
Bachelorarbeit

Containerizing a user-space storage
framework for reproducibility

vorgelegt von

Marcel Papenfuss

Fakultät für Mathematik, Informatik und Naturwissenschaften
Fachbereich Informatik
Arbeitsbereich Wissenschaftliches Rechnen

Studiengang: Informatik
Matrikelnummer: 7065349

Erstgutachter: Jun.-Prof. Dr. Michael Kuhn
Zweitgutachter: Kira Duwe

Betreuer: Jun.-Prof. Dr. Michael Kuhn und Kira Duwe

Hamburg, 2021-03-11

Abstract
Container solutions are becoming increasingly popular in the High Performance Comput-
ing (HPC) field. They support points such as reproducibility and mobility in the form
that complete system environments can be reproduced and executed on other systems.
In this thesis, JULEA, a flexible user-space storage system, is used to show how such a
container solution can look like for such an application. Different container engines like
Docker, Podman and Singularity are introduced and a concrete implementation approach
for each is shown.
Besides concrete solutions, the planning and design of workflow plays an important role.
With the help of GitHub Actions, a completely automated workflow is designed, which
is responsible for the image creation.
In addition, an evaluation of the implementation problems will be presented and a
comparison between existing and new container solutions will be shown.

Contents
1. Introduction 5

1.1. Motivation . 5
1.2. Thesis Goals . 6

2. Background 7
2.1. Prior knowledge . 7
2.2. JULEA . 7
2.3. Container virtualization . 8

2.3.1. Docker . 9
2.3.2. Podman . 11
2.3.3. Singularity . 11

2.4. GitHub Actions . 12

3. Design 13
3.1. Current JULEA installation steps . 13
3.2. JULEA users types . 14
3.3. Technical Challenges . 14
3.4. Concept . 15

3.4.1. General Concept for container images 15
3.4.2. Docker . 15
3.4.3. Podman . 17
3.4.4. Singularity . 17
3.4.5. Image structure . 19
3.4.6. GitHub Actions . 20

4. Implementation 22
4.1. Docker . 22

4.1.1. Docker Compose . 27
4.2. Podman . 28
4.3. Singularity . 29

4.3.1. Singulularity Compose . 31
4.4. GitHub Actions . 33
4.5. Use Case Examples . 35

4.5.1. Visual Studio Code . 35
4.5.2. Gitpod . 35

3

5. Evaluation 37
5.1. Benchmark . 37
5.2. Before/After Comparison . 38
5.3. Experiences with different Container engines 40

6. Related Work 43
6.1. Singularity and MPI Applications on HPC Clouds 43
6.2. Reproducible scientific workflows . 43
6.3. Performance in HPC Applications . 44
6.4. Docker security . 44

7. Summary, Conclusion, Future Work 45
7.1. Summary . 45
7.2. Conclusion . 45
7.3. Future work . 46

Bibliography 47

Appendices 51

A. Benchmark 52
A.1. Data . 52

List of Figures 58

List of Listings 59

List of Tables 60

B. Eidesstattliche Versicherung 61

C. Veröffentlichung 62

4

1. Introduction
In this chapter, a short introduction to the thesis is given. It is highlighted why the
thesis is done and which goals are expected from it.

1.1. Motivation
In recent years, containers have become increasingly important and very popular. Espe-
cially in enterprise solutions, containers have become an essential part of development
and operation. Also in High-Performance Computing (HPC) environments and generally
in the scientific field, such solutions are more in demand [GWR20].

Figure 1.1.: Docker over the last years [Dat18]

Experiments and their solutions are often published in papers in the scientific field. In
many fields, these results must be reproducible or even formally proven. This standard
has not been met for a long time in computer-based experiments. In many publications,
the results are only briefly described and the code used for them is rarely available, which
can raise questions about reliability. An important component for the reproducibility

5

of experiments is therefore an accumulation of all data, source code, parameters and
environment [FS12].
Intel describes how important the specification of the used software and operating sys-
tem can be in a contribution for its software tools in connection with floating point
reproducibility. Thus, calculations under different conditions can lead to different results,
which can cause problems in certain areas. Currently, there is no possibility to perform
reproducibility tests on different operating systems like Windows and Linux [MCP21].
Another problem that often occurs during application development is the use of depen-
dencies. Applications often have many external libraries that are required for them to
be compiled or used. If the application is to be used on another system, all dependencies
must be present. However, the user often does not know which necessary dependencies
one has to install for this. If the user simply installs any version of a library, this can be
decisive for the result of the experiment. Maybe a function in the library was changed in
the background, which leads to a different result of the experiment.
Furthermore, containers are being used more and more in cloud computing. The user can
run the applications in an isolated area and is provided with certain resources for this. In
addition to the efficient use of the operating system, a container in the cloud can be used
for version control or contribute to more productive use, as it is easier to work on differ-
ent applications, which can be achieved on the one hand through a fast boot time [Var20].

1.2. Thesis Goals
The goal of this thesis is to containerize a user-space storage framework to address the
issues described in Section 1.1. JULEA is used as an example for such a framework.
Due to the large number of different container engines, it is necessary to find the best
possible solution and implement it. Thereby the specificity of the different systems has
to be taken into account.
In addition, it should be possible in the future that a container image is automatically
build, so that a current version is always available for use.

6

2. Background
This chapter gives a brief overview on the storage framework JULEA. A special focus is
placed on container based virtualization which is the main aspect of the thesis.

2.1. Prior knowledge
In Section 1.1 it was written that the reproducibility of results plays an important role.
For these reasons, more and more publishers of papers offer to submit so-called artifacts.
An artifact is described by ACM as follows:

By "artifact" we mean a digital object that was either created by the authors
to be used as part of the study or generated by the experiment itself. For
example, artifacts can be software systems, scripts used to run experiments,
input datasets, raw data collected in the experiment, or scripts used to analyze
results [Inc21].

Many journals now offer a formal process that makes the provision of artifacts a
standard practice. If the artifacts are made publicly available to everyone, interested
parties can check the result and thus improve the robustness. Furthermore, the reusability
can be improved and other works can build their experiment on the artifacts [Inc20a].
In computational experiments, reproducibility means that an independent person or
group can achieve the same result with the artifacts provided. It is important that
the same measuring methods and the same operating conditions are used. It must be
irrelevant whether the experiment is executed once or several times, the result must
always be the same [Inc20a].

2.2. JULEA
JULEA [Kuh17] is a flexible storage framework that makes it possible to offer different
client interfaces to applications. To quickly implement new approaches, e.g. in research
or teaching, JULEA offers object and key-value backends, which can be located either on
the client or on the server side. Common storage technologies such as POSIX, LevelDB
and MongoDB are currently supported as backends. The backend is loaded at runtime
and thus enables to be flexibly exchanged and adapted.
To make it easier to use in teaching, among other things, JULEA was written entirely in
the user space. This leads to a simplified development and debugging process and no
need of knowledge of kernel space development.

7

Figure 2.1.: JULEA-Client-Server architecture [KD21]

JULEA was built according to the client-server design. Figure 2.1 shows an exemplary
setup. On the left side there are two compute nodes, each of which has started a
JULEA-Client. The fact that the two applications communicate here via the Message
Passing Interface (MPI) will not be important for the project. On the right side, there are
two storage nodes, each of which has started a JULEA-Server. Both use an object store
as backend in this example. The connection between a client and server is done using
Transmission Control Protocol (TCP). A JULEA-Client can also communicate directly
with infrastructures that already have the necessary requirements to communicate with
clients, such as MongoDB or SQL. The JULEA-Server as a "middleman" is then not
necessary.

2.3. Container virtualization
The two best-known virtualization technologies are hypervisor and container-based
virtualization which are visualized in Figure 2.2.
Hypervisor virtualization requires a hypervisor that provides the resources for the virtual
machine (VM). Each VM has its own operating system (OS), which means that there is
a complete abstraction between the VM and host system. It is also possible that several
different operating systems can be run on one host system.
In comparison, the container-based virtualization, also known as operating system level
virtualization, has a container engine instead of the hypervisor. The biggest difference,
however, is that with this technology, the host’s OS is used and there is no longer a
separate OS in the individual containers, which leads to a weaker isolation compared
to the hypervisor virtualization. The container engine divides the physical resources
and creates an isolated user space for each container [CMF+16]. Because the container
engine uses the Linux kernel of the host system, container virtualization is lightweight
and higher performing than hypervisor virtualization [Boe15].

8

Figure 2.2.: Virutal Machine compared to Container structure [Cha18]

2.3.1. Docker
Docker is an open source project that provides container virtualization. It builds on
various techniques that have long been known, such as Linux containers (LXC). One
goal of Docker is to simplify the development and delivery of applications with the help
of containers [Ber14].

The kernel-level namespaces provided by LXC and thus used by Docker separate the
containers from the host. The user namespaces ensures that the root user of the container
has no corresponding rights on the host system. Process and networking namespaces
ensure, on the one hand, that the container only sees processes on the container, and on
the other hand, its own network is created. Control groups (cgroups) are used to limit
and manage resources. This means that memory space and I/O can be limited [Mer14].

Dockerfile

Docker helps to solve the problem with used dependencies and environments. To keep
track of which software has been installed and how, e.g. with which parameters or on
which paths, Docker provided so-called Dockerfiles. This is a script with simple syntax
and a set of instructions that define how an image can be built [Boe15].
Listing 2.1 shows an example Dockerfile, which was taken from the following source [Inc20c].

1 FROM ubuntu :18.04
2 COPY . /app
3 RUN make /app
4 CMD python /app/app.py

Listing 2.1: Example Dockerfile

9

This shows the basic structure and syntax. First a new layer is created, which is
built on the Docker image of Ubuntu 18.04. Then files from the current directory are
copied into the image and built using RUN. Finally, it defines which command should be
executed inside the container.

Docker images

The image is created from the instructions given in the Dockerfile and is a type of
snapshot of the current environment. It consists of several read-only layers, which are
built on top of each other. All layers together contain all necessary files to start a Docker
Container [ZRT+18]. In the end, a container is just a label for the fact that an instance
is running from an image [Boe15].

Docker registry

Similar to a code repository, Docker images are stored in the Docker registry. Images
can be pushed or pulled from this registry. A registry can be either public or private.
The best known example of a public registry is Docker Hub [RBA17].

Docker container

The first step when creating a container is to check if the required image is available on
the local host. If it is available, nothing has to happen. However, if it does not exist, the
image is downloaded from the registry and made available locally.
The second step is the actual creation of the container. For this all read-only layers of
the image are connected to one layer. Then a writable layer is created on the top of it.
This layer is also called the container layer. All changes within the container are written
to this layer. To change files, they have to be loaded from the read-only layer into the
writeable layer [ZRT+18].
If a container is deleted, the image is not changed. The container layer, however, is
deleted as well. By this mechanism it is possible that several containers use the same
image [Inc20b].

Docker Compose

In larger system landscapes, it is quite possible that several services have to run at
once. Usually, for each service a separate Docker container is created. This makes
administration, e.g. creating each service and starting it, very complex and laborious.
Docker Compose was developed to react to this.
With Compose all services can be configured by a YAML file, typically named docker-
compose.yml. Within the definition, docker files are used so that the environment can be
reproduced everywhere. Then all services can be created, started or shut down at same
time with a simple command. [Inc20f]

10

1 services :
2 server:
3 build:
4 context : ./ server
5 ports:
6 - "1234:1234"
7 client:
8 build:
9 context : ./ client
10 volumes :
11 - "./ code :/ build"

Listing 2.2: Example Docker Compose YAML file

Listing 2.2 shows an example for a Docker Compose file. Two services are created.
The server service uses an image that is built from a Dockerfile in die /server directory.
Moreover, it binds the container to the exposed port 1234. In the client service it is
shown how an volume can be mounted from the host machine (/code) to the container
(/build).

2.3.2. Podman
Although Docker has a great popularity, it can not meet all requirements, especially in
the HPCs field. This is the reason why the Podman project was created. An example is
the client-server model, which is a potential security risk [GWR20].
Podman is daemonless and open source. With its own CLI, which is very similar to
Docker’s, it is easy to find, build and run containers. Because Podman, like Docker, is
based on the Open Containers Initiative (OCI) Runtime Standard, Podman’s containers
are hardly distinguishable from those of others [wha20].
One of the biggest features of Podman is that containers can be run with either root or non-
root privileges. This is achieved with the help of namespaces. Also, container images can
be created from Dockerfiles without starting a process or having root privileges [GWR20].
Podman offers support for Checkpoint/Restore in Userspace (CRIU), which might be
interesting for HPC. This makes it possible to restore a container at a later time.
Currently it is not possible to use this feature with rootless containers or with MPI and
InfiniBand [GWR20].

2.3.3. Singularity
Singularity is another container platform that was developed for the needs of science.
Singularity pays special attention to the mobility of workflows and software. This is
achieved by a single portable image file. The file contains all files of the container [KSB17].
A further development criterion is reproducibility. After a workflow has been defined,
the image can be archived or snapshot so that the user knows that the files have not

11

changed within the container. Hashing provides a method to ensure that the image has
not been changed or edited [KSB17].
With singularity rights system there is no user escalation, which means that a container
gets the rights that the user has when the container is started [ADS17].
The container images are read-only by default. Only the home directory and other
automatic remounted folders are writable. Applications can access the data inside the
container and on the host system [K+15].

2.4. GitHub Actions
With the help of GitHub Actions automated tasks can be created for a repository.
Different actions can be triggered depending on the type of event.
An event, e.g. a push of a commit to a repository, automatically triggers a workflow
consisting of one job. This job is then again divided into steps. The individual steps are
defined by the respective actions. Each action can have a different command. There are
already a number of actions available from the GitHub community that can be used or
you can create your own [Inc20h].

1 name: test -action
2 on: [push]
3 jobs:
4 run -test -script:
5 runs -on: ubuntu -latest
6 steps:
7 - name: Checkout
8 uses: actions / checkout@v2
9 - name: Tests
10 run: ./ scripts /test.sh

Listing 2.3: Example GitHub Action

Listing 2.3 shows an example workflow. On each push-event (line 2) the test-action is
executed. The job in the example is grouped by the name run-test-script (line 4). Line 5
indicates that the job is running on a fresh virtual machine running an Ubuntu. The
job is further divided in line 6 by the steps. In the example there are two steps. One is
the Checkout Step (lines 7+8), which uses the community action actions/checkout@v2,
which checks out the current repository and makes it available to the virtual machine.
This action must be used every time a workflow is used for the code in the repository.
The other step (lines 9+10) uses run to execute a command in the VM. Here a script is
called that contains tests [Inc20h].

12

3. Design
This chapter describes the design options available and how they will be implemented.
At first, the different user requirements are discussed. Secondly, the various container
engines are examined in more detail and an individual solution is described for each.

3.1. Current JULEA installation steps
Before the individual steps for the container engines can be explained, it is briefly
explained which steps are necessary so far to install and configure JULEA [JUL20].

Firstly, the project must be cloned from GitHub. Then all necessary dependencies
have to be downloaded and installed. This is done by a dependencies script Listing 3.1.

1 ./ scripts /install - dependencies .sh

Listing 3.1: Install dependencies for JULEA

Afterwards, the JULEA environment can be loaded, which is necessary so that all
JULEA binaries and libraries can be found Listing 3.2.

1 . scripts / environment .sh

Listing 3.2: Load JULEA environment variables

The configuration is done with Meson1 and the compilation with Ninja2 as seen in
Listing 3.3.

1 meson setup --prefix ="${HOME }/ julea - install "
↪→ -Db_sanitize =address , undefined bld

2 ninja -C bld

Listing 3.3: Configure and compile JULEA using Meson and Ninja

Finally, the actual JULEA configuration can be created in Listing 3.4.

1https://mesonbuild.com/
2https://ninja-build.org/

13

1 julea -config --user \
2 --object - servers ="$(hostname)" --kv - servers ="$(hostname)"

↪→ --db - servers ="$(hostname)" \
3 --object - backend =posix --object - component =server

↪→ --object -path ="/ tmp/julea -$(id -u)/posix" \
4 --kv - backend =lmdb --kv - component =server

↪→ --kv -path ="/ tmp/julea -$(id -u)/lmdb" \
5 --db - backend =sqlite --db - component =server

↪→ --db -path ="/ tmp/julea -$(id -u)/sqlite"

Listing 3.4: Setting JULEA configuration

3.2. JULEA users types
JULEA basically has two different types of users, which are briefly described here. These
should be included in the design process.

• JULEA-Developer: Users who want to further develop JULEA have to deal with
all development steps. This includes checking out the project from GitHub and
installing all required dependencies. Furthermore, Meson must be used for config-
uring and Ninja for compiling. This requires experience or at least understanding
of the commands in the documentation.

• JULEA-User: The user who only wants to use JULEA would be provided a way
to install JULEA via a package manager using spack 3. For this user, less prior
knowledge about the configuration of JULEA is required.

3.3. Technical Challenges
At the beginning, it should be clarified which technical challenges [Boe15] exactly are
supposed to be improved or solved with the presented solution.

• "Dependency Hell": To install or build software, for example to reproduce a
result or just to continue developing on the project, can be challenging. Each
developer or user has a different user environment, which results in different software
packages, environment variables and configurations.
To improve this problem, images can be used that are made available to other
users. The image contains the installed and configured software.

• Documentation: In a software life cycle, an application is further developed
and modified. In the process, the documentation must also always be adapted,

3https://spack.readthedocs.io/en/latest/

14

which is often neglected. Even a small forgotten step, e.g. the skip of a necessary
dependency, can lead to the failure of the installation.
Definition files, such as a Dockerfile, are used to define how a given image was
built. This simple script specifies how the software was installed and configured in
a particular environment.

• Reproducibility: As written in the documentation point, software changes. Fix-
ing bugs or adding new features can affect the result of a different experimental
setup. A solution must be found that allows to show with which version and
configuration of the software a result was generated, so that others can reproduce
the results.

3.4. Concept
First, we introduce two general concepts of how container images could be constructed.
After that, the individual container engines will be discussed in more detail.
As an example for consideration, a server and client are created for each container engine.
The client should connect to the server and use the server as a backend.

3.4.1. General Concept for container images
Every single step specified in 3.1 must also be used to create the container images. There
are two potential ways to do this:

• One image: The first and naive approach is to specify all steps in a single
configuration file, e.g. Dockerfile, and create a container image from it. This means
that both the download of the dependencies and the individual configuration steps
are performed one after the other in this file. The only dependency on another
image is the base image, which could be an Ubuntu or CentOS version, for example.

• Two images: The other approach is to create one image for the dependencies
and another for the configuration. The configuration file for the dependencies will
again be built on a base image and then download all necessary dependencies. The
second image will then import the first and then only need to configure JULEA.
The only difference here is the separation of the individual steps.

3.4.2. Docker
For the design of Docker images to make the best use of them, there are recommendations
from Docker, which are used for the construction of the images and are explained in
more detail in this section [Inc20d].
A special focus here is on the use of the cache. Steps that have already been performed
once should ideally not be repeated again in the development process. Another important
factor is the image size which should be as minimal as possible.

15

• Order of build steps: The steps should be arranged so that the commands that
contain content that changes less often, such as installing packages, are at the
beginning. Commands that, e.g. copy content to the image, should be further at
the end because this data potentially changes more often during development. If
the cache behavior of a step changes, all steps below it also become invalid.

• Reduce number of layer: Each RUN command creates a new layer in the
image and the number of layers should always be kept as less as possible [Inc20d].
Therefore RUN commands should be combined if possible. This can be applied
particularly well to the installation of packages, e.g. by means of apt. All packages
should be installed within one RUN command. Another advantage is that the
cache behavior improves again.

• Specific COPY: Everything that is copied into the image using COPY should
be well considered. Only the files or folders that are really needed for the single
step or for the current image should be copied. Any change within the files will
result in the cache no longer being usable.

• COPY/ADD: The use of ADD should be avoided. Both offer almost the same
functionality, but ADD offers additional features like downloading and unpacking
sources, which can lead to unwanted behavior. This way, a zipped folder could be
unzipped automatically instead of just being copied into the image [CSW+17].

• Reduce image size: Package managers like apt offer the possibility to not install
unneeded dependencies with the flag –no-install-recommends. In the same RUN
statement the cache of the package manager should be cleared, so that it is not
written to the image.

• Specific tags: Whenever possible, concrete information about the versions used
should be given and the latest tag should be omitted.

• Persistent data: If possible, data should not be stored in the writable layer
of the container, because this increases the size of the image. Instead, volumes
should be used. These also offer better I/O performance compared to layers. In
addition, bind mounts should only be used during the development and volumes
for production [Inc20d].

These points give some clues that will be used for the later implementation. Another
point raised in the documentation is the advice to build an own base image if there
are multiple images that have a lot in common. Likewise, multistage builds are a good
option. These suggested options are helpful for planning the actual build of the images.
Furthermore, it is described that a container should only serve one purpose, making it
easier to reuse and scale that container in multiple places. For JULEA this will mean
that each container will have only one JULEA process running, e.g. one container a
client and the other a server [Inc20c].
A single Dockerfile is created for the server and client, which will be built as a base image

16

on a configured JULEA. Everyone has the possibility to configure the respective node
individually. This will happen via a startup script. As soon as the container is started,
the JULEA configuration is set at the server, which includes the hostname and the port.
Also, the server must be started at the end. When the client is started, it must include
these two parameters in its startup process and set them in its configuration.

3.4.3. Podman
Podman offers practically all possibilities that the files created and used for Docker can
also be used. This should allow Docker images or Docker files to be reused. Since Docker
will be considered for the thesis and images will also be created in this process, the
best approach here will be that all implementations are first created with the help of
Docker. The created images are attempted to be reused for Podman in the next step. It
is assumed that no separate images or configuration files need to be created for Podman.

3.4.4. Singularity
In the text Kurtzer et al. a typical workflow with Singularity [KSB17] is described. The
workflow starts with a user developing the image on his own system. On this system,
the user usually has root privileges, which are necessary to make changes to the image.
Once development on the image is complete, it can be shared with other resources.
On shared computational resources, which can be a server, for example, the image can
be viewed as its own program, allowing it to run normally. On these resources, users
usually do not have root privileges, which means that no changes can be made within
the image. It can only be used. If changes are to happen, it must be switched back to
the local user endpoint and the image must be re-uploaded again for everyone.

Figure 3.1.: Singularity usage workflow [Sin18]

Singularity follows the approach that a container does not run completely isolated
from the host system. This aspect is especially noticeable in the file system. Because

17

Singularity replaces the file system of the host with the one in the container, none of the
host files are accessible within the container. In order to still be able to read files from
the host system, there are two possible procedures.

• System-defined bind paths: The administrator of the system can specify which
directoires should be included automatically. Some are defaulted, which include
the following: $HOME, /tmp, /proc and /sys.

• User-defined bind paths: If the administrator has allowed it, the user has the
possibility to define own bind points. This can be done via the –bind flag.

Singularity offers so-called bootstrapping, which follows the idea of creating an image
from a previously created template. This can either be created from scratch or existing
Docker images can be used.

Kurtzer et al. described that on a shared resource no root rights are needed to run
Singularity. This is only partially correct. For a sample implementation, a client-server
model is to be set up, where it is necessary to establish a connection between client
and server for communication. In the documentation of Singularity it is written that
currently root permissions are necessary for this.

The standard workflow described would theoretically also be an option for JULEA.
However, a certain degree of flexibility would be lost because a singularity image would
have to be available at a central location for both a client and a server, which a user
would then have to download in order to use it. This would be the only way to prevent
a user from having to build a container themselves. Since root rights are required to use
a network with Singularity, the standard workflow can also be modified here so that the
user can build and use the image himself on a system.
Also, care must be taken as to where the JULEA configuration is stored. So far it is
stored in the path ./config/julea/julea in the home directory of the user. If the container
is now to be shared with other users the configuration is no longer present because the
user’s home directory is only mounted in the image and is not permanently there. This
is only a limited problem. The Docker image with a preconfigured JULEA is used as the
base image, which is used by a Singularity description file. This contains a startup script
that sets the appropriate JULEA configuration for the user. To use the container on
another system, the user only need to build a container using the Singularity description
file.
One must be aware that it is not possible to write data within the container. It must be
written either via the system paths or user defined endpoints. The data is, therefore,
always located on the host system. The workflow, e.g. a user wants to compile files
with the help of the container, could be done as follows. The user places the files to
be compiled in a directory that is mounted. In order to create the binaries, one of the
mounted paths must be specified as output directory in the JULEA configuration.

18

Singularity provides several ways to interact with processes in the container. For the im-
plementation, instances are mainly used, which is an isolated and persistent version of the
container that runs in the background. This service can then be used by multiple clients,
which is suitable for the example implementation of a client-server-structure [Inc20i]. It
must be figured out if the instance can be started without root rights and the application
works without problems.

If JULEA is to be built and used on a system without the appropriate permissions and
without the need for a network connection between individual containers, a container can
be built with the help of the –fakeroot option. An instance can then simply be started.

3.4.5. Image structure
By taking a closer look at the individual container engines, the image structure for the
implementation can be specified more precisely. Due to the widespread use of Docker and
the resulting possibility for Podman and Singularity to use Docker images, the structure
is determined primarily from the description in Section 3.4.2.

To use JULEA, a large number of dependencies have to be installed at the begin-
ning, which takes the most time depending on the mode and system. These dependencies
are changed only in a large period. From the points explained in Section 3.4.1 and this
further aspect the approach of the two images is pursued. The possibility of using only
one image is not considered in detail.

Figure 3.2.: JULEA images hierarchy

Figure 3.2 shows the more detailed structure of the image hierarchy used for imple-
mentation.

19

A separate dependency image is created for each Linux distribution on which JULEA
will run in the future. This image contains all dependencies that will be needed for the
configuration in the future, e.g. a Python version. Furthermore, this image is used to
install the dependencies that are specified in the installation script of JULEA.
On this image, depending on which distribution is needed, the configuration can then be
built. This image will configure and compile a JULEA.
The end user only has to decide which image to use. The JULEA-Developer might want
to use the dependency image so that he has all the necessary dependencies, but wants to
take care of compiling the application himself. The pure user will fall back on the ready
configured JULEA image, which only has to be started with a container.

In the following JULEA-Dependency and JULEA-Configured are used to refer to the
JULEA dependency image and to the final configured JULEA image.

3.4.6. GitHub Actions
The JULEA project is managed on GitHub and is publicly available to everyone. Cur-
rently, there are already some actions that are used for testing and building JULEA. By
introducing containers, new possibilities arise to extend the actions further.
So far Docker Hub4 is the best way to use and publish Docker images for other users to
benefit from. Still in beta, but already usable on GitHub is the new container registry
from GitHub [Nga20]. This creates the possibility to publish container images directly
on GitHub, which would simplify the administration in this case, since no further system
has to be integrated. In addition, it is immediately visible to users that containers have
been created and can be used.

Figure 3.3.: GitHub Action workflow for JULEA

The GitHub developers already offer an action that creates a new container image
of the repository on a selected event and then uploads it to the container registry. In

4https://hub.docker.com/

20

Section 3.4.5 a structure of two images was introduced. This should also be done in the
actions.
Since it is assumed that dependencies rarely change, JULEA-Dependency does not need
to be generated for each push event. For example, a workflow for this would be to change
the image only on a release, assuming that dependencies only change on a new release
version. Other event options would also be possible.
JULEA-Configured could be rebuilt on every push event, because it is assumed that this
happens in a short time. So, there would always be a current image of JULEA available.

21

4. Implementation
In this chapter, the realized implementation to the design plan is explained further. It
also discusses problems and explains some technical aspects in more detail.
All results presented in the implementation can be found in the following repository:
https://github.com/vittel1/julea.

4.1. Docker
In this section, the implementation using Docker is explained. At first, the structure
of the Dockerfiles will be shown. A distinction is made between a JULEA-Server and
a JULEA-Client, which will also be reflected in the structure of the Dockerfiles. Then
it will be shown how the images can be created and used. It will also be explained
how the two container can be connected to each other via a network so that the client
applications can later reach the server.

In addition, the following section uses the documentation for Docker commands [Inc20e].

Since the decision was made to create several images, the structure of the image for the
dependencies is shown first in Listing 4.1.

1 FROM ubuntu :20.04
2
3 COPY container /docker/github/install - packages .sh .
4 RUN ./ install - packages .sh && rm install - packages .sh
5
6 WORKDIR /julea
7 COPY scripts / ./ scripts /
8
9 SHELL ["/ bin/bash", "-c"]
10 RUN ./ scripts /install - dependencies .sh

Listing 4.1: JULEA-Dependency Dockerfile with Ubuntu 20.04

The Dockerfile in Listing 4.1 is built on an Ubuntu 20.04. In order to use the install-
packages.sh script in the RUN statement, it must be copied from the host to the container
filesystem. The installation of necessary packages is outsourced to a script to be more
flexible. As described in the design, the image should be kept as small as possible using

22

https://github.com/vittel1/julea

–no-install-recommends. However, the Git package must also be installed, which could be
installed with this flag, but it would cause problems later and prevents further correct
installation. In order to only have to use one RUN instruction, the script procedure was
used. Since the script is no longer needed afterwards, it is deleted directly.
Line 6 specifies the directory that is to be used for all of the following commands. Since
the directory did not exist before, Docker creates it in the same step.
JULEA already has a script that installs all dependencies. For this purpose, the entire
scripts folder is copied into the image in order to provide all necessary additional files
that the script uses in the image. It must be ensured that a folder is specified for the
destination, because COPY only copies the contents of the folder. Finally, the installation
script of JULEA must be executed.

1 sudo docker build -t julea -ubuntu -deps - standard :1.0 -f
↪→ container /docker/github/ Dockerfile_Ubuntu_Deps_Standard
↪→ .

Listing 4.2: Docker build commands for JULEA-Dependency

Depending on the system and mode, the Docker build process Listing 4.2 could take
some minutes.

The image just created is now available in the local Docker Registry. From there
it can be started or used by other images. The second step, creating the image for
configuring JULEA, uses the image as seen in Listing 4.3.

1 FROM julea -ubuntu -deps - standard :1.0
2
3 WORKDIR /julea
4 COPY . .
5
6 SHELL ["/ bin/bash", "-c"]
7 RUN . scripts / environment .sh && \
8 meson setup --prefix ="${HOME }/ julea - install "

↪→ -Db_sanitize =address , undefined bld && \
9 ninja -C bld

Listing 4.3: JULEA-Configured Dockerfile

Here, the same installation directory is specified as for the dependency image. The
difference here is that the entire JULEA directory is copied into the image. This is
necessary so that the application can be used completely later.
In the RUN command, the environment variables are set by the existing script. In
addition, the program is configured and compiled in the same course. In fact, it is
important to point out here that the setting of the environment variable and the meson

23

and ninja commands must be executed together, i.e. via the && link. First, it was tried
to execute each command as a single RUN statement. As a result, the environment
variables are not available in the second step. This can probably be attributed to the fact
that Docker creates a new layer for each RUN command and the environment variables
are no longer available in the new layer. Docker provides the ability to set environment
variables for all subsequent commands via ENV. However, this is currently not possible
via a script, because of that this option is out of the question. Thus, it is currently
necessary to always make sure that the environment variables are set, which will also be
seen later in various scripts.

After also building JULEA-Configured, the image is ready to be used. As already
written, a JULEA-Server and a JULEA-Client are created for the example. First the
configuration of the server is shown and explained in Listing 4.4.

1 FROM julea -config :1.0
2
3 EXPOSE 9876/ tcp
4 COPY docker - entrypoint .sh / entrypoint .sh
5
6 ENTRYPOINT ["/ entrypoint .sh"]
7 CMD [" juleaServer ", "9876"]

Listing 4.4: JULEA-Server Dockerfile

Docker provides with the EXPOSE instruction, a command that can be used to specify
that the container listens on a specific port at runtime. It can also be specified whether
the port listens to TCP or UDP. However, the port is not published by the command,
this specification serves more as documentation for the users who will later use the
container.
In the same directory where the Dockerfile for the server is located, a script is created
that is first copied into the image.
As briefly described in Section 3.4.2, a container should be designed so that it is available
for a specific task and process. As soon as this process is finished, the container is
also stopped. Thus, the container lifecycle is based on the process running in it. In
order for the container to know which process to run, this must be specified via a
command. Docker offers two possibilities for this with CMD and ENTRYPOINT, which
are explained briefly in the following [Sim20].

• CMD: This command can be used to specify the default executable action of the
container. If docker run is called without a command argument, then the container
will run with the action specified in the CMD. However, if an argument is specified,
the command is overwritten and the action in the argument is executed. There can
only be one CMD command, otherwise the last one is always taken. The command
is not executed at build time of the image.

24

• ENTRYPOINT : With this command it is also possible to specify an instruction
that the container will execute at startup. However, this command cannot be
overwritten even if an argument is passed to the docker run command.

Both commands can also be combined. The executable can then be specified by
ENTRYPOINT and the default parameters in CMD. This procedure is also chosen in
this example. CMD defines the default hostname and port of the JULEA-Server and in
ENTRYPOINT the start script Listing 4.5 is specified.

1 #!/ bin/bash
2 serverName =$1
3 portNumber =$2
4
5 . /julea/ scripts / environment .sh
6
7 sed -i -e '$a. /julea/ scripts / environment .sh ' ~/. bashrc
8
9 julea -config --user \
10 --object - servers =" $serverName : $portNumber "
11 --kv - servers =" $serverName : $portNumber "
12 --db - servers =" $serverName : $portNumber "
13 [...]
14
15 julea -server --host " $serverName " --port $portNumber

Listing 4.5: JULEA-Server entrypoint script

Listing 4.5 takes the passed arguments in line 2 and 3 and writes them into variables
for better comprehensibility. So that, when working with a bash console inside the
container later, the environment variables are set. These are entered into the .bashrc
file, which is responsible for configuring the bash at startup (line 7). Afterwards the
JULEA configuration can be set by setting the future server name and port. Finally,
only the server must be started with the appropriate parameters. As long as this process
is running, the container will also run. The server must not be started with the daemon
parameter, otherwise the container will stop.
It would also be possible to define this whole configuration, which is executed in the
script, in the ENTRYPOINT directly. This was also tried at first, but it made the
command very confusing and complicated, because again the environment variables must
be set.
Thus, the JULEA-Server image can be built and then the container can be started as
shown in Listing 4.6. With docker exec one can work directly inside the container. When
running this command, the environment variables should be set and then the container’s
bash console should be displayed.

25

1 cd ./ container /docker/server
2 sudo docker build -t julea -server -image .
3 sudo docker run -it -d --name julea -server

↪→ julea -server -image
4 sudo docker exec -ti julea -server /bin/bash

Listing 4.6: JULEA-Server build image and run it

If the default parameters should be overwritten, only the parameters at the end of the
docker run command must be specified as seen in Listing 4.7.

1 sudo docker run -it -d --name julea -server
↪→ julea -server -image SERVERNAME PORT

Listing 4.7: JULEA-Server run image with parameters

The same Dockerfile is created for the client as for the server. A startup script is also
copied into the image and the default values for hostname and port of the server are set.
It is important to note here that when starting the container, if the default values of the
server container are overwritten, these must also be overwritten for the client.
The main difference is in the last command of the script in Listing 4.8. No server can be
started for the client. Thus another command must be specified, which runs permanently
as a process, so that the container is not stopped again immediately after starting. Here
a little trick was done by permanently creating a process with tail -f, which actually has
no meaning for further use. Whether this is the best approach should be reconsidered in
the future.

1 [...]
2 tail -f /dev/null

Listing 4.8: JULEA-Client start command in Dockerfile

Afterwards, the image for the JULEA-Client can also be built and started.
Volumes are a good solution to compile local files within the container more dynamically.
Thereby the directory on the local filesystem could be mounted in the container. The
specification must happen over the -v flag by the start of the container in Listing 4.9.

1 sudo docker run -it -d -v
↪→ / absolute /path/to/dir/build :/ build --name julea -client
↪→ julea -client -image

Listing 4.9: JULEA-Client start with volume

To enable a connection between client and server, it is necessary to set up a network.

26

For this purpose, such a network must first be created in Docker in Listing 4.10.

1 sudo docker network create juleaNetwork

Listing 4.10: Docker create network

For the server, when starting the container, the hostname, port, and network previously
defined must be specified here in Listing 4.11.

1 sudo docker run -it -d --network -alias juleaServer -p
↪→ 9876:9876/ tcp --network juleaNetwork --name
↪→ julea -server julea -server -image

Listing 4.11: Docker server container with network

To be able to communicate with the server, the network must also be specified by the
client in Listing 4.12.

1 sudo docker run -it -d --network juleaNetwork --name
↪→ julea -client julea -client -image

Listing 4.12: Docker client container with network

The next section introduces Docker Compose, which eliminates the need to create a
network and include it for each container, making it easier to use.

4.1.1. Docker Compose
In this section, the server-client example is shown again using Docker Compose. The
YAML-file Listing 4.13 is located in the root directory of the JULEA project.
Two services are created with the name juleaServer and juleaClient. The name assignment
here is important, because the service name becomes the hostname at the same time.
Thus, the service name must be specified for the client in the start script or Dockerfile,
otherwise the client cannot reach the server.
The build contexts each reference the Dockerfile in the corresponding folder. Both an
image name and a container name are defined for both services, because otherwise
random names are assigned, which can lead to confusion.
Two ports are specified for the server. The number on the left refers to the host and on
the right to the container. Thus, the host as well as the container can be reached via
port 9876.
A volume is defined for the client, which maps the example directory of JULEA to the
path /build in the container.
It is not longer necessary to create a network manually. This is created automatically
and named with julea_default.

27

1 services :
2 juleaServer :
3 build:
4 context : ./ container /docker/server
5 ports:
6 - "9876:9876"
7 image: julea -server -image
8 container_name : julea -server
9 juleaClient :
10 build:
11 context : ./ container /docker/client
12 volumes :
13 - "./ example :/ build"
14 image: julea -client -image
15 container_name : julea -client

Listing 4.13: Docker Compose for JULEA-Server and Client

To start both containers only one command is needed in Listing 4.14.

1 sudo docker - compose up -d

Listing 4.14: Start container with Docker Compose

4.2. Podman
In order to use Podman, no further preparation is necessary, except for installing Podman.
Because Podman allows to use Dockerfiles and images that have already been built, using
Podman is basically like using Docker. On top of that, many commands, for example to
build an image or launch a container, are the same, which makes using Podman feel like
using Docker. When taking advantage of the possibility to use the alias docker=podman
[wha20], a difference is almost impossible to notice.

All examples explained in Section 4.1 can be recreated exactly the same way with
Podman.
However, one difference was noticed. In order to test whether the test setup is correct
and to check whether JULEA works properly, the example in the examples folder was
always compiled and executed for all examples. With Docker, there were no warnings
or errors that occurred. Whereas with Podman, a warning appeared at the end of the
samples that something could not be executed properly in Listing 4.15. It seems that
the message has no influence on the actual result, the saving of the data. The data is
correctly created in the specified directory. The error probably refers to an event that

28

happens afterwards. However, this should be examined more closely later to see whether
the error message has an influence on the result. A presumption was here that possibly
the absence of the root privileges can have influence on something. However, the error
did not occur later with Singularity, which may invalidate this theory.

1 root@2445390c9c15 :/ julea/ example # ./ hello -world
2 Object contains : Hello World! (13 bytes)
3 KV contains : Hello World! (13 bytes)
4 DB contains : Hello World! (12 bytes)
5 ==276== LeakSanitizer has encountered a fatal error.
6 ==276== HINT: For debugging , try setting environment

↪→ variable LSAN_OPTIONS = verbosity =1: log_threads =1
7 ==276== HINT: LeakSanitizer does not work under ptrace

↪→ (strace , gdb , etc)

Listing 4.15: JULEA example in Podman container with notification

In order to use the Docker Compose file in the root directory, an additional package
must be installed, as this is not supported by Podman by default. For this purpose, a
community project is offered that provides this functionality [Pod20]. With this project
it is also possible to execute the docker-compose.yml file.

4.3. Singularity
This section shows how JULEA can be used with Singularity. To a large extent, this can
build on what has already been explained in Section 4.1.

The server definition file in Listing 4.16 builds on JULEA-Configured. The syntax
is a little different, however, this basically does exactly the same as the previous ones in
Docker. Using %files, a file can be copied into the image. After that, one only needs
to define a script that starts the desired process when the instance is started in the
container.

1 Bootstrap : docker
2 From: julea -config :1.0
3
4 %files
5 singularity - entrypoint .sh /singularity - entrypoint .sh
6
7 % startscript
8 /bin/bash /singularity - entrypoint .sh

Listing 4.16: JULEA-Server description file with Singularity

29

One difference can be seen in the startup script. As written in Section 3.4.4, Singularity
mounts the /tmp directory into the image by default. If this directory is no longer mounted
by the administrator or it is not desired to write to this path, this can be changed in the
script. Listing 4.17 shows an example for the sqlite directory.

1 --db -path ="/ singularity -mnt/julea -$(id -u)/sqlite"

Listing 4.17: JULEA output path in Singularity

Care must be taken to ensure that the specified directory is either mounted by default
or set by the bind flag, as seen in Listing 4.18.

1 cd ./ container / singularity /server
2 singularity build --fakeroot julea -server.sif Singularity
3 singularity instance start --bind

↪→ singularity -mnt /:/ singularity -mnt julea -server.sif
↪→ julea -server - instance

Listing 4.18: Singularity commands to start JULEA-Server

The shown commands describe the possibility to build a JULEA container with Singu-
larity on a system without root privileges with the use of the fakeroot option.

With this described solution it is not yet possible to communicate with the server
instance. To change this, Singularity’s network virtualization must be used, which only
works with root privileges [Inc20i]. The instance startup must be extended by the –net
option Listing 4.19. With this option the container will join a new network which will
be a bridge network by default.

1 sudo singularity instance start --net --bind
↪→ singularity -mnt /:/ singularity -mnt julea -server.sif
↪→ julea -server - instance

Listing 4.19: Singularity start JULEA-Server commands with network

To communicate to the server it is necessary to find out the IP address of the server.
With the help of the exec command, as Listing 4.20 shows, it is possible to execute a
command directly in a running instance. Because the instance is started as root user
it is running in the root context which leads to the fact that all commands must be
executed as root. hostname -I outputs all IP addresses of the host. Singularity generates
an address in the subnet 10.22.0.0/16 which is configured in the bridge settings under
this path /usr/local/etc/singularity/network/00_bridge.conflist.

30

1 sudo singularity exec instance :// julea -server - instance
↪→ hostname -I

Listing 4.20: Singularity JULEA-Server IP address

The Singularity client image proceeds the same way as the server image. Again, a
script is created that uses the hostname and port of the server. In order to resolve the
hostname of the server, an etc.hosts file must be created as shown in Listing 4.21. In this
file the previously found IP address of the server is entered as well as the hostname that
was entered in all scripts. Alternatively, one can also work directly with the IP address
of the server, then the additional file is no longer necessary, but then the IP address
must be entered everywhere instead of the hostname.

1 10.22.0.5 juleaserver

Listing 4.21: Singularity JULEA-Client etc.hosts

In order for the instance to be used, the etc.hosts file must be bound when the instance
is started as shown in Listing 4.22. This instance must also use the –net option to join
the network where the server is located. Then, the shell command can be used to work
within the instance. For JULEA to be used, it is essential to run the environment variable
script again. The solution of entering it in the .bashrc file, which was previously used
with Docker, no longer works here, since the home directory is automatically mounted.

1 sudo singularity instance start --net --bind
↪→ etc.hosts /:/ etc/hosts --bind
↪→ singularity -mnt /:/ singularity -mnt julea -client.sif
↪→ julea -client - instance

2 sudo singularity shell instance :// julea -client - instance

Listing 4.22: Singularity JULEA-Client starts instance with etc.hosts bind

4.3.1. Singulularity Compose
There is a community project [Sin20] for Singularity, so that the management of the
instances can be simplified.
However, it is not possible to use the existing docker-compose file, as the library does not
support the naming convention of Docker. Because of that a new one must be created as
seen in Listing 4.23.

31

1 version : "1.0"
2 instances :
3 juleaserver :
4 build:
5 context : ./ container / singularity /server
6 ports:
7 - 9876:9876
8 juleaclient :
9 build:
10 context : ./ container / singularity /client
11 volumes :
12 - ./ container / singularity /client/
13 singularity -mnt :/ singularity -mnt

Listing 4.23: Singularity Compose YAML file

This file can now be used to start two instances using singularity-compose up. As
written in the Singularity documentation, an etc.hosts file is also created in the current
directory with the corresponding IP addresses and hostname in Listing 4.24.

1 # cat etc.hosts
2 10.22.0.3 juleaclient
3 10.22.0.2 juleaserver
4 127.0.0.1 localhost

Listing 4.24: etc.hosts generated by Singulartiy Compose

Now it is possible to switch to the desired instance using the shell command. To
test if the client can reach the server, first switch to the client instance. To work with
JULEA, the environment variables must be loaded first. After that the example can be
compiled in /julea/examples. However, when executing it, the following error occurs in
Listing 4.25.

1 Singularity > ./ hello -world
2 (process :437): JULEA - CRITICAL **: 15:22:09.010: Could not

↪→ connect to juleaserver : Connection timed out
3 (process :437): JULEA - CRITICAL **: 15:22:09.011: Can not

↪→ connect to juleaserver :9876 [1].

Listing 4.25: JULEA-Client network timeout in Singularity

There appears to be a name resolution error here. In the /etc/hosts file, the hosts
created in Listing 4.24 are mounted correctly.
Switching to the server instance and displaying the running processes, the JULEA process

32

was started and is running. Also, here the assignment of IP address to hostname was
done correctly.
Further attempts to fix the error all failed. The problem is still present and the client-
server example could not be made to work with Singularity Compose.

4.4. GitHub Actions
In this section, the structure of the GitHub Actions is explained in more detail, in order
to provide current images. The JULEA-Dependency is used as an example to show the
structure.

All files that define a workflow are placed in the path ./github/workflows/.

At the beginning, it has to be define on which event the workflow should be trig-
gered, see Listing 4.26. As already mentioned, this should only be triggered on each
publish event for a new release. Furthermore, there is the possibility to define environment
variables within the script. This form is used here for setting an image name.

1 on:
2 release :
3 types: [published]
4
5 env:
6 IMAGE_NAME : julea -ubuntu -deps - standard

Listing 4.26: GitHub Action for publishing JULEA Docker dependency image

Afterwards, the actual job can be defined in Listing 4.27. Here, only the most
interesting parts are briefly explained.

1 jobs:
2 [...]
3 steps:
4 [...]
5 - name: Build image
6 run: docker build .
7 --file container /docker/github/ Dockerfile_Ubuntu
8 --tag $IMAGE_NAME
9
10 - name: Log into registry
11 run: echo "${{ secrets . GIT_TOKEN }}" | docker

↪→ login ghcr.io -u ${{ github.actor }}
↪→ --password -stdin

33

12
13 - name: Push image
14 run: |
15 IMAGE_ID =ghcr.io/${{ github.actor }}/ $IMAGE_NAME
16 [...]
17 docker push $IMAGE_ID : $VERSION

Listing 4.27: GitHub Action for publishing JULEA-Dependency

As explained at the beginning, the actual step is subdivided into actions. Three actions
can be seen in the snippet. The first action Build image builds the actual Docker image.
With the help of the file flag, the corresponding Dockerfile is referenced. In addition, the
environment variable defined earlier is used in the tag flag.
In order for the image to be pushed to the registry later, it is necessary to log in to it
beforehand. To use the GitHub API without passing a password, GitHub provides a
functional alternative [Inc20g] with a Personal Access Token (PAT). With the PAT, it is
also possible to define permissions so that the images can be managed later. Once the
token has been created, it must be stored in the corresponding repository under Secrets
and given a name. In the example secrets.GIT_TOKEN there is a token with the name
GIT_TOKEN under Secrets. Then, docker login can be used to log in to the GitHub
Container Registry (ghcr.io).
In the last action, the previously created image can be pushed to the registry. In this
step, the image gets a unique ID. This consists of the registry URL, the name of the
creator and the image name. This ID is later the link from which the image can be
downloaded to the local registry using docker pull. In the last step of the action, the
actual pushing of the image takes place.

After the workflow has been triggered and the job has been successfully executed,
the image can be found in its own repository overview under packages. By default, the
image is set to private, which means that the image can only be used by logged-in users
with the appropriate rights. However, the goal is to make the image available to all users
without restriction. Therefore, the owner of the repository can set in the settings of the
package that the image should be made public. This means that the image can now be
downloaded via the ID.
These steps are repeated for JULEA-Configured, which is built on top of the dependency
image. The only difference in the workflow is that it is created for each push event and
has a different ID.
It should be noted that during the development of the project, the feature is in a beta
version. In the future, the procedures may still change. In addition, the procedure for an
organization can differ in individual steps, because this was only played out for a private
user.

34

4.5. Use Case Examples
In this section, two examples of how the previously created containers can be used are
shown.

4.5.1. Visual Studio Code
Visual Studio Code (VSCode) is a source code editor developed by Microsoft that runs
on Windows, macOS and Linux. Some languages like Javascript are supported by
default. Through extensions the editor also offers support for languages like C, C++ or
Java [Mic20].
With the help of extensions, it is not only possible to use other languages in the editor,
but also tools such as containers. Through Remote Containers [Mic21], Docker containers
can be used as a development environment, which makes it possible to further develop the
application with the IDE within a container. The user can decide whether the extension
should start a container or attach to an existing one.
The Docker Compose file created in Section 4.1.1 is used for this example. After running
docker-compose up, the running containers can be displayed, see figure Figure 4.1.

Figure 4.1.: Running Docker containers for VSCode

After the extension has been installed in VSCode, one of the created containers can
be selected as shown in Figure 4.2.

Figure 4.2.: Attach to running container in VSCode

Once one of the containers is selected, the terminal will indicate that the environment
variables are being loaded. A folder within the image can now be selected in the menu
and files can be modified with the help of the IDE. Modifications are written directly to
the image.

4.5.2. Gitpod
With Gitpod [Git21], an open source platform, a development environment can be started
automatically. For each desired task, a new and fresh development environment can be
started, which is immediately available via the internet browsers.
To ensure that JULEA is configured when the workspace is started, a configuration file

35

for Gitpod can be used to specify that a Docker image or Dockerfile should be used. The
image is then downloaded or created and mounted directly when the Gitpod instance is
started. One way to start a new instance of Gitpod is by calling a URL that contains
the desired GitHub repository, like gitpod.io/#https://github.com/name/repo.
After the workspace has finished loading, a usable development environment is ready to
be used with JULEA. However, in initial testing, it was found that the scripts that run
when Docker containers are started, are not executed properly here. This leads to the
fact that the environment variables and the JULEA configuration must be set manually.
It should also be checked again whether the JULEA server is started.
Here, only some first attempts were made to test Gitpod fundamentally. There is also the
possibility to host a Gitpod instance yourself which could provide a better environment
for the user.

36

5. Evaluation
In this section, the results and experiences are evaluated in more detail. It also looks
at the advantages and disadvantages of the individual container engines used and what
influence they had on the implementation. In addition, the benefits that resulted from
the introduction of containers will be discussed.

5.1. Benchmark
In this section, a small benchmark test for the presented container engines is shown. For
this, the benchmark script provided in the JULEA repository was used, which offers
a wide range of different possibilities. It was limited here to two different parameters:
/object/object/write and /object/object/read. The script creates objects, reads or writes
and then deletes the objects again. The created images which are described Chapter 4
were used. The software and hardware used can be found at the link: https://github.
com/vittel1/julea/blob/master/test-setup.txt.
For Docker and Podman, it is possible to specify a path in the JULEA configuration,
which is available as a volume in the container. Therefore, two different tests are executed
for each of the two engines. One writes to the volume and the other writes directly to
the container. Since the Singularity container is read-only and the option would not
exist to write directly into the container, only a test with the volume is executed. The
execution of the script without container solution, i.e. on a native host system, serves as
a comparison value.
The results from 10 runs were determined for each option and an average value is

calculated from them. The results are shown in Figure 5.1. The left graph shows the
results of the write speed. Here, the values from the native and Singularity runs are
close to each other with a value of just under 100 MB/s. The two Docker tests show
a difference of almost 10 MB/s between volume and writing directly to the container.
If the volume is used as a path, an average speed of about 82 MB/s is achieved. The
values for Podman are close to each other and are closer to the native and Singularity
speed with 90 MB/s.
The graph on the right shows the results for the reading speed. Similar results are shown
here for the native and Singularity measurement. Docker and Podman both show a
higher speed overall compared to the write speed. Docker achieves a value of 85 MB/s
for the volume measurement and Podman of 95 MB/s. Docker again shows a difference
between container and volume path.
For Docker, it was already mentioned in Section 3.4.2 that volumes should be used
instead of writing directly to the container for better performance. This result is reflected

37

https://github.com/vittel1/julea/blob/master/test-setup.txt
https://github.com/vittel1/julea/blob/master/test-setup.txt

Figure 5.1.: JULEA benchmark with different container engines

here. Podman shows faster results overall compared to Docker. Furthermore, it does
not seem to make a very big performance difference whether a volume is used or written
directly to the container. Singularity performs best overall of all container engines and
is always comparable with native execution. Overall, it can be said for Singularity and
Podman that there is just a small performance overhead.
Arango et al. describe a similar result for disk I/O-Performance in their work for Docker
and Singularity. Other categories such as memory or network are also tested here [ADS17].

5.2. Before/After Comparison
This section compares the use of JULEA before the introduction of the container solution
and afterwards. Special attention is paid to the factors of time required, potential for
errors, and usability. These factors relate to the installation and configuration of JULEA.
Here, errors or possible error points that were a problem during the installation are
described in particular.

Before

• Error potential: During the installation for the dependencies for JULEA, an

38

installation script is provided that automatically installs all necessary packages
for JULEA. The problem here was that the necessary packages for the actual
installation of the JULEA dependencies were often not yet available. For example,
Spack requires that a Python interpreter is installed on the system. If this is not
the case, the actual packages can not be installed at all. If Python was installed
and the installation script was executed again, the next error occurred, e.g. that
a package for unpacking the packages was missing. Again the installation was
unsuccessful and the required package had to be installed first. This process could
be repeated several times, depending on how many packages are missing on the
system. It is also not immediately obvious which package is actually missing for
each error. The described problem does not necessarily only occur when installing
the dependencies, but can also occur when configuring if packages like make are
not present.

• Time requirement: The time required can vary greatly. If, as described in the
first point, a package is missing when installing the packages, this may not be
noticed until halfway through or even at the end. Depending on the hardware
and system, installing the dependencies in standard mode takes between 45 and
60 minutes. So, if the absence is noticed at the end of the script, the complete
installation must be started from the beginning, which then takes the same time
again.

• Usability: Meson and Ninja are used for configuration and compilation. In the
JULEA documentation all necessary commands are given, but if errors should
occur, the user must be familiar with the two applications in order to be able to
correct the errors.

After

• Error potential: The sources of errors for the user have been greatly reduced.
Since JULEA is now available preconfigured, it can be used directly. Errors can
now occur in the use of the individual container engines, which are difficult to
evaluate so far and will probably become apparent in the further course.
The JULEA-Developer theoretically adds another error source. Because Docker
images are now created, the developer also has to deal with the basics of Docker in
case problems arise with it. For example, when creating the images, the environment
variables have been a source of errors.
In addition, several new GitHub Actions will need to be maintained and customized
in the future.

• Time requirement: The biggest time effort for the JULEA-User should be
downloading the image, which can vary depending on the internet connection. Since
most Docker commands for working with the containers are shown as examples in
the documentation, it should be possible to start working immediately.
The time commitment here has now been moved to GitHub. Due to the fact that

39

an image is built for every release or push event. However, this is now no longer a
time investment that the user has to spend, but time that GitHub needs to build
an up-to-date image.
Building JULEA-Dependency with the standard mode takes about 60 minutes.
However, since this is only built on release events, it should be rather rare to build
a new image. The image by the push event takes between 5 and 10 minutes, which
means that there is almost always an up-to-date JULEA image available.
However, if something is changed in the dependencies and a new image is built,
there is also a possibility that the image cannot be built due to dependency
errors. However, fixing the error and thus spending time is limited here to the
JULEA-Developers or operators of the repository.

• Usability: For users who just want to use JULEA, the provided image with
preconfigured JULEA is quick to use. The whole configuration and compilation
process is omitted. However, a basic understanding of Docker is now required.
This is simplified by providing a Docker Compose option but if the user want to
work inside the container, a few more commands are necessary. For the JULEA-
Developer, the only change is that the necessary packages no longer need to be
installed, but can be started directly with the configuration and compilation.
Another advantage in use is the provision of different JULEA versions. By creating
an image for each new version, older JULEA versions can be used. In addition,
there are images for Ubuntu and CentOS, for example, which makes it easier to
switch to a new operating system.
VSCode and the extension make it even easier for the end user to use JULEA, as
shown in Section 4.5.1. Combining a development environment with containers
reduces users’ knowledge of specific container commands. Code developed on the
host system no longer needs to be manually mounted and executed in a container.
Since VSCode directly opens a terminal in the container, where for example the
code can be compiled, it makes it seem as if the user is working directly on the
local system.

5.3. Experiences with different Container engines
This section goes into more detail about each of the container engines and what experience
has been gained while using them with JULEA.

• Docker: It is not without reason that Docker is very well known and widely used.
There is a large amount of documentation and examples, which made it easier to
implement the solution for JULEA. Docker Compose takes even more work out
of the equation, which was especially beneficial for networking between client and
server.
On a local system where root privileges are available, there are also no restrictions.
However, if Docker were to be deployed on an HPC system, users would have to
be managed accordingly for Docker to be used at all.

40

To what extent the described security risk is a problem can unfortunately not be
further assessed by this project.
Small implementation problems arose due to the layer structure, which caused
repeated problems with the environment variables. However, this is not a problem
of Docker, but perhaps the project to be implemented would have to be adapted
to the architecture of Docker, so that the environment variables can be set here
with the help of the ENV commands.

• Podman: Podman is a good alternative to Docker. Since it adopts Dockerfiles,
Docker images and even the syntax to operate them, nothing stands in the way of
using it. The only criticism here is that the Podman Compose project is not inte-
grated into the Podman project, which means that further development and support
is not guaranteed. Podman seems to rely on a Kubernetes solution here [wha20].
Probably the biggest advantage for JULEA’s purpose is the absence of root per-
missions, allowing anyone on a system to use it. There does not seem to be any
other issues or consequences here that limit its use either.

• Singularity: The implementation of Singularity was more difficult compared to
Docker. Although existing Docker images can be used at the beginning, which
makes it a little easier to get started, Singularity follows more of an integration
approach instead of isolation, which was quickly noticed. In the examples, the
JULEA configuration was always set to the output path /tmp. With Singularity,
this path is mounted by default from the host system into the container. As a
result, files created by the container are immediately available on the local system.
Furthermore, the JULEA configuration is written to the local home directory. With
this architecture, the abstraction between host and container is lost. Whether this
is an advantage or disadvantage should be questioned carefully. At the end, with
Docker is possible to achieved the same goal through the volumes, that just the
output is written on the host system, whereby it should not really be a disadvantage.
There is also the option to no longer automatically mount the path. However, this
option is mentioned in a separate documentation because a distinction is made
between admins and users.
Furthermore, one must be aware of Singularity’s workflow. Building an image
requires root privileges, unless one uses the fakeroot option. So the user should
only use the finished image and not build one himself. The fact and the point
that an image is read-only by default shows that Singularity has clearly put its
benefit on reproducibility and portability. For the implementation of JULEA this
seemed to be a disadvantage, which of course does not speak against Singularity in
generals, but rather for the present use case.
The implementation for the networking between client and server instance compared
to Docker was significantly more complex. There were repeated problems with
the name resolution, which led to the client not reaching the server or to errors.
Although the problem was solved with the etc.hosts file, the way to get the IP
address of the server and create a file with hostname and IP address seems too

41

complicated. This problem dragged through the implementation with the help of
Singularity Compose and prevented an optimal use. The benefit that Singularity
can be operated without root rights is unfortunately no longer possible with the
network option, which means that the advantage is completely lost and the upside
over Docker is fading.

Table 5.1 summarizes all described points once again.

Docker Podman Singularity

Abstraction Level High High Medium

No privileged or trusted daemons No Yes Yes

Additional network configuration No No Yes

Support Docker images - Yes Yes

Compose-Feature Integrated Extra Extra

I/O-Performance Medium Good Good

Usability Easy Easy Medium

Table 5.1.: Overview of all evaluation factors

For Singularity, the point No privileged or trusted daemons refers to the use without a
network, which does not need root rights. The point Additional network configuration
should clarify that an extra etc.hosts file with the appropriate entries was needed to
establish a connection between the individual instances. Docker and Podman only needed
a network here, which can be specified as a flag.

In summary, it can be said that Podman performed best of the tested container en-
gines. Although Podman differs only slightly from Docker, the rootless feature is very
interesting. In addition, it shows better performance compared to Docker, as shown
in Section 5.1. Singularity shows some weaknesses in the usability for this thesis. It
was not as easy to use as the other two engines and also requires manual settings of the
network configuration in order to let two containers communicate with each other.

42

6. Related Work
In this chapter some related work is shown that deal with reproducibility on the one
hand and container solutions on the other hand.

6.1. Singularity and MPI Applications on HPC Clouds
Zhang et al. [ZLP17] address the question of whether Singularity containers are ready to
run with MPI applications in HPC clouds. MPI has become mostly the standard for
parallel computing over the last few years. To date, many MPI applications still run
natively on HPC systems. Due to the lower overhead compared to hypervisior-based
virtualization, container-based virtualization offers a good opportunity for HPC cloud
systems. However, initial testing showed that MPI applications in Docker have a large
overhead compared to the native application. This, among other reasons, is why Singu-
larity is getting more attention in the HPC space.
The results show that Singulartiy achieves near-native performance on memory accesses.
Furthermore, only a minimal overhead is observed when using MPI-based HPC ap-
plications. This could make Singularity a promising option for future HPC projects.
Singularity could also be an option for JULEA in terms of performance, because it
communicates between different nodes using MPI.

6.2. Reproducible scientific workflows
Popper [JAA+17] is a convention for generating articles that can be used to make it
easier for researchers to reproduce the experiments. In collaboration with PopperCI, a
continuous integration (CI) service, it can be ensured that on the one hand the convention
is followed and on the other hand experiments can be validated. Through the DevOps
approach, only simple and few commands are required for users to re-execute the artifacts
of the experiments. Popper uses container engines such as Docker or Singularity to pack
software packages.
Since Popper is only a convention, it is of limited use for this thesis. There is still a
risk of forgetting commands or configurations in the definition file, making the project
impossible to reproduce.
There is also a need to agree on this convention with other developers so that it is applied
consistently. Workflows for existing projects may also have to be adapted for this purpose.

43

6.3. Performance in HPC Applications
In order to run applications in the HPC field or in cloud environments, virtualization is
being used more and more often, which can improve the provisioning of resources and
the use of computing and storage space. Either virtual machines (VM) or container
solutions like Docker are used. Chung et al. [CQHNT16] compare the performance of
VMs and Docker by well-known HPC tools.
The paper points out that both virtual machines and Docker containers can have
advantages and disadvantages. The decisive factor is the usage objective and the function
of the application that is to run on the system. For example, a VM offers greater isolation
from the host system, while a container offers a reduction in overhead. Especially sharing
the OS kernel with Docker can be used as a feature to use an application efficiently.
Chung et al. concluded that Docker is preferable to a virtual machine for data-intensive
applications.
This finding can also be helpful for JULEA, showing that using containers is advantageous
compared to a VM. Chung et al. also reiterated that containers bring advantages in
scalability and portability, which is also important for JULEA.

6.4. Docker security
Bui [Bui15] analyzed the security aspects of Docker. In doing so, emphasis is placed on
two points in particular. The first is Docker’s internal security, which looks at Docker’s
isolation, for example. The second point is the interaction with the security features of
the Linux kernel, which largely looks at how Docker supports them.
The analysis shows that Docker containers are quite secure. Mechanisms like namespaces
or cgroups create a large level of isolation. In addition, various kernel security features
are supported. The only problem presented in this paper is Docker’s network model,
which is vulnerable to ARP spoofing and MAC flooding. It is again made clear that a
container running with privilege rights is effectively the same as if it were running on
the host directly. In addition, the direct communication with the host kernel means that
there is a greater potential for attack than with a virtual machine. This problem can be
solved by running a container inside a VM. To further increase security, it is suggested
to run containers as non-privileged user.
So in the future, if Docker is used as the container engine for JULEA, there will be no
problems in terms of security. An interesting thought here is that a container could run
inside a VM to increase security which could be an approach to consider in the future.

44

7. Summary, Conclusion, Future Work
In this chapter, the thesis is summarized and a small outlook is given on what could be
further improved in the future. Also, it is figured out which questions have remained
open and on which topics further attention could be paid.

7.1. Summary
This thesis showed an approach how to implement a user-space storage system using
containers. JULEA was used as an example.
First, some basics were laid, which included Docker, Podman and Singularity on the
one hand, and on the other hand, there was an overview of what goals a container
can address. This included a brief explanation of the current approach or workflow for
installing JULEA and an approach to see what a future solution with containers might
look like.
In the implementation some concrete examples were shown for how JULEA can be used
in a container. It was also discussed what problems were encountered and how that
affected the implementation and solution idea.
In a short evalution, the experiences that were noticed during the implementation with
the different container engines were shared. It was also compared how the container
solution differs from the existing solution.

7.2. Conclusion
Through the thesis and especially the implementation presented in Chapter 4 it was
shown that a user-space storage framework can be optimized relatively easily and quickly
to a container solution.
Especially for a user who wants to use the storage framework, the process has been
simplified significantly. Potential sources of error, e.g. during installation, and the time
required for installation are significantly reduced by images. The hierarchical structure
of the images makes it possible to switch to a different container operating system with
the same configuration without major adjustments.
In addition, the solution presented laid a foundation for addressing topics such as
reproducibility in greater detail later on.

45

7.3. Future work
So far, the container solution presented is just a start, which can be built upon on later.
On the one hand, it must be evaluated which container engine will be used in the future.
Three were presented, each of which has advantages and disadvantages and behaves
differently.
One point that would especially help to improve the current container solution is the
customization of the environment variables. If it would be possible to load these already
in the image, a source of error for the later user would be eliminated and the use would
be still more optimal.
So far, only a small performance test for the I/O performance of an object has been
performed. JULEA offers further possibilities here, which should also be tested. Further-
more, this should not be limited to disk performance, but other values such as memory
or network should also be taken into consideration.

46

Bibliography
[ADS17] Carlos Arango, Rémy Dernat, and John Sanabria. Performance evalu-

ation of container-based virtualization for high performance computing
environments. CoRR, abs/1709.10140, 2017.

[Ber14] David Bernstein. Containers and cloud: From LXC to docker to kubernetes.
IEEE Cloud Comput., 1(3):81–84, 2014.

[Boe15] Carl Boettiger. An introduction to docker for reproducible research. ACM
SIGOPS Oper. Syst. Rev., 49(1):71–79, 2015.

[Bui15] Thanh Bui. Analysis of docker security. CoRR, abs/1501.02967, 2015.

[Cha18] Doug Chamberlain. Containers vs. Virtual Machines (VMs): What’s the Dif-
ference?, 2018. https://blog.netapp.com/blogs/containers-vs-vms/,
last accessed 2021-01-22.

[CMF+16] Antonio Celesti, Davide Mulfari, Maria Fazio, Massimo Villari, and Antonio
Puliafito. Exploring container virtualization in iot clouds. In 2016 IEEE
International Conference on Smart Computing, SMARTCOMP 2016, St
Louis, MO, USA, May 18-20, 2016, pages 1–6. IEEE Computer Society,
2016.

[CQHNT16] Minh Thanh Chung, Nguyen Quang-Hung, Manh-Thin Nguyen, and Nam
Thoai. Using docker in high performance computing applications. In 2016
IEEE Sixth International Conference on Communications and Electronics
(ICCE), pages 52–57. IEEE, 2016.

[CSW+17] Jürgen Cito, Gerald Schermann, John Erik Wittern, Philipp Leitner, Sali
Zumberi, and Harald C. Gall. An empirical analysis of the docker container
ecosystem on github. In Jesús M. González-Barahona, Abram Hindle,
and Lin Tan, editors, Proceedings of the 14th International Conference on
Mining Software Repositories, MSR 2017, Buenos Aires, Argentina, May
20-28, 2017, pages 323–333. IEEE Computer Society, 2017.

[Dat18] Datadog. Docker adoption, 2018. https://www.datadoghq.com/
docker-adoption/, last accessed 2021-01-03.

[FS12] Juliana Freire and Cláudio T. Silva. Making computations and publications
reproducible with vistrails. Comput. Sci. Eng., 14(4):18–25, 2012.

47

https://blog.netapp.com/blogs/containers-vs-vms/
https://www.datadoghq.com/docker-adoption/
https://www.datadoghq.com/docker-adoption/

[Git21] Gitpod. Introduction to Gitpod, 2021. https://www.gitpod.io/docs/,
last accessed 2021-01-22.

[GWR20] Holger Gantikow, Steffen Walter, and Christoph Reich. Rootless containers
with podman for HPC. In Heike Jagode, Hartwig Anzt, Guido Juckeland,
and Hatem Ltaief, editors, High Performance Computing - ISC High Per-
formance 2020 International Workshops, Frankfurt, Germany, June 21-25,
2020, Revised Selected Papers, volume 12321 of Lecture Notes in Computer
Science, pages 343–354. Springer, 2020.

[Inc20a] ACM Inc. Artifact Review and Badging – Version 1.0 (not
current), 2020. https://www.acm.org/publications/policies/
artifact-review-badging, last accessed 2021-01-26.

[Inc20b] Docker Inc. About storage drivers, 2020. https://docs.docker.com/
storage/storagedriver/, last accessed 2020-12-03.

[Inc20c] Docker Inc. Best practices for writing Dockerfiles, 2020. https://docs.
docker.com/develop/develop-images/dockerfile_best-practices/,
last accessed 2020-12-18.

[Inc20d] Docker Inc. Docker development best practices, 2020. https://docs.
docker.com/develop/dev-best-practices/, last accessed 2020-12-18.

[Inc20e] Docker Inc. Dockerfile reference, 2020. https://docs.docker.com/
engine/reference/builder/, last accessed 2020-12-23.

[Inc20f] Docker Inc. Overview of Docker Compose, 2020. https://docs.docker.
com/compose/, last accessed 2020-12-03.

[Inc20g] GitHub Inc. Creating a personal access token, 2020. https://docs.github.
com/en/free-pro-team@latest/github/authenticating-to-github/
creating-a-personal-access-token, last accessed 2020-12-29.

[Inc20h] GitHub Inc. Introduction to GitHub Actions, 2020. https://docs.github.
com/en/free-pro-team@latest/actions/learn-github-actions/
introduction-to-github-actions, last accessed 2020-12-09.

[Inc20i] Sylabs Inc. User Guide, 2020. https://sylabs.io/guides/3.7/
user-guide/, last accessed 2021-01-25.

[Inc21] ACM Inc. Software, 2021. https://dl.acm.org/artifacts/software,
last accessed 2021-01-27.

[JAA+17] Ivo Jimenez, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, Jay F.
Lofstead, Carlos Maltzahn, Kathryn Mohror, and Robert Ricci. Popperci:
Automated reproducibility validation. In 2017 IEEE Conference on Com-
puter Communications Workshops, INFOCOM Workshops, Atlanta, GA,
USA, May 1-4, 2017, pages 450–455. IEEE, 2017.

48

https://www.gitpod.io/docs/
https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging
https://docs.docker.com/storage/storagedriver/
https://docs.docker.com/storage/storagedriver/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.docker.com/develop/dev-best-practices/
https://docs.docker.com/develop/dev-best-practices/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://docs.github.com/en/free-pro-team@latest/github/authenticating-to-github/creating-a-personal-access-token
https://docs.github.com/en/free-pro-team@latest/github/authenticating-to-github/creating-a-personal-access-token
https://docs.github.com/en/free-pro-team@latest/github/authenticating-to-github/creating-a-personal-access-token
https://docs.github.com/en/free-pro-team@latest/actions/learn-github-actions/introduction-to-github-actions
https://docs.github.com/en/free-pro-team@latest/actions/learn-github-actions/introduction-to-github-actions
https://docs.github.com/en/free-pro-team@latest/actions/learn-github-actions/introduction-to-github-actions
https://sylabs.io/guides/3.7/user-guide/
https://sylabs.io/guides/3.7/user-guide/
https://dl.acm.org/artifacts/software

[JUL20] JULEA, 2020. https://github.com/julea-io/julea, last accessed 2020-
12-11.

[K+15] Gregory M Kurtzer et al. Singularity. Retrieved July, 8:2019, 2015.

[KD21] Michael Kuhn Kira Duwe. Deliverable D1: Report: Coupled Storage
System for Efficient Management of Self-Describing Data Formats (CoSE-
MoS). March 2021. https://parcio.ovgu.de/parcio_media/Research/
CoSEMoS/Deliverable_D1_Report-p-166.pdf.

[KSB17] Gregory M Kurtzer, Vanessa Sochat, and Michael W Bauer. Singularity:
Scientific containers for mobility of compute. PloS one, 12(5):e0177459,
2017.

[Kuh17] Michael Kuhn. JULEA: A flexible storage framework for HPC. In Ju-
lian M. Kunkel, Rio Yokota, Michela Taufer, and John Shalf, editors,
High Performance Computing - ISC High Performance 2017 International
Workshops, DRBSD, ExaComm, HCPM, HPC-IODC, IWOPH, IXPUG,
Pˆ3MA, VHPC, Visualization at Scale, WOPSSS, Frankfurt, Germany,
June 18-22, 2017, Revised Selected Papers, volume 10524 of Lecture Notes
in Computer Science, pages 712–723. Springer, 2017.

[MCP21] Xiaoping Duan Martyn Corden and Barbara Perz.
Floating-Point Reproducibility in Intel® Software Tools,
2021. https://techdecoded.intel.io/resources/
floating-point-reproducibility-in-intel-software-tools/, last
accessed 2021-01-26.

[Mer14] Dirk Merkel. Docker: Lightweight linux containers for consistent develop-
ment and deployment. Linux J., 2014(239), March 2014.

[Mic20] Microsoft. Getting started, 2020. https://code.visualstudio.com/docs,
last accessed 2021-01-22.

[Mic21] Microsoft. Visual Studio Code Remote - Containers, 2021.
https://marketplace.visualstudio.com/items?itemName=
ms-vscode-remote.remote-containers, last accessed 2021-01-22.

[Nga20] Kayla Ngan. Introducing GitHub Con-
tainer Registry, 2020. https://github.blog/
2020-09-01-introducing-github-container-registry/, last accessed
2021-01-02.

[Pod20] Podman Compose, 2020. https://github.com/containers/
podman-compose, last accessed 2020-12-27.

49

https://github.com/julea-io/julea
https://parcio.ovgu.de/parcio_media/Research/CoSEMoS/Deliverable_D1_Report-p-166.pdf
https://parcio.ovgu.de/parcio_media/Research/CoSEMoS/Deliverable_D1_Report-p-166.pdf
https://techdecoded.intel.io/resources/floating-point-reproducibility-in-intel-software-tools/
https://techdecoded.intel.io/resources/floating-point-reproducibility-in-intel-software-tools/
https://code.visualstudio.com/docs
https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-containers
https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-containers
https://github.blog/2020-09-01-introducing-github-container-registry/
https://github.blog/2020-09-01-introducing-github-container-registry/
https://github.com/containers/podman-compose
https://github.com/containers/podman-compose

[RBA17] Babak Bashari Rad, Harrison John Bhatti, and Mohammad Ahmadi. An
introduction to docker and analysis of its performance. International
Journal of Computer Science and Network Security (IJCSNS), 17(3):228,
2017.

[Sim20] Sofija Simic. Docker CMD Vs Entrypoint Commands: What’s The Differ-
ence?, 2020. https://phoenixnap.com/kb/docker-cmd-vs-entrypoint,
last accessed 2020-12-23.

[Sin18] The Singularity Usage Workflow, 2018. https://sylabs.io/guides/2.6/
user-guide/introduction.html, last accessed 2021-01-22.

[Sin20] Singularity Compose, 2020. https://singularityhub.github.io/
singularity-compose/, last accessed 2020-12-28.

[Var20] Pallavi Varanasi. What is Container In Cloud Computing, 2020. https://
www.cloudcodes.com/blog/container-in-cloud-computing.html, last
accessed 2021-01-26.

[wha20] What is Podman?, 2020. http://docs.podman.io/en/latest/index.
html, last accessed 2021-01-20.

[ZLP17] Jie Zhang, Xiaoyi Lu, and Dhabaleswar K. Panda. Is singularity-based
container technology ready for running MPI applications on HPC clouds?
In Ashiq Anjum, Alan Sill, Geoffrey C. Fox, and Yong Chen, editors,
Proceedings of the 10th International Conference on Utility and Cloud
Computing, UCC 2017, Austin, TX, USA, December 5-8, 2017, pages
151–160. ACM, 2017.

[ZRT+18] Chao Zheng, Lukas Rupprecht, Vasily Tarasov, Douglas Thain, Mohamed
Mohamed, Dimitrios Skourtis, Amit Warke, and Dean Hildebrand. Wharf:
Sharing docker images in a distributed file system. In Proceedings of the
ACM Symposium on Cloud Computing, SoCC 2018, Carlsbad, CA, USA,
October 11-13, 2018, pages 174–185. ACM, 2018.

50

https://phoenixnap.com/kb/docker-cmd-vs-entrypoint
https://sylabs.io/guides/2.6/user-guide/introduction.html
https://sylabs.io/guides/2.6/user-guide/introduction.html
https://singularityhub.github.io/singularity-compose/
https://singularityhub.github.io/singularity-compose/
https://www.cloudcodes.com/blog/container-in-cloud-computing.html
https://www.cloudcodes.com/blog/container-in-cloud-computing.html
http://docs.podman.io/en/latest/index.html
http://docs.podman.io/en/latest/index.html

Appendices

51

A. Benchmark

A.1. Data
Write: Native

Name Duration (Operations/s) (Throughput/s) [Total Duration]
/object/object/write: 1.021 seconds (24496/s) (100.3 MB/s) [1.024 seconds]
/object/object/write: 1.016 seconds (23619/s) (96.7 MB/s) [1.019 seconds]
/object/object/write: 1.021 seconds (24479/s) (100.3 MB/s) [1.024 seconds]
/object/object/write: 1.020 seconds (23540/s) (96.4 MB/s) [1.023 seconds]
/object/object/write: 1.016 seconds (24594/s) (100.7 MB/s) [1.020 seconds]
/object/object/write: 1.031 seconds (22309/s) (91.4 MB/s) [1.034 seconds]
/object/object/write: 1.031 seconds (23287/s) (95.4 MB/s) [1.034 seconds]
/object/object/write: 1.005 seconds (23887/s) (97.8 MB/s) [1.008 seconds]
/object/object/write: 1.002 seconds (22956/s) (94.0 MB/s) [1.040 seconds]
/object/object/write: 1.018 seconds (24564/s) (100.6 MB/s) [1.021 seconds]

Write: Docker path in container

Name Duration (Operations/s) (Throughput/s) [Total Duration]
/object/object/write: 1.027 seconds (19483/s) (79.8 MB/s) [1.032 seconds]
/object/object/write: 1.057 seconds (17983/s) (73.7 MB/s) [1.064 seconds]
/object/object/write: 1.045 seconds (19142/s) (78.4 MB/s) [1.050 seconds]
/object/object/write: 1.022 seconds (13704/s) (56.1 MB/s) [1.026 seconds]
/object/object/write: 1.010 seconds (19807/s) (81.1 MB/s) [1.014 seconds]
/object/object/write: 1.012 seconds (18774/s) (76.9 MB/s) [1.017 seconds]
/object/object/write: 1.039 seconds (19253/s) (78.9 MB/s) [1.044 seconds]
/object/object/write: 1.052 seconds (19011/s) (77.9 MB/s) [1.058 seconds]
/object/object/write: 1.010 seconds (16827/s) (68.9 MB/s) [1.015 seconds]
/object/object/write: 1.000 seconds (18998/s) (77.8 MB/s) [1.005 seconds]

52

Write: Docker path in volume

Name Duration (Operations/s) (Throughput/s) [Total Duration]
/object/object/write: 1.001 seconds (19986/s) (81.9 MB/s) [1.010 seconds]
/object/object/write: 1.002 seconds (19956/s) (81.7 MB/s) [1.009 seconds]
/object/object/write: 1.038 seconds (21198/s) (86.8 MB/s) [1.043 seconds]
/object/object/write: 1.013 seconds (20727/s) (84.9 MB/s) [1.018 seconds]
/object/object/write: 1.022 seconds (17618/s) (72.2 MB/s) [1.027 seconds]
/object/object/write: 1.011 seconds (20763/s) (85.0 MB/s) [1.016 seconds]
/object/object/write: 1.038 seconds (20229/s) (82.9 MB/s) [1.043 seconds]
/object/object/write: 1.047 seconds (21018/s) (86.1 MB/s) [1.051 seconds]
/object/object/write: 1.026 seconds (20458/s) (83.8 MB/s) [1.031 seconds]
/object/object/write: 1.020 seconds (20590/s) (84.3 MB/s) [1.025 seconds]

Write: Singularity

Name Duration (Operations/s) (Throughput/s) [Total Duration]
/object/object/write: 1.032 seconds (23260/s) (95.3 MB/s) [1.035 seconds]
/object/object/write: 1.013 seconds (23700/s) (97.1 MB/s) [1.016 seconds]
/object/object/write: 1.022 seconds (23474/s) (96.1 MB/s) [1.025 seconds]
/object/object/write: 1.034 seconds (25146/s) (103.0 MB/s) [1.037 seconds]
/object/object/write: 1.016 seconds (24614/s) (100.8 MB/s) [1.019 seconds]
/object/object/write: 1.022 seconds (22504/s) (92.2 MB/s) [1.025 seconds]
/object/object/write: 1.032 seconds (24216/s) (99.2 MB/s) [1.036 seconds]
/object/object/write: 1.039 seconds (24073/s) (98.6 MB/s) [1.042 seconds]
/object/object/write: 1.008 seconds (24812/s) (101.6 MB/s) [1.011 seconds]
/object/object/write: 1.022 seconds (24466/s) (100.2 MB/s) [1.025 seconds]

53

Write: Podman path in container

Name Duration (Operations/s) (Throughput/s) [Total Duration]
/object/object/write: 1.024 seconds (23441/s) (96.0 MB/s) [1.032 seconds]
/object/object/write: 1.026 seconds (23391/s) (95.8 MB/s) [1.030 seconds]
/object/object/write: 1.016 seconds (22639/s) (92.7 MB/s) [1.019 seconds]
/object/object/write: 1.006 seconds (22869/s) (93.7 MB/s) [1.010 seconds]
/object/object/write: 1.017 seconds (22616/s) (92.6 MB/s) [1.022 seconds]
/object/object/write: 1.039 seconds (23101/s) (94.6 MB/s) [1.043 seconds]
/object/object/write: 1.037 seconds (23152/s) (94.8 MB/s) [1.041 seconds]
/object/object/write: 1.026 seconds (21436/s) (87.8 MB/s) [1.030 seconds]
/object/object/write: 1.034 seconds (23203/s) (95.0 MB/s) [1.040 seconds]
/object/object/write: 1.029 seconds (20402/s) (83.6 MB/s) [1.034 seconds]

Write: Podman path in volume

Name Duration (Operations/s) (Throughput/s) [Total Duration]
/object/object/write: 1.026 seconds (23382/s) (95.8 MB/s) [1.031 seconds]
/object/object/write: 1.004 seconds (22911/s) (93.8 MB/s) [1.007 seconds]
/object/object/write: 1.038 seconds (22153/s) (90.7 MB/s) [1.043 seconds]
/object/object/write: 1.028 seconds (21391/s) (87.6 MB/s) [1.052 seconds]
/object/object/write: 1.040 seconds (19230/s) (78.8 MB/s) [1.044 seconds]
/object/object/write: 1.022 seconds (22499/s) (92.2 MB/s) [1.028 seconds]
/object/object/write: 1.030 seconds (21366/s) (87.5 MB/s) [1.035 seconds]
/object/object/write: 1.008 seconds (22825/s) (93.5 MB/s) [1.013 seconds]
/object/object/write: 1.008 seconds (22824/s) (93.5 MB/s) [1.012 seconds]
/object/object/write: 1.039 seconds (23094/s) (94.6 MB/s) [1.044 seconds]

54

Read: Native

Name Duration (Operations/s) (Throughput/s) [Total Duration]
/object/object/write: 1.009 seconds (24784/s) (101.5 MB/s) [1.012 seconds]
/object/object/write: 1.032 seconds (24223/s) (99.2 MB/s) [1.035 seconds]
/object/object/write: 1.026 seconds (24378/s) (99.9 MB/s) [1.029 seconds]
/object/object/write: 1.012 seconds (24703/s) (101.2 MB/s) [1.015 seconds]
/object/object/write: 1.011 seconds (22749/s) (93.2 MB/s) [1.014 seconds]
/object/object/write: 1.029 seconds (22344/s) (91.5 MB/s) [1.032 seconds]
/object/object/write: 1.030 seconds (24278/s) (99.4 MB/s) [1.033 seconds]
/object/object/write: 1.022 seconds (24460/s) (100.2 MB/s) [1.025 seconds]
/object/object/write: 1.003 seconds (22936/s) (93.9 MB/s) [1.006 seconds]
/object/object/write: 1.031 seconds (24258/s) (99.4 MB/s) [1.034 seconds]

Read: Docker path in container

Name Duration (Operations/s) (Throughput/s) [Total Duration]
/object/object/read: 1.026 seconds (18517/s) (75.8 MB/s) [1.042 seconds]
/object/object/read: 1.013 seconds (19734/s) (80.8 MB/s) [1.027 seconds]
/object/object/read: 1.034 seconds (20305/s) (83.2 MB/s) [1.046 seconds]
/object/object/read: 1.011 seconds (19786/s) (81.0 MB/s) [1.061 seconds]
/object/object/read: 1.047 seconds (20057/s) (82.2 MB/s) [1.064 seconds]
/object/object/read: 1.045 seconds (20100/s) (82.3 MB/s) [1.058 seconds]
/object/object/read: 1.036 seconds (19303/s) (79.1 MB/s) [1.053 seconds]
/object/object/read: 1.009 seconds (20813/s) (85.2 MB/s) [1.024 seconds]
/object/object/read: 1.035 seconds (20286/s) (83.1 MB/s) [1.050 seconds]
/object/object/read: 1.009 seconds (20805/s) (85.2 MB/s) [1.025 seconds]

55

Read: Docker path in volume

Name Duration (Operations/s) (Throughput/s) [Total Duration]
/object/object/read: 1.043 seconds (21093/s) (86.4 MB/s) [1.058 seconds]
/object/object/read: 1.038 seconds (21197/s) (86.8 MB/s) [1.057 seconds]
/object/object/read: 1.041 seconds (21133/s) (86.6 MB/s) [1.057 seconds]
/object/object/read: 1.028 seconds (20427/s) (83.7 MB/s) [1.043 seconds]
/object/object/read: 1.002 seconds (20967/s) (85.9 MB/s) [1.018 seconds]
/object/object/read: 1.040 seconds (21147/s) (86.6 MB/s) [1.055 seconds]
/object/object/read: 1.025 seconds (21463/s) (87.9 MB/s) [1.037 seconds]
/object/object/read: 1.046 seconds (19122/s) (78.3 MB/s) [1.060 seconds]
/object/object/read: 1.005 seconds (20901/s) (85.6 MB/s) [1.021 seconds]
/object/object/read: 1.024 seconds (21476/s) (88.0 MB/s) [1.073 seconds]

Read: Singularity

Name Duration (Operations/s) (Throughput/s) [Total Duration]
/object/object/read: 1.013 seconds (23701/s) (97.1 MB/s) [1.026 seconds]
/object/object/read: 1.032 seconds (25206/s) (103.2 MB/s) [1.044 seconds]
/object/object/read: 1.002 seconds (24938/s) (102.1 MB/s) [1.014 seconds]
/object/object/read: 1.031 seconds (25226/s) (103.3 MB/s) [1.044 seconds]
/object/object/read: 1.031 seconds (25211/s) (103.3 MB/s) [1.042 seconds]
/object/object/read: 1.007 seconds (23832/s) (97.6 MB/s) [1.018 seconds]
/object/object/read: 1.009 seconds (25765/s) (105.5 MB/s) [1.056 seconds]
/object/object/read: 1.015 seconds (24635/s) (100.9 MB/s) [1.026 seconds]
/object/object/read: 1.031 seconds (25209/s) (103.3 MB/s) [1.044 seconds]
/object/object/read: 1.024 seconds (24407/s) (100.0 MB/s) [1.035 seconds]

56

Read: Podman path in container

Name Duration (Operations/s) (Throughput/s) [Total Duration]
/object/object/read: 1.011 seconds (21753/s) (89.1 MB/s) [1.026 seconds]
/object/object/read: 1.013 seconds (23692/s) (97.0 MB/s) [1.030 seconds]
/object/object/read: 1.014 seconds (23679/s) (97.0 MB/s) [1.028 seconds]
/object/object/read: 1.001 seconds (23975/s) (98.2 MB/s) [1.013 seconds]
/object/object/read: 1.031 seconds (23275/s) (95.3 MB/s) [1.046 seconds]
/object/object/read: 1.032 seconds (24231/s) (99.3 MB/s) [1.046 seconds]
/object/object/read: 1.034 seconds (24180/s) (99.0 MB/s) [1.049 seconds]
/object/object/read: 1.024 seconds (24410/s) (100.0 MB/s) [1.038 seconds]
/object/object/read: 1.016 seconds (22634/s) (92.7 MB/s) [1.028 seconds]
/object/object/read: 1.016 seconds (23616/s) (96.7 MB/s) [1.065 seconds]

Read: Podman path in volume

Name Duration (Operations/s) (Throughput/s) [Total Duration]
/object/object/read: 1.018 seconds (23573/s) (96.6 MB/s) [1.032 seconds]
/object/object/read: 1.001 seconds (23986/s) (98.2 MB/s) [1.014 seconds]
/object/object/read: 1.017 seconds (23604/s) (96.7 MB/s) [1.031 seconds]
/object/object/read: 1.018 seconds (23575/s) (96.6 MB/s) [1.031 seconds]
/object/object/read: 1.005 seconds (22889/s) (93.8 MB/s) [1.016 seconds]
/object/object/read: 1.016 seconds (23625/s) (96.8 MB/s) [1.029 seconds]
/object/object/read: 1.001 seconds (21971/s) (90.0 MB/s) [1.020 seconds]
/object/object/read: 1.008 seconds (23813/s) (97.5 MB/s) [1.019 seconds]
/object/object/read: 1.027 seconds (23379/s) (95.8 MB/s) [1.040 seconds]
/object/object/read: 1.006 seconds (23862/s) (97.7 MB/s) [1.055 seconds]

57

List of Figures
1.1. Docker over the last years [Dat18] . 5

2.1. JULEA-Client-Server architecture [KD21] 8
2.2. Virutal Machine compared to Container structure [Cha18] 9

3.1. Singularity usage workflow [Sin18] . 17
3.2. JULEA images hierarchy . 19
3.3. GitHub Action workflow for JULEA . 20

4.1. Running Docker containers for VSCode 35
4.2. Attach to running container in VSCode 35

5.1. JULEA benchmark with different container engines 38

58

List of Listings
2.1. Example Dockerfile . 9
2.2. Example Docker Compose YAML file . 11
2.3. Example GitHub Action . 12

3.1. Install dependencies for JULEA . 13
3.2. Load JULEA environment variables . 13
3.3. Configure and compile JULEA using Meson and Ninja 13
3.4. Setting JULEA configuration . 14

4.1. JULEA-Dependency Dockerfile with Ubuntu 20.04 22
4.2. Docker build commands for JULEA-Dependency 23
4.3. JULEA-Configured Dockerfile . 23
4.4. JULEA-Server Dockerfile . 24
4.5. JULEA-Server entrypoint script . 25
4.6. JULEA-Server build image and run it . 26
4.7. JULEA-Server run image with parameters 26
4.8. JULEA-Client start command in Dockerfile 26
4.9. JULEA-Client start with volume . 26
4.10. Docker create network . 27
4.11. Docker server container with network . 27
4.12. Docker client container with network . 27
4.13. Docker Compose for JULEA-Server and Client 28
4.14. Start container with Docker Compose . 28
4.15. JULEA example in Podman container with notification 29
4.16. JULEA-Server description file with Singularity 29
4.17. JULEA output path in Singularity . 30
4.18. Singularity commands to start JULEA-Server 30
4.19. Singularity start JULEA-Server commands with network 30
4.20. Singularity JULEA-Server IP address . 31
4.21. Singularity JULEA-Client etc.hosts . 31
4.22. Singularity JULEA-Client starts instance with etc.hosts bind 31
4.23. Singularity Compose YAML file . 32
4.24. etc.hosts generated by Singulartiy Compose 32
4.25. JULEA-Client network timeout in Singularity 32
4.26. GitHub Action for publishing JULEA Docker dependency image 33
4.27. GitHub Action for publishing JULEA-Dependency 33

59

List of Tables
5.1. Overview of all evaluation factors . 42

60

B. Eidesstattliche Versicherung
Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit im Studiengang Ba-
chelor of Science Informatik selbstständig verfasst und keine anderen als die angegebenen
Hilfsmittel – insbesondere keine im Quellenverzeichnis nicht benannten Internet-Quellen
– benutzt habe. Alle Stellen, die wörtlich oder sinngemäß aus Veröffentlichungen ent-
nommen wurden, sind als solche kenntlich gemacht. Ich versichere weiterhin, dass ich
die Arbeit vorher nicht in einem anderen Prüfungsverfahren eingereicht habe und die
eingereichte schriftliche Fassung der auf dem elektronischen Speichermedium entspricht.

Ort, Datum Unterschrift

61

C. Veröffentlichung
Ich bin damit einverstanden, dass meine Arbeit in den Bestand der Bibliothek des
Fachbereichs Informatik eingestellt wird.

Ort, Datum Unterschrift

62

	Introduction
	Motivation
	Thesis Goals

	Background
	Prior knowledge
	JULEA
	Container virtualization
	Docker
	Podman
	Singularity

	GitHub Actions

	Design
	Current JULEA installation steps
	JULEA users types
	Technical Challenges
	Concept
	General Concept for container images
	Docker
	Podman
	Singularity
	Image structure
	GitHub Actions

	Implementation
	Docker
	Docker Compose

	Podman
	Singularity
	Singulularity Compose

	GitHub Actions
	Use Case Examples
	Visual Studio Code
	Gitpod

	Evaluation
	Benchmark
	Before/After Comparison
	Experiences with different Container engines

	Related Work
	Singularity and MPI Applications on HPC Clouds
	Reproducible scientific workflows
	Performance in HPC Applications
	Docker security

	Summary, Conclusion, Future Work
	Summary
	Conclusion
	Future work

	Bibliography
	Appendices
	Benchmark
	Data

	List of Figures
	List of Listings
	List of Tables
	Eidesstattliche Versicherung
	Veröffentlichung

