UH
_iﬁ
a3 Universitat Hamburg

DER FORSCHUNG | DER LEHRE | DER BILDUNG

Bachelorarbeit

Containerizing a user-space storage
framework for reproducibility

vorgelegt von

Marcel Papenfuss

Fakultat fiir Mathematik, Informatik und Naturwissenschaften
Fachbereich Informatik
Arbeitsbereich Wissenschaftliches Rechnen

Studiengang: Informatik

Matrikelnummer: 7065349

Erstgutachter: Jun.-Prof. Dr. Michael Kuhn
Zweitgutachter: Kira Duwe

Betreuer: Jun.-Prof. Dr. Michael Kuhn und Kira Duwe

Hamburg, 2021-03-11

Abstract

Container solutions are becoming increasingly popular in the High Performance Comput-
ing (HPC) field. They support points such as reproducibility and mobility in the form
that complete system environments can be reproduced and executed on other systems.
In this thesis, JULEA, a flexible user-space storage system, is used to show how such a
container solution can look like for such an application. Different container engines like
Docker, Podman and Singularity are introduced and a concrete implementation approach
for each is shown.

Besides concrete solutions, the planning and design of workflow plays an important role.
With the help of GitHub Actions, a completely automated workflow is designed, which
is responsible for the image creation.

In addition, an evaluation of the implementation problems will be presented and a
comparison between existing and new container solutions will be shown.

Contents

. Introduction

1.1. Motivation
1.2. Thesis Goals

. Background

2.1. Prior knowledge

2.2. JULEA

2.3. Container virtualization
2.3.1. Docker
2.3.2. Podman
2.3.3. Singularityo

2.4. GitHub Actions

. Design

3.1. Current JULEA installation steps

3.2. JULEA users types

3.3. Technical Challenges

3.4, Concept
3.4.1. General Concept for container images
3.4.2. Docker
3.4.3. Podman
3.4.4. Singularityo
3.4.5. Image structure Lo
3.4.6. GitHub Actions

. Implementation

4.1. Docker
4.1.1. Docker Compose e

4.2. Podman

4.3. Singularity
4.3.1. Singulularity Compose L.

4.4. GitHub Actions

4.5. Use Case Examples
4.5.1. Visual Studio Code
4.5.2. Gitpod

5. Evaluation
5.1. Benchmarko
5.2. Before/After Comparisono
5.3. Experiences with different Container engines

6. Related Work
6.1. Singularity and MPI Applications on HPC Clouds
6.2. Reproducible scientific workflows
6.3. Performance in HPC Applications
6.4. Docker security

7. Summary, Conclusion, Future Work
7.1, SUMMATY oo
7.2. Conclusion
7.3. Future work

Bibliography
Appendices

A. Benchmark
A1, Data

List of Figures

List of Listings

List of Tables

B. Eidesstattliche Versicherung

C. Veroffentlichung

37
37
38
40

43
43
43
44
44

45
45
45
46

47
51

52
52

58
59
60
61
62

1. Introduction

In this chapter, a short introduction to the thesis is given. It is highlighted why the
thesis is done and which goals are expected from it.

1.1. Motivation

In recent years, containers have become increasingly important and very popular. Espe-
cially in enterprise solutions, containers have become an essential part of development
and operation. Also in High-Performance Computing (HPC) environments and generally
in the scientific field, such solutions are more in demand [GWR20).

Portion of Hosts Running Docker

22%

o DOCKER RUNS ON

- 50%
“! OF HOSTS

12%

10%

8%

6%

4%

Hosts Running Docker / Total Hosts

2%

0%

JuL JAN JuL JAN JuL JAN JuL JAN
2015 2016 2017 2018

Source: Datadog

Figure 1.1.: Docker over the last years [Dat18§]

Experiments and their solutions are often published in papers in the scientific field. In
many fields, these results must be reproducible or even formally proven. This standard
has not been met for a long time in computer-based experiments. In many publications,
the results are only briefly described and the code used for them is rarely available, which
can raise questions about reliability. An important component for the reproducibility

of experiments is therefore an accumulation of all data, source code, parameters and
environment [FS12].

Intel describes how important the specification of the used software and operating sys-
tem can be in a contribution for its software tools in connection with floating point
reproducibility. Thus, calculations under different conditions can lead to different results,
which can cause problems in certain areas. Currently, there is no possibility to perform
reproducibility tests on different operating systems like Windows and Linux [MCP21].
Another problem that often occurs during application development is the use of depen-
dencies. Applications often have many external libraries that are required for them to
be compiled or used. If the application is to be used on another system, all dependencies
must be present. However, the user often does not know which necessary dependencies
one has to install for this. If the user simply installs any version of a library, this can be
decisive for the result of the experiment. Maybe a function in the library was changed in
the background, which leads to a different result of the experiment.

Furthermore, containers are being used more and more in cloud computing. The user can
run the applications in an isolated area and is provided with certain resources for this. In
addition to the efficient use of the operating system, a container in the cloud can be used
for version control or contribute to more productive use, as it is easier to work on differ-
ent applications, which can be achieved on the one hand through a fast boot time [Var20].

1.2. Thesis Goals

The goal of this thesis is to containerize a user-space storage framework to address the
issues described in Section 1.1. JULEA is used as an example for such a framework.
Due to the large number of different container engines, it is necessary to find the best
possible solution and implement it. Thereby the specificity of the different systems has
to be taken into account.

In addition, it should be possible in the future that a container image is automatically
build, so that a current version is always available for use.

2. Background

This chapter gives a brief overview on the storage framework JULEA. A special focus is
placed on container based virtualization which is the main aspect of the thesis.

2.1. Prior knowledge

In Section 1.1 it was written that the reproducibility of results plays an important role.
For these reasons, more and more publishers of papers offer to submit so-called artifacts.
An artifact is described by ACM as follows:

By "artifact” we mean a digital object that was either created by the authors
to be used as part of the study or generated by the experiment itself. For
example, artifacts can be software systems, scripts used to run erperiments,
input datasets, raw data collected in the experiment, or scripts used to analyze
results [Inc21].

Many journals now offer a formal process that makes the provision of artifacts a
standard practice. If the artifacts are made publicly available to everyone, interested
parties can check the result and thus improve the robustness. Furthermore, the reusability
can be improved and other works can build their experiment on the artifacts [Inc20a].
In computational experiments, reproducibility means that an independent person or
group can achieve the same result with the artifacts provided. It is important that
the same measuring methods and the same operating conditions are used. It must be
irrelevant whether the experiment is executed once or several times, the result must
always be the same [Inc20a].

2.2. JULEA

JULEA [Kuh17] is a flexible storage framework that makes it possible to offer different
client interfaces to applications. To quickly implement new approaches, e.g. in research
or teaching, JULEA offers object and key-value backends, which can be located either on
the client or on the server side. Common storage technologies such as POSIX, LevelDB
and MongoDB are currently supported as backends. The backend is loaded at runtime
and thus enables to be flexibly exchanged and adapted.

To make it easier to use in teaching, among other things, JULEA was written entirely in
the user space. This leads to a simplified development and debugging process and no
need of knowledge of kernel space development.

Compute Node #1 TCP Storage Node #1
Application - JULEA Client . [|[JULEA Server= Object Store
"I\‘ H
' 2 Database
MPI ;
Application |« JULEA Client ? TOLEA seve S ot sore

Compute Node #2

Storage Node #2

Figure 2.1.: JULEA-Client-Server architecture [KD21]

JULEA was built according to the client-server design. Figure 2.1 shows an exemplary
setup. On the left side there are two compute nodes, each of which has started a
JULEA-Client. The fact that the two applications communicate here via the Message
Passing Interface (MPI) will not be important for the project. On the right side, there are
two storage nodes, each of which has started a JULEA-Server. Both use an object store
as backend in this example. The connection between a client and server is done using
Transmission Control Protocol (TCP). A JULEA-Client can also communicate directly
with infrastructures that already have the necessary requirements to communicate with
clients, such as MongoDB or SQL. The JULEA-Server as a "middleman" is then not
necessary.

2.3. Container virtualization

The two best-known virtualization technologies are hypervisor and container-based
virtualization which are visualized in Figure 2.2.

Hypervisor virtualization requires a hypervisor that provides the resources for the virtual
machine (VM). Each VM has its own operating system (OS), which means that there is
a complete abstraction between the VM and host system. It is also possible that several
different operating systems can be run on one host system.

In comparison, the container-based virtualization, also known as operating system level
virtualization, has a container engine instead of the hypervisor. The biggest difference,
however, is that with this technology, the host’s OS is used and there is no longer a
separate OS in the individual containers, which leads to a weaker isolation compared
to the hypervisor virtualization. The container engine divides the physical resources
and creates an isolated user space for each container [CMF16]. Because the container
engine uses the Linux kernel of the host system, container virtualization is lightweight
and higher performing than hypervisor virtualization [Boel5|.

=~ W N

App 2

App 1 App 3

Bins/Lib Bins/Lib Bins/Lib

App 1 App 2 App 3

Bins/Lib Bins/Lib

Container Engine

Guest
0S

Hypervisor Operating System

Infrastructure

Infrastructure

Machine Virtualization Containers

Figure 2.2.: Virutal Machine compared to Container structure [Chal§]

2.3.1. Docker

Docker is an open source project that provides container virtualization. It builds on
various techniques that have long been known, such as Linux containers (LXC). One
goal of Docker is to simplify the development and delivery of applications with the help
of containers [Ber14].

The kernel-level namespaces provided by LXC and thus used by Docker separate the
containers from the host. The user namespaces ensures that the root user of the container
has no corresponding rights on the host system. Process and networking namespaces
ensure, on the one hand, that the container only sees processes on the container, and on
the other hand, its own network is created. Control groups (cgroups) are used to limit
and manage resources. This means that memory space and I/O can be limited [Mer14].

Dockerfile

Docker helps to solve the problem with used dependencies and environments. To keep
track of which software has been installed and how, e.g. with which parameters or on
which paths, Docker provided so-called Dockerfiles. This is a script with simple syntax
and a set of instructions that define how an image can be built [Boel5].

Listing 2.1 shows an example Dockerfile, which was taken from the following source [Inc20c].

FROM ubuntu:18.04

COPY . /app

RUN make /app

CMD python /app/app.py

Listing 2.1: Example Dockerfile

This shows the basic structure and syntax. First a new layer is created, which is
built on the Docker image of Ubuntu 18.04. Then files from the current directory are
copied into the image and built using RUN. Finally, it defines which command should be
executed inside the container.

Docker images

The image is created from the instructions given in the Dockerfile and is a type of
snapshot of the current environment. It consists of several read-only layers, which are
built on top of each other. All layers together contain all necessary files to start a Docker
Container [ZRTT18]. In the end, a container is just a label for the fact that an instance
is running from an image [Boel5].

Docker registry

Similar to a code repository, Docker images are stored in the Docker registry. Images
can be pushed or pulled from this registry. A registry can be either public or private.
The best known example of a public registry is Docker Hub [RBA17].

Docker container

The first step when creating a container is to check if the required image is available on
the local host. If it is available, nothing has to happen. However, if it does not exist, the
image is downloaded from the registry and made available locally.

The second step is the actual creation of the container. For this all read-only layers of
the image are connected to one layer. Then a writable layer is created on the top of it.
This layer is also called the container layer. All changes within the container are written
to this layer. To change files, they have to be loaded from the read-only layer into the
writeable layer [ZRT*18].

If a container is deleted, the image is not changed. The container layer, however, is
deleted as well. By this mechanism it is possible that several containers use the same
image [Inc20b).

Docker Compose

In larger system landscapes, it is quite possible that several services have to run at
once. Usually, for each service a separate Docker container is created. This makes
administration, e.g. creating each service and starting it, very complex and laborious.
Docker Compose was developed to react to this.

With Compose all services can be configured by a YAML file, typically named docker-
compose.yml. Within the definition, docker files are used so that the environment can be
reproduced everywhere. Then all services can be created, started or shut down at same
time with a simple command. [Inc20f]

10

—_ =

1 |services:

2 server:

3 build:

4 context: ./server
) ports:

6 - "1234:1234"

7 client:

8 build:

9 context: ./client
0 volumes:

1 - "./code:/build"

Listing 2.2: Example Docker Compose YAML file

Listing 2.2 shows an example for a Docker Compose file. Two services are created.
The server service uses an image that is built from a Dockerfile in die /server directory.
Moreover, it binds the container to the exposed port 1234. In the client service it is
shown how an volume can be mounted from the host machine (/code) to the container

(/build).

2.3.2. Podman

Although Docker has a great popularity, it can not meet all requirements, especially in
the HPCs field. This is the reason why the Podman project was created. An example is
the client-server model, which is a potential security risk [GWR20].

Podman is daemonless and open source. With its own CLI, which is very similar to
Docker’s, it is easy to find, build and run containers. Because Podman, like Docker, is
based on the Open Containers Initiative (OCI) Runtime Standard, Podman’s containers
are hardly distinguishable from those of others [wha20].

One of the biggest features of Podman is that containers can be run with either root or non-
root privileges. This is achieved with the help of namespaces. Also, container images can
be created from Dockerfiles without starting a process or having root privileges [GWR20].
Podman offers support for Checkpoint/Restore in Userspace (CRIU), which might be
interesting for HPC. This makes it possible to restore a container at a later time.
Currently it is not possible to use this feature with rootless containers or with MPI and
InfiniBand [GWR20].

2.3.3. Singularity

Singularity is another container platform that was developed for the needs of science.
Singularity pays special attention to the mobility of workflows and software. This is
achieved by a single portable image file. The file contains all files of the container [KSB17].
A further development criterion is reproducibility. After a workflow has been defined,
the image can be archived or snapshot so that the user knows that the files have not

11

—_

O © 00 O Uk Wi -

changed within the container. Hashing provides a method to ensure that the image has
not been changed or edited [KSB17].

With singularity rights system there is no user escalation, which means that a container
gets the rights that the user has when the container is started [ADS17].

The container images are read-only by default. Only the home directory and other
automatic remounted folders are writable. Applications can access the data inside the
container and on the host system [K*15].

2.4. GitHub Actions

With the help of GitHub Actions automated tasks can be created for a repository.
Different actions can be triggered depending on the type of event.

An event, e.g. a push of a commit to a repository, automatically triggers a workflow
consisting of one job. This job is then again divided into steps. The individual steps are
defined by the respective actions. Each action can have a different command. There are
already a number of actions available from the GitHub community that can be used or
you can create your own [Inc20h].

name: test-action
on: [push]
jobs:
run-test-script:
runs-on: ubuntu-latest
steps:
- name: Checkout
uses: actions/checkout@v?2
- name: Tests
run: ./scripts/test.sh

Listing 2.3: Example GitHub Action

Listing 2.3 shows an example workflow. On each push-event (line 2) the test-action is
executed. The job in the example is grouped by the name run-test-script (line 4). Line 5
indicates that the job is running on a fresh virtual machine running an Ubuntu. The
job is further divided in line 6 by the steps. In the example there are two steps. One is
the Checkout Step (lines 748), which uses the community action actions/checkout@uv?2,
which checks out the current repository and makes it available to the virtual machine.
This action must be used every time a workflow is used for the code in the repository.
The other step (lines 94+10) uses run to execute a command in the VM. Here a script is
called that contains tests [Inc20h].

12

3. Design

This chapter describes the design options available and how they will be implemented.
At first, the different user requirements are discussed. Secondly, the various container
engines are examined in more detail and an individual solution is described for each.

3.1. Current JULEA installation steps

Before the individual steps for the container engines can be explained, it is briefly
explained which steps are necessary so far to install and configure JULEA [JUL20].

Firstly, the project must be cloned from GitHub. Then all necessary dependencies
have to be downloaded and installed. This is done by a dependencies script Listing 3.1.

./scripts/install -dependencies.sh

Listing 3.1: Install dependencies for JULEA

Afterwards, the JULEA environment can be loaded, which is necessary so that all
JULEA binaries and libraries can be found Listing 3.2.

scripts/environment.sh

Listing 3.2: Load JULEA environment variables

1

The configuration is done with Meson! and the compilation with Ninja? as seen in

Listing 3.3.

meson setup --prefix="${HOME}/julea-install"
< -Db_sanitize=address ,undefined bld
ninja -C bld

Listing 3.3: Configure and compile JULEA using Meson and Ninja

Finally, the actual JULEA configuration can be created in Listing 3.4.

thttps:/ /mesonbuild.com/
2https://ninja-build.org/

13

1 |julea-config --user \
--object-servers="$(hostname)" --kv-servers="$(hostname)"

— --db-servers="$(hostname)" \

3 |--object -backend=posix --object-component=server
— --object-path="/tmp/julea-$(id -u)/posix" \

4 |--kv-backend=1mdb --kv-component=server
— --kv-path="/tmp/julea-$(id -u)/1lmdb" \

5 |--db-backend=sqlite --db-component=server
— --db-path="/tmp/julea-$(id -u)/sqlite"

Listing 3.4: Setting JULEA configuration

3.2. JULEA users types

JULEA basically has two different types of users, which are briefly described here. These
should be included in the design process.

« JULEA-Developer: Users who want to further develop JULEA have to deal with
all development steps. This includes checking out the project from GitHub and
installing all required dependencies. Furthermore, Meson must be used for config-
uring and Ninja for compiling. This requires experience or at least understanding
of the commands in the documentation.

« JULEA-User: The user who only wants to use JULEA would be provided a way
to install JULEA via a package manager using spack ®. For this user, less prior
knowledge about the configuration of JULEA is required.

3.3. Technical Challenges

At the beginning, it should be clarified which technical challenges [Boel5] exactly are
supposed to be improved or solved with the presented solution.

o "Dependency Hell": To install or build software, for example to reproduce a
result or just to continue developing on the project, can be challenging. Each
developer or user has a different user environment, which results in different software
packages, environment variables and configurations.

To improve this problem, images can be used that are made available to other
users. The image contains the installed and configured software.

e Documentation: In a software life cycle, an application is further developed
and modified. In the process, the documentation must also always be adapted,

3https:/ /spack.readthedocs.io/en /latest/

14

which is often neglected. Even a small forgotten step, e.g. the skip of a necessary
dependency, can lead to the failure of the installation.

Definition files, such as a Dockerfile, are used to define how a given image was
built. This simple script specifies how the software was installed and configured in
a particular environment.

o Reproducibility: As written in the documentation point, software changes. Fix-
ing bugs or adding new features can affect the result of a different experimental
setup. A solution must be found that allows to show with which version and
configuration of the software a result was generated, so that others can reproduce
the results.

3.4. Concept

First, we introduce two general concepts of how container images could be constructed.
After that, the individual container engines will be discussed in more detail.

As an example for consideration, a server and client are created for each container engine.
The client should connect to the server and use the server as a backend.

3.4.1. General Concept for container images

Every single step specified in 3.1 must also be used to create the container images. There
are two potential ways to do this:

e« One image: The first and naive approach is to specify all steps in a single
configuration file, e.g. Dockerfile, and create a container image from it. This means
that both the download of the dependencies and the individual configuration steps
are performed one after the other in this file. The only dependency on another
image is the base image, which could be an Ubuntu or CentOS version, for example.

« Two images: The other approach is to create one image for the dependencies
and another for the configuration. The configuration file for the dependencies will
again be built on a base image and then download all necessary dependencies. The
second image will then import the first and then only need to configure JULEA.
The only difference here is the separation of the individual steps.

3.4.2. Docker

For the design of Docker images to make the best use of them, there are recommendations
from Docker, which are used for the construction of the images and are explained in
more detail in this section [Inc20d).

A special focus here is on the use of the cache. Steps that have already been performed
once should ideally not be repeated again in the development process. Another important
factor is the image size which should be as minimal as possible.

15

Order of build steps: The steps should be arranged so that the commands that
contain content that changes less often, such as installing packages, are at the
beginning. Commands that, e.g. copy content to the image, should be further at
the end because this data potentially changes more often during development. If
the cache behavior of a step changes, all steps below it also become invalid.

Reduce number of layer: Each RUN command creates a new layer in the
image and the number of layers should always be kept as less as possible [Inc20d].
Therefore RUN commands should be combined if possible. This can be applied
particularly well to the installation of packages, e.g. by means of apt. All packages
should be installed within one RUN command. Another advantage is that the
cache behavior improves again.

Specific COPY: Everything that is copied into the image using COPY should
be well considered. Only the files or folders that are really needed for the single
step or for the current image should be copied. Any change within the files will
result in the cache no longer being usable.

COPY/ADD: The use of ADD should be avoided. Both offer almost the same
functionality, but ADD offers additional features like downloading and unpacking
sources, which can lead to unwanted behavior. This way, a zipped folder could be
unzipped automatically instead of just being copied into the image [CSWT17].

Reduce image size: Package managers like apt offer the possibility to not install
unneeded dependencies with the flag —no-install-recommends. In the same RUN
statement the cache of the package manager should be cleared, so that it is not
written to the image.

Specific tags: Whenever possible, concrete information about the versions used
should be given and the latest tag should be omitted.

Persistent data: If possible, data should not be stored in the writable layer
of the container, because this increases the size of the image. Instead, volumes
should be used. These also offer better I/O performance compared to layers. In
addition, bind mounts should only be used during the development and volumes
for production [Inc20d].

These points give some clues that will be used for the later implementation. Another
point raised in the documentation is the advice to build an own base image if there
are multiple images that have a lot in common. Likewise, multistage builds are a good
option. These suggested options are helpful for planning the actual build of the images.
Furthermore, it is described that a container should only serve one purpose, making it
easier to reuse and scale that container in multiple places. For JULEA this will mean
that each container will have only one JULEA process running, e.g. one container a
client and the other a server [Inc20c].

A single Dockerfile is created for the server and client, which will be built as a base image

16

on a configured JULEA. Everyone has the possibility to configure the respective node
individually. This will happen via a startup script. As soon as the container is started,
the JULEA configuration is set at the server, which includes the hostname and the port.
Also, the server must be started at the end. When the client is started, it must include
these two parameters in its startup process and set them in its configuration.

3.4.3. Podman

Podman offers practically all possibilities that the files created and used for Docker can
also be used. This should allow Docker images or Docker files to be reused. Since Docker
will be considered for the thesis and images will also be created in this process, the
best approach here will be that all implementations are first created with the help of
Docker. The created images are attempted to be reused for Podman in the next step. It
is assumed that no separate images or configuration files need to be created for Podman.

3.4.4. Singularity

In the text Kurtzer et al. a typical workflow with Singularity [KSB17] is described. The
workflow starts with a user developing the image on his own system. On this system,
the user usually has root privileges, which are necessary to make changes to the image.
Once development on the image is complete, it can be shared with other resources.

On shared computational resources, which can be a server, for example, the image can
be viewed as its own program, allowing it to run normally. On these resources, users
usually do not have root privileges, which means that no changes can be made within
the image. It can only be used. If changes are to happen, it must be switched back to
the local user endpoint and the image must be re-uploaded again for everyone.

Build from Recipe Container Execution

Interactive Development
sudo singularity build container.img Singularity

q sudo singularity build --sandbox tmpdir/ Singularity D Build from Singularity

[sudo singularity build container.img shub://vsoch/hello-world

@ sudo singularity build --writable container.img Singularity D
Build from Docker

(sudo singularity build container.img docker://ubuntu D
PRODUCTION ENVIRONMENT

* Docker construction from layers not guaranteed

Figure 3.1.: Singularity usage workflow [Sin1§]

Singularity follows the approach that a container does not run completely isolated
from the host system. This aspect is especially noticeable in the file system. Because

17

Singularity replaces the file system of the host with the one in the container, none of the
host files are accessible within the container. In order to still be able to read files from
the host system, there are two possible procedures.

» System-defined bind paths: The administrator of the system can specify which
directoires should be included automatically. Some are defaulted, which include
the following: $HOME, /tmp, /proc and /sys.

o User-defined bind paths: If the administrator has allowed it, the user has the
possibility to define own bind points. This can be done via the —bind flag.

Singularity offers so-called bootstrapping, which follows the idea of creating an image
from a previously created template. This can either be created from scratch or existing
Docker images can be used.

Kurtzer et al. described that on a shared resource no root rights are needed to run
Singularity. This is only partially correct. For a sample implementation, a client-server
model is to be set up, where it is necessary to establish a connection between client
and server for communication. In the documentation of Singularity it is written that
currently root permissions are necessary for this.

The standard workflow described would theoretically also be an option for JULEA.
However, a certain degree of flexibility would be lost because a singularity image would
have to be available at a central location for both a client and a server, which a user
would then have to download in order to use it. This would be the only way to prevent
a user from having to build a container themselves. Since root rights are required to use
a network with Singularity, the standard workflow can also be modified here so that the
user can build and use the image himself on a system.

Also, care must be taken as to where the JULEA configuration is stored. So far it is
stored in the path ./config/julea/julea in the home directory of the user. If the container
is now to be shared with other users the configuration is no longer present because the
user’s home directory is only mounted in the image and is not permanently there. This
is only a limited problem. The Docker image with a preconfigured JULEA is used as the
base image, which is used by a Singularity description file. This contains a startup script
that sets the appropriate JULEA configuration for the user. To use the container on
another system, the user only need to build a container using the Singularity description
file.

One must be aware that it is not possible to write data within the container. It must be
written either via the system paths or user defined endpoints. The data is, therefore,
always located on the host system. The workflow, e.g. a user wants to compile files
with the help of the container, could be done as follows. The user places the files to
be compiled in a directory that is mounted. In order to create the binaries, one of the
mounted paths must be specified as output directory in the JULEA configuration.

18

Singularity provides several ways to interact with processes in the container. For the im-
plementation, instances are mainly used, which is an isolated and persistent version of the
container that runs in the background. This service can then be used by multiple clients,
which is suitable for the example implementation of a client-server-structure [Inc20i]. It
must be figured out if the instance can be started without root rights and the application
works without problems.

If JULEA is to be built and used on a system without the appropriate permissions and
without the need for a network connection between individual containers, a container can
be built with the help of the —fakeroot option. An instance can then simply be started.

3.4.5. Image structure

By taking a closer look at the individual container engines, the image structure for the
implementation can be specified more precisely. Due to the widespread use of Docker and
the resulting possibility for Podman and Singularity to use Docker images, the structure
is determined primarily from the description in Section 3.4.2.

To use JULEA, a large number of dependencies have to be installed at the begin-
ning, which takes the most time depending on the mode and system. These dependencies
are changed only in a large period. From the points explained in Section 3.4.1 and this
further aspect the approach of the two images is pursued. The possibility of using only
one image is not considered in detail.

Ubuntu CentOS

JULEA-Dependency

[

JULEA-Configured

—

JULEA-Client JULEA-Server JULEA

JULEA-User JULEA-Dev

Figure 3.2.: JULEA images hierarchy

Figure 3.2 shows the more detailed structure of the image hierarchy used for imple-
mentation.

19

A separate dependency image is created for each Linux distribution on which JULEA
will run in the future. This image contains all dependencies that will be needed for the
configuration in the future, e.g. a Python version. Furthermore, this image is used to
install the dependencies that are specified in the installation script of JULEA.

On this image, depending on which distribution is needed, the configuration can then be
built. This image will configure and compile a JULEA.

The end user only has to decide which image to use. The JULEA-Developer might want
to use the dependency image so that he has all the necessary dependencies, but wants to
take care of compiling the application himself. The pure user will fall back on the ready
configured JULEA image, which only has to be started with a container.

In the following JULEA-Dependency and JULEA-Configured are used to refer to the
JULEA dependency image and to the final configured JULEA image.

3.4.6. GitHub Actions

The JULEA project is managed on GitHub and is publicly available to everyone. Cur-
rently, there are already some actions that are used for testing and building JULEA. By
introducing containers, new possibilities arise to extend the actions further.

So far Docker Hub* is the best way to use and publish Docker images for other users to
benefit from. Still in beta, but already usable on GitHub is the new container registry
from GitHub [Nga20]. This creates the possibility to publish container images directly
on GitHub, which would simplify the administration in this case, since no further system
has to be integrated. In addition, it is immediately visible to users that containers have
been created and can be used.

‘ h
[release] Build Dependency Image =
GitHub
Container
Event e
Build Configuration | -
— uild Configuration Image

Figure 3.3.: GitHub Action workflow for JULEA

The GitHub developers already offer an action that creates a new container image
of the repository on a selected event and then uploads it to the container registry. In

“4https://hub.docker.com/

20

Section 3.4.5 a structure of two images was introduced. This should also be done in the
actions.

Since it is assumed that dependencies rarely change, JULEA-Dependency does not need
to be generated for each push event. For example, a workflow for this would be to change
the image only on a release, assuming that dependencies only change on a new release
version. Other event options would also be possible.

JULEA-Configured could be rebuilt on every push event, because it is assumed that this
happens in a short time. So, there would always be a current image of JULEA available.

21

—_

O © 00 ~JO Uk Wi+

4. Implementation

In this chapter, the realized implementation to the design plan is explained further. It
also discusses problems and explains some technical aspects in more detail.

All results presented in the implementation can be found in the following repository:
https://github.com/vittell/julea.

4.1. Docker

In this section, the implementation using Docker is explained. At first, the structure
of the Dockerfiles will be shown. A distinction is made between a JULEA-Server and
a JULEA-Client, which will also be reflected in the structure of the Dockerfiles. Then
it will be shown how the images can be created and used. It will also be explained
how the two container can be connected to each other via a network so that the client
applications can later reach the server.

In addition, the following section uses the documentation for Docker commands [Inc20e].

Since the decision was made to create several images, the structure of the image for the
dependencies is shown first in Listing 4.1.

FROM ubuntu:20.04

COPY container/docker/github/install -packages.sh
RUN ./install-packages.sh && rm install-packages.sh

WORKDIR /julea
COPY scripts/ ./scripts/

SHELL ["/bin/bash", "-c"]
RUN ./scripts/install-dependencies.sh

Listing 4.1: JULEA-Dependency Dockerfile with Ubuntu 20.04

The Dockerfile in Listing 4.1 is built on an Ubuntu 20.04. In order to use the install-
packages.sh script in the RUN statement, it must be copied from the host to the container
filesystem. The installation of necessary packages is outsourced to a script to be more
flexible. As described in the design, the image should be kept as small as possible using

22

https://github.com/vittel1/julea

CO 1O Ul W N

-no-install-recommends. However, the Git package must also be installed, which could be
installed with this flag, but it would cause problems later and prevents further correct
installation. In order to only have to use one RUN instruction, the script procedure was
used. Since the script is no longer needed afterwards, it is deleted directly.

Line 6 specifies the directory that is to be used for all of the following commands. Since
the directory did not exist before, Docker creates it in the same step.

JULEA already has a script that installs all dependencies. For this purpose, the entire
scripts folder is copied into the image in order to provide all necessary additional files
that the script uses in the image. It must be ensured that a folder is specified for the
destination, because COPY only copies the contents of the folder. Finally, the installation
script of JULEA must be executed.

sudo docker build -t julea-ubuntu-deps-standard:1.0 -f
— container/docker/github/Dockerfile_Ubuntu_Deps_Standard
C_>

Listing 4.2: Docker build commands for JULEA-Dependency

Depending on the system and mode, the Docker build process Listing 4.2 could take
some minutes.

The image just created is now available in the local Docker Registry. From there
it can be started or used by other images. The second step, creating the image for
configuring JULEA uses the image as seen in Listing 4.3.

FROM julea-ubuntu-deps-standard:1.0

WORKDIR /julea
COPY

SHELL ["/bin/bash", "-c"]

RUN . scripts/environment.sh && \

meson setup --prefix="${HOME}/julea-install"
— -Db_sanitize=address,undefined bld && \

ninja -C bld

Listing 4.3: JULEA-Configured Dockerfile

Here, the same installation directory is specified as for the dependency image. The
difference here is that the entire JULEA directory is copied into the image. This is
necessary so that the application can be used completely later.

In the RUN command, the environment variables are set by the existing script. In
addition, the program is configured and compiled in the same course. In fact, it is
important to point out here that the setting of the environment variable and the meson

23

N O T Wi

and ninja commands must be executed together, i.e. via the é/¢f link. First, it was tried
to execute each command as a single RUN statement. As a result, the environment
variables are not available in the second step. This can probably be attributed to the fact
that Docker creates a new layer for each RUN command and the environment variables
are no longer available in the new layer. Docker provides the ability to set environment
variables for all subsequent commands via ENV. However, this is currently not possible
via a script, because of that this option is out of the question. Thus, it is currently
necessary to always make sure that the environment variables are set, which will also be
seen later in various scripts.

After also building JULFEA-Configured, the image is ready to be used. As already
written, a JULEA-Server and a JULEA-Client are created for the example. First the
configuration of the server is shown and explained in Listing 4.4.

FROM julea-config:1.0

EXPOSE 9876/tcp
COPY docker-entrypoint.sh /entrypoint.sh

ENTRYPOINT ["/entrypoint.sh"]
CMD ["juleaServer", "9876"]

Listing 4.4: JULEA-Server Dockerfile

Docker provides with the EXPOSEFE instruction, a command that can be used to specify
that the container listens on a specific port at runtime. It can also be specified whether
the port listens to TCP or UDP. However, the port is not published by the command,
this specification serves more as documentation for the users who will later use the
container.

In the same directory where the Dockerfile for the server is located, a script is created
that is first copied into the image.

As briefly described in Section 3.4.2, a container should be designed so that it is available
for a specific task and process. As soon as this process is finished, the container is
also stopped. Thus, the container lifecycle is based on the process running in it. In
order for the container to know which process to run, this must be specified via a
command. Docker offers two possibilities for this with CMD and ENTRYPOINT, which
are explained briefly in the following [Sim20].

e CMD: This command can be used to specify the default executable action of the
container. If docker run is called without a command argument, then the container
will run with the action specified in the CMD. However, if an argument is specified,
the command is overwritten and the action in the argument is executed. There can
only be one CMD command, otherwise the last one is always taken. The command
is not executed at build time of the image.

24

O 3 O U i W N

— = =
TU W N = O O

e« ENTRYPOINT: With this command it is also possible to specify an instruction
that the container will execute at startup. However, this command cannot be
overwritten even if an argument is passed to the docker run command.

Both commands can also be combined. The executable can then be specified by
ENTRYPOINT and the default parameters in CMD. This procedure is also chosen in
this example. CMD defines the default hostname and port of the JULEA-Server and in
ENTRYPOINT the start script Listing 4.5 is specified.

#!/bin/bash
serverName=$1
portNumber=§2

/julea/scripts/environment.sh
sed -i -e '$a. /julea/scripts/environment.sh' ~/.bashrc
julea-config --user \
--object-servers="$serverName: $portNumber"

--kv-servers="$serverName: $portNumber"
--db-servers="$serverName: $portNumber"

[...]

julea-server --host "$serverName" --port $portNumber

Listing 4.5: JULEA-Server entrypoint script

Listing 4.5 takes the passed arguments in line 2 and 3 and writes them into variables
for better comprehensibility. So that, when working with a bash console inside the
container later, the environment variables are set. These are entered into the .bashrc
file, which is responsible for configuring the bash at startup (line 7). Afterwards the
JULEA configuration can be set by setting the future server name and port. Finally,
only the server must be started with the appropriate parameters. As long as this process
is running, the container will also run. The server must not be started with the daemon
parameter, otherwise the container will stop.

It would also be possible to define this whole configuration, which is executed in the
script, in the ENTRYPOINT directly. This was also tried at first, but it made the
command very confusing and complicated, because again the environment variables must
be set.

Thus, the JULEA-Server image can be built and then the container can be started as
shown in Listing 4.6. With docker exec one can work directly inside the container. When
running this command, the environment variables should be set and then the container’s
bash console should be displayed.

25

1 |cd ./container/docker/server

sudo docker build -t julea-server-image

3 |sudo docker run -it -d --name julea-server
— julea-server -image

4 |sudo docker exec -ti julea-server /bin/bash

Listing 4.6: JULEA-Server build image and run it

If the default parameters should be overwritten, only the parameters at the end of the
docker run command must be specified as seen in Listing 4.7.

sudo docker run -it -d --name julea-server
<~ julea-server-image SERVERNAME PORT

Listing 4.7: JULEA-Server run image with parameters

The same Dockerfile is created for the client as for the server. A startup script is also

copied into the image and the default values for hostname and port of the server are set.
It is important to note here that when starting the container, if the default values of the
server container are overwritten, these must also be overwritten for the client.
The main difference is in the last command of the script in Listing 4.8. No server can be
started for the client. Thus another command must be specified, which runs permanently
as a process, so that the container is not stopped again immediately after starting. Here
a little trick was done by permanently creating a process with tail -f, which actually has
no meaning for further use. Whether this is the best approach should be reconsidered in
the future.

[...]
tail -f /dev/null

Listing 4.8: JULEA-Client start command in Dockerfile

Afterwards, the image for the JULEA-Client can also be built and started.
Volumes are a good solution to compile local files within the container more dynamically.
Thereby the directory on the local filesystem could be mounted in the container. The
specification must happen over the -v flag by the start of the container in Listing 4.9.

sudo docker run -it -d -v
— /absolute/path/to/dir/build:/build --name julea-client
— julea-client-image

Listing 4.9: JULEA-Client start with volume

To enable a connection between client and server, it is necessary to set up a network.

26

For this purpose, such a network must first be created in Docker in Listing 4.10.

sudo docker network create juleaNetwork

Listing 4.10: Docker create network

For the server, when starting the container, the hostname, port, and network previously
defined must be specified here in Listing 4.11.

sudo docker run -it -d --network-alias juleaServer -p
— 9876:9876/tcp --network juleaNetwork --name
— julea-server julea-server-image

Listing 4.11: Docker server container with network

To be able to communicate with the server, the network must also be specified by the
client in Listing 4.12.

sudo docker run -it -d --network juleaNetwork --name
> julea-client julea-client-image

Listing 4.12: Docker client container with network

The next section introduces Docker Compose, which eliminates the need to create a
network and include it for each container, making it easier to use.

4.1.1. Docker Compose

In this section, the server-client example is shown again using Docker Compose. The
YAML-file Listing 4.13 is located in the root directory of the JULEA project.

Two services are created with the name juleaServer and juleaClient. The name assignment
here is important, because the service name becomes the hostname at the same time.
Thus, the service name must be specified for the client in the start script or Dockerfile,
otherwise the client cannot reach the server.

The build contexts each reference the Dockerfile in the corresponding folder. Both an
image name and a container name are defined for both services, because otherwise
random names are assigned, which can lead to confusion.

Two ports are specified for the server. The number on the left refers to the host and on
the right to the container. Thus, the host as well as the container can be reached via
port 9876.

A volume is defined for the client, which maps the example directory of JULEA to the
path /build in the container.

It is not longer necessary to create a network manually. This is created automatically
and named with julea__ default.

27

0 3 O U= Wi

services:
juleaServer:
build:
context: ./container/docker/server
ports:
- "9876:9876"
image: julea-server-image
container_name: julea-server
juleaClient:
build:
context: ./container/docker/client
volumes:
- "./example:/build"
image: julea-client-image
container_name: julea-client

Listing 4.13: Docker Compose for JULEA-Server and Client

To start both containers only one command is needed in Listing 4.14.

sudo docker -compose up -d

Listing 4.14: Start container with Docker Compose

4.2. Podman

In order to use Podman, no further preparation is necessary, except for installing Podman.
Because Podman allows to use Dockerfiles and images that have already been built, using
Podman is basically like using Docker. On top of that, many commands, for example to
build an image or launch a container, are the same, which makes using Podman feel like
using Docker. When taking advantage of the possibility to use the alias docker=podman
[wha20], a difference is almost impossible to notice.

All examples explained in Section 4.1 can be recreated exactly the same way with
Podman.

However, one difference was noticed. In order to test whether the test setup is correct
and to check whether JULEA works properly, the example in the ezamples folder was
always compiled and executed for all examples. With Docker, there were no warnings
or errors that occurred. Whereas with Podman, a warning appeared at the end of the
samples that something could not be executed properly in Listing 4.15. It seems that
the message has no influence on the actual result, the saving of the data. The data is
correctly created in the specified directory. The error probably refers to an event that

28

S U= W N~

0 3 O O i W N

happens afterwards. However, this should be examined more closely later to see whether
the error message has an influence on the result. A presumption was here that possibly
the absence of the root privileges can have influence on something. However, the error
did not occur later with Singularity, which may invalidate this theory.

root@2445390c9c15:/julea/example# ./hello-world

Object contains: Hello World! (13 bytes)

KV contains: Hello World! (13 bytes)

DB contains: Hello World! (12 bytes)

==276==LeakSanitizer has encountered a fatal error.

==276==HINT: For debugging, try setting environment
— variable LSAN_OPTIONS=verbosity=1:log_threads=1

==276==HINT: LeakSanitizer does not work under ptrace
— (strace, gdb, etc)

Listing 4.15: JULEA example in Podman container with notification

In order to use the Docker Compose file in the root directory, an additional package
must be installed, as this is not supported by Podman by default. For this purpose, a
community project is offered that provides this functionality [Pod20]. With this project
it is also possible to execute the docker-compose.yml file.

4.3. Singularity

This section shows how JULEA can be used with Singularity. To a large extent, this can
build on what has already been explained in Section 4.1.

The server definition file in Listing 4.16 builds on JULEA-Configured. The syntax
is a little different, however, this basically does exactly the same as the previous ones in
Docker. Using %files, a file can be copied into the image. After that, one only needs
to define a script that starts the desired process when the instance is started in the
container.

Bootstrap: docker
From: julea-config:1.0

hfiles
singularity-entrypoint.sh /singularity-entrypoint.sh

hstartscript
/bin/bash /singularity-entrypoint.sh

Listing 4.16: JULEA-Server description file with Singularity

29

]

One difference can be seen in the startup script. As written in Section 3.4.4, Singularity
mounts the /tmp directory into the image by default. If this directory is no longer mounted
by the administrator or it is not desired to write to this path, this can be changed in the
script. Listing 4.17 shows an example for the sqlite directory.

--db-path="/singularity-mnt/julea-$(id -u)/sqlite"

Listing 4.17: JULEA output path in Singularity

Care must be taken to ensure that the specified directory is either mounted by default
or set by the bind flag, as seen in Listing 4.18.

cd ./container/singularity/server
singularity build --fakeroot julea-server.sif Singularity
singularity instance start --bind
— singularity-mnt/:/singularity-mnt julea-server.sif
— julea-server-instance

Listing 4.18: Singularity commands to start JULEA-Server

The shown commands describe the possibility to build a JULEA container with Singu-
larity on a system without root privileges with the use of the fakeroot option.

With this described solution it is not yet possible to communicate with the server
instance. To change this, Singularity’s network virtualization must be used, which only
works with root privileges [Inc20i]. The instance startup must be extended by the —net
option Listing 4.19. With this option the container will join a new network which will
be a bridge network by default.

sudo singularity instance start --net --bind
— singularity-mnt/:/singularity-mnt julea-server.sif
— julea-server-instance

Listing 4.19: Singularity start JULEA-Server commands with network

To communicate to the server it is necessary to find out the IP address of the server.
With the help of the exec command, as Listing 4.20 shows, it is possible to execute a
command directly in a running instance. Because the instance is started as root user
it is running in the root context which leads to the fact that all commands must be
executed as root. hostname -I outputs all IP addresses of the host. Singularity generates
an address in the subnet 10.22.0.0/16 which is configured in the bridge settings under
this path /usr/local/etc/singularity/network/00_bridge.conflist.

30

1 |sudo singularity exec instance://julea-server-instance
— hostname -I

Listing 4.20: Singularity JULEA-Server IP address

The Singularity client image proceeds the same way as the server image. Again, a
script is created that uses the hostname and port of the server. In order to resolve the
hostname of the server, an etc.hosts file must be created as shown in Listing 4.21. In this
file the previously found IP address of the server is entered as well as the hostname that
was entered in all scripts. Alternatively, one can also work directly with the IP address
of the server, then the additional file is no longer necessary, but then the IP address
must be entered everywhere instead of the hostname.

10.22.0.5 juleaserver

Listing 4.21: Singularity JULEA-Client etc.hosts

In order for the instance to be used, the etc.hosts file must be bound when the instance
is started as shown in Listing 4.22. This instance must also use the —net option to join
the network where the server is located. Then, the shell command can be used to work
within the instance. For JULEA to be used, it is essential to run the environment variable
script again. The solution of entering it in the .bashrc file, which was previously used
with Docker, no longer works here, since the home directory is automatically mounted.

sudo singularity instance start --net --bind
< etc.hosts/:/etc/hosts --bind
— singularity-mnt/:/singularity-mnt julea-client.sif
— julea-client-instance

sudo singularity shell instance://julea-client-instance

Listing 4.22: Singularity JULEA-Client starts instance with etc.hosts bind

4.3.1. Singulularity Compose

There is a community project [Sin20] for Singularity, so that the management of the
instances can be simplified.

However, it is not possible to use the existing docker-compose file, as the library does not
support the naming convention of Docker. Because of that a new one must be created as
seen in Listing 4.23.

31

=W N =

e
wW N = O

1 |version: "1.0"
2 |instances:
3 juleaserver:
4 build:
) context: ./container/singularity/server
6 ports:
7 - 9876:9876
8 juleaclient:
9 build:
context: ./container/singularity/client
volumes:
- ./container/singularity/client/
singularity-mnt:/singularity-mnt

Listing 4.23: Singularity Compose YAML file

This file can now be used to start two instances using singularity-compose up. As
written in the Singularity documentation, an etc.hosts file is also created in the current
directory with the corresponding IP addresses and hostname in Listing 4.24.

cat etc.hosts
10.22.0.3 juleaclient
10.22.0.2 juleaserver
127.0.0.1 localhost

Listing 4.24: etc.hosts generated by Singulartiy Compose

Now it is possible to switch to the desired instance using the shell command. To
test if the client can reach the server, first switch to the client instance. To work with
JULEA, the environment variables must be loaded first. After that the example can be
compiled in /julea/examples. However, when executing it, the following error occurs in
Listing 4.25.

Singularity> ./hello-world

(process :437): JULEA-CRITICAL **: 15:22:09.010: Could not
— connect to juleaserver: Connection timed out

(process :437): JULEA-CRITICAL **: 15:22:09.011: Can not
— connect to juleaserver:9876 [1].

Listing 4.25: JULEA-Client network timeout in Singularity

There appears to be a name resolution error here. In the /etc/hosts file, the hosts
created in Listing 4.24 are mounted correctly.
Switching to the server instance and displaying the running processes, the JULEA process

32

was started and is running. Also, here the assignment of IP address to hostname was
done correctly.

Further attempts to fix the error all failed. The problem is still present and the client-
server example could not be made to work with Singularity Compose.

4.4. GitHub Actions

In this section, the structure of the GitHub Actions is explained in more detail, in order
to provide current images. The JULEA-Dependency is used as an example to show the
structure.

All files that define a workflow are placed in the path . /github/workflows/.

At the beginning, it has to be define on which event the workflow should be trig-
gered, see Listing 4.26. As already mentioned, this should only be triggered on each
publish event for a new release. Furthermore, there is the possibility to define environment
variables within the script. This form is used here for setting an image name.

DO W N~

on:
release:
types: [published]

env:
IMAGE_NAME: julea-ubuntu-deps-standard

Listing 4.26: GitHub Action for publishing JULEA Docker dependency image

Afterwards, the actual job can be defined in Listing 4.27. Here, only the most
interesting parts are briefly explained.

—_
_ O © 00 0O ULk Wi -

—_

jobs:
[...]
steps:
[...]
- name: Build image
run: docker build
--file container/docker/github/Dockerfile_Ubuntu
--tag $IMAGE_NAME

- name: Log into registry

run: echo "${{ secrets.GIT_TOKEN }}" | docker
— login ghcr.io -u ${{ github.actor }}
— —--password-stdin

33

12
13
14
15
16
17

- name: Push image
run: |
IMAGE_ID=ghcr.io/${{ github.actor }}/$IMAGE_NAME
[...]
docker push $IMAGE_ID:$VERSION

Listing 4.27: GitHub Action for publishing JULFEA-Dependency

As explained at the beginning, the actual step is subdivided into actions. Three actions
can be seen in the snippet. The first action Build image builds the actual Docker image.
With the help of the file flag, the corresponding Dockerfile is referenced. In addition, the
environment variable defined earlier is used in the tag flag.

In order for the image to be pushed to the registry later, it is necessary to log in to it
beforehand. To use the GitHub API without passing a password, GitHub provides a
functional alternative [Inc20g] with a Personal Access Token (PAT). With the PAT, it is
also possible to define permissions so that the images can be managed later. Once the
token has been created, it must be stored in the corresponding repository under Secrets
and given a name. In the example secrets. GIT TOKEN there is a token with the name
GIT _TOKEN under Secrets. Then, docker login can be used to log in to the GitHub
Container Registry (gher.io).

In the last action, the previously created image can be pushed to the registry. In this
step, the image gets a unique ID. This consists of the registry URL, the name of the
creator and the image name. This ID is later the link from which the image can be
downloaded to the local registry using docker pull. In the last step of the action, the
actual pushing of the image takes place.

After the workflow has been triggered and the job has been successfully executed,
the image can be found in its own repository overview under packages. By default, the
image is set to private, which means that the image can only be used by logged-in users
with the appropriate rights. However, the goal is to make the image available to all users
without restriction. Therefore, the owner of the repository can set in the settings of the
package that the image should be made public. This means that the image can now be
downloaded via the ID.

These steps are repeated for JULFEA-Configured, which is built on top of the dependency
image. The only difference in the workflow is that it is created for each push event and
has a different ID.

It should be noted that during the development of the project, the feature is in a beta
version. In the future, the procedures may still change. In addition, the procedure for an
organization can differ in individual steps, because this was only played out for a private
user.

34

4.5. Use Case Examples

In this section, two examples of how the previously created containers can be used are
shown.

4.5.1. Visual Studio Code

Visual Studio Code (VSCode) is a source code editor developed by Microsoft that runs
on Windows, macOS and Linux. Some languages like Javascript are supported by
default. Through extensions the editor also offers support for languages like C, C++ or
Java [Mic20].

With the help of extensions, it is not only possible to use other languages in the editor,
but also tools such as containers. Through Remote Containers [Mic21], Docker containers
can be used as a development environment, which makes it possible to further develop the
application with the IDE within a container. The user can decide whether the extension
should start a container or attach to an existing one.

The Docker Compose file created in Section 4.1.1 is used for this example. After running
docker-compose up, the running containers can be displayed, see figure Figure 4.1.

IMAGE COMMAND CREATED STATUS PORTS

julea-client-image "/entrypoint.sh jule." 5 seconds ago Up 3 seconds
julea-server-image "/entrypoint.sh jule." 5 seconds ago Up 4 seconds 0.0.0.0:9876->9876/tcp julea-server|

Figure 4.1.: Running Docker containers for VSCode

After the extension has been installed in VSCode, one of the created containers can
be selected as shown in Figure 4.2.

fiulea-server

Figure 4.2.: Attach to running container in VSCode

Once one of the containers is selected, the terminal will indicate that the environment
variables are being loaded. A folder within the image can now be selected in the menu
and files can be modified with the help of the IDE. Modifications are written directly to
the image.

4.5.2. Gitpod

With Gitpod [Git21], an open source platform, a development environment can be started
automatically. For each desired task, a new and fresh development environment can be
started, which is immediately available via the internet browsers.

To ensure that JULEA is configured when the workspace is started, a configuration file

35

for Gitpod can be used to specify that a Docker image or Dockerfile should be used. The
image is then downloaded or created and mounted directly when the Gitpod instance is
started. One way to start a new instance of Gitpod is by calling a URL that contains
the desired GitHub repository, like gitpod.io/#https://github.com /mame/repo.

After the workspace has finished loading, a usable development environment is ready to
be used with JULEA. However, in initial testing, it was found that the scripts that run
when Docker containers are started, are not executed properly here. This leads to the
fact that the environment variables and the JULEA configuration must be set manually.
It should also be checked again whether the JULEA server is started.

Here, only some first attempts were made to test Gitpod fundamentally. There is also the
possibility to host a Gitpod instance yourself which could provide a better environment
for the user.

36

5. Evaluation

In this section, the results and experiences are evaluated in more detail. It also looks
at the advantages and disadvantages of the individual container engines used and what
influence they had on the implementation. In addition, the benefits that resulted from
the introduction of containers will be discussed.

5.1. Benchmark

In this section, a small benchmark test for the presented container engines is shown. For
this, the benchmark script provided in the JULEA repository was used, which offers
a wide range of different possibilities. It was limited here to two different parameters:
/object/object /write and /object/object/read. The script creates objects, reads or writes
and then deletes the objects again. The created images which are described Chapter 4
were used. The software and hardware used can be found at the link: https://github.
com/vittell/julea/blob/master/test-setup.txt.

For Docker and Podman, it is possible to specify a path in the JULEA configuration,
which is available as a volume in the container. Therefore, two different tests are executed
for each of the two engines. One writes to the volume and the other writes directly to
the container. Since the Singularity container is read-only and the option would not
exist to write directly into the container, only a test with the volume is executed. The
execution of the script without container solution, i.e. on a native host system, serves as
a comparison value.

The results from 10 runs were determined for each option and an average value is
calculated from them. The results are shown in Figure 5.1. The left graph shows the
results of the write speed. Here, the values from the native and Singularity runs are
close to each other with a value of just under 100 MB/s. The two Docker tests show
a difference of almost 10 MB/s between volume and writing directly to the container.
If the volume is used as a path, an average speed of about 82 MB/s is achieved<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>