summary, to fully evaluate the proposed concept and design, the above mentioned
additions need to be made.

38

Bibliography

[Boo05]

[Bral9]

[BS94]

[dkr19]

[ext19a]

[ext19b]

[FHK*11]

(hdf19]

[Kuh17]

Grady Booch. The unified modeling language user guide. Pearson Education
India, 2005.

Peter Braam. The lustre storage architecture. arXiv preprint arXiv:1903.01955,
2019.

Francis P Bretherton and Paul T Singley. Metadata: A user’s view. In Sev-
enth International Working Conference on Scientific and Statistical Database
Management, pages 166-174. IEEE, 1994.

Dkrz storage poster. https://www.dkrz.de/en-pdfs/en-poster/
en-poster2016/en-Poster_DKRZ HPSS DE.pdf?lang=de, 2019. [Online;
accessed 16-May-2019].

Ext4 extent table. https://ext4.wiki.kernel.org/index.php/Ext4_
Disk_Layout#Extent_Tree, 2019. [Online; accessed 16-May-2019].

Ext4 inode table. https://ext4.wiki.kernel.org/index.php/Ext4 Disk_
Layout#Inode_Table, 2019. [Online; accessed 16-May-2019].

Mike Folk, Gerd Heber, Quincey Koziol, Elena Pourmal, and Dana Robinson.
An overview of the hdf5 technology suite and its applications. In Proceedings
of the EDBT/ICDT 2011 Workshop on Array Databases, pages 36-47. ACM,
2011.

Hdf5 file format specification version 3.0. https://portal.hdfgroup.org/
download/attachments/52627880/HDF5_File Format_Specification_
Version-3.0.pdf7api=v2, 2019. [Online; accessed 16-May-2019].

Michael Kuhn. Julea: A flexible storage framework for hpc. In Julian M.
Kunkel, Rio Yokota, Michela Taufer, and John Shalf, editors, High Per-
formance Computing, pages 712723, Cham, 2017. Springer International
Publishing.

39

https://www.dkrz.de/en-pdfs/en-poster/en-poster2016/en-Poster_DKRZ_HPSS_DE.pdf?lang=de
https://www.dkrz.de/en-pdfs/en-poster/en-poster2016/en-Poster_DKRZ_HPSS_DE.pdf?lang=de
https://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout#Extent_Tree
https://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout#Extent_Tree
https://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout#Inode_Table
https://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout#Inode_Table
https://portal.hdfgroup.org/download/attachments/52627880/HDF5_File_Format_Specification_Version-3.0.pdf?api=v2
https://portal.hdfgroup.org/download/attachments/52627880/HDF5_File_Format_Specification_Version-3.0.pdf?api=v2
https://portal.hdfgroup.org/download/attachments/52627880/HDF5_File_Format_Specification_Version-3.0.pdf?api=v2

[lus17]

[Mey88]

[MGRO3]

[OWR*06]

[TB15]

[TBD+17]

[Thol7]

[WBM™*06]

40

Introduction to lustre architecture. http://wiki.lustre.org/images/6/64/
LustreArchitecture-v4.pdf, 2017. [Online; accessed 16-May-2019].

Bertrand Meyer. Object-oriented software construction, volume 2. Prentice
hall New York, 1988.

M. Mesnier, G. R. Ganger, and E. Riedel. Object-based storage. [EEE
Communications Magazine, 41(8):84-90, Aug 2003.

Ron A Oldfield, Lee Ward, Rolf Riesen, Arthur B Maccabe, Patrick Widener,
and Todd Kordenbrock. Lightweight i/o for scientific applications. In 2006
IEEFE International Conference on Cluster Computing, pages 1-11. IEEE,
2006.

Andrew S Tanenbaum and Herbert Bos. Modern operating systems. Pearson,
2015.

Houjun Tang, Suren Byna, Bin Dong, Jialin Liu, and Quincey Koziol. Someta:
Scalable object-centric metadata management for high performance computing.
In 2017 IEEE International Conference on Cluster Computing, CLUSTER
2017, Honolulu, HI, USA, September 5-8, 2017, pages 359-369. IEEE Com-
puter Society, 2017.

Lars Thoms. Suitability Analysis of Object Storage for HPC Workloads.
Bachelor’s thesis, Universitdt Hamburg, 2017.

Sage A Weil, Scott A Brandt, Ethan L Miller, Darrell DE Long, and Carlos
Maltzahn. Ceph: A scalable, high-performance distributed file system. In
Proceedings of the Tth symposium on Operating systems design and implemen-
tation, pages 307-320. USENIX Association, 2006.

http://wiki.lustre.org/images/6/64/LustreArchitecture-v4.pdf
http://wiki.lustre.org/images/6/64/LustreArchitecture-v4.pdf

Appendices

41

List of Figures

1.1.
1.2.
1.3.
1.4.
1.5.
1.6.

2.1.

3.1.
3.2.
3.3.
3.4.
3.5.
3.6.
3.7.
3.8.

4.1.
4.2.
4.3.
4.4.

C.1.
C.2.
C.3.
CA4.
C.5.
C.6.
C.7.
C.8.
C.9.

Storage of DKRZ Tape Archive [dkr19] 7
Lustre cluster, taken from [Thol7, p 12] 9
Rados cluster, taken from [Thol7,p 16] 10
SoMeta metadata object structure [TBD*17] 11
HDF5 group structure on a checkpoint example 12
HDF5 abstract data structure with metadata focus [hdf19] 13
Architecture of Julea with different application configurations [Kuh17] . . . 18
Structured Metadata Concept, 21
UML class diagram for Namespace scheme api 22
UML class diagram for metadata object APT 23
UML class diagram for metadata search API 24
UML class diagram for SMD backend API 25
Simple network communication of the SMD component 26
create table buildero o 28
insert buildero 29
Benchmark null smd backend, 34
Benchmark sqlite smd backend 34
Benchmark sqlite kv backend o oL 35
API Overhead SMD 36
Network package scheme apply 63
Network package scheme get L. 63
Network package scheme get response 63
Network package scheme delete 64
Network package metadata object insert 64
Network package metadata object update. 64
Network package metadata object get 64
Network package metadata object get response 64
Network package metadata object delete 64

43

List of Listings

2.1. JULEA object-store backend APT 19
2.2. JULEA key-value store backend APT 20
3.1. SMD types for usage in scheme definitions 27
4.1. commands for maxing out the cpu performance under linux. 32
XX-Appendix/Text/proc—cpuinfo.txt L. 49
XX-Appendix/Text/mem-dmi.txt o0 50
B.1. benchmark.sho 51
05-Evaluation/Gnuplot/benchmark-null.gnuplot 58
05-Evaluation/Gnuplot /benchmark-sqlite.gnuplot 59

45

List of Tables

B.1. benchmark-null-smd.csv 53
B.2. benchmark-null-kv.csv 53
B.3. benchmark-sqlite-smd.csv 54
B.4. benchmark-sqlite-kv.csv 54
B.5. benchmark-null-smd-rl.csv 55
B.6. benchmark-null-smd-r2.csv 56
B.7. benchmark-null-smd-r3.csv 56
B.8. benchmark-null-kv-rl.csv o7
B.9. benchmark-null-kv-r2.csv Y
B.10.benchmark-null-kv-r3.csv L a7
B.11.benchmark-sqlite-smd-rl.csv L 58
B.12.benchmark-sqlite-smd-r2.csvo 59
B.13.benchmark-sqlite-smd-r3.csvo 60
B.14.benchmark-sqlite-kv-rl.csv 60
B.15.benchmark-sqlite-kv-r2.csv 61
B.16.benchmark-sqlite-kv-r3.csv 61

47

© 00 ~J O Tl Wi

= e = e = e
CO 1O UL i W = O

A. Hardware setup

A.l. CPU

vendor_id : Genuinelntel

cpu family : 6

model ;142

model name : Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz

stepping : 10

microcode : 0x9a

cpu MHz : 3400.400

cache size : 6144 KB

physical id : O

siblings 8

cpu cores : 4

apicid 7

initial apicid = 7

fpu 1 yes

fpu_exception : yes

cpuid level : 22

wp : yes

flags : fpu vme de pse tsc msr pae mce cx8 apic sep
— mtrr pge mca cmov pat pse3d36 clflush dts acpi mmx fxsr

sse sse2 ss ht tm pbe syscall nx pdpelgb rdtscp 1m
constant_tsc art arch_perfmon pebs bts rep_good nopl
xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq
pni pclmulqdq dtes64 monitor ds_cpl vmx est tm2 sssed
sdbg fma cx16 =xtpr pdcm pcid sse4_1 ssed4d_2 x2apic movbe
popcnt tsc_deadline_timer aes xsave avx fl6c¢c rdrand
lahf _1Im abm 3dnowprefetch cpuid_fault epb
invpcid_single pti ssbd ibrs ibpb stibp tpr_shadow vnmi
flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmil
avx2 smep bmi2 erms invpcid mpx rdseed adx smap
clflushopt intel_pt xsaveopt xsavec xgetbvl xsaves
dtherm ida arat pln pts hwp hwp_notify hwp_act_window
hwp_epp flush_11d

L A

49

19

20
21
22
23
24

© 00 3 O U= Wi -

DO DO DO DD = = b b b
WN R OO Ttk Wwhh—O

bugs : cpu_meltdown spectre_vl spectre_v2
— spec_store_bypass 11tf mds
bogomips : 3601.00
clflush size : 64
cache_alignment : 64
address sizes : 39 bits physical, 48 bits virtual

power management:

A.2. Memory

Handle 0x0004, DMI type 17, 40 bytes
Memory Device
Array Handle: 0x0003
Error Information Handle: Not Provided
Total Width: 64 bits
Data Width: 64 bits
Size: 8192 MB
Form Factor: SODIMM
Set: None
Locator: ChannelA-DIMMO
Bank Locator: BANK O
Type: DDR4
Type Detail: Synchronous Unbuffered (Unregistered)
Speed: 2400 MT/s
Manufacturer: SK Hynix
Serial Number: 5243A758
Asset Tag: None
Part Number: HMA81GS6AFR8N -UH
Rank: 1
Configured Memory Speed: 2400 MT/s
Minimum Voltage: Unknown
Maximum Voltage: Unknown
Configured Voltage: 1.2 V

20

© 00 ~J O Tl Wi

—
N = O

13
14
15

16
17
18
19
20
21
22

23
24

25
26

B. Benchmark

B.1. Benchmark script

#!/bin/bash
LC_NUMERIC=en_ US.UTF-8

backend=$1
runs=3

for ((runnr=1; runnr<=runs; runnr++))
do
killall -9 julea-server
rm -rf /tmp/julea
./scripts/benchmark.sh --path="/smd" --machine-readable
— --machine-separator="," >
— benchmark-${backend}-smd-r${runnr}.csv
killall -9 julea-server
rm -rf /tmp/julea
./scripts/benchmark.sh --path="/kv" --machine-readable
— --machine-separator="," >
— benchmark-${backend}-kv-r${runnr}.csv
done

Strip head labels from csv

for ((runnr=1; runnr<=runs; runnr++))

do
tail --lines=+2 benchmark-${backend}-r${runnr’}.csv >
5 benchmark-${backend}-smd-r${runnr}.csv.headless
tail --lines=+2 benchmark-${backend}-kv-r${runnr}.csv >

< benchmark-${backend}-kv-r${runnr}.csv.headless
done

calculate averages

o1

27
28
29
30

31

32
33
34
35
36
37
38
39
40
41
42
43
44

45
46
47
48

for t in "smd" "-kv"
do
head -n 1 benchmark-${backend}${t}-r1.csv >
< benchmark-${backend}${t}.csv
paste -d"," benchmark-${backend}${t}-r*.csv.headless
— 's/,/ /g' | nawk -v s="$runs" '{
elapsed=0.0
operations=0.0
total_elapsed=0.0
for(i=0;i<=s-1;i++)
{
t=2+(i%*5)
elapsed=elapsed+$t
t=3+(1i%5)
operations=operations+$t
t=5+(1i%*5)
total_elapsed=total_elapsed+$t
+
printf "%s,%.5f,%.5f,-,%.5f\n",
— $1,elapsed/s,operations/s,total_elapsed/s
}' >> benchmark-${backend}${t}.csv
done
rm *.headless

sed

Listing B.1: benchmark.sh

52

B.2. Averaged Data

B.2.1. Null

Name Elapsed Operations | Bytes Total Elapsed
scheme-apply 0.256397666666667 | 39002.1005493333 - 0.471086
scheme-apply-batch | 0.227967333333333 | 43881.6333846667 - 0.441497
scheme-delete 0.229531333333333 | 43587.0994806667 - | 0.462642666666667
scheme-delete-batch | 0.219577333333333 | 45569.4266376667 - | 0.446008666666667
scheme-get 0.238917333333333 41860.073015 - 1 0.682392666666667

scheme-get-batch

0.229831333333333

43573.534526

0.682489333333333

insert

1.447409

34555.792704

1.44748333333333

insert-batch

1.25744633333333

39785.3848883333

1.25752766666667

update 1.18564533333333 42175.394014 - | 2.40930366666667
update-batch 1.12169966666667 | 44591.3395813333 - | 2.34069866666667
delete 1.10790833333333 | 45150.1851163333 - | 2.37846833333333
delete-batch 1.11804 | 44756.9195406667 - | 2.37486366666667
get 1.158027 43179.866671 - 2.407721
get-batch 1.12513066666667 | 44464.7921556667 - | 2.37073266666667
Table B.1.: benchmark-null-smd.csv
Name Elapsed Operations | Bytes Total Elapsed
put 4.57802866666667 | 43698.6944356667 - | 8.66388966666667
put-batch 4.29361966666667 | 46585.3064543333 - | 8.39066966666667
delete 4.34855533333333 46000.898981 - | 8.61580466666667

delete-batch

4.17412466666667

47914.6506933333

8.453155

unordered-put-delete

4.32007233333333

46300.2476106667

4.32007433333333

unordered-put-delete-batch

4.185854

47780.342585

Table B.2.: benchmark-null-kv.csv

4.18585633333333

23

B.2.2. SQLite3

Name Elapsed Operations | Bytes Total Elapsed
scheme-apply 10.607793 | 943.520574666667 - 20.874795
scheme-apply-batch 10.522952 | 951.212735666667 - | 20.7795543333333
scheme-delete 10.7559643333333 | 933.989579333333 - | 21.2685026666667
scheme-delete-batch 9.994962 1000.511472 - | 20.3410533333333
scheme-get 0.497474666666667 | 20104.3129526667 - 21.035908
scheme-get-batch 0.488211666666667 | 20495.5332996667 - 20.892216
insert 6.10491933333333 | 8190.15219033333 - 6.107885
insert-batch 5.866054 | 8524.37698366667 - | 5.86892766666667
update 5.736914 | 8715.63925266667 - | 11.5516423333333
update-batch 5.65318633333333 | 8844.61117066667 - | 11.4883413333333
delete 4.56555333333333 10953.296673 - | 10.4300686666667
delete-batch 4.541844 11010.338918 - | 10.3913666666667
get 3.19276333333333 15662.110302 - 9.062783
get-batch 3.15198433333333 | 15864.8162213333 - 9.017099
Table B.3.: benchmark-sqlite-smd.csv
Name Elapsed Operations | Bytes Total Elapsed
put 19.6172156666667 | 10206.9897086667 - 1 19.6172156666667
put-batch 19.0376913333333 10508.546577 - 1 19.0376913333333
delete 18.7259703333333 | 10680.5340873333 - | 18.7259703333333

delete-batch

18.6022903333333

10751.9123973333

18.6022903333333

unordered-put-delete

18.2597543333333

10953.2810253333

18.2597543333333

unordered-put-delete-batch

o4

18.1438506666667

11024.2265616667

Table B.4.: benchmark-sqlite-kv.csv

18.1438506666667

B.3. Raw Data

B.3.1. Null
Name Elapsed | Operations | Bytes | Total Elapsed
scheme-apply 0.256748 | 38948.696777 - 0.467246
scheme-apply-batch | 0.222071 | 45030.643353 - 0.431575
scheme-delete 0.223242 | 44794.438323 - 0.467399
scheme-delete-batch | 0.212639 | 47028.061644 - 0.436573
scheme-get 0.240038 | 41660.070489 - 0.674186
scheme-get-batch 0.226611 | 44128.484495 - 0.661552
insert 1.422831 | 35141.207916 - 1.422906
insert-batch 1.298634 | 38501.995173 - 1.298721
update 1.171842 | 42667.868194 - 2.373112
update-batch 1.112070 | 44961.198486 - 2.309991
delete 1.080540 | 46273.159716 - 2.334609
delete-batch 1.086474 | 46020.429389 - 2.313459
get 1.146636 | 43605.817365 - 2.411303
get-batch 1.090713 | 45841.573356 - 2.313161

Table B.5.: benchmark-null-smd-rl.csv

25

Name

Elapsed

Operations

Total Elapsed

scheme-apply 0.255609 | 39122.253129 - 0.470536
scheme-apply-batch | 0.229678 | 43539.215772 - 0.444324
scheme-delete 0.230114 | 43456.721451 - 0.457647
scheme-delete-batch | 0.225713 | 44304.049833 - 0.453711
scheme-get 0.235460 | 42470.058609 - 0.682532
scheme-get-batch 0.220972 | 45254.602393 - 0.676582
insert 1.435489 | 34831.336221 - 1.435560
insert-batch 1.228401 | 40703.320821 - 1.228479
update 1.184131 | 42225.057869 - 2.415164
update-batch 1.101602 | 45388.443376 - 2.314944
delete 1.105458 | 45230.121814 - 2.415176
delete-batch 1.161646 | 43042.372633 - 2.390571
get 1.170177 | 42728.578668 - 2.384466
get-batch 1.128338 | 44312.962960 - 2.402603
Table B.6.: benchmark-null-smd-r2.csv
Name Elapsed | Operations | Bytes | Total Elapsed
scheme-apply 0.256836 | 38935.351742 - 0.475476
scheme-apply-batch | 0.232153 | 43075.041029 - 0.448592
scheme-delete 0.235238 | 42510.138668 - 0.462882
scheme-delete-batch | 0.220380 | 45376.168436 - 0.447742
scheme-get 0.241254 | 41450.089947 - 0.690460
scheme-get-batch 0.241911 | 41337.516690 - 0.709334
insert 1.483907 | 33694.833975 - 1.483984
insert-batch 1.245304 | 40150.838671 - 1.245383
update 1.200963 | 41633.255979 - 2.439635
update-batch 1.151427 | 43424.376882 - 2.397161
delete 1.137727 | 43947.273819 - 2.385620
delete-batch 1.106000 | 45207.956600 - 2.420561
get 1.157268 | 43205.203980 - 2.427394
get-batch 1.156341 | 43239.840151 - 2.396434

26

Table B.7.: benchmark-null-smd-r3.csv

Name Elapsed | Operations | Bytes | Total Elapsed
put 4.565768 | 43804.240601 - 8.632799
put-batch 4.352246 | 45953.284810 - 8.413732
delete 4.343697 | 46043.727267 - 8.624611
delete-batch 4.189317 | 47740.478937 - 8.510249
unordered-put-delete 4.341906 | 46062.719921 - 4.341908
unordered-put-delete-batch | 4.188114 | 47754.191982 - 4.188116

Table B.&.: benchmark-null-kv-rl.csv

Name Elapsed | Operations | Bytes | Total Elapsed
put 4.492584 | 44517.809795 - 8.536265
put-batch 4.252275 | 47033.646695 - 8.354839
delete 4.278172 | 46748.938565 - 8.525892
delete-batch 4.159291 | 48085.118353 - 8.380032
unordered-put-delete 4.358977 | 45882.325142 - 4.358979
unordered-put-delete-batch | 4.198800 | 47632.656950 - 4.198802

Table B.9.: benchmark-null-kv-r2.csv

Name Elapsed | Operations | Bytes | Total Elapsed
put 4.675734 | 42774.032911 - 8.822605
put-batch 4.276338 | 46768.987858 - 8.403438
delete 4.423797 | 45210.031111 - 8.696911
delete-batch 4.173766 | 47918.354790 - 8.469184
unordered-put-delete 4.259334 | 46955.697769 - 4.259336
unordered-put-delete-batch | 4.170648 | 47954.178823 - 4.170651

Table B.10.: benchmark-null-kv-r3.csv

57

B.3.2. SQLite3

Name Elapsed | Operations | Bytes | Total Elapsed
scheme-apply 10.378016 963.575312 - 20.439579
scheme-apply-batch | 10.271407 973.576454 - 20.213930
scheme-delete 10.040549 995.961476 - 20.429391
scheme-delete-batch | 9.986674 | 1001.334378 - 20.287342
scheme-get 0.505772 | 19771.754862 - 20.994574
scheme-get-batch 0.505069 | 19799.274951 - 20.835024
insert 6.117117 | 8173.785134 - 6.119789
insert-batch 5.842920 | 8557.365153 - 5.845774
update 5.767909 | 8668.652713 - 11.597198
update-batch 5.667443 | 8822.320754 - 11.528565
delete 4.646761 | 10760.183276 - 10.640267
delete-batch 4.619402 | 10823.911840 - 10.553023
get 3.237976 | 15441.745090 - 9.180194
get-batch 3.197239 | 15638.493087 - 9.139078
Table B.11.: benchmark-sqlite-smd-rl.csv
B.4. GNUplot

set terminal postscript eps size 5,2.5 enhanced color font
— 'Helvetica,b14'
set ylabel "Operations/s"

set key autotitle columnhead

set grid ytics

boxwidth 0.5

style fill solid
datafile separator ","

set
set
set

set
set

xtics rotate by 30 right
bmargin 10

set yrange [0:55000]

set output 'benchmark-null-smd.eps'

o8

19
20
21

22
23
24
25
26
27
28

29

—_

~ O UL = W o

Name Elapsed | Operations | Bytes | Total Elapsed
scheme-apply 11.053893 904.658657 - 21.739416
scheme-apply-batch | 10.987474 910.127296 - 21.800338
scheme-delete 11.776398 849.156083 - 22.517244
scheme-delete-batch | 10.031676 996.842402 - 20.435282
scheme-get 0.493821 | 20250.252622 - 21.079478
scheme-get-batch 0.476619 | 20981.119091 - 20.948414
insert 6.110326 | 8182.869457 - 6.113819
insert-batch 5.942597 | 8413.829846 - 5.945403
update 5.709497 | 8757.338869 - 11.519333
update-batch 5.637527 | 8869.137123 - 11.461463
delete 4.521534 | 11058.193967 - 10.318625
delete-batch 4.500330 | 11110.296356 - 10.300227
get 3.181541 | 15715.654772 - 9.032426
get-batch 3.141848 | 15914.200814 - 8.975870

Table B.12.: benchmark-sqlite-smd-r2.csv

mk_label(x)=sprintf ("%.0f",x)

plot

"benchmark-null-smd.csv" using 3:xticlabel (1) with

— boxes 1t rgb "light-blue" notitle, \
"' using 0:0:(mk_label($3)) with labels rotate left offset
— 0,1 notitle

unset size

set terminal postscript eps size 4,2.5 enhanced color font
— 'Helvetica,14'

set output 'benchmark-null-kv.eps'

plot "benchmark-null-kv.csv" using 3:xticlabel (1) with boxes
<~ 1t rgb "light-blue" notitle, \

"' using 0:3:(mk_label($3)) with labels center offset 0,1
— notitle

set terminal postscript eps size 5,2.5 enhanced color font
— 'Helvetica,14'
set ylabel "Operations/s"

set key autotitle columnhead

set grid ytics

29

10
11
12
13
14
15
16
17
18
19
20
21

Name Elapsed | Operations | Bytes | Total Elapsed
scheme-apply 10.391470 962.327755 - 20.445390
scheme-apply-batch | 10.309975 969.934457 - 20.324395
scheme-delete 10.450946 956.851179 - 20.858873
scheme-delete-batch | 9.966536 | 1003.357636 - 20.300536
scheme-get 0.492831 | 20290.931374 - 21.033672
scheme-get-batch 0.482947 | 20706.205857 - 20.893210
insert 6.087315 | 8213.801980 - 6.090047
insert-batch 5.812645 | 8601.935952 - 5.815606
update 5.733336 | 8720.926176 - 11.538396
update-batch 5.654589 | 8842.375635 - 11.474996
delete 4.528365 | 11041.512776 - 10.331314
delete-batch 4.505800 | 11096.808558 - 10.320850
get 3.158773 | 15828.931044 - 8.975729
get-batch 3.116866 | 16041.754763 - 8.936349
Table B.13.: benchmark-sqlite-smd-r3.csv
Name Elapsed | Operations | Bytes | Total Elapsed
put 20.574005 | 9721.004734 - 40.412357
put-batch 19.495495 | 10258.780298 - 37.921057
delete 18.819501 | 10627.274336 - 37.785930
delete-batch 18.790558 | 10643.643472 - 37.730118
unordered-put-delete 18.343035 | 10903.321070 - 18.343038
unordered-put-delete-batch | 18.398733 | 10870.313733 - 18.398735

set
set
set

set
set bmargin 10

set yrange

set output

mk _label (x)=sprintf ("%.0f",x)

plot

— boxes 1t rgb

60

boxwidth 0.5
style fill solid
datafile separator ","

Table B.14.: benchmark-sqlite-kv-rl.csv

xtics rotate by 30 right

[0:55000]

'"benchmark-sqlite-smd.eps'

notitle,

"benchmark-sqlite-smd.csv" using 3:xticlabel (1)
"light-blue"

\

with

22

23
24
25

26
27
28

29

Name Elapsed | Operations | Bytes | Total Elapsed
put 19.163727 | 10436.383278 - 37.538720
put-batch 18.867387 | 10600.301992 - 37.262547
delete 18.727022 | 10679.754635 - 37.638171
delete-batch 18.511475 | 10804.109343 - 37.489996
unordered-put-delete 18.291105 | 10934.276524 - 18.291106
unordered-put-delete-batch | 18.091328 | 11055.020394 - 18.091331

Table B.15.: benchmark-sqlite-kv-r2.csv

Name Elapsed | Operations | Bytes | Total Elapsed
put 19.113915 | 10463.581114 - 37.364351
put-batch 18.750192 | 10666.557441 - 36.993576
delete 18.631388 | 10734.573291 - 37.436337
delete-batch 18.504838 | 10807.984377 - 37.284071
unordered-put-delete 18.145123 | 11022.245482 - 18.145125
unordered-put-delete-batch | 17.941491 | 11147.345558 - 17.941493

Table B.16.: benchmark-sqlite-kv-r3.csv

'' using 0:0:(mk_label($3)) with labels rotate left offset

— 0,1 notitle

unset size

set terminal postscript eps size 4,2.5 enhanced color font

— 'Helvetica,14'
set output

plot
— boxes 1t rgb

"benchmark-sqlite-kv.eps'

notitle,

\

"benchmark-sqlite-kv.csv" using 3:xticlabel (1) with
"light -blue"

''" using 0:3:(mk_label($3)) with labels center offset 0,1

— notitle

61

C. Network packages

Namespace scheme apply package

Namespace payload_size payload
<null term. String> <32bit uint> | <payload_size bytes>

Figure C.1.: Network package scheme apply

Namespace scheme get package

Namespace
<null term. String>

Figure C.2.: Network package scheme get

Namespace scheme get package response

payload_size payload
<32bit uint> | <payload_size bytes>

Figure C.3.: Network package scheme get response

Namespace scheme delete package

Namespace
<null term. String>

Figure C.4.: Network package scheme delete

insert package

Namespace

<null term. String>

key
<null term. String>

payload_size
<32bit uint>

payload
<payload_size bytes>

Figure C.5.: Network package metadata object insert

Update package

Namespace
<null term. String>

key
<null term. String>

payload_size
<32bit uint>

payload
<payload_size bytes>

Figure C.6.: Network package metadata object update

Get package

Namespace

<null term. String>

key
<null term. String>

Figure C.7.: Network package metadata object get

get package response

payload_size payload
<32bit uint> | <payload_size bytes>

Figure C.8.: Network package metadata object get response

Delete package

Namespace
<null term. String>

key
<null term. String>

64

Figure C.9.: Network package metadata object delete

Eidesstattliche Versicherung

Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit im Studiengang
Bachelor of Science Informatik selbststéandig verfasst und keine anderen als die angegebenen
Hilfsmittel — insbesondere keine im Quellenverzeichnis nicht benannten Internet-Quellen —
benutzt habe. Alle Stellen, die wortlich oder sinngeméafl aus Veroffentlichungen entnommen
wurden, sind als solche kenntlich gemacht. Ich versichere weiterhin, dass ich die Arbeit
vorher nicht in einem anderen Priifungsverfahren eingereicht habe und die eingereichte
schriftliche Fassung der auf dem elektronischen Speichermedium entspricht.

Ort, Datum Unterschrift

Veroffentlichung

Ich bin damit einverstanden, dass meine Arbeit in den Bestand der Bibliothek des Fachbe-
reichs Informatik eingestellt wird.

Ort, Datum Unterschrift

	Introduction
	Motivation
	Related Work
	Lustre
	Ceph and Rados
	LWFS
	SoMeta
	HDF5

	Background
	Filesystem
	Local Filesystem
	Object Store

	Metadata
	Filesystem Metadata
	User Metadata

	JULEA
	Client-Server Model
	Object-Store Backend
	key-value store backend

	Procedure
	Design
	Concept
	Application Programming Interface
	SMD Backend API
	Network Messages

	Implementation
	SMD types
	Reference Backend With SQLite3

	Evaluation
	Benchmarking
	Setup
	Results
	API Overhead Evaluation

	Summary, Conclusion, Future Work
	Summary
	Conclusion
	Future work

	Bibliography
	Appendices
	List of Figures
	List of Listings
	List of Tables
	Hardware setup
	CPU
	Memory

	Benchmark
	Benchmark script
	Averaged Data
	Null
	SQLite3

	Raw Data
	Null
	SQLite3

	GNUplot

	Network packages

