UH

a3 Universitat Hamburg
DER FORSCHUNG | DER LEHRE | DER BILDUNG

Masterarbeit

Verification of
one-sided MPIl communication code
using static analysis in LLVM

vorgelegt von

Marcel Heing-Becker

Fakultat fiir Mathematik, Informatik und Naturwissenschaften
Fachbereich Informatik
Arbeitsbereich Wissenschaftliches Rechnen

Studiengang: Informatik
Matrikelnummer: 7004013

Erstgutachter: Prof. Dr. Thomas Ludwig
Zweitgutachter: Dr. Michael Kuhn
Betreuer: Jannek Squar

Dr. Michael Kuhn

Hamburg, 2019-02-25

Abstract

When implementing a software model using the one-sided communication of MPI, the developer
is required to obey certain rules with respect to memory consistency, process synchronization
and operation completion in order to avoid data races and undefined behavior. For a non-trivial
application, dealing with different synchronization and memory models that are provided by
MPI version 3, manual correctness checks may turn out to be cumbersome.

This thesis evaluates the ability to perform a verification of properties specific to the use of
one-sided communication of MPI by statically analyzing an LLVM intermediate representation

using two different IFDS problem models, powered by a static analysis framework named
Phasar.

Contents

1. Introduction

MPI one-sided communication

2.1. Prerequisites e e e e e e e
2.2. Two-sided communication e
2.3. One-sided communication

2.3.1. Communication Lo
2.3.2. Synchronization L
2.3.3. Correctnesso
2.4. Static analysisof MPTRMA

Static analysis and LLVM

3.1. Staticanalysis
3.2. Model checking
3.3. Considerations & Motivation

3.4. LLVM . .

3.4.1. Architecture
3.4.2. Anatomy of the IR
3.4.3. Tooldevelopment

3.5. Phasar . .

3.6. Data-flow problems
3.6.1. IFDS problems
3.6.2. Implementation of IFDS problems in Phasar

4.1. Modeling

Static analysis of MPlI RMA programs

4.1.1. Process pipeline e
4.1.2. Preparations
4.1.3. IFDS problem fact domain
4.1.4. Path sensitivity e
4.1.5. Breaking loops
4.1.6. Window ordering Lo
4.1.7. Rank attribution o
4.2. Property tests
4.2.1. IFDS problem tests
4.2.2. Intra-path testso
4.2.3. Inter-path tests
4.2.4. Inter-rank tests

4.3. Summary

19
19
20
21
22
22
24
26
27
27
29
30

33
33
33
34
35
38
40
42
43
47
47
49
20
54
o7

Contents

5. Evaluation
5.1. Scalability

5.2. Approaches to run time optimization
5.2.1. Beneficial assumptions L o Lo
5.2.2. Graphslicing L
5.2.3. Window isolation
5.2.4. Estimation and progress
5.2.5. Overview e

5.3. Examples e
5.3.1. OSU Micro-Benchmarks
5.3.2. TrackerSim

5.4. Summary

6. Remodeling the IFDS problem
6.1. Therevised model L

6.2. Scalability
6.3. Examples
6.4. Summary

7. Related work

8. Recapitulation

8.1. Future work

8.2. Conclusion

8.3. Acknowledgments

Bibliography

A. Usage instructions
A.1l. Requirements

A2, Setup . .
A.3. Tests . . .
A4. Usage . .
A5, Flags . . .
A.6. Violations

List of Acronyms

59
59
63
63
64
69
69
70
71
71
72
73

75
75
77
78
78

79

83
83
89
90

91

95
95
95
95
96
97
98

99

1. Introduction

In the domain of high-performance computing (HPC), in order to scale software computationally
to the dimension of available processing nodes, choosing and embedding an MPI implemen-
tation is a method of choice. Historically, the MPI standard grew over a focus on two-sided
communication, imposing the handling of communication and synchronization upon the sender
and receiver processes for every single interaction. With MPI standardized by version 3.1,
an implementation must provide a range of abilities to enable different flavors of one-sided
communication across processes for relaxed semantics, most notably by a consolidated concept
called windows.

As for any application programming interface (API), MPI one-sided communication likewise
requires the software developer to obey various rules to maintain functionality as expected:
MPI defines a set of methods to manage synchronization and communication for windows
separately. Failing to order calls to these methods appropriately in both intra- and inter-process
manners may result in deadlocks or non-deterministic behavior.

An approach to detect such maloperations and to notify the software developer in advance is
a static analysis of the source code. The MPI standard defines its methods and data types for
the programming languages C and Fortran; therefore, it also allows C++ code to seamlessly
adopt and link to any MPI declaration first-hand. To address the syntactical spectrum of these
languages, and to work on arbitrary stages of code transformation and optimization, this thesis
presents a static analysis of programs using MPI one-sided communication, implemented on
top of the intermediate program representation of the LLVM compiler framework.

Initially, chapter 2 introduces MPI one-sided communication from the perspective of the
standard to the extent that is required to understand the challenges being summoned from
its use. Chapter 3 will then introduce essential components of LLVM and justify the benefits
of performing static code analysis on its intermediate representation. Additionally, a fairly
young LLVM static analysis framework called Phasar will be presented for its acceleration in
the development of the static analysis tool. In chapter 4, the thesis explains how to make use
of the IFDS problem solution algorithm — the heart of Phasar — for its analysis purpose, and it
provides a set of analyses to cover the property testing of code under the constraints presented
by chapter 2. Next, in chapter 5, the implementation is primarily evaluated for concerns of
performance and scalability. The results help understanding a second approach that is given
by chapter 6, shifting the balance between performance and features. Given a feeling for the
topic of this thesis and its challenges, chapter 7 puts related work into the spotlight. Further
limitations and ideas are listed by chapter 8 that serves as a navigation for future work on the
topic and the particular implementation.

2. MPI one-sided communication

When examining the MPI standard and its chapter on one-sided communication, it turns out
to provide different models of inter-process synchronization, serving different communication
patterns. In this chapter, all of the window synchronization concepts are being presented by
demonstrating their application and by pointing out dangers in case of an incorrect use.

2.1. Prerequisites

For this thesis, the Message Passing Interface (MPI) is subject to the latest standardized version
only, version 3.1 at the time of writing. In addition, this thesis strictly refers to the reference
definitions by [Forl5], ignoring any kind of implementation-specific hints, optimizations and
customizations that may be defined in documents of individual MPI implementations. When
referring to interfaces of MPI, this thesis sticks to the variant of the C language.

2.2. Two-sided communication

To better understand the niche that one-sided communication attempts to fill, an overview of
two-sided MPI communication is given first. The standard mentions two groups of two-sided
communication: point-to-point communication [Forlb, chapter 3] and collective communication
[Forlb, chapter 5].

Point-to-point communication

In point-to-point communication, there is one sender process and one receiver process, and
in the general case, the sender is identified by a call to MPI_Send, with a matching receiver
calling MPI_Recv. Messages from a sender to the receiver are composed of the payload and a so
called message envelope. As every MPI process belongs to one or more MPI communicator
groups, predefined or customized ones, every process carries an identification value — the rank —
per communicator. Hence, the envelope describes the communicator handle, the rank of both
parties under the given communicator, and a tag value.

For a sender, the software developer composes the data to transmit into a local memory
location, and calls MPI_Send or any of its variants (namely MPI_{B/R/S}send) with this memory
address and the envelope signature. For a receiver, a call to MPI_Recv expects the communicator,
a specific source rank or a wildcard, a specific tag or a wildcard, and the address to a sufficiently
large local memory buffer to store the incoming payload. The blocking nature of MPI_Recv
waits for an MPI message that matches the provided envelope signature.

CHAPTER 2. MPI ONE-SIDED COMMUNICATION

The MPI standard defines multiple send modes to address questions with respect to waiting
or buffering of data when a matching receiver call has not (yet) been reached by the other

party:

e Standard mode: After returning from MPI_Send, the provided memory is cleared for future
use. If there is no matching MPI_Recv at the destination, the implementation decides
between synchronizing and buffering.

e Buffered mode: After returning from MPI_Bsend, the provided memory is either safely
buffered by the implementation or transmitted. Buffering is mandatory in the case of not
reaching a matching MPI_Recv at the destination for not blocking this call. If the local
buffer is exceeded, an error status is returned.

e Synchronous mode: After returning from MPI_Ssend, a matching MPI_Recv has been
reached at the destination.

e Ready mode: A call to MPI_Rsend is non-errant only if the destination has already reached
a matching MPI_Recv call.

MPI demands of an implementation to satisfy the following semantics [Forl5, section 3.5]:

e Order: Messages must not overtake each other.

e Progress: For a matching MPI_Send/Recv pair in two processes, at least one part eventually
ceases blocking for doing progress.

e Fairness: No guarantees are given with respect to fairness and process starvation.

o FExtensible buffer space: For buffered sending, the user must be able to extend the buffer
space used by the implementation.

Collective Communication

To spare software developers from doing burdensome work managing point-to-point communi-
cation in arbitrarily large communicators efficiently, MPI defines a set of collective operations
for fencing processes, and for distributing and reducing data across a communicator.

The nature of collective communication drops the need for tag values at the call level as well
as explicit rank specifications in some cases. Designing a communicator setup and its groups can
be considered a topic on its own [Forl5, chapter 6]. For every collective call but MPI_Barrier,
MPI gives no guarantee for synchronization with other processes of the communicator. A
return from any such call only indicates readiness to use or reuse the data at the given memory
locations.

As the MPI standard document refrains from imposing architectural details on an implemen-
tation, terms like posting being used inside of advice sections can be considered as practical
implications of designing a communication protocol satisfying the requirements of MPI. One
such example demonstrating the suggestion of best-practices in two-sided communication can
be found in [Forlh, section 3.5, p. 40]:

synchronous send: The sender sends a request-to-send message. The receiver
stores this request. When a matching receive is posted, the receiver sends back a
permission-to-send message, and the sender now sends the message.

10

2.3. ONE-SIDED COMMUNICATION

Considering a third party managing the com-
municator’s state across an arbitrary number of

Sender Comm Receiver

. T T T
processes, then a call sequence for a synchroniz- |

| |
ing MPI_Send command on a delayed receiver can : :
| |
| |

be derived as shown by the sequence diagram : e to-seng
of figure 2.1. The amount of synchronization R

exchange on a per-call basis and the additional

latency leads to the idea of one-sided communi-
cation.

€ post-receive Jl

- - - | _________
2.3. One-sided communication Sermission-to-send |

|
One-sided communication [Forl5, chapter 11] — | '“essa?e

or MPI Remote Memory Access (MPI RMA) — | |
is supposed to code-wise disengage the receiver

from performing a handshake for individual com-
munication actions caused by a sender as demon-
strated by figure 2.1. Instead, processes request
one or multiple window objects per communicator, with those that serve as a receiver having a
range of memory attached. Windows can be classified by their memory flavor, depending on
their creating call. With all setup calls being collective, these are the standardized flavors:

Figure 2.1.: MPI_Recv delayed in the syn-
chronous mode.

o Static, preallocated, by using MPI_Win_create [Forl5, section 11.2.1]: The user is expected
to allocate a suitable amount of memory in advance, letting the MPI implementation
know its starting address. A null-value is permitted, disqualifying the caller as a receiver
process over this window. The memory size remains fixed during the window’s lifetime.

o Static, by using MPI_Win_allocate [Forl5, section 11.2.2]: The MPI implementation covers
the allocation of the required amount of memory by itself, returning the resulting base
address to the user.

o Dynamic, by using MPI_Win_create_dynamic [Forl5, section 11.2.4]: Skipping any initial
memory allocation, the user dynamically attaches memory to the window using MPI_-
Win_attach, or conversely detaches memory by calling MPI_Win_detach.

o Shared, by using MPI_Win_allocate_shared [Forl5, section 11.2.3]: A setup that maps
the window memory of each process into the local memory address space of every other
process. By using MPI_Win_shared_query, the user obtains the address of the locally
mapped window memory of a given process rank.

The choice of an actual flavor depends on the user’s requirements: For use cases that may
demand a growing window memory at some point in the lifetime, a user chooses the dynamic
over a static flavor. Either way, MPI allows an implementation to choose from two different
memory models for publishing remotely accessible window memory: the unified model and the
separate model [Forlb, section 11.4].

In the unified memory model, the exposed window memory of a process is the same as
the locally accessible one. In the separate memory model, this is not the case: The owning
process locally accesses only a local copy, expecting a call to MPI_Win_sync to synchronize

11

CHAPTER 2. MPI ONE-SIDED COMMUNICATION

Process 1 Process 2 Process 1 Process 2
I I ! T
| | | |
MPI_Win_create | MPI_Win_create |
| | | |
| i | | window lock
g indow sync. | - - Window_lock >

|
| window

|

|

comm. |
r\\\\\\\§\\\§“1

L window unloc

r(— ———————— » |
. . | MPI_Win_free |

window

MPI_Win_free

Figure 2.2.: MPI RMA target synchronization: active (left), passive (right).

both the local and public copy. By performing a call to MPI_Win_get_attr, asking for the
value of the MPT_WIN_MODEL attribute of a given window, the user can write portable programs
by taking either mode into account, namely enforcing explicit synchronization of the two
memory locations. The reason for having two separate memory models is justified not only by
backward compatibility but also by allowing implementations to better exploit certain hardware
constraints, such as a significant difference with respect to performance of either location.

In MPI RMA, communication epochs between processes are synchronized by two different
modes, active and passive target synchronization [Forlb, section 11.5], with the active synchro-
nization providing a simplified fencing mechanism and a more flexible one called general active
target synchronization (GATS). A model of the corresponding message exchange is given by
figure 2.2: In the active mode, every involved party actively takes part in synchronization calls
but not necessarily in communication calls, whereas in the passive mode, a target shows no
active participation in any request at all.

In the following sections, aspects of MPI RMA communication and synchronization are
presented in detail, as well as the individual target synchronization modes.

2.3.1. Communication

For the decoupling of communication and synchronization of one-sided MPI communication,
when referring to communication in the following of the thesis, the given set of communication
types is generally addressed:

o FEaxplicit point-to-point comm.: This set consists of MPI_Get and MPI_Put, connecting a
single sender to a single receiver [Forl5, section 11.3.1, 11.3.2].

o Implicit point-to-point comm.: When using a shared-flavor window and obtaining a local
memory mapping for a remote process, any access to that memory region is considered
communication.

o Accumulate comm.: When using explicit communication, any local operation on received

12

2.3. ONE-SIDED COMMUNICATION

comim.

posted/
started

comi.

(a) Fence comm.-sync. FSM with flags MPI_MODE_ - (b) GATS comm.-sync. FSM.
NOPRECEDE (NP) and MPI_MODE_NOSUCCEED (NS).

Figure 2.3.

or submitted data requires synchronization in advance. Primitive tasks, e. g. calculating
a sum over all input values at some target process, then require intermediate input
buffering and synchronization before the clearance to perform this operation. Accumulate
methods help saving this overhead by combining transfer of data and doing an in-place,
possibly atomic operation at the desired site. Such methods include, without limitation:
MPI_Accumulate, MPI_Fetch_and_op or MPI_Compare_and_swap [Forl5, section 11.3.4].

As far as applicable, communication also refers to any request-based derivatives of the men-
tioned methods, such as MPI_Rget. It is crucial to note that request-based communication is only
legal for accessing processes in the passive target synchronization mode [Forl5, section 11.3.5].

2.3.2. Synchronization

Calls to synchronization methods define the limits of sequential epochs. For any synchronization
mode, the given MPI window is stateful and thus its modes can be modeled by a finite-state
machine (FSM) or a pushdown automaton (PDA) with a limited set of legal transitions between
states, for example holding a lock or awaiting communication or synchronization, with the
respective set of MPI RMA methods acting as the input alphabet.

Synchronization: Fences

The simplest but also broadest approach to one-sided synchronization is known as fencing
[Forl5, section 11.5.1]. Communication must be preceded and synchronized by a call to MPI_-
win_fence, and every process attached to the given window must reach the same call belonging
to this window in its local execution path before the process may continue. In addition to the
generic use of MPI_Win_fence, one or more flags may be passed as an argument to this call.
Among implementation-specific flags, the MPI standard defines two flags in particular that
impose further restrictions:

13

CHAPTER 2. MPI ONE-SIDED COMMUNICATION

Figure 2.4.: The RMA PTS FSM.

e MPI_MODE_NOPRECEDE: This flag indicates that the previous epoch, if given at all, has not
issued any communication calls that await synchronization.

e MPI_MODE_NOSUCCEED: With this flag being set, the following epoch, if given at all, will not
issue any communication.

These flags may be combined over a bitwise OR-operation, and these flags must be set
equivalently at every call to MPI_Win_fence that terminates the same epoch at each process
[Forl5, section 11.5.5]. The resulting state diagram from the perspective of a single process is
shown by figure 2.3a.

Synchronization: GATS

In contrast to fences, with respect to the set of processes involved, GATS allows a higher
granularity, making use of MPI groups [Forl5, section 6.2.1]. Under a given window, a process
either initializes an access epoch (via MPI_Win_start) that may issue communication to any of
the targets of the specified group, or it may also enter an exposure epoch (via MPI_Win_post)
that simply serves as a target for any process of the provided group, or act both as an accessing
and a target process [Forl5, section 11.5.2]. To finish either epoch, processes have to invoke
synchronization calls. The local perspective of a state diagram is demonstrated by figure 2.3b.

Synchronization: Passive Target Synchronization

In MPI RMA passive target synchronization (PTS), processes either enter the access epoch by
using a call to MPI_Win_lock, or no epoch at all, serving as a passive target without any actions
beyond creating and cleaning up the window object [Forl5, section 11.5.3]. For the time of its
access epoch, the accessing process is supposed to acquire locks — shared or exclusive ones — to
one or multiple target processes, preceding any communication to them.

While holding a lock, the accessing process is entitled to call MPI_Win_flush or any of its
variants to wait for any outstanding communication request to finish locally, or both locally
and at any specified target process [Forl5, section 11.5.4]. The state diagram — split into the
use of MPI_Win_lock and MPI_Win_lock all — is given by figure 2.4.

14

2.3. ONE-SIDED COMMUNICATION

2.3.3. Correctness

From a more formal perspective, [HDT 15, section 3.1] specifies additional correctness criteria
for using MPI RMA beyond the depictions of figure 2.3a, figure 2.3b (p. 13) or figure 2.4 (p.

14). In a shortened manner, these criteria include:

e Locks: Every process acquiring a lock must eventually release this lock, and every release
of a lock is following the acquisition of this lock. A process must not attempt to acquire

a lock to a target it already holds.

e Fences: For two or more processes being synchronized over a fence, each process must

reach the fence.

e Erposure: A window being actively exposed must not be locked at the same time.

e Passive mode: PTS methods, namely MPI_Win_flush and its siblings, must be called only

after acquiring the respective lock, with no fence between.

o Access: For every case, the process issuing communication must have entered an access
epoch. If the most recent synchronization was a call to MPI_Win_fence — without the
MPI_MODE_NOSUCCEED flag being set —, then the window has entered an access epoch.

Actions

This thesis adopts the concept of virtual actions by [HDTT15].
A virtual action has no code-wise representation but merely
describes the local effect at a target process, induced by some
remote action of another process targeting the respective one,
and solely performed by internal mechanisms of the MPI imple-
mentation. Under the unified memory model, such an action
may then copy locally visible data, or cause modifications to
become locally visible in an instant. Under the separate memory
model, the effect becomes visible in the public window memory
only, and thus for any other process but the target until locally
synchronizing the copies.

In the example given by figure 2.5, process A entered the access
epoch by locking process B, a purely passive participant for
the time of being locked. The call to MPI_Get by A towards B
requests data from the memory exposed by B’s window. The
MPI implementation dispatches the virtual action transparently
at B and copies data from the requested frame into the returning
submission buffer, finally reaching A.

Process A Process B

|) |
L _ _MPLWin lock

MPI Get

virtual action

Figure 2.5.: A virtual action.

Moreover, the following references to MPI RMA action types will be made in this thesis, not

including any kind of synchronization:

e Local actions: Local read or write operations on memory that is exposed by a window.

e Remote actions: Communication calls, or operations on locally-mapped remote window
memory (shared flavor), from the perspective of the invoking process, with a virtual

action to be dispatched at the target.

15

CHAPTER 2. MPI ONE-SIDED COMMUNICATION

e Buffer actions: Remote or local actions on memory that serves as a buffer for a preceding
remote action.

Ordering

Given any two actions a; and ae, if a; is guaranteed to always have returned before ay starts,
then a; is in order before as. In a single-threaded process, ordering of a; before as is given
if a1 is scheduled before as. For multi-threaded or multi-process environments, ordering two
actions requires additional measurements for enforcement. For example, in MPI, MPI_Barrier
provides a communicator-wide method to enforce ordering actions before and after that call
[Forlb, section 5.3].

Consistency

Given any two actions a; and as, with a; ordered before as, consistency is given if ao is
guaranteed to always observe the memory effects triggered by ai. Local consistency refers to
intra-process consistency whereas remote consistency refers to actions taking place at two or
more different processes targeting effects on the same memory location. Inspecting the set of
synchronization calls, these calls provide guarantees to consistency at different scopes.

Synchronization

When using MPI RMA, ordering actions does not imply consistency between two ordered
actions. A programmer not familiar with MPI RMA to the necessary degree may write code
as given by the left snippet of listing 2.1. Despite ordering the call to MPI_Get before using the
returned data — possibly a non-zero value by guarantee — the condition may or may not be met
at the time of evaluation. Without a call to the applicable synchronization method — as shown
by the code snippet to the right — such code will not ensure local consistency.

1 uint64_t data = 0; ; uintéa_t data = 0;
2
MPI_Get(&data, ..., win);
3 MPI_Get(&data, ..., win); 3 (.e (&data v.un)
X 4 MPI_Win_fence(..., win);
5
5 if (data > 0
5 if () { 6 if (data > 0) {
6 // ...
. } 7 // ...
8 }

Listing 2.1: Non-synchronized ordering (left), fence-synchronized ordering (right).

By ordering action a; before action as, and given an appropriate synchronization call s,
with a; being ordered before s, and s before as, a; and as are in synchronized order. To
further examine the meaning of appropriate, an overview of MPI RMA synchronization-related
methods and methods with respective behavior in that context is provided by table 2.1. The
column Ordering describes any non-local ordering effects, assuming an otherwise correct use;
the column Consistency names consistency enactments when returning from the call. For this
thesis, synchronized actions refers to two actions that fall into different, non-concurrent epochs,
or two actions having a suitable MPI_Win_flush call ordered between.

16

2.3. ONE-SIDED COMMUNICATION

Call Mode | Ordering Consistency
MPI_Barrier generic | communicator-wide -
MPI_Win_free generic | window-wide -
MPI_Win_fence fencing | window-wide window-wide
MPI_Win_complete GATS |- local
MPI_Win_post GATS |- -
MPI_Win_start GATS | by lazily waiting for a matching | -
MPI_Win_post
MPI_Win_wait GATS | by waiting for a group-wide MPI_- | local
Win_complete
request-based comm. PTS |- local (after a wait)
MPI_Win_flush PTS |- selectively local
and remote
MPI_Win_flush_all PTS |- local, remote
MPI_Win_flush_local PTS |- selectively local
MPI_Win_flush_local_all | PTS |- local
MPI_Win_lock PTS | by waiting for release of an ex- | -
clusive lock
MPI_Win_lock_all PTS | by waiting for releases of all ex- | -
clusive locks
MPI_Win_sync PTS |- local memory
copies (separate
memory model)
MPI_Win_unlock PTS |- local, remote
MPI_Win_unlock_all PTS |- local, remote

Table 2.1.: MPI RMA synchronization methods.

Conflicts

[DBB*16] provides an overview of conflicting and non-conflicting actions with respect to the
targeted window memory region and the memory model. In general, two non-synchronized

actions are in conflict if

e under either memory model, at least one is non-local and at least one is writing, without
both being accumulate actions, and their memory operation ranges overlap or

o under the separate memory model, both perform a write and exactly one is local and the

other one virtual.

By this thesis, the conflict definition is extended to non-synchronized buffer actions: A remote
action eventually writes into a local buffer, and the buffer action attempts to read this memory
(shown by listing 2.1, p. 16), or inversely, the remote action eventually reads the buffer for
transmission and a buffer action writes to this location.

The natural consequence of any such conflict is a data race.

17

CHAPTER 2. MPI ONE-SIDED COMMUNICATION

2.4. Static analysis of MPI RMA

In this chapter, a conceptual presentation of MPI one-sided communication was given. This
information yields a set of questions that turn out to be suitable candidates for a static analysis,
helping a developer to find violations in application code before execution. These candidates
include:

o Intra-path validation: Given the different window synchronization modes, is there any
path that may lead to an illegal sequence of MPT RMA calls? Given the different window
flavors, is there any call to an MPI RMA method that is not applicable to that flavor?

o Inter-path validation: Is there any path that may have a mismatching number or order of
barriers and fences, and thus may result in a deadlock? Is there a mismatch of flags that
are expected to be set to the same value for any path and a given epoch of the window?

o Inter-rank validation: Considering the use of MPI_Comm_rank and branching code sections
over rank conditions, is there code without a counterpart with respect to certain window
modes?

o Conflict analysis: Are there any obvious cases leading to conflicts, notably conflicts in
the context of buffer actions or the separate memory model?

18

3. Static analysis and LLVM

Inspecting MPI communication in the previous chapter, this chapter is dedicated to the topics
of static analysis, the LLVM environment, a tool named Phasar and its use of the IFDS problem
solution algorithm, as a basic understanding of each topic is required to comprehend how this
thesis performs a static analysis on MPI RMA program code.

Software analysis roughly falls into two categories: static and dynamic analysis. The
distinction is made by the requirement to have the software being executed (dynamic) or not
(static). Nonetheless, analysis software may combine characteristics of both worlds: One such
example is Valgrind, working as a dynamic analysis framework by combining an on-the-fly,
section-wise disassembly for a static analysis and instrumentation at the run time of the
program [NSO07].

Neither analysis mode may overcome the other one: A dynamic analysis is limited to actually
executed code paths, thus depending on the program’s input. Therefore, dynamic analysis
serves the need to acquire run time information such as monitoring resource allocation, finding
hot code paths and profiling the lifetime for a performance analysis. Static analysis does not
suffer from being limited by actual inputs. Much more, given a query of properties to check,
without the necessary degree of context taken into account, static analysis easily ends up
working on infeasible code paths, reporting false-positives.

In the following section, aspects of static analysis are covered more thoroughly.

3.1. Static analysis

A very fundamental model of any code under analysis is the control flow graph (CFG). As
a directed graph, a node represents a list of instructions, and an edge connects that node to
any successor node. A node is said to fork or to conditionally branch if it has more than one
outgoing edge. A merge node describes a node having more than one incoming edge. In general,
for this thesis, any intra-procedural CFG, denoted as G = (V, E, s), is expected to meet the
following criteria:

1. There is one entry point node s € V, and only one.
2. Every node v € V has at most two outgoing edges.
3. The CFG terminates: For all nodes T' < V that have no successor, every walk starts at s

and ends at some node t € T', or there is no walk for F = {}.

From a practical view, a software developer is expected to carefully use goto or jmp instruc-
tions as they allow putting a CFG into an infinite loop, violating the termination property.
Furthermore, constructing the CFG may terminate prematurely if the target of an edge cannot

19

CHAPTER 3. STATIC ANALYSIS AND LLVM

be determined statically.

Considering a node n, forking over a condition ¢ into a true-case-successor node m, and into
a false-case-successor my., for each state hitting this fork in a graph traversal, a path-sensitive
analysis will now maintain two new states: One for which ¢ holds, and one for which it does
not. In later chapters of this thesis, path sensitivity is shown to be handy but also costly. In
a worst-case scenario, the state space will grow exponentially to the number of conditional
branches, and grow towards infinity on the occurrence of loops [DLS02].

A static analysis performs a symbolic execution of the code if it does not rely on concrete
inputs but works on symbols possibly representing a whole class of inputs [Kin76]. The approach
of working on concrete inputs is described as concrete execution, with solutions being known
to combine both approaches, named concolic by [BCD118]. Also, it may serve an analysis
purpose to perform a backward execution [CFS09], by traversing the instruction list of a node
upwards, and over inverted edges, with its counterpart simply named forward execution.

3.2. Model checking

Among a rich set of tools for generic and specific tasks!, one application of static analysis is
model checking.

For this thesis, the terminology in the context of model checking is taken from [JM09]: Model
checking describes the systematic approach to prove properties of software. A property is a
predicate expected to be fulfilled conditionally (locally) or unconditionally (globally). A program
consists of one or multiple execution paths. Verification of a property is reached upon the proof
that every feasible execution fulfills that property, with an individual execution satisfying a
property. The safety property globally expects that no error is ever reached, otherwise the
trace defines the path leading to the error. The liveness property assumes that, eventually,
every execution satisfies a given property. Soundness of a verification procedure is given if upon
indication of safety of a program, the program can be proved for safety. If for every provably
safe program the algorithm indicates safety, then the algorithm satisfies completeness. In a
verification, if the safety property is satisfied by every execution, a program is said to be correct.
The complement of verification is falsification: The mere absence of any safety violation does
not imply correctness of the program.

Technically, properties may be expressed in different ways: At the design level of software,
the Object Constraint Language extends UML to encode properties such as invariants, pre-
and post-conditions [BBL10]. At the source code level, depending on the language, developers
can specify assertions, such as assert? in C code, with their untruthful evaluation implicitly
specifying an error. For formal systems, Hoare triples define a precondition-action-postcondition
notation of properties [Hoa69].

With a model as simple as a finite-state machine (FSM), defined by an input alphabet
3., a state set S and its initial state sg, F' € S being final states, and a transition function
6 :X xS — 5, an equivalently simple property can be tested for satisfaction by reaching a final

lef. Wikipedia — https://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis, last seen 2018-12-
03.

2assert of the C library primarily acts as a run time assertion.

20

https://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis

3.3. CONSIDERATIONS & MOTIVATION

state, with detecting violations by observing attempts to perform transitions not specified by 9.

Model checking tool techniques include automata, such as for BLast [BHIMO07], LTL or
CTL®™ specifications, for example in LTSMin [KLM*15], but also Prolog-based systems exist
[FOSM17].

3.3. Considerations & Motivation

The goal of this thesis is to perform the verification of programs in the context of the MPI
one-sided communication API using static analysis for questions that have arisen in section 2.4.
Therefore, before advancing to the next section, it is worth examining the environment of
MPI for technical aspects with respect to static analysis, and to make expectations explicit to
potentially address a wide audience of developers.

For programming languages, first-class citizens of the MPI specification are C and Fortran.
By addressing C, its taller sibling C++ is following closely, and possibly other, header-compatible
languages as well®>. Taking C, C++ and Fortran into account, syntax-wise, every language
has undergone an evolution over time, with future specifications to come*. Languages that
enjoy intermediate bindings to MPI are not primarily focused by this thesis. Preferably, when
building a solution to perform verification of MPI RMA properties by a static analysis,

1. it does not depend on code-invasive preparations,

2. it works on C, C++ and Fortran program code,

3. for each language, it works on every non-archaic specification,
4

. it should not address any language instance itself but work on a normalized, cross-language
representation,

ot

and this representation, by default, does not depend on any hardware platform and

6. it can still link analysis results of that representation to single lines of the original source
code.

When considering a representation that is independent of any programming language, it is
worth inspecting the targets that compilers emit code for: CPU-specific or CPU-neutral.

A CPU-specific binary representation violates property 5, as it is desirable not to work
against platform-specific properties as well as vendor-specific extensions, and also for the reason
of decreased portability when cross-compiling is not an option. CPU-neutral representations
include formats such as Java bytecode or the Common Language Infrastructure, formally known
as ECMA-335. Unfortunately, the language support in either environment for properties 2 and
3 turned out to be poor.

After taking various alternatives into consideration, the choice for the LLVM environment
was made as it promises to seamlessly fulfill all of the desired properties.

3examples include: Objective-C and Objective-C++
4See ISO/IEC doc. no. N4778 for C++20.

21

CHAPTER 3. STATIC ANALYSIS AND LLVM

3.4. LLVM

The Low Level Virtual Machine (LLVM) environment comprises a set of compilation-related
tools, specifications and development libraries that aim to connect various programming
languages to arbitrary execution platforms, providing a middleware for toolchain developers to
work with.

LLVM dates back to 2002 as a graduation project by C. Lattner [Lat02], with its permissive
license attracting a wide range of commercial contributors such as Apple Inc. or the NVIDIA
Corporation®. As of today, in the open-source compiler community, together with the GNU
Compiler Collection (GCC), the C and C++ compilers by LLVM have become major players
[s.r18].

3.4.1. Architecture

To understand the benefits of using LLVM in this thesis, a short description of the architecture
of LLVM is given first.

There are three major stages when compiling source code in the classical sense, also shown
by figure 3.1:

1. A front end: For a given programming language, a front end compiler takes care of
language-specific tasks such as preprocessing, tokenization, constructing an abstract
syntax tree (AST) and emitting a new representation. Instead of being coupled to a
specific, maybe proprietary representation, the emitted code is processable by the LLVM
middleware.

2. The LLVM middleware: LLVM specifies an intermediate representation (IR)%, a RISC-like
assembly language with static single assignment (SSA) characteristics. Software in the
IR stage can be widely processed for different tasks.

3. A back end: Out of the IR, the back end component emits a target-specific representation.
This includes CPU platforms, but also soft targets have been shown to be feasible [Zak11].

LLVM is known for its C/C++ compiler named Clang. For Fortran, there is Flang”, maintained
by NVIDIA and not directly associated to the canonical LLVM tool set. From a user’s
perspective, it is not required to manually go through these stages, as the compiler bundles
provide driver programs that assist in maintaining a classical compile-and-link build setup.

For its interesting properties and the fitting of a static analysis, the middleware deserves
more attention. In general, the IR is encoded by two competing formats: a binary or bitcode
representation (.bc files) and a human-readable representation (.11 files). Both formats encode
the same information and can be used interchangeably by most of the LLVM tools and the
library. While the bitcode representation benefits from a much better degree of compression,
when referring to the IR in this thesis, the human-readable format is used for any demonstration.

The LLVM tool suite contains a couple of interesting programs that are presented briefly:

SLILVM Users — https://1lvm.org/Users.html, last seen 2018-12-04.
SLLVM Language Reference Manual — https://1lvm.org/docs/LangRef.html, last seen 2018-12-04.
"Flang on GitHub: https://github.com/flang- compiler/flang, last seen 2018-12-04.

22

https://llvm.org/Users.html
https://llvm.org/docs/LangRef.html
https://github.com/flang-compiler/flang

3.4. LLVM

Front ends Low Level Virtual Machine Back ends
C ; » ,
) . RS i x86
C ++ : a nalysis : : i
, . ; ARM
Fortran ; |::> Transformation |::> P
, RN | WASM
L Rust) Execution L \

Figure 3.1.: Conceptual architecture of LLVM.

1lc. The compiler for translating IR files into the representation of the requested back
end.

11i. Any IR file can be executed, and 11i performs this task by either directly interpreting
the IR file, or by doing a just-in-time compilation. As linking to external libraries has
not taken place at this stage, such libraries must be loaded explicitly for this tool to run
a respective IR file.

1lvm-link. On the intent to pack multiple IR files together — as they result from translating
individual source files —, 1lvm-link acts as the linker. This way, multiple IR module files
can be melted into single one, allowing any IR analysis to work on a wider scope or even
the complete program at the IR level.

opt. The opt-tool allows a wide range of analysis, transformation and optimization
operations on a given IR file. An optimization pass may be predefined (for example by
-0x flags) or selected more granularly. A tool developer can also choose to create a plug-in
for opt for both analysis and transformation of the IR®. Choosing to write a plug-in of
opt over a stand-alone tool enables the user to better combine the use of opt — or its
driver — with other available options, likely making the toolchain more efficient.

Let the following example be given, depicted by figure 3.2: A C source code base consists of
two files, main.c and mod.c. While main.c contains the main entry point, plenty of its logic is
located in mod.c. In the most basic attempt to create an executable program exec, the user
invokes the driver of the compiler that takes care of compiling, assembling and linking. For
LLVM and Clang, the clang program acts as the mentioned driver. With LLVM, the toolchain
can be decomposed comfortably: With providing the appropriate flags, the C files will be
translated to individual IR files. If desired, the two components of the example can be linked
at the LLVM stage already (program.11), allowing the user to make use of any LLVM-based
tool for either scope of the program composition.

In the context of a verification tool, this renders two handy features: Considering a large
code base of hundreds of files, analyzing the IR of a single code module file possibly fails to

8Writing an LLVM pass — https://1lvm.org/docs/WritingAnLLVMPass . html, last seen 2018-12-05.

23

https://llvm.org/docs/WritingAnLLVMPass.html

CHAPTER 3. STATIC ANALYSIS AND LLVM

AN AN

main mod

% . ~~~vc1ang -emit-1lvm -S

™ AN

e |

ﬁ e LM - LANK
AN

L

program

) Y O

main mod

clang ﬁ 1d Q program
N
1100

exec

Figure 3.2.: An LLVM toolchain example.

fulfill the completeness of the analysis. On the other hand, the less the program is bloated by
unrelated code sections the less time is to be consumed by the tool. LLVM allows the user
to easily compose the unit under analysis, balancing these aspects within the limits of the
program’s structure.

3.4.2. Anatomy of the IR

For a basic understanding on how to work with the IR, a short introduction is given by the
example of listing 3.2 that has been generated from the C++ code shown by listing 3.1, ignoring
any MPI correctness for the sake of demonstration.

An IR file unit is called a module that contains multiple sections, shortly described in a
line-wise manner by dissecting listing 3.2 (p. 26):
e 1,2: The module has been created from a C++ file named demo. cpp.

e 3,4: Derived from settings or from an automatic host detection, the front end compiler
specified module attributes regarding the target architecture and memory layout.

o 6: This defines a module variable (also global variable) named @window of type 132, a
signed 32-bit integer.

24

3.4. LLVM

#include <mpi.h>
MPI_Win window;

int main (int argc, char *xargv) {
int assert = 0;

if (argc > 0) {
assert = MPI_MODE_NOSUCCEED;
}

MPI_Win_fence(assert, window);

return 0;

Listing 3.1: The example source code for listing 3.2.

8 — 27: A definition of a function named @main, having two parameters (i32 and i8xx, a
pointer to a pointer to i8) and returning a value of type i32.

8: Inside a comment, the compiler has given some hints on attributes of the function,
such as norecurse for indicating the absence of recursion.

10,12: Here, a local variable of type 132 and name or symbol %3 has been declared, getting
its initial value set to 0; more precisely, store requests 0 to be written at the address of

%3.

14 — 16: The value of %4 is loaded into %7, followed by a signed-greater-than comparison
(icmp sgt) against 0. Its Boolean result (in %8, type il) is then used in a conditional
branch. In the true-case, the code is supposed to continue at what follows after <label>:9,
otherwise after <label>:10.

10 — 16,18 — 20,22 — 26: Each of that block of lines describes a basic block (BB). A
BB possibly has predecessors (hinted by a preds-comment) and ends on a terminator
instruction such as a branch instruction or the return from the function.

19: The constant 16384 is possibly an implementation-specific value for MPI_MODE._-
NOSUCCEED.

20: This is an unconditional branch instruction, jumping to <label>:10.

25: A call to the declared method @MPI_Win_fence, providing two arguments (%11, %12),
and its returned value described by %13. The whole line is a call site.

26: The function always returns 0. With respect to the call site in line 25, this instruction
is its corresponding return site.

29: The call in line 25 leads to a function that is not defined by the given module. Instead,
solely its declaration is made public, thus awaiting linking or dynamic loading at a later
stage.

31 — 34: If the compiler was run with the request to include debugging symbols, the
symbols are found amended to the code. For example, in line 19, the metadata node 'dbg
1109 links the instruction to metadata in line 34. It contains the information that the
originating line in the source code file was some line 9 of scope !110 (function main) that
belongs to file 13 (demo.cpp).

25

CHAPTER 3. STATIC ANALYSIS AND LLVM

1 ; ModuleID = 'demo.cpp'

2 source_filename = "demo.cpp"

3 target datalayout = "e-m:e-i64:64-180:128-n8:16:32:64-5128"
4 target triple = "x86_64-pc-linux-gnu"

5

6 @window = global i32 0, align 4, !dbg '0

7

8 ; Function Attrs: noinline norecurse optnone uwtable
9 define i32 @main(i32, i8+x) #0 !dbg '93 {

10 %3 = alloca i32, align 4

11 ;o[]

12 store 132 0, i32x %3, align 4

13 ;o[]

14 %7 = load i32, i32x %4, align 4, !dbg !105

15 %8 = icmp sgt i32 %7, 0, !dbg !107

16 br il %8, label %9, label %10, !dbg !108

o°
N

18 ; <label>:9: ; preds =
19 store 132 16384, 132 %6, align 4, !dbg !109
20 br label %10, !dbg !111

I
o
N
o
R

22 ; <label>:10: ; preds
23 %11 = load i32, 132 %6, align 4, !'dbg !112

load i32, i32* @window, align 4, !dbg !113

25 %13 = call i32 @VPI_Win_fence(i32 %11, i32 %12), !dbg '114
26 ret i32 0, 'dbg !115

V)
=
o°
iy
N
1]

29 declare 132 @VMPI_Win_fence(i32, 132) #2

31 13 = IDIFile(filename: "demo.cpp", directory: "...")
32 ;[]
33 1110 = distinct !DILexicalBlock(scope: !106, file: !3, line: 8, column: 17)

34 1109

IDILocation(line: 9, column: 12, scope: !110)

Listing 3.2: LLVM IR of the source code of listing 3.1.

The RISC’ish nature of the IR specification can be identified by the requirement to always
explicitly fetch values from a location (the load instructions), as well as explicitly doing write-
backs (the store instructions). For the property of SSA, no value identifier must ever be
reassigned.

3.4.3. Tool development

LLVM ships a development kit that it is designed to work on the IR programmatically and at
full scale. When not using any third-party bindings or the C interface provided by LLVM, its
use requires a bit of familiarity with C++.

Essentially, a call to 1lvm: :parseIRFile parses any provided IR file and performs an object-
oriented layout of that code in memory (the IR tree). Thus, its entity-relationship diagram of
classes shows its close relation to the file layout. A trimmed diagram, showing essential classes
and relations is given by figure 3.3: Out of 1lvm: :BasicBlock and 1lvm: :Instruction, for some
given 1lvm: :Function, an intra-procedural CFG can be modeled.

26

3.5. PHASAR

3.5. Phasar

Phasar? (also written PhASAR) is an example
of software developed on top of LLVM. With
its first commits to the code repository dat-
ing back not earlier than 2017, and currently
under active development by the Paderborn
University, it promotes itself as a static analy-

sis framework [SHB19]. At the time of writing, entry st . .
. . block irst instruction / terminator
it requires LLVM v5.0. 1 i

A

1lvm: :Module H llvm::GlobalVariable

llvm: :Function

¥i

1.*

It acts both as a framework that enables 11vm: :BasicBlock @ ———{ 11ym: : Tnstruction
developers to write plug-ins (similar to opt) = =
or — as for this thesis — provides all necessary I '
libraries to be integrated into a custom stand- successors Llom: Branchinet
alone solution. An integration of a Phasar

data-flow problem solution pass into the link
phase of LLVM is currently under develop- Figure 3.3.: LLVM IR class layout.
ment!?.

Roughly, in order to solve a data-flow problem, Phasar performs the following steps:

1. For any given LLVM module, on a per-function basis, it performs a points-to analysis for
a later attempt to resolve function pointers to their actual targets.

2. It creates a CFG from the module by the desired property: intra-procedural, inter-
procedural or backwards inter-procedural.

3. Lastly, it solves the data-flow problem that has been specified by the user over the CFG.

Considering these steps essential for writing certain types of a static analysis, the developer
is spared from implementing these tasks manually, permitting to focus on the actual data-flow
problem. The next section describes the topic of data-flow problems in detail.

3.6. Data-flow problems

A general class of data-flow problems as described by T. Reps et al. consists of a CFG, a finite
set D of so-called facts, a distributive operator (also meet or merge operator: the union or
intersection operation) and a data-flow map function (or simply flow function) that maps a
fact state S; to another fact state Sy at an edge of the CFG [RHS95]. This fact state is a map
of each fact to its liveliness, i. e. D — {T, L}. From now on, when referring to the node of a
CFG, it is no longer meant to be a basic block (BB) but a single instruction of the IR.

By the analysis of a node of the CFG, the flow function may turn a fact alive, as much as
it may Kkill the fact again at a later point in the CFG. A model like this is called a Gen-Kill
problem. A very simple instance of this problem is the analysis for uninitialized variables.

9Phasar.org — A LLVM-based static analysis framework — https://phasar.org/, last seen 2018-12-05.
YPhasar.org — Using PhASAR as a LLVM full-LTO pass: https://phasar.org/2018/12/20/
using-phasar-as-a-1llvm- full-lto-pass/, last seen 2019-01-20.

27

https://phasar.org/
https://phasar.org/2018/12/20/using-phasar-as-a-llvm-full-lto-pass/
https://phasar.org/2018/12/20/using-phasar-as-a-llvm-full-lto-pass/

CHAPTER 3. STATIC ANALYSIS AND LLVM

Modeling the analysis for uninitialized
variables by the definition of a data-flow \ 4
problem is presented as an example by fig- ny: int32 t a; /X
ure 3.4 on the excerpt of a CFG of a pro- -

gram with variables a, b. D represents A D

the set of uninitialized variables, written —Y

as D = {a',bT}, such that liveliness of a na: b=a+1; v X
fact represents undefinedness. The flow I ")
function is denoted by A. Assuming a pre- —Y

vious definition of b already, after leaving Na: a =0; X
node ni, the variable a has been shown to R —

be declared without a definition: A gener- v A)
ates al. Its definition occurs not earlier X X

than node ns, so by leaving this node, A
kills the fact af. A static analysis using A\ Figure 3.4.: An analysis for uninitialized variables.
identifies the use of a at node ny over its
undefinedness. The property specified by on use, every variable must be defined is violated.

For the outgoing edges of every merge node, two or more fact states need to be consumed.
To determine the fact state S; after a merge node, the meet operator) € {u, m} is applied
over all incoming fact states (S; = S;X)S;) ...). Depending on the problem, the applicable
operator needs to be determined. If the fact state of the problem can be modeled over a vector
of bits, such a problem belongs to the class of bit-vector problems, with L representing the
bitwise disjunction and m the bitwise conjunction. In its more general form using sets: L ~ U,
m=nN.

Modifying the previous example for containing a branch with the definition of a taking place
in one, and only one branch (going over node ns in figure 3.5), using the L meet operator, the
fact a will then be still alive after node ng. This way, the analysis can make use of the fact
that the previously specified property is violated when meeting over all paths.

at bt M Na: al bt
/ x b =1 H a = O ’ / x

}\ .. >\
v oX k y X X

Figure 3.5.: Uninitialized variables in a meet-scenario.

For any non-trivial program, there usually is not just a single CFG but a set of CFGs,
each one representing a non-inlined procedure. In the environment of inter-procedural CFGs,
data-flow problems may be expressed as an IFDS problem, presented by the next subsection.

28

3.6. DATA-FLOW PROBLEMS

main

v

r = SomeMethod () f-.__

SomeMethod

¢ /,,—,»” A""u_"[return o,-]A"~~~-~.A.._A,[return 1;]

[s = SomeMethod();]’" T

—— regular
[...]‘ ----» call-to-start
- call-to-return-site
¢ ------- » exit-to-return-site

Figure 3.6.: An inter-procedural CFG for IFDS problems.

3.6.1. IFDS problems

T. Reps et al. introduce an algorithm to solve data-flow problems for the class of inter-procedural,
finite, distributive, subset problems (IFDS problems) [RHS95]. Instead of a single CFG, this
class is extended to the super-set of all available CFGs of the program. Given two CFGs
Go = (Vu, B4,y 84) and Gy = (W3, Ey, sp), with ¢, € V,, being a call site of G, to the procedure
modeled by Gy, and r, € V, being a return site of ¢4, then the super-set CFG

G* = (V* :VGU‘/va* :EaUEbUEI,S*)

contains all CFGs, and for each intra-procedural call three additional edge types, found in Ej:

1. A call-to-start edge from ¢, to sp.

2. One or more exit-to-return-site edges, one for each return node of V4 to r4. In the
publication, a CFG is expected to have one unique exit node. Since the case of having
multiple exit nodes can be modeled equivalently by virtually inserting one super-exit
node with edges incoming from each exit node, this constraint is dropped here.

3. A distinct call-to-return-site edge from ¢, to 4.

In an example visualized by figure 3.6, there is a CFG for a method main that carries the
program’s entry point s*. There exist two calls to a method named SomeMethod that branches
into two different exit nodes.

A flow function A will also be applied to these new types of edges. This way, a property can
be tested when meeting over all valid paths, i. e. after properly returning from any call.

The proposed algorithm, the Tabulation Algorithm, calculates fact liveliness as a graph
reachability problem. First, besides the problem-specific facts, D is enriched by a globally live
fact: the zero or null fact, denoted by L; every flow function preserves this fact. Considering
two nodes {ni,ns} € V* with e = (n1,n2) € E*, A\¢ : Sy, — Sh,, A falls into one of these

29

CHAPTER 3. STATIC ANALYSIS AND LLVM

types while | ¢ B:

Name ‘ Definition
identity AS.S
generator (of facts A) | AS.Su A
killer (of facts B) AS.S — B

generate A, kill B AS(S—B)u A

The exploded super-graph

G* = (V¥ E¥)
V# = V* x D, the node-fact nodes
E# = {<m7d1> - <na d2>|6 = (mvn) € E*’ >\e y1e1ds d2 for dl}

is the graph to be constructed by the Tabulation Algorithm. The very initial state of facts
alive is predefined: Sg« = {L}. Describing the algorithm prosaically gives a sufficiently good
idea of the procedure:

G* acts as the trace-graph to store information on the liveliness state per fact at each node
in V#, with E# describing the journey of every fact across reachable nodes over its lifetime,
but also mapping the generation of new facts (children) triggered by that fact (parent) over
some .. The algorithm terminates if either all facts have been killed (except L) or reached
the end of the CFG. While building G#, choosing the next available fact to be processed by a
flow function, the choice where to continue is possibly subject to a scheduling mechanism. For
a developer implementing a flow function for some given edge, this has the following practical
implications: Given a fact to evaluate in a flow function, one must not rely on any assumption

o regarding the progress of the reachability analysis of the parent, any sibling or any child
fact,

o regarding the order of facts completing the reachability analysis,

o regarding the schedule of exploration given conditional branches and

o regarding the preemption of its own processing throughout the graph.

In a worst-case scenario, the number of steps to finish a finite set of facts is O(|E| - |D|?).

3.6.2. Implementation of IFDS problems in Phasar

In Phasar, the implementation of the Tabulation Algorithm bases on the work of [NLR10]
that proposes some modifications to the original algorithm, most notably improvements to
the required space when performing the analysis, to the modeling of exit-to-return edges and
considerations when working in an SSA environment or on polymorphic facts.

The meet operator is chosen to be Li. Although Phasar attempts to implement the algorithm
without being tightly coupled to the LLVM IR, this thesis does not make any consideration
beyond that.

Any IFDS problem is expected to be expressed as a sub-class of psr::DefaultIFDSTabulation-
Problem, using a type templatization:

30

3.6. DATA-FLOW PROBLEMS

e N. The type of the CFG nodes.

e D. The type of facts in D.

e M. The type of the CFG instances.

e I. The type of the CFG, such as a backward or forward CFG.

Thus, for LLVM, the declaration shown by listing 3.3 is the default way to model an
IFDS problem: The node-granularity is set to the instruction level, facts are of type 1lvm: : Valuex!!,
and the inter-procedural forward CFG (psr::LLVMBasedICFG) consists of CFGs of functions of
all modules that are known to Phasar.

1 class IFDSTabulationProblem :

2 public psr::DefaultIFDSTabulationProblem<
3 const llvm::Instructionx*

4 , const 1lvm::Valuex

5 , const llvm::Functionx*

6 , psr::LLVMBasedICFG&

7

Listing 3.3: An IFDS problem type declaration for LLVM in Phasar.

In Phasar, a flow function is an object, instantiated by a class with the abstract base class
psr::FlowFunction, detailed by listing 3.4.

1 template <typename D> class FlowFunction {

2 public:

3 virtual ~FlowFunction() = default;

4 virtual std::set<D> computeTargets(D source) = 0;
5

+

Listing 3.4: The base class of a flow function in Phasar.

The developer’s task for using Phasar is sketched as follows:

1. Implementing any required, non-trivial flow function. For some fact source given by an
invocation of computeTargets, a set — possibly empty, killing source — of facts is returned.
A parameterization of the flow function with respect to the CFG is taking place in the
next step.

2. Overwriting a limited set of methods imposed by psr::DefaultIFDSTabulationProblem,
the developer needs to deploy the desired flow function when being requested. Within the
predefined methods, context on the type of the edge and the surrounding nodes is provided.
Phasar provides some generic flow functions that supersede a manual implementation
of generic flow functions, such as psr::Gen, psr::GenIf, psr::Kill, psr::Identity and
more.

3. Specifying a fact instance that represents .

1A pointer to the base class of any IR token.

31

CHAPTER 3. STATIC ANALYSIS AND LLVM

The methods by psr::DefaultIFDSTabulationProblem that ask for deploying a flow function
are the following ones:

getNormalFlowFunction (N a, N b). A call on a regular edge between two nodes a and b.

getCallFlowFunction (N ¢, M m). The case of a call-to-start edge from a call-site node c
to some function m.

getRetFlowFunction (N ¢, Mm, N e, N r). The case of an exit-to-return edge from a
call-site node c, a return-site node r and an exit node e of method m.

getCallToRetFlowFunction (N ¢, N r, std::set<M> m). Calling for a flow function for
an edge between call-site ¢ and return-site r, returning from all function candidates m.

getSummaryFlowFunction (N c, M m). This call precedes getCallFlowFunction if there is
a call from c to a defined function m. Otherwise, this is the place to set up a flow function
that processes facts over a declared function m, such as calls to methods of the C run time
library or MPI.

initialSeeds (). In this call, the developer specifies the initial facts and their place of
generation. In the most basic case, there will be one zero fact assigned to the very first
instruction of the main procedure. Any customization of the initial fact setup must take
place here.

This interface design allows taking care of LLVM IR specificities, such as an explicit assignment
of a return value to the call-site instruction, and not its return site that is otherwise sufficient
to model stack- or register-based returning of values on common hardware architectures.

Multiple calls to getCallFlowFunction may arise from the fact that a function pointer is
located at the call-site, or by performing a call to a virtual function table. In both cases, Phasar
attempts to find suitable candidates. For this purpose, Phasar offers a set of look-up resolvers.

In the next chapter, by making use of Phasar, static analysis of MPI RMA programs is shown
to be modeled as an IFDS problem.

32

4. Static analysis of MPI RMA programs

This chapter describes the idea of how to model the testing of MPI RMA properties as sketched
by section 2.4 as an IFDS problem by making use of Phasar. It covers the general modeling of
the problem as well as individual property tests that have been enabled by this model.

Part of this thesis is an implementation of a tool to perform a static analysis at MPI RMA
code on the LLVM IR stage. This chapter describes the approach to the implementation using
Phasar (section 4.1) and the property tests that have been created (section 4.2). Details on the
setup of the tool, its precise use and analysis output are presented by appendix A.

4.1. Modeling

To address a wider range of property tests for MPI RMA code, the tool that has been
implemented for this thesis consists of two steps: One makes use of an IFDS problem model to
explore all, possibly infeasible paths to extract a broad set of MPI RMA operations. In the
second step, execution paths undergo further intra- and inter-path property tests.

4.1.1. Process pipeline

For providing a first overview over the whole analysis process, each step — whether required,
optional or skippable — is sketched as shown by the abstract CFG of figure 4.1.

[LLVM: IR parsing]—)[IR normalization]—)[[IR slicing]]—)[Phasar: CFG setup]—)[Preprocessing]

)
v

[IFDS: Preflight *]—)[IFDS: Path analysis]—)[Post-analysis *]—)[Output]

Figure 4.1.: Steps of the static analysis; optional steps in brackets, skippable steps marked by *.

In the order of operation:
1. IR parsing. The LLVM library is given a file path to some IR module to set up the object
tree of its components.

2. IR normalization. In order to make a wide set of legal IR programs work with the following
algorithms, the IR is temporarily modified, with more details given by subsection 4.1.2.

3. IR slicing. An optional step, resulting from considerations of subsection 5.2.2. If requested,
the tool attempts to cut out parts of the IR that are seemingly irrelevant.

33

CHAPTER 4. STATIC ANALYSIS OF MPI RMA PROGRAMS

4. CFG setup. The solver framework of IFDS problems expects a CFG subject to certain
properties. In this step, the IR tree is processed, including the points-to analysis to
resolve any function pointers, to lay out such a CFG. A manual adjustment on that step
is presented by subsection 4.1.2.

5. Preprocessing. While the CFG remains untouched, the tool performs an analysis over the
IR that is required to work with loops inside of an intra-procedural CFG, discussed in
detail by subsection 4.1.5.

6. Preflight. A skippable step. A computationally cheap single-fact IFDS problem that
acquires statistics on the CFG with respect to the following full-scale analysis. While not
essential, it is especially helpful to initially estimate the feasibility of the analysis of the
given IR module, and also to measure the impact by the optimization of step 3.

7. IFDS problem. The core of the static analysis, finding execution paths for MPI RMA
operations, and also doing an on-the-fly model checking. In this thesis, two different
IFDS problem models have been implemented.

8. Post-analysis. A skippable step. A set of property tests that currently do not fit into the
previous step, such as inter-path analyses. For reasons of computational complexity, this
step can be skipped.

9. Output. In the final step, the program writes user-friendly information into CSV files,
reporting any violations that have been identified by the previous two steps.

4.1.2. Preparations

From observations during the development, and also by examining the LLVM IR specification
closely, two issues require to be addressed before handling any semantic concerns of the static
analysis:

switch unrolling

Previously stated in section 3.1, a CFG is expected to consist of nodes with at most two outgoing
edges only. This naturally conflicts with the generalized branch instruction (1lvm::SwitchInst)
of the LLVM IR, allowing n successor nodes. While this is a handy feature to ergonomically
model simple C-like switch statements, it asks for more generalized algorithms in various
subsequent sections of this thesis.

Instead, in a first step examining every basic block (BB) of every function of every module,
the last instruction of a BB is tested for being a 1lvm::SwitchInst and then rewritten by a
chain of new BBs, connected by dichotomous conditional 1lvm: :BranchInst instructions.

This measurement is nowhere handling a rare edge case as Clang has been shown to emit
1lvm: :SwitchInst instructions on the occurrence of switch statements in simple C code. In
listing 4.1, there is an example of such C code and its Clang-native IR translation. The switch
statement on the right is then replaced by a jump to the equivalently unrolled version listed
below, finally leading to the default case destination (label %18).

The cost of rewriting switch instructions grows linear to the total number of the respective
destinations inside of the IR module.

34

4.1. MODELING

1 ; native version
2 switch i32 %8, label %18 [
1 switch (input) { 3 %32 L, label %9
2 case 1: /x...x*/ 4 ?32 2, label %12
5 i32 3, label %15
3 break; 6 1
4 case 2: /*...x*/ ;
? break; 8 ; unrolled version:
i ca;iezk;/*...*/ 9 %22 = icmp eq 132 %8, 1
10 br il %22, label %9, label %unroll_1
8 default: 0
9 break; 12 ; <label>:unroll_1:
10 }

13 %29 = icmp eq 132 %8, 2
14 br il %29, label %12, label %unroll_2
15 7 ...

Listing 4.1: A C switch-statement (left) and the IR representations (right).

Flang function pointers

On the first tests of MPI IR code of Fortran programs generated by Flang, Phasar always
terminated suspiciously early, leaving large portions of the IR unseen. The reason lies within a
certain pattern of invoking declared methods over function pointers, with the difference between
Clang and Flang generating the respective IR shown by listing 4.2.

1 %47 = bitcast void (...)x @mpi_get_ to void (...)

1 %25 = call i32 @MPI Get(i8+ %21, ... e .
@ (18) > call void (i8*, ...) %47(i8+ %37, ...)

Listing 4.2: A call to MPI_Get in Clang (left), Flang (right).

As Phasar otherwise terminates early when unable to identify at least one target, the problem
has been solved preliminary by sub-typing the Phasar components psr: :0TFResolver (a function
pointer look-up) and psr::LLVMBasedICFG (an inter-procedural CFG layer) to heuristically test
for declared procedures cloaked behind 1lvm: :BitCastInst casting instructions.

The modification contributes a constant number of operations to the overall costs of the
existing procedure of Phasar.

4.1.3. IFDS problem fact domain

In this section, the fact domain D is presented in detail. Technically, the problem’s signature
for Phasar is comparably simple. Shown by listing 4.3, the only difference to the default
type-templatization for LLVM is the use of a pointer to a Fact object instead of 1lvm::Value.

For Phasar using the data type std::set<D> for managing the facts of the domain, with D
being a pointer to a problem-surviving object in the heap memory, using Fact this way allows
a feature-rich, polymorphic data-flow modeling.

Currently, the tool is modeled over the following sub-types of Fact: Null, Comm, Win, WinGhost
and IntConst. The modeling was inspired by an IFDS problem model of a taint analysis for
its API-based fact generation and journey throughout the code. In a taint analysis, certain
instructions of program code take inputs by the user, and that input is considered tainted,

35

CHAPTER 4. STATIC ANALYSIS OF MPI RMA PROGRAMS

1 class IFDSTabulationProblem :

2 public psr::DefaultIFDSTabulationProblem<
3 const llvm::Instructionx

4 , Factx

5 , const llvm::Functionx

6 , psr::LLVMBasedICFG&

7

Listing 4.3: The customized IFDS problem type declaration.

generating a representing fact. For example, from the perspective of security, it is beneficial
to know whether a tainted input reaches a sensitive point without sanitation: Otherwise, the
developer faces an injection attack, well known to be carried out by SQL query strings [JKK10]
or shell commands. If a sanitation is found, the input is killed — hopefully right in time. Most
certainly, a tainted input will also touch other variables over its lifetime, passing taintedness
over and thus generating new facts that must not reach any sensitive sink point as well.

In the context of MPI RMA, modeling requires a multi-stage fact population: An MPI
window always depends on an MPI communicator, whether an explicit one or a global one
(MPI_COMM_WORLD). Explicit ones need to be made alive first, and since there may be arbitrarily
many communicators, any window must be assigned to the correct communicator as otherwise
any communicator-related analysis remains impossible.

Fact: Null

As introduced by subsection 3.6.1, this type implements | and thus acts as the omnipresent
singleton fact. It mainly serves these purposes:
1. Generating facts of type Comm, IntConst and any Win that is subject to MPI_COMM_WORLD.
2. Tracing values that represent rank values of calls to MPI_Comm_rank over MPI_COMM_WORLD.

3. Collecting global information that would be stored redundantly if it was collected by each
fact individually. For this purpose, a reference to this object is kept by every applicable
fact.

Fact: Comm

This type represents the lifetime of an explicit MPI communicator. It has three missions:

1. Tracing its own initial MPI_Comm handle.

2. Tracing values that represent rank values of calls to MPI_Comm_rank over any of its known
handles.

3. Generating facts of type Win that make use of any of its known handles.

The fact is generated when Null hits an MPI method call that creates a new communicator,
such as MPI_Comm_split or MPI_Comm_spawn. It is killed on reaching a destructive method call,
including MPI_Comm_free or MPI_Comm_disconnect.

36

4.1. MODELING

win facts keep a reference to its generating, explicit communicator, and a Comm fact is otherwise
free from maintaining relations to other facts but Nultl.

Fact: Win

This type represents the lifetime of an MPI window. Considering the topic, it is reasonably
rich of tasks to fulfill:

1. Tracing its own MPI_Win handle.

2. Maintaining a history of calls and actions that can be linked to this window or any
of its related handles. This includes remote actions, local actions, buffer actions and
synchronization.

3. Tracing base addresses of locally mapped shared memory, buffer memory and window
memory.

4. Managing forks of the history when hitting a conditional branch by generating a child of
type Win for every branch. The history of the parent is available to a child.

5. Keeping the history locked when traversing edges that have been previously seen by some
ancestor Win fact as it is the case for loops.

6. Generating facts of type WinGhost when being killed.

7. Performing an on-the-fly validation over a set of encountered actions or synchronizations,
dying early in case of a violation.

This fact is generated when a Comm or Null fact meets a call to any of the four window
creation methods (cf. section 2.3), or as a child of a preceding Win fact on entering a conditional
branch or on the exit of loop. It is killed by a call to MPI_Win_free.

Fact: WinGhost

This is a non-forking, light-weight remainder of a Win fact. Being the ghost of a window that
has been killed earlier, it only keeps track of any subsequent window creation function it
encounters, and writes a log entry to the Null fact. This information is needed in the second
analysis pass in order to correctly group windows of the same communicator globally over the
CFG. Thus, it keeps references to both its deceased Win fact and the Null fact. For reasons of
reducing computational complexity, there is an on-the-fly attempt to kill a ghost on hitting
MPI_Comm_free (or calls alike) since it is not required beyond the lifetime of its communicator.
As there must not be any assumptions over the progress of the IFDS problem solution of other
facts, the killing is just considered an attempt (cf. subsection 3.6.1) to reduce the overall
number of facts subject to the reachability analysis. Otherwise, it peacefully continues to live
until the end of the CFG.

Fact: IntConst

With more details given in subsection 4.1.7, this fact type represents an integer variable that has
been assigned a constant value by an IR instruction such as store 132 42, i32x %intVariable,

37

CHAPTER 4. STATIC ANALYSIS OF MPI RMA PROGRAMS

whether initially, eventually or repeatedly. It serves a limited set of purposes:

1.
2.

Tracing its own integer handle.

Turning into being lost if it observes a write to its memory location without being able to
resolve the value to an integer constant. Later on, it may recover on succeeding to do so.

Similar to Win, it also forks as it is required to maintain two different states from that
point on, but without writing any history.

On the occurrence of a designated set of instructions (comparisons and calls to declared
functions such as for MPI), writing a log entry to the referenced Null fact about its
current value and status for post-IFDS problem analysis steps.

The fact is generated by a store instruction writing a constant integer, or as the result of a
fork by its parent; it is never killed actively.

A visual overview of the available facts, their relation of generating each other and their
requirement of keeping a reference to some other fact during the IFDS problem solution or a

at later stage is given by figure 4.2.

—— > generates

Tracing — frequently used in the Noll T » references
previous fact type descriptions — is § A
by no means a trivial task as it has N—))_
been implemented to work for the Y o —Y '
most common cases of writing soft- comm < Win IntConst
ware: 4 k_S _5

o FPunctions. A traceable sym- Win ;;Ost

bol may enter a function and

thus requires a mapping into
the local body. A traceable
symbol may even be generated
inside a called function and may return as a value, or written to an address provided by
a pointer argument.

Figure 4.2.: Fact generation and reference diagram.

Global values. Not only local symbols may be assigned fact handles but also global ones.

Structs. A certain type of fact handles (windows, communicators, integers) may be linked
to a precise offset on some given base address.

Struct pointers. For a struct or an object, the base address may just be a pointer to the
actual struct that contains the handle. Listing 4.4 demonstrates the C++ equivalent of
this problem.

Array. For any kind of memory-based tracing, and in the context of the currently
implemented tests presented in section 4.2, contiguous ranges of memory are only traced
by uses of their start address.

4.1.4. Path sensitivity

When writing software using MPI, the implementation provides a runner, commonly named
mpirun or mpiexec, that is parameterized by MPI-specific options such as the number of processes

38

4.1. MODELING

1 struct Context { uint32_t i; MPI_Win w };

2 Context c, *p = &c;

3 MPI_Win win;

4

5 MPI_Win_create(..., &win); // simple

6 MPI_Win_create(..., &(c.w)); // base of ¢ + fixed offset to w

7 MPI_Win_create(..., &(p->w)); // assigned base address + fixed offset to w

Listing 4.4: Use of offset-based handles.

to spawn, the path to the executable and its arguments. A common way to make use of the
MPI API to orchestrate the work of individual processes is demonstrated by listing 4.5.

1 int main (int argc, char xxargv) {

2 int rank = -1;

3 MPI_Init(&argc, &argv);

4

5 MPI_Comm_rank(..., &rank);

6

7 if (0 == rank) {

8 MPI_Recv(..., MPI_ANY_SOURCE, ...);
9 } else {

10 MPI_Send(..., O /x target rank x/, ...);
11 }

12 // ...

13 }

Listing 4.5: Obtaining the own MPI rank and heading for the respective tasks.

A call to MPI_Comm_rank identifies the process rank under some given communicator, and the
acquired, non-negative value may be assigned a role by the developer, commonly using 0 for
indicating a primary, master or root process. For the static analysis of MPI RMA, given some
win fact, a path-sensitive analysis enables two features:

1. Maintaining a history of notable events, two new histories can be derived and written
independently from each other after entering either successor. At the point of killing the
fact, it then contains its precise journey through the CFG, allowing a deeper inspection
in the post-IFDS problem analysis.

2. Keeping track of the according branch conditions and the actually entered branches
(true-case, false-case), the history can be assigned an abstract or precise MPI rank. This
enables reasoning on the infeasibility of a path over contradicting rank assumptions.

Implementing a fork of a fact is straight-forward and requires a flow function that kills the
incoming fact in either case, generating a descendant for any branch. This behavior applies to
facts of Win and IntConst whereas facts of the other types are mapped identically.

Figure 4.3 visualizes this scenario: Some fact denoted w reaches the node representing a
conditional branch. On the edge to its true-successor node, the fact is replaced by w., and by
wi in the other case. On reaching the next merge node, both facts happen to coexist in the
exploded super-graph.

For the analysis of MPI RMA, a history (or log) refers to a list of relevant events (or items;
including calls to respective MPI functions, local actions, buffer actions) along one, possibly

39

CHAPTER 4. STATIC ANALYSIS OF MPI RMA PROGRAMS

(____

W We Wie

. %true, %false]

o o A
%true[] %false[]

s
:
N X

el

Figure 4.3.: The implementation of path-sensitivity.

infeasible execution path through the CFG. For each path, there is one path-sensitive fact for
every entering fact of type Win or IntConst.

4.1.5. Breaking loops

Applying the implementation of path sensitivity to an IFDS problem solution in subsection 4.1.4,
without taking any further precautions, this implementation easily violates the requirement of
an IFDS problem to expect a finite set of facts in a fairly common scenario: loops.

Doing one step back, loops inside of a CFG require a more general assessment first with
respect to a static analysis. Gathering the history of events on the occurrence of a loop, the
following semantics is defined, calling it the exactly-once semantics:

1. No item is ever recorded more than once per history.

2. Loops with head evaluation (while loops) are treated as conditional branches: One fork
enters the loop, the other one does not.

3. Loops with foot evaluation (do while loops) are treated unconditionally as one iteration
is always guaranteed.

In a naive implementation of path sensitivity that fulfills property 1 by scanning its history
before appending an event to its log, a fundamental issue remains uncovered: With the design
of a flow function that generates a new fact on or after entering the loop body, the subgraph
over reachable nodes for such a fact actually includes the node, and hence its outgoing edge
that was previously held responsible for generating that fact by hitting the respective flow
function, producing a new fact. Thus, a loop will lead to the generation of an infinite number
of facts, violating the finite subset property of an IFDS problem.

Figure 4.4 demonstrates the problem: For some fact w, the flow function \; of the loop-
entering edge of the conditional branch will create new fact w.. For w,, the set of reachable
nodes include %loop, %head, %exit and the conditional branch. If \; remains agnostic towards
the fact w, of type Win or IntConst, it generates a fact w2, w., ..., never exiting the cycle that

40

4.1. MODELING

. N *
v .
%head] wow, W02
*
wow, w? h 4 l l l
T T T S [br ... %$loop, %exit wow, w2
oo L AA&L
Y o)
$Lloop br Shead] W Wi Wo Wep
o o -
..... RS
(0] (]
Sexit [..
v

Figure 4.4.: A naive implementation of path-sensitivity for an IFDS problem on loops.

makes the set of facts explode.

This problem is solved by the following mechanism, taking place over the CFG before solving
the IFDS problem: If a path-sensitive fact hits the flow function of some back edge, it enters a
fork-locked state until its reachability analysis hits the edge that finally leaves the associated
loop, generating an unlocked successor fact. When in the locked state, no history is written and
no flow function will trigger the forking of that fact but apply an identical mapping instead.
Any suitable pair of a lock-edge and a respective unlock-edge is precalculated.

Unlock-Map algorithm

Considering an arbitrary depth of nested loops, the Unlock-Map algorithm discovers back edges
in any CFG and assigns the closest edge to finally leave the loop. This map is then publicly
accessible to any path-sensitive fact during the IFDS problem solution to trigger its fork-locked
state where necessary.

Briefly, for each function of an LLVM module, the first step consists of a depth-first search
(DFS) that explores the BBs of a function, creating a preliminary graph structure and discovering
its back edges. A back edge is an edge that returns to a node for which the search has not yet
completed, indicating a cycle, a loop. In the next step, for each edge that has been identified as
a back edge, a subgraph is extracted for which the target node of the back edge has no other
incoming back edge but the respective edge. Starting from this target node, Tarjan’s algorithm
for finding strongly connected components (SCCs) [Tar71] is used: An exit of the loop is then
defined as an edge that connects the first SCC — the one defined by the cut-off loop subgraph —
to another one, the bridge.

More formally, the algorithm is described by listing 4.6: EXPLORE-FUNCTION-DFS returns
a CFG of some given LLVM function by a DFS, TARJAN-SCC performs the original algorithm
of Tarjan and assigns every node to a zero-based index of its associated SCC.

41

CHAPTER 4. STATIC ANALYSIS OF MPI RMA PROGRAMS

1 TARJAN-SCC-BRIDGE (G = (V,E,s)):

2 (Vscc,Escc,S) = TARJAN—SCC(G)

3 e := first element of { (ni,n2)€ Escc ni.scc =0 A na.scc # 0}
4

5 return e

6

7 UNLOCK-MAP (module):

8 map = {}

9

10 for function in module:

11 (V,E,s) := EXPLORE-FUNCTION-DFS (function)
12 E, ;= { eeE | e is a back edge }

13

14 for e=(ni,n2) in Ey:

15 Gs = (V,E\(*,n2) U (n1,n2),n2)

16 ey := TARJAN-SCC-BRIDGE(Gs)

17 maple] := ey

18

19 return map

Listing 4.6: The Unlock-Map algorithm.

In the actual implementation of Unlock-Map, during the execution of Tarjan’s discovery
algorithm, the implementation quits early on the discovery of the first suitable bridge. The cost
of a single run of Tarjan’s algorithm on a graph G = (V, E) is subject to O(|V| + |E|). It is
performed for each back edge of the super-set graph of all CFGs, and the set of back edges is a
subset of all edges. In total, the cost of this implementation grows no worse than quadratically
to the number of edges, i. e. in O(|E[?).

4.1.6. Window ordering

By the termination of the IFDS problem solver, there exists a set of facts, each one holding a
history of events of one path through the code. In order to perform any inter-path or inter-rank
analysis, no infeasible pair of Win facts must be compared. Any window is said to coexist with
another window if their lifetimes cannot be ordered: Lifetime ordering is given if on one path,
an MPI window « is freed before some window b is created for the same communicator. Two
such facts are infeasible to compare

« if the windows they represent do not belong to the same communicator,
« if in their coexistence, the order in which they have been created does not match,
« if they had no coexistence, as the one was created after the other one was freed or
o for the inter-rank analysis, if two facts can be identified as belonging to the same rank.
Assuming the same communicator, the ordering of windows determines the corresponding
window of another process. Considering an example code (listing 4.7) for a process that

represents a zero-rank, and code that represents any other rank, for rank 0, there are two
windows winAl, winA2, and winB1, winB2 for non-zero ranks.

Moreover, in that example, for either branch, two windows are requested. By their order
of setup, the counterpart of winAl for any non-zero rank is winBl. Thus, two windows with a
mismatching setup rank may ask for communicator-wide considerations over their coexistence
but must not be subject to an inter-path analysis.

42

4.1. MODELING

1 if (0 == rank) { 1 if (0 == rank) {

2 MPI_Win winAl, winA2; 2 // ... (see left)

3 3} else {

4 MPI_Win_create(..., &winAl); 4 MPI_Win winB1l, winB2;

5 MPI_Win_create(..., &winA2); 5

6 6 MPI_Win_create(..., &winBl);
7 MPI_Win_fence(0, winAl); 7 MPI_Win_create(..., &winB2);
8 MPI_Win_fence(0, winA2); 8

9 // ... 9 MPI_Win_fence(0, winB2); // Deadlock
10 } else { 10 MPI_Win_fence(0, winBl);

11 // ... (see right) 11 // ...

12} 12}

Code on rank 0. Code on rank !'= 0.

Listing 4.7

The WinGhost fact has been designed to address the problem of ordering windows in a
post-IFDS problem solution step. For being generated immediately after a Win fact is killed,
for any occurrence of a window-generating MPI call on its reachable nodes, the ghost’s passage
over this node is registered in the Null fact. As a ghost knows its fallen Win ancestor, and any
Win fact knows its generating Comm fact, as well as the instruction where its generation occurred,
after termination of the IFDS problem solution, the window order can be recovered if at the
place of the generation of a Win fact the passage of the WinGhost fact of a previous window was
observed.

To acquire the setup rank of coexisting windows, a similar procedure is used. Since there is
a Win fact alive at the instruction that generates a subsequent one, no additional fact type is
required to cover this situation.

4.1.7. Rank attribution

When performing an analysis over MPI properties, the rank-wise context of a path may be
derived from inspecting branch conditions. Whenever a comparison of a value traced from a
call to MPI_Comm_rank against a constant integer can be identified, valuable information on the
associated MPI rank can be elicited. In the step of rank attribution, every path is tested for
feasibility over non-conflicting rank predicates, as well as the most precise assumption over its
associated rank is made.

Considering the practical example of listing 4.8, the following observations are valid:

e A code that executes block A has a rank greater than zero.

e Conversely, a path over B indicates a rank less or equal to zero. Despite the use of a
signed integer, MPI exclusively uses non-negative rank values such that a rank hitting B
is actually equal to zero.

e Analogously, C implies a rank equal to 1, and D anything not equal to one.

o Conclusively, a path branching into B is not compatible to going through C as well.

The most precise rank assumptions are derived from paths crossing B (equals 0) or C (equals
1); a contradiction over the infeasibility of a path through B or C allows the elimination of that

43

CHAPTER 4. STATIC ANALYSIS OF MPI RMA PROGRAMS

int rank = -1, root = 0;
MPI_Comm_rank(..., &rank);

if (rank > root) {
// A

} else {
// B

}

© 00 g O W N

=
o

if (1 == rank) {
// C

} else {
// D

}

e
=W N =

Listing 4.8: Constraints on the code path over the MPI rank.

path. There is less precision over a path through A (greater than 0) and C (not equal to 1):
This path has a rank greater or equal to 2.

A rank predicate is defined over a tuple relation P = Ny x Op of the non-negative MPI
rank and Op = {==, !=,<,<=,>>= 1} being a set of operators meaning same as their C/C++
equivalents whereas | denotes not resolvable. By exploiting the non-negativity of MPI ranks,
for some rank predicate, the following equivalent simplifications are made to the predicate:

A mapping P x P — {1, £} helps identifying a contradiction of two given rank predicates:

with a # b:
(a,==),(b,==) L
with a < b: with a < b:
(a,<),(b,>) — L (a,==), (b,>) +— L
(a,<=),(b,>) — 1 (a,<=), (b,>) +— L
(a,<),(b,>=) — L (a,<), (b,>) — L
(a,<=),(b,>=) — L
(a,<),(by==) — L
(a,<=),(b,==) +— L
(a,==),(b,>) ~— 1
(a,==),(b,>=) ~— 1

Analogously for a > b and a > b.

44

4.1. MODELING

with a = b:

(a,>), (b, <=) 1 (a,==), (b,>) 1
(a,>), (b, <) — 1 (a,==), (b,<) =L
(a,>), (b,==) — 1 (a,'=), (b==) L

(a,>=), (b, <) — 1
(a,<), (b,>=) — 1
(a,<), (b,>) — 1
(a,<), (b,==) — 1

(a,<=), (b,>) — 1

(a,==), (b, !=) - L

everything else — &

For two rank predicates that are not in a contradiction, there is a mapping P x P — P to
extract the one of the higher precision, i. e. the one representing a smaller set of ranks, or to
merge them into a more precise predicate:

with op, # ==

(a7 Opa)a (ba ==) = (b> ==)
with op, = 1, 0pp # L:

(a7 Opa)v (b7 Opb) = (bv Opb)

with a = b:
(a,<=), (b, <) — (b, <)
(a,>=), (b,>) — (b,>)
(a,<=),(b,>=) — (a,==)
(a,>=),(b,<=) — (a,==)
otherwise:

DPa, Db = Da

Technically, these mappings are applied to the LLVM IR. With C code shown by listing 4.8,
the corresponding IR is partially shown by listing 4.9: There is one symbol representing the
test value of root rank zero (%7) and another one that will be assigned the communicator’s
rank (%6). Later, they are being loaded into %11, %12 for testing their greater-than relation
(rank > root) by icmp sgt i32 %11, %12. For an execution path entering label 14, the rank
predicate is (0,>), contrary to (0,<=) for the other path.

For the given IR, the work is distributed as following across different fact types:
e Null. For calling MPI_Comm_rank on MPI_COMM_WORLD, the Null fact is obligated to keep
track of %6. For other communicators, the corresponding Comm fact is in charge.

o IntConst. As there is a store instruction assigning a constant (0) to a symbol (%7), an
IntConst fact is generated that will log its value at any significant point, such as the
mentioned icmp instruction.

45

CHAPTER 4. STATIC ANALYSIS OF MPI RMA PROGRAMS

1 F
2 %6 = alloca i32, align 4

3 %7 = alloca i32, align 4

4 store i32 0, i32x %7, align 4

5 F

6 %10 = call 132 @VMPI_Comm_rank(i32 1140850688, 1i32x %6)
7 %11 = load i32, 132 %6, align 4

8 %12 = load 132, i32x %7, align 4

9 %13 = icmp sgt i32 %11, %12

10 br il %13, label %14, label %17

Listing 4.9: Testing for MPI ranks in LLVM IR.

e Win. A Win fact remembers all passed conditional branches and the successor node that
has been entered. From the conditional branch instruction, the comparison being used
can be identified for trivial cases.

The procedure is given in more detail by listing 4.10: SIMPLIFY-PREDICATE, CONTRA-
DICTING-PREDICATE and MORE-PRECISE-PREDICATE describe the mappings mentioned ear-
lier in this subsection. GET-POSITIVE-PREDICATE extracts the positive predicate with re-
spect to the branch that has been entered by item. LLVM assists in that step by providing
1lvm: :CmpInst::getInversePredicate for properly inverting the predicate that appears in the
IR.

1 RANK-ATTRIBUTE (path):

2 predicate := (0, 1)

3

4 for item in path.items:

5 tf item is a conditional 1llvm::BranchInst:

6 candidate__predicate := GET-POSITIVE-PREDICATE (item)

7 candidate_predicate := SIMPLIFY-PREDICATE(candidate_predicate)
8

9

unless CONTRADICTING-PREDICATES(predicate, candidate__predicate) :
predicate := MORE-PRECISE-PREDICATE (predicate, candidate__predicate)

e e
N = O

return predicate

Listing 4.10: Rank attribution algorithm

SIMPLIFY-PREDICATE, CONTRADICTING-PREDICATE and MORE-PRECISE-PREDICATE are
bound by a constant number of steps whereas GET-POSITIVE-PREDICATE requires a constant
number of symbol searches concerning the involved facts, the most expensive one being the
test for the ownership of the symbol for each fact of type IntConst that is alive at the point of
comparison. A rank predicate is only accepted if the associated integer is met over all paths.

Let I denote the set of all IntConst facts. Unless path-sensitivity for IntConst has been
disabled by the user, |I| € O(2IV1); |I] € O(|V]) otherwise. Let L, denote the list of events of
some path p, then the overall costs to determine the rank predicate for that path p is subject
to O(|Lyp| - |I] - log(]V'])) — the test for the ownership of a symbol for one fact is a logarithmic
look-up.

46

4.2. PROPERTY TESTS

4.2. Property tests

For examining properties of MPI RMA for some given IR module, there are mainly two phases
that suit different tests. This circumstance is due to the different availability of information
but also for better managing computational complexity:

1. IFDS problem solution tests: As every Win fact collects items for its history, a limited
set of tests for violating the use of MPI RMA can be made on the fly, for example using
MPI_Put without any prior call to enter the corresponding epoch.

2. Post-IFDS problem solution tests: Some tests cannot be performed until the IFDS problem
solver has terminated completely. Tests of this phase include:

a) Intra-path tests: This class of tests does not require correlating a path to any other
path. It mainly performs tests that suffice a linear scan over the history.

b) Inter-path tests: In this class, as a first step, window paths must be grouped by
their lifetime epochs, communicator and setup rank. Theses tests do not require
any knowledge of ranks but audit communicator- or window-wide aspects, such as a
proper use of barriers, fences and the concordance of flags.

c) Inter-rank tests: To perform this class of tests, each path must undergo the rank
attribution procedure first. Then, with the help of IntConst for collecting possible
values of target ranks in the communication calls, the interaction between two or
more paths can be examined.

Currently, identifying a violation in a path will exclude it from any following analysis. For
this reason, the order of post-IFDS problem solution test classes has been arranged by their
increasing computational complexity.

For this section and the subsequent ones, the following classes are defined for grammar
listings and PCRE-style! regular expressions:

cr,c,p : legal comm. calls for fencing (F), GATS (G) and PTS (P)
f :MPI_Win_fence without assertion flags
fnpNs : MPI_Win_fence with assertion flags (cf. figure 2.3a, p. 13)
gc,w : MPI_Win_complete (C) or MPI_Win_wait (W)
gp,s : MPI_Win_post (P) or MPI_Win_start (S)
Pprs : MPI_Win_flush
PL,LA : MPI_Win_lock (L) or MPI_Win_lock_all (LA)
PUL,ULA : MPI_Win_unlock (UL) or MPI_Win_unlock_all (ULA)
T :MPI_Win_free

4.2.1. IFDS problem tests

The different MPI RMA synchronization modes, approximately shown by figure 2.3a, figure 2.3b
(p- 13) and figure 2.4 (p. 14), can be tested for violations at the execution time of the

1PCRE(3) man page — https://www.pcre.org/pcre.txt, last seen 2018-12-16.

47

https://www.pcre.org/pcre.txt

CHAPTER 4. STATIC ANALYSIS OF MPI RMA PROGRAMS

IFDS problem solver. The problem of determining the set of allowed operations on an MPI
window in a given context can be considered an instance of a typestate analysis [Str83].

By carefully merging the FSMs into one super-FSM that allows a window fact to enter all
legal states over its lifetime, for a subset of calls to relevant MPI methods, violations can be
detected easily. The requirement to count a number of locks and to await the correct number
of unlocks requires the super-FSM to turn into a more powerful PDA. A valid history is an
accepted word of the language defined by a context-free grammar. The high-level components
of this grammar are described by the entry rule, the different window modes and the terminator
symbol:

S—0
O — F’|Gp|Gs|L|LA|X
X >z

For the fence mode, these production rules are given:

FS — fF#| fxp F#| fns F#| fapns F* Fxp — fnpCr|fnpF™

F* — F#|0 Fis — fxsF™
F# — F|Fyp|Fxs|Fxpns Fxpins = fxpins F*
F— fCF‘fF* CF - CFCF’F’FNS

The history for GATS is subject to these rules:

Gp — gpGpx Gg+ — CagcO|gpGps
Gs — gsGgx Gpx — gwO|gsGps
Gps — gwGs+|CagcGpx Ca — ccCqle

Lastly, the production rules for PTS:

L — p,L*pyr,O Cp — cpCp|Mps|e
L* — CpL*|pr,.L*pur, Mrs — prsCp
Ly — praCppuLaO

The invalidity of the history of one code path is determined by two cases: by failing to
submit to the accepted language, or by not reaching the termination symbol. In the grammar,
a subset of the input alphabet is ignored — or always accepted — for its postponed relevance.
This set includes buffer actions, local actions, a subset of MPI methods (e. g. MPI_Barrier or
MPI_Comm_free) and branch instructions.

Despite formally using a grammar, the implementation is written over a hard-coded super-
FSM with simple algorithmic extensions, sacrificing any kind of genericness that otherwise
requires tools such as the CYK algorithm [You66]. This benefits the ability to integrate the
test online at the IFDS problem solution time.

Unless the tool has been built against the correct MPI implementation, the test for the
semantics imposed by the flags of MPI_Win_fence is discarded and the grammar shrinks respec-
tively.

48

4.2. PROPERTY TESTS

4.2.2. Intra-path tests

For the set of intra-path tests, it is sufficient to test the history of a single path for properties.
It is not required to consider information about its setup rank or order alongside other paths,
to take communicator-wide aspects into account or to have a resolved rank predicate.

lllegal memory requests

This test scans for the illegal use of queries for shared memory on windows that are not of the
shared flavor, as well as for attempts to dynamically modify memory of windows that have not
been initialized for the dynamic flavor. Three new alphabet classes are introduced:

m : MPI_Win_attach or MPI_Win_detach
S : MPI_Win_shared_query
wa DS - MPI_Win_allocate (A), MPI_Win_create (C),
MPI_Win_create_dynamic (D) or MPI_Win_allocate_shared (S)

Given two regular expressions:
*wawe|wp].*s *wa lwe|ws].Fm

If the prefix of a history is matched by any of the given regular expressions, a violation has
been identified. In the example of listing 4.11, for three windows of different flavors, there
are two violations that can be detected: The illegal use of MPI_Win_attach by winA, as well as
MPI_Win_shared_query by winB.

1 MPI_Win winA, winB, winC;

2

3 MPI_Win_create(..., &winA);

4 MPI_Win_create_dynamic(..., &winB);
5 MPI_Win_allocate_shared(..., &winC);
6

7 MPI_Win_attach(winA, ...);

8 MPI_Win_shared_query(winB, ...);

Listing 4.11: Illegal memory management (winA), shared memory query (winB).

This test is implemented by a fairly small FSM.

Unsafe buffer actions

A mistake that is easily made when writing MPI RMA code is the non-synchronized use
of buffer actions. Considering the code of listing 4.12, there are two mistakes that lead to a
conflict in both cases: An attempt to read from or to write to buffer before the synchronization
by MPI_Win_fence will lead to a data race.

49

CHAPTER 4. STATIC ANALYSIS OF MPI RMA PROGRAMS

1/ ...

2 MPI_Put(buffer, ..., winA);
3 buffer[0] = 42;

4 MPI_fence(..., winA);

5

6 MPI_Get(buffer, ..., winB);
7 uint32_t value = buffer[0];
8 MPI_fence(..., winB);

Listing 4.12: Non-synchronized buffer actions.

Although terminating the communication epoch by MPI_Win_fence correctly twice, the write
to buffer is not consistent to MPI_Put as well as the read from from buffer right after MPI_Get.
Another set of classes will be referenced:

b : buffer actions

fi o [f el fus| fupins]

Given the class b, with («) binding the previous input to a memory buffer by a symbol,
regular expressions can be created to test for unsafe buffer actions:

cr(a)[" f]*0(@) ca(@)["gal*b(a) cp(@)["prs|puLlpural®b(a)

Rephrasing the expressions, they test whether there is a remote action on some memory
buffer a not followed by the appropriate synchronization before a buffer action on «a.

The state of the implementation, an FSM with additional effort to scan for matching memory
symbols, turns this test into a falsification: Classes pyr, and prs include MPI methods that
synchronize a particular rank for a preceding remote action to that rank, for example MPI_-
Win_unlock or MPI_Win_flush. As the test lacks the ability to correlate communication and
synchronization ranks at this stage, the absence of synchronization of class pyr, and prg indicates
the violation of the consistency property. Conversely, its presence must not tempt to assume
correctness.

4.2.3. Inter-path tests

For this class of tests, paths need be grouped in advance to only test feasible pairs of paths
against each other (cf. subsection 4.1.6).

Window flavor compatibility

When using windows by different flavors, if one window is initialized for the shared flavor, all
matching windows must be subject to the shared flavor, too [Forl5, section 11.2.3]. The code of
listing 4.13 demonstrates such a violation as the window of rank 0 is of the shared flavor while
any other window is a statically-flavored one, assuming the same underlying communicator.

Let W be the set of properly grouped Win facts, with each fact knowing its window flavor,
then the test can be described formally by first-order logic:

50

4.2. PROPERTY TESTS

1 MPI_Win win;
2 int rank = -1;
3
4 MPI_Init(...);
5 MPI_Comm_rank (MPI_COMM_WORLD, &rank);
6
7 if (0 == rank) {
8 MPI_Win_allocate_shared(..., &win);
9 } else {
10 MPI_Win_create(..., &win);
11 }
Listing 4.13: Illegal setup of MPI windows.
Jw € W.w uses shared flavor = Vw € W.w uses shared flavor
Deadlocks

In the context of MPI, and MPI RMA in particular, incautiously using MPI_Barrier and MPI_-
win_fence summons deadlocks that may move a whole communicator to an unfortunate end.
Deadlocks over these synchronization calls occur unless the sequence of these calls is the same
for all windows of the same setup rank. Although deadlocks may as well occur for other
reason that are not related to MPI at all, any sub-communicator deadlock bubbles towards the
communicator scope if this prevents all processes to eventually reach a call to MPI_Barrier.

This test focuses on the use of MPI_Barrier and MPI_Win_fence, necessarily on a communicator-
wide level if, and only if, a call to MPI_Barrier occurs at the lifetime of a window, as execution
paths can be free from MPI windows at all despite making use of MPI_Barrier concurrently.

An example for a deadlock over falsely ordering window fences was previously shown by
listing 4.7 (p. 43). Analogously, a deadlock is doomed to occur over using barriers as shown by
the source code of listing 4.14 as the calls to MPI_Win_fence and MPI_Barrier are not ordered
consistently across the ranks.

1 if (0 == rank) { 1 if (0 == rank) {
2 MPI_Win win; 2 // ... (see left)
3 MPI_Win_create 3 } else if (1 == rank) {
4 (..., MPI_COMM_WORLD, &win); 4 MPI_Win win;
5 5 MPI_Win_create
6 MPI_Win_fence(0, win); 6 (..., MPI_COMM_WORLD, &win);
7 MPI_Barrier(MPI_COMM_WORLD) ; 7
8 } else if (1 == rank) { 8 MPI_Barrier(MPI_COMM_WORLD);
9 // ... (see right) 9 MPI_Win_fence(0, win);
10 } else { 10 } else {
11 MPI_Barrier(MPI_COMM_WORLD) ; 11 MPI_Barrier(MPI_COMM_WORLD) ;
12} 12}
Code on rank 0. Code on rank 1.

Listing 4.14: A deadlock situation.

Assuming the absence of any preceding windows before splitting the execution path by the
MPI rank, the call to MPI_Barrier in line 11 will nowhere appear in any history as collecting

o1

CHAPTER 4. STATIC ANALYSIS OF MPI RMA PROGRAMS

calls to MPI_Barrier is done by Win facts.

By the given design of the IFDS problem fact domain, this test has its natural limitation:
By closely inspecting listing 4.7 (p. 43) again, the problem design will generate at least four
Win facts that can be grouped pairwise: {winAl, winBl} and {winA2, winB2}. As a Win fact is
supposed to collect an item for the history only if it belongs to that window without doubt, it
steps over calls to MPI methods that it does not accept as the own ones. Thus, either group
remains blind for one call to MPI_Win_fence.

Nonetheless, there are some more obvious things left to test: Given some two or more
paths grouped by the same setup rank, unless all paths have the same number of calls to
MPI_Win_fence, at least one will get stuck while another one will terminate. The test can be
globally extended to calls to MPI_Barrier(MPI_COMM_WORLD) with MPI_COMM_WORLD provided as a
constant parameter. More precisely, this test is able to identify two deadlock criteria:

1. For two or more facts, there is at least one that has a different number of calls to MPI_-
Win_fence and MPI_Barrier(MPI_COMM_WORLD) than some other one of the same group.

2. One fact awaits all other facts to arrive at MPI_Win_fence whereas some other fact expects
them to reach MPI_Barrier(MPI_COMM_WORLD). If MPI_COMM_WORLD cannot be proven as the
exact parameter everywhere, this step of the test is discarded for undecidability.

The implementation of this test fence barrier fence

can be modeled best as an ad-hoc S L N
place/transition net (P/T net). Let Lo

a fact represent a token, and let each . :
occurrence of a synchronization be @—V : o

a transition. A transition’s preset Lo E :
and postset contain as many disjoint @/ _____ \Q/ L \@
places as there are facts in the group.

For a group of three paths that
is free of the kind of deadlocks that Figure 4.5.: A path group free of a specific class of deadlocks.
this test attempts to identify, an ac-
cording P/T net is shown by figure 4.5. In contrast, if the path group violates any of the given
criteria, its P/T net is partially modeled by dead transitions that will never put any fact-token
towards the termination place. The two cases for such dead transitions are shown by figure 4.6.

The implementation of the test spots such a deadlock if there are no tokens left to move
while not every token has reached its terminating destination. Let W denote the group of Win
facts for the group under analysis, and let n = max{ |w.history| |w € W} denote the longest
history provided by the facts. Then the number of steps to determine a deadlock is bound by

A source of false positives for this tests lies in the inability to further group paths by mutually
exclusive sections, for example by run time options changing the set of MPI_Win_fence calls
consistently: For every conditional branch, all path histories must exhibit the same number of
calls.

52

4.2. PROPERTY TESTS

barrier

Figure 4.6.: Deadlock by fence/barrier divergence (left), and by the number of transitions (right).

Fence flags

This test expects every fact and its respective group to have undergone the previous test for
getting stuck over synchronization calls successfully, as well as having the tool compiled against
the respective MPI implementation that has been used for the program of the IR.

Previously described on p. 13, certain assertion flags of MPI_Win_fence must be set the
same across all paths of a window group that enter that fence. A counter-example is shown
by listing 4.15 that shows one call to MPI_Win_fence using the MPI_MODE_NOSUCCEED while its
matching call on the other rank case omits that flag.

1 MPI_Win win;

2 int rank = -1;

3

4 MPI_Win_create(..., &win);

5 MPI_Comm_rank (MPI_COMM_WORLD, &rank);
6

7 if (0 == rank) {

8 MPI_Win_fence(MPI_MODE_NOSUCCEED, win);
9 } else {

10 MPI_Win_fence(0, win);

11 }

12 // ...

Listing 4.15: Mismatching flags for MPI_win_fence.

Under the assumption of a previously positive test for correctly aligned synchronization calls,
let Nfences denote the number of calls to MPI_Win_fence of all paths of the current group W, with
each w € W having a list named fenceFlags, ordered by the occurrence of fence calls of that path,
containing the relevant MPI flags, filtered for MPI_MODE_NOPRECEDE and MPI_MODE_NOSUCCEED.
The test then checks for the following property, expressed by first-order logic:

Vi € {0..Nfences } - :W(w.fenceFlags[i])
we

93

CHAPTER 4. STATIC ANALYSIS OF MPI RMA PROGRAMS

The implementation iterates over all paths and compares the union of the mentioned flags
for every i-th call to MPI_Win_fence, expecting equivalence at each call across all paths. Again,
the number of steps to test this property is bound by O(n - |W1).

4.2.4. Inter-rank tests

For the analysis of inter-rank properties, every group must pass the rank attribution procedure
in advance, described by subsection 4.1.7. Win facts that represent paths that are proven to be
infeasible over contradicting tests of the associated MPI rank predicates are filtered here.

Epoch matching

With the ability at the horizon to discover conflicts across paths, under the assumption that
every previous test has been passed successfully, a mechanism must be installed to generally
ensure the following properties within a group of window paths:

1. Paths of the same rank, i. e. with the same assigned rank attribute (a,==), must not be
compared to each other.

2. For two or more paths, only actions that meet inside the same chronological epoch must
be analyzed.

Assuming these properties to hold, the following properties can be derived for testing:

1. If one path has no counterpart epoch found in any other legal path, this may be an error
for certain window modes: For a call to MPI_Win_start, there must be a corresponding call
to MPI_Win_post, as well as a call to MPI_Win_lock must not stand alone — not assuming
any kind of self-locking.

2. If there exist counterparts for one path with respect to an epoch, there must be a
compatible epoch among those: A call to MPI_Win_post cannot be solely accompanied by
calls to MPI_Win_lock on all other paths.

An example is given by listing 4.16: Assuming no superior control flow around the given
snippets of code, any process of rank predicate (0,==) will enter a GATS access epoch while
any complementary process attempts to lock the root process. The conditional branching over
someCondition is subordinate to the rank comparison: It is obvious that for a rank predicate of
type (a,==), the two forks A and B must not be examined against each other since they cannot
exist concurrently under an MPI execution.

Let the idea of the algorithm described by listing 4.17 be rephrased: For each path w; € W,
take every other feasible path w; € W and assign each item of w; to any applicable history
item of w;. The assignment is grouped by matching the epochs of the two paths as far as they
are compatible to each other.

The method GET-EPOCH-OF-PATH used in the algorithm of listing 4.17, as well as the epochs
attribute of some given path w; have the same underlying mechanism: By taking table 2.1 (p.
17) into account for counting the i-th epoch over the i-th occurrence of an ordering call (except
request-induced MPI_Wait and its derivatives), the epoch e; is part of a tuple, accompanied
by its symbol or name name;, and the set I;; of instructions of the history following until

54

4.2. PROPERTY TESTS

1 MPI_Barrier(comm);
2
3 if (0 == rank) {
4 MPI_Win_start(..., win); 1 MPI_Barrier(comm);
5 2
6 if (someCondition) { // A } 3 if (0 == rank) {
7 else { // B } 4 // ... (see left)
8 // ... 5 } else {
9 } else { 6 MPI_Win_lock(..., 0, 0, win);
10 // ... (see right) 7 /...
1} 8 }
Code on rank 0. Code on rank !'= 0.

Listing 4.16: Illegal setup of epochs.

the next ordering call. For the same reasons that were previously described in the context
of the deadlock prediction (p. 51), only barriers as calls to MPI_Barrier(MPI_COMM_WORLD) are
considered for ordering actions.

EpocH-MATCHING (W):
mappings = {}

for w; in W:
assignments = O

for w; in W\fw;}:
(ai,op;) := w;.rankPred
(aj,opj) := wj.rankPred

© 0 N U A W N

— e
=)

if op; === and (a;,op;) = (aj,op;):
continue

= o e
=W N

for (ex,name;k,I;) in w;.epochs:
I ,namej, = GET-EPOCH-OF-PATH (e, w;)

o e
~N O,

if EpocHs-ARE-COMPATIBLE (name;, name;y) :
for Iy in I;y:
for mg in I;;:
assignments := assignments U {(I, (wj, my))}

NN N ==
N = O ©

mappings = mappings U {(w;, assignments)}

NN
=W

return mappings

Listing 4.17: Epoch matching.

The method EPOCHS-ARE-COMPATIBLE tests whether two given epochs are mutually exclusive
or not.

For every path w;, the algorithm generates a tuple (w;, I; x (W\{w;}, I+;)) such that each of
its items in I; is mapped to all applicable items of the other paths. The algorithm is quite costly,
considering that [WW| e O(2%) — b being the number of conditional branch instructions —, with
the number of steps to cross-assign all items of all path histories being bound to O((n - |[W])?).

Once the cross-path assignment of instructions has been completed, all path assignments can
be tested for the properties mentioned at the beginning of this subsection, with the number of
steps to test any property bound by O(n - [W|) per path.

95

CHAPTER 4. STATIC ANALYSIS OF MPI RMA PROGRAMS

Concurrent local writes

Even more assumptions can made by making use of IntConst facts if their value meets over all
paths: The target rank of remote actions, specified by an argument of methods such as MPI_Get
or MPI_Win_shared_query combined with following local actions on shared memory can possibly
be acquired by scanning the available IntConst facts at the occurrence of such actions. Unless
the target rank, expressed as (a,==), and some other path’s rank attribute of this epoch can be
proven as a contradiction — in the same way as presented by subsection 4.1.7 — this path can
be considered a potential target of that remote action.

1 const int rootRank = 0; 1 const int rootRank = 0;
2 2
3 if (rootRank == rank) { 3 if (rootRank == rank) {
4 uint8_t *memory = ...; 4 // ... (see left)
5 MPI_Win_create(memory, ..., &win); 5 } else {
[§ MPI_Win_fence(..., win); 6 uint8_t xbuffer = ...;
7 7 MPI_Win_create(..., &win);
8 memory[0] = 42; 8 MPI_Win_fence(..., win);
9 9
10 MPI_Win_fence(..., win); 10 MPI_Put(buffer, ..., rootRank, ..., win);
11 // ... 11
12 } else { 12 MPI_Win_fence(..., win);
13 // ... (see right) 13 // ...
14} 14}
Code on rank 0. Code on rank != 0.

Listing 4.18: Concurrent local write to memory window.

Portable MPI RMA code should assume the presence of a separate window memory model.
Under this memory model, there must not exist any local write to the private copy of the
window if there is a remote action targeting the public copy of the window in the same epoch,
regardless of details to overlapping of the targeted memory regions.

An example of such a situation is given by listing 4.18: Between two fences, the process of
rank 0 locally writes a value to memory, hence modifying the private window copy. At the same
time, any complementary rank performs a remote write action targeting rank 0. Under the
epoch matching algorithm described by the previous subsection, there will be the following
assignments to the call of MPI_Put from any fact w.g, assuming wqg being the only fact acquiring
the rank predicate (0,==):

MPI_Put — {(wp,MPI_Win_fence),
(wo, memory[0] = 42),
(wo,MPI_Win_fence)}

From the call of MPI_Put, in this case, the target rank can be extracted precisely: (0,==).
Since it is not only contradiction-free to the rank predicate of wg but even a perfect match, the
assignments of that rank can be safely scanned for problematic actions: memory[0] = 42. If
there were only synchronization calls or other actions that had no impact on the private copy,
there would not be any violation.

o6

4.3. SUMMARY

To scan all the assignments to a remote action for the inclusion of a local action, the number
of assignments to scan is not larger than the number of assignments being made in total by the
epoch matching algorithm.

4.3. Summary

In this chapter, multiple property tests for MPI RMA features have been modeled that are
carried out during and after the IFDS problem solution. An overview of the steps starting at
the IFDS problem solution and later is given by table 4.1 in the order of execution, given the
following symbols:

(V, E) : vertices, edges of all CFGs

b : the total number of conditional branch instructions
n : the largest number of history items
w

: the total number of paths

Property / Step Stage Complexity
window mode API compliance | IFDS problem | O(2%")

window path grouping - O(w - log(w))
memory queries by mode intra-path O(w-n)

unsafe buffer use intra-path O(w-n)

window flavor compatibility inter-path O(w)

deadlock detection inter-path O(w - n)

fence flag matching inter-path O(w - n)

rank attribution - o2Vl or O(|V|-log(|V]) - n - w)
epoch matching inter-rank O(2%)

concurrent local write tests inter-rank as epoch matching

Table 4.1.: MPI RMA synchronization calls

Reading the MPI specification, there are other things of interest to test in a static analysis:
Some properties have a more global meaning, such as being subject to communicator groups
and calls to MPI_Barrier. Other properties are closely related to MPI RMA and relatively easy
to violate unless the required degree of precaution has been applied during development, for
example writing concurrently into overlapping memory of a target window.

Nonetheless, tests for these properties are not trivial to model, or computationally cheap to
perform, or both, even for a falsification. In section 8.1, a more comprehensive list of current
limitations and their justification is given, as well as open topics and possible approaches to
address these issues.

The subsequent chapter presents an evaluation of the IFDS problem modeling and the tests
on non-trivial source code.

57

5. Evaluation

After modeling property tests for MPI RMA as an IFDS problem and reusing the results for
follow-up tests, this chapter covers the evaluation of the tool on non-trivial code, both for
scalability and suitability, and presents approaches to run time optimization.

After designing the algorithms and tests for MPI RMA properties, the next step is to perform
experiments and observe the overall performance and quality of the tool. For the IFDS problem
solution and some of the post-IFDS problem tests, combined with the overall potential number
of Win and IntConst facts, in theory, the computational cost is quite extraordinary.

In the first part of this chapter, there will be simple types of programs that have been
designed to assess the base costs of using Phasar, and to confirm the run time growth of the
naive IFDS problem solution over a steady increase of the number of conditional branches.
From the perspective of both technical and modeling aspects, optimization techniques and their
implementation will be discussed. In the second part, the tool will be used in an experiment on
two non-trivial MPI RMA code bases that will lead to decisions covered by the next chapter.

5.1. Scalability

For estimating the computational complexity of the IFDS problem model, let the following
variables be given:

: the number of conditional branch instructions
: the number of calls to methods that create MPI windows
: the number of store assignments of integer constants

: the set of edges between instruction nodes

bm:S@

: the set of the fact domain

Previously described by subsection 3.6.1, the cost of an IFDS problem solution grows asymp-
totically towards O(|E| - |D|?). With |D| € O(m - n - 2%) for the property of path sensitivity,
the upper bound of the costs is refined as O(|E| - (m - n - 2%)3).

When crossing out the costs of the IFDS problem solution, in the preprocessing, there is the
Unlock-Map algorithm taking place (subsection 4.1.5) for providing integral information to the
IFDS problem solution. For a worst-case scenario that is described by the maximum ratio of
back edges by loops to the total number of edges, the cost is bound by O(|E|?). In a best-case
scenario without loops in any of the CFGs, the cost is linear to the number of edges.

With this knowledge, there are two simple tests to do: One test over a constant number of
facts but a growing number of instructions, and one over a constant number of instructions but

99

CHAPTER 5. EVALUATION

a growing number of path-sensitive facts. For this reason, the tool has been equipped with a
benchmark mode: In a benchmark mode called B2, the tool skips any step that is not crucial to
the IFDS problem solution functionality: the preflight statistics mode, the post-IFDS problem
test suite and the writing of results into the CSV I/0O sink.

The test environment takes place on a personal computer composed of an Intel Core i5 4210U
and 8GB of RAM, running the tool on a Linux Kernel v4.18, using Phasar v1218 compiled
by the Clang C++ compiler v6.0 without optimization flags. Every data point results from
averaging the total run time of five runs without outlier elimination, using the B2 mode.

Test 1: constant facts, growing edges

The hypothesis for the first test is: The total execution time grows linearly to the number of
instructions. For the setup, a script composes C code files over a growing number of statements
that are then compiled into the IR. The code is free of statements that make the number of
facts grow (as seen in listing 5.1), and free of loops such that the Unlock-Map algorithm only
adds best-case, linear costs.

1 struct SomeStruct { bool a; volatile unsigned long b; };
2

3 int main () {

4 // ...

5 SomeStruct *toA = &A, toB = &B;

6

7 // n times repeated code block

8 toA->b = toB->b; toB->b = toA->b;

9 // ...

Listing 5.1: Code to stress the tool over an increasing number of instructions.

The IR code that results from one block is shown by listing 5.2. For a stride size of 10, the
test ranges from 10 to 400 statement blocks, representing IR code ranging from 120 to 4800
instructions in addition to a constant offset.

1 %13 = load %struct.SomeStruct*, %struct.SomeStruct** %9, align 8

2 %14 = getelementptr inbounds %struct.SomeStruct, %struct.SomeStruct*x %13, i32 0, i32 1
3 %15 = load volatile i64, i64* %14, align 8

4 %16 = load %struct.SomeStructx, %struct.SomeStruct*x %8, align 8

5 %17 = getelementptr inbounds %struct.SomeStruct, %struct.SomeStruct*x %16, i32 0, i32 1

6 store volatile i64 %15, i64* %17, align 8
7 ; followed by five analogous instructions for the inverse direction

Listing 5.2: The IR representation per statement block.

For the interpretation of the results shown by figure 5.1, not only the tool has been subject
to the analysis (plot line mpi_rma_tool) but also a none-run by Phasar (plot line phasar/none):
The executable of Phasar provides a set of IFDS problem solution plugins for certain simple

and recurring problems. By setting the appropriate flag, either the plugin is loaded or none!.

1¢ phasar -D none -m $IR_MODULE_FILE

60

5.1. SCALABILITY

20

15

sec
=
o

0 100 200 300 400
statement blocks

—e—mpi_rma_tool -+ -phasar/none

Figure 5.1.: Computational time over a growing program size and constant facts.

Not using any IFDS problem plugin at all gives an idea of the baseline of costs when using
Phasar.

In fact, the run time is not growing linearly to a linearly increasing number of instructions:
The plot’s curves much more resemble a polynomial growth of time, even if no IFDS problem
solution is performed. With increasing the program’s size, the computation time of the tool
performing the IFDS problem solution grows visibly steeper.

The explanation behind this phenomenon lies inside of Phasar: In the preprocessing of the IR
code, it performs a points-to analysis to handle the function pointer resolution (cf. section 3.5).
To perform this analysis, Phasar falls back to the Andersen’s algorithm [AI94] for which the
worst-case run time is bound cubically to the number of instructions of the scoped CFG [SF09].

As the points-to analysis is indispensable to Phasar, even if the costs of a simple IFDS problem
solution grow linearly to the size of the program over a fixed set of facts, the run time is
already dominated by an algorithm of polynomial computation time and the hypothesis must
be rejected.

Test 2: growing facts, constant edges

For this test, it is hypothesized: For every additional conditional branch the run time doubles.
For a setup that provides programs with an increasing number of path-sensitive facts while
keeping the number of instructions roughly the same, again, a script generates C source code
files containing a call to MPI_Win_create, followed by an increasing number of conditional
branches. For each conditional branch, path sensitivity requires every Win fact that reaches the
instruction to fork into two children facts. The less conditional branches a program instance
contains, the more compensation instructions are appended to the end of the program to
keep the overall number of instructions at the same level with respect to a maximum N of

61

CHAPTER 5. EVALUATION

512.000
32.000
(8]
(]
? 2.000
0.125

1 2 3 4 5 6 7 8 9 10 11 12 13
cond. branches

Figure 5.2.: Computation time over a growing number of conditional branches.

conditional branches of the setup.

With N = 20, starting with a single conditional branch, every instance of the test programs
increases the number by one. The scaffolding of these programs is shown by listing 5.3.

1 size_t a_1 =0, ..., a_20 =0, b = 0;

2 MPI_Win_create(..., &win)

3

4 // n repetitions of this block, up to N
5 if (1 == a_1) {

6 b += 1;

7 }

8

// N - n compensation instructions

Listing 5.3: Code to stress the tool over an increasing number of Win facts.

The result of this test is plotted over a logarithmic scale by figure 5.2: Without surprise,
the execution time doubles straight up to n = 10, then taking a fairly huge jump for n = 11
with tripling the time up to n = 13, when the test suite had been aborted early due to the
unforeseen development.

It is unknown what the precise reason for the impact at n = 11 is, possibly a significant loss
of cache locality or an increased paging activity by the operating system. With computers more
modern and powerful than the one used for the experiments, this effect is probably deferred by
one occurrence of a conditional instruction. Further research on this proposition was abandoned
in favor of chapter 6.

With the given test hardware, while the hypothesis can be accepted for n < 10, for larger n
the performance is currently worse and, with the previous expectation turning into a lower
bound, the problem is moved to grow by (2").

62

5.2. APPROACHES TO RUN TIME OPTIMIZATION

Summary

The first test shows that a linear growth of the run time for an IFDS problem solution of
Phasar is nowhere in range, even for purposes that do not require path sensitivity. For a
worst-case estimation under a constant number of facts, a cubic growth over the number of
instructions of the program acts as the upper bound. The second test confirms the assumption
of an exponential explosion of the run time over an increasing number of conditional branches
inside the program.

For the second test in particular, there is one obvious circumstance: With all the given
conditional branches, how many of them actually contribute to the MPI RMA analysis? In
this case, they do not but just make the space of states inflate. The next section covers the
elimination of such parts of the code.

5.2. Approaches to run time optimization

Again, consider the estimation of the run time development of the IFDS problem solution with
the variable definitions of section 5.1: O(|E| - (m - n - 2%)3). It is desirable to diminish n, the
number of generated IntConst facts, and b, the number of conditional branches, down to a
level for which they still contribute to the completeness of the analysis of MPI RMA properties
while allowing the tool to faster examine programs of non-trivial size. Preferably, any attempt
to programmatically reduce these variables largely outperforms the IFDS problem solution
algorithm by the required amount of time.

The following, fully optional measurements are proposed:

1. Allow IntConst facts to be path-insensitive if no path sensitivity is required. This turns
n from a factor into an offset of the complexity.

2. Allow skipping inter-path tests and facts of type IntConst altogether if the program is
known to not benefit from them, e. g. by the level of rank dynamicity; n can then be
eliminated from the complexity completely.

3. Allow scanning and removing of sections of the IR that are conditionally reachable but do
not seemingly contribute to any static analysis of MPI RMA program code. By cutting
off these sections, b and E will shrink.

The following subsections demonstrate the underlying problems and their solutions in the
implementation of the tool. Yet, any of the mentioned procedures will remain a threat to
completeness under certain conditions, asking for a cautious opt-in by the user.

5.2.1. Beneficial assumptions

By default, facts of type IntConst are assumed to require path sensitivity to cover cases as
shown by listing 5.4: If the constant assigned to rootRank is later overridden by another
constant, the change can be detected and tested for the meeting-over-all-paths property for
using it in the rank attribution step.

As path sensitivity has been shown to easily inflate the fact domain set exponentially, it

63

CHAPTER 5. EVALUATION

1 int rank = -1, rootRank = 1;
2 MPI_Comm_rank(..., &rank);
3

4 if (rank == rootRank) {

5 // ...

6 b

7

8 rootRank = 2;

9 if (rank == rootRank) {
10 // ...

11 }

Listing 5.4: Path sensitivity for IntConst facts.

overtaxes the program if the pattern shown by listing 5.4 is not being used at all. The user of
the tool is given two options to overcome such a situation:

1. Considering all IntConst facts immutable: After the first assignment of an integer constant
to a location in the IR, no further overwriting is assumed after that, and path sensitivity
for this type of facts is suppressed.

2. Skipping the inter-rank analysis altogether: IntConst facts currently only serve the
purpose to derive assumptions about certain interactions in the context of MPI windows
across processes. For a user, there are a couple of reasons to opt-in for skipping these tests:
the sheer number of IntConst and Win facts resulting from the IFDS problem solution,
as well as the follow-up costs of the rank attribution and epoch matching algorithms, and
also for using communication patterns that are more sophisticated than comparing the
current rank against a hard-coded constant.

For the implementation of the tool, a user can set the respective flags for either case: If the
assumption of immutable rank roles is safe, it favors the run time for taking this consideration
into account, and if there is no need to perform any of the mentioned tasks, the user is rewarded
by saving precious time.

5.2.2. Graph slicing

Considering the basic blocks (BBs) of a CFG of a given procedure, the set of instructions of
some BB perhaps does not contribute anything to the static analysis of MPI RMA, let alone
have any kind of calls to library methods at all. While this concern alone is not the biggest
cost driver, path sensitivity over these seemingly meaningless sections of the CFG is a major
issue. If the tool can eliminate certain seemingly irrelevant sections of the CFG at reasonable
costs in advance, the overall run time may greatly benefit.

First, the precise criteria for the relevance of a BB are given:

1. There is a call to a declared method that is subject to the IFDS problem of MPT RMA:
setup of MPI communicators, windows, remote actions, synchronization, and some
auxiliary functions, e. g. MPI_Comm_rank.

2. Unless disabled by measurements of subsection 5.2.1, there is a scalar assignment of an
integer constant to a memory location.

3. There is a call to some other defined procedure of the given IR module.

64

5.2. APPROACHES TO RUN TIME OPTIMIZATION

1 // A

2 if (someCond) { l
3 // B /Qg\
4 } else {

5 MPI_Barrier (MPI_COMM_WORLD); // C e

6 }

; (0]
s //D

9 if (someOtherCond) { ;

10 // E |

11 while (yetAnotherCond) { |

12 // F

13 } '
14 // G @
15}

16 // H

Listing 5.5: Source code (left) and its colored CFG (right).

In this chapter, a seemingly irrelevant block refers to a BB that does not meet any of the
listed criteria. While actions relevant to MPI RMA can be widely identified over their distinct
method names, there are some notable exceptions that drain completeness: buffer actions, local
actions, copying and aliasing of MPI handles, and remote actions by accessing locally mapped
memory of remote processes as it is the case for the shared window flavor. In a simplified
scan over the instructions of a BB, these actions cannot be identified for having MPI RMA
semantics, thus any such BB is only seemingly irrelevant and may be wrongly erased from
the CFG, possibly leading to an invalid IR as described on p. 83, making this optimization
approach fully optional.

In the context of this thesis, a flow net refers to a directed, unweighted graph with nodes
of which exactly one is an outlined start or source node and exactly one is a sink node — a
node without any outgoing edge. The source and sink nodes must be distinct. In this chapter,
a CFG is again composed of nodes representing BBs, unlike the IFDS problem instance of
chapter 4 that treats single IR instructions as nodes. Every node is given a color: white for
being seemingly irrelevant, black otherwise. With loss of generalizability, for a CFG, a sub-flow
net refers to a subgraph of that CFG that is a flow net, and that consists of a dominator node,
a start node that is branching, and a zip node, a source node that is merging.

Wormholes

The first idea of graph slicing is to find all largest — given the number of nodes — sub-flow nets
of a CFG with every non-dominator and non-zip node being white, and to replace every finding
by a single edge, the wormhole.

Listing 5.5 shows an example of an excerpt of source code and its CFG. The node C' is given
the color black for containing a call to MPI_Barrier. Thus, the subgraph induced by the nodes
{A, B,C, D} cannot satisfy the definition of a disposable sub-flow net. Taking the induced
subgraph of the nodes {D, E, F, G, H}, there is a dominator node D and a zip node H: In this
case, a wormhole can be introduced by removing the branching property of D and inserting a

65

CHAPTER 5. EVALUATION

single outgoing edge (D, H) while removing the nodes {E, F, G}, saving two points of forking.

The algorithm for cutting off sub-flow nets to replace them by wormholes operates on each
lvm: :Function of the given 1lvm::Module, starting by performing a depth-first search (DFS)
over the 1lvm: :BasicBlocks: On visiting each node, an overlay structure resembling the inverted
CFG over the BBs is created, as well as the color and additional attributes are assigned.

A second DFS finds dominator nodes, possibly starting from a virtual super-start node of
the inverted CFG and reaching out to the original start node, the sink-node of the inverted
CFG. A dominator is given under one of the following conditions:

e From the perspective of a regular CFG, it is the top-most branching node,
e it is any other branching node if no previous dominator is known at that point (L) or

e it is a branching node that is also the zip node of some sub-flow net graph.

When reaching a branching node b on the first visit, the DFS returns to the parent, taking a
symbol b, and the dominator of b, or b as the dominator if there is no previous one set, together
with other symbols of every other first visit. By touching b over the second incoming edge, it
returns a symbol b; as well as the dominator information. Any branching node b is considered
resolved if at a merging node, after returning from all children, b; and b, were collected for
mutual annihilation; unresolved symbols are returned to the parent node.

Dominance is thrown over under one of the following conditions:

e The color of a node n is black: If it is not a branching node at the same time, the
dominator is set to L; otherwise, n becomes the new dominator.

e After returning from all children, a merging node m observes conflicting information
about the dominance of its children. If m is not a branching node at the same time, the
dominator is set to L; otherwise, m becomes the new dominator.

Whenever dominance is overthrown, the set of unresolved symbols is cleared as well, allowing
the detection of a smaller sub-flow net. A largest sub-flow net without any black intermediate
nodes between some node d and z is found if both of these conditions hold:

e At a merging zip node z, after resolving the symbols from all children, there are no
unresolved symbols left. For every branch node b starting from d, both outgoing edges
and their symbols b;, b, have been resolved somewhere no later than z.

e All children of z report d as the observed dominator: the meet-over-all-paths dominance
property.

When treating the CFG of listing 5.5 as a complete graph, the procedure to determine
the sub-flow net is visualized by figure 5.3. Loops, such as the while-loop around the nodes
{E, F,G} require additional attention: If E was treated as a conditional branch block, it could
not answer the question of dominance when touched by the edge (F, E) as it still awaits its
return from F' to determine this answer. Thus, on discovery of a node that is still pending,
the complete branch is grayed out (indicated by the 7 labels) to treat the evaluating loop
component as a non-conditional branching node, never emitting symbols and never qualifying
for dominance.

Internally, the symbol resolution is implemented using a symmetrical set difference operation,

66

5.2. APPROACHES TO RUN TIME OPTIMIZATION

ﬂ (A,{Al}..)‘,@ (A, {Ar})
: ©°

a (A’ {AZWH {AT})

(D, {Dr})

A

Figure 5.3.: CFG (left), and inverted after the second DFS (right).

with its performance costs growing linearly to the size of the set of symbols to operate on?.

For a merge node having m incoming edges, the operation takes place m — 1 times. For N
nodes of all of the CFGs, the overall number of incoming edges of merge nodes is bounded by
O(|N|). With a complexity of the DFS in O(|N| + |E|), the growth of the overall costs of this
procedure is coarsely bounded by O(|N|?).

Compression of conditions

For a sequence of Boolean expressions, the evaluation of each single one results in a BB with
conditional branching. When writing software, it is common to line up these expressions
conjunctively or disjunctively, for example inside of an if or while statement. If there is a black
BB reached by the all-true case of a conjunctive set of expressions, or by the at-least-one-true
case of a disjunctive set of expressions, and every evaluating BB is white, this part of the CFG
can be compressed into two edges, with one reaching the black BB while its counterpart does
not.

Consider the example of listing 5.6: With two calls to MPI RMA methods, both of them
are guarded by an expression, first by a conjunction of conditions, then by a disjunction.
For maintaining path sensitivity, the node set {B,C, E, F'} increases the number of generated
facts. For the implementation of the static analysis of MPI RMA, the false-case of the nodes
{A, B,C} is seemingly equivalent to a single edge (A, D), as well as their the true-case is
seemingly equivalent to a single edge (A, X). Analogously, these assumptions are made for the
disjunctive test encoded by the node set {D, E, F'}. If the CFG can be compressed by skipping
the intermediate BBs as indicated by the dashed line, a single fact reaching the node A will
only generate four new facts until leaving Z — instead of 16.

The implementation reuses the ideas of the search for wormholes: A first DFS creates an

2std::set,symmetr‘ic,difference on cppreference.com — https://en.cppreference.com/w/cpp/algorithm/set_
symmetric_difference, last seen 2018-12-29.

67

https://en.cppreference.com/w/cpp/algorithm/set_symmetric_difference
https://en.cppreference.com/w/cpp/algorithm/set_symmetric_difference

CHAPTER 5. EVALUATION

1 if (condA && condB && condC) {
2 MPI_Get(...); // X

3}

4

5 if (condD || condE || condF) {
6 MPI_Put(...); // Y

7}

8 // Z

Listing 5.6: Source code (left) and its colored CFG (right).

inverted, colored CFG. Instead of looking for a largest sub-flow net, any sufficiently large one
is taken under the following conditions:

1. The zip node z has three or more incoming edges (conjunction) or two incoming edges
with the black node having more than one incoming edge (disjunction),
2. all children are derived from one dominator node d and
3. of all these children, exactly one is a black node that is not itself the dominator.
Unlike the search for wormholes, there is no need to return edge symbols on every branching
node for resolution. Instead, fixed-size returns are sufficient: the dominating branch node
and the edge of descendance, the last black node if available, and a flag to indicate previous

merging at a child of first degree. Non-branching, white nodes act as a pass-through of return
information.

Dominance is reset or claimed or both on one of the following conditions:

1. At a branching node, it is reset if the node acts as an evaluation node of a loop,

2. at a branching node when no or no consistent dominance is currently known — or it just
had been reset by the conditions below,

3. at a zip node, allowing the dominator to jump directly to the black node (conjunction)
or to the zip node (disjunction) over one of its edges,

4. at a zip node, if there is more than one child of black color or

5. on the occurrence of a black node that is in the line of descendance of another black node.

Figure 5.4 shows how to apply the DFS under the given specification to the CFG of listing 5.6
when considered complete. Let R = {l,r} denote the set of the sides where the DFS returned
from a dominator, H = {T,Ll} the Boolean flag indicating precedent merging of a non-

dominating node, then the edges are labeled by N x R x H, not showing the last known black
node in the returned tuple.

Detecting the sub-flow nets representing a conjunction or disjunction as specified by this

68

5.2. APPROACHES TO RUN TIME OPTIMIZATION

(D,r, 1)
E (D,l,L)::_-"(D,r,‘J:’),v (D,r, 1)

Figure 5.4.: The colored CFG (left), and after the DFS (right).

subsection, as well as replacing one edge of the dominator by an edge jumping over seemingly
irrelevant branch nodes can be done inside of a regular DFS. Thus, the cost of this procedure
grows no worse than the one imposed by a DFS: O(|N| + |E|).

5.2.3. Window isolation

In an attempt to allocate the available computer resources more granularly, the implementation
supports window isolation: In any MPI RMA program that makes use of more than one window,
it may be useful to restrict the IFDS problem solution to a single window at a time, setting
m = 1 in the growth estimation of section 5.1. The IFDS problem model keeps track on the
occurrences of window setup calls globally, allowing the generation of a Win fact on the i-th
attempt only. Additionally, this concept allows a simple yet effective way to parallelize the
static analysis of a program by its number of window generation calls, free of requirements
to synchronize any computation nodes, but sacrificing multiple tests of subsection 4.2.3 and
subsection 4.2.4 with respect to completeness.

5.2.4. Estimation and progress

With the scalability analyzed by section 5.1, and the various optimization approaches presented
by the previous subsections, it is worth estimating the dimension of the underlying IR module
with respect to the IFDS problem solution in advance to schedule computational resources, to
pick optimizations, or to reduce the size of the unit under analysis. Two features have been
implemented for assisting the decision: a preflight and a progress display.

69

CHAPTER 5. EVALUATION

Preflight

The preflight serves to count the following elements of the IR, module:

1. The overall number of instructions that a zero fact will encounter,

2. the offset of instructions to the generation of the first path-sensitive fact with respect to
the settings of subsection 5.2.1,

3. the number of calls to methods that generate Win facts,
4. the number of calls to methods of the MPI RMA domain,

5. unless IntConst facts have been disabled by the user, the number of LLVM store instruc-
tions writing an integer constant, with a tracing feature to skip counting of overwrites
and

6. the number of conditional branch instructions.

The implementation of the preflight is done by a single-fact IFDS problem model to be solved
by Phasar. The result set of the preflight provides two advantages in a comparably reasonable
amount of time — polynomial, as shown by the first test of section 5.1:

1. Acquiring numbers for pessimistically calculating the upper bounds of the number of
facts and instructions that the main IFDS problem solution will face and

2. measuring the impact of the optional optimizations that have been presented in this
chapter as the preflight takes place after slicing the CFGs of the module.

Progress

When running the MPI RMA static analysis on Linux or any platform that supports POSIX
signals, and if the preflight grants the assumption of the total number of Win facts fitting into
an unsigned 64-bit counter, then a user may optionally enable the display of progress at the
default output channel: Using SIGUSR signals, an update is given for every generation, fork
and killing of a Win fact. The display not only enables an estimation of the overall progress of
the IFDS problem solution with respect to the upper bound of Win facts, but also to roughly
measure the time span between launching the program and the first touch of a Win fact for the
many operations occurring in the mean time (cf. subsection 4.1.1 and section 5.1).

5.2.5. Overview

Table 5.1 lists all steps of this section for optimizing the IFDS problem solution run time in
their order of execution. The column Complexity describes the growth of costs that is added to
the respective Stage of the tool; the degree of amortization varies as shown by the next section,
depending on the underlying source code.

70

5.3. EXAMPLES

Optimization / Estimation Stage Complexity
graph slicing: wormholes preprocessing O(|N|?)
graph slicing: compressing conditions preprocessing O(|N| + |E|)
preflight pre-IFDS problem | O(|E|)
immutable Int facts IFDS problem O(1)
inhibited Int facts IFDS problem O(1)

window isolation IFDS problem O(1)

Table 5.1.: Costs of optimization and estimation techniques.

5.3. Examples

After considerations of MPI communication, LLVM, the static analysis of MPI RMA properties
over an IFDS problem and follow-up models, and approaches to quench concerns related to
scalability, the implementation is at a state to face the confrontation of non-trivial programs.
In contrast to non-RMA MPI programs, the current availability of client programs using RMA
at a reasonable size that suit reproducible setups is comparably scarce, possibly reflecting the
overall adaption of MPI RMA at large®. Nonetheless, two suitable collections of source code
are presented in this section.

5.3.1. OSU Micro-Benchmarks

Hosted by The Ohio State University (OSU), its MPI implementation is known as MVAPICH
[WHO06]. Alongside the implementation, a collection of C and C++ source code files known as
OSU Micro-Benchmarks (OMB) is provided to serve as a code base to perform benchmarks of
different aspects of an MPI implementation, such as RMA.

The programs to benchmark MPI RMA are named: osu_put_latency, osu_get_latency,
osu_put_bw, osu_get_bw, osu_put_bibw, osu_acc_latency, osu_cas_latency, osu_fop_latency
and osu_get_acc_latency. The ones of the suffix _latency represent latency benchmarks, as
_bw does for bandwidth and _bibw for bidirectional bandwidth. It is common for all of these
programs to offer flags to the user to control the window flavor and synchronization mode at
launch time. Thus, in most of the source code files, every flavor and every mode is encoded by
default. As the OMB suffer from an early aliasing of the MPI_Win handle to use, slightly modified
versions have been used for testing, replacing the call-by-reference of the setup procedures by a
return of the newly assigned MPI_Win identifier.

In the first step, every program’s C source code file is compiled together with its dependencies
into the LLVM IR using Clang v6.0 with optimizations disabled. In order to obtain an impression
of feasibility of a static analysis, a preflight-only run is taken for each of the programs with
different degrees of run time optimization?.

3 As of 2019-01-01, on StackOverflow, there are 23 topics labeled by mpi-rma, in contrast to 5068 topics labeled
by mpi. Counted by https://stackoverflow.com/tags.
4_0w: Attempt to find wormholes and reduce the CFGs. -0R: Skip the inter-rank analysis completely.

71

https://stackoverflow.com/tags

CHAPTER 5. EVALUATION

The results are shown Program # win. Flags | # instr. | # cond. branches
by table 5.2. While none osu-acc_latency 4 3872 343
. . oW 3600 315
Of the programs 18 partlc— OR -OW 3514 303
ularly big or small regard- osu_cas_latency 4 3882 337
. . -0W 3602 307
ing th‘e number of IR in- R o 3094 RS
structions, the most ag- osu_fop_latency 1 3853 337
gressive optimization op- -ow 3573 807
’ “0R -OW 3287 275
tions are shown to be no- osu_get_acc_latency 3 3376 299
tably effective, reducing -OW 3247 289
. . “0R -OW 3161 277
the conditional branch in- osu et Tatency 1 3505 3Ed
structions for osu_cas_la- -0W 3630 317
R - 44 305
tency by more than 20 R _-OW 35
y by) %’ osu_put_latency 4 3864 343
hence the potential num- oW 3502 375
ber of Win facts by up to -0R -OW 3506 303
osu_get_bw 4 3712 316
factor 282, Unfortunately, o oW 3133 583
even for the smallest pro- “OR -0W 3347 276
gram (osu_put_bibw) with osu-put_bw 1 - gg% g;g
all possible optimizations, “OR -O0W 3486 283
an upper bound of 229 con- osu_put_bibw 4 3084 272
. . -oW 2793 242
ditional branches with four R oW 5704 539
window setups is expected
to remain far beyond feasi- Table 5.2.: OMB MPI RMA preflight data.

bility for the static analysis.

5.3.2. TrackerSim

Maintained by the observatory of the University of Hamburg, PHOENIX is a software to
perform simulations in the context of astronomy while also being a long-term user of the MPI
environment [BHIS|[AWH16].

TrackerSim is an attempt to mime certain sections of the PHOENIX source code that
originally use OpenMP for local parallelization by an implementation using MPI RMA instead
[Squl6]. Unlike the OMB, TrackerSim is written in Fortran, thus requiring the Flang compiler
when requesting an LLVM IR representation. TrackerSim consists of multiple MPI RMA
variants:

o Fence (ts_fence). Using statically allocated windows and the fence synchronization mode.
o Lock (ts_lock). Using statically allocated windows and PTS.
o Shared (ts_shared). Using the shared window flavor and PTS.

o SharedNoRMA (ts_shared_inner, ts_shared_outer). Two variants using the shared
window flavor, PTS and implicit communication, distinguished by the placement of
MPI RMA locks.

All variants are compiled by the Flang binary distribution 2018-09-21 with optimizations
disabled as well. Again, the first step is the preflight for every variant and degree of optimization.

The preflight results are shown by table 5.3. By the number of instructions, at a first glance,

72

5.4. SUMMARY

TrackerSim is on a par with OMB. Nonetheless, it turns out to be mostly immune towards
attempts to reduce its CFG. The inspection of the IR files revealed interesting properties in

comparison to Clang:

e Module-wide INTEGER variables have been merged into a larger contiguous array, not

having individual symbols.

e On demand, this array is addressed by an offset, followed by an 1lvm::BitCastInst
instruction that models the cast of an array cell into a scalar integer value.

o This procedure is repetitive across the file, not doing any reuse of casted symbols.

As a consequence, IR files by
Flang on the -00-optimization
level yield an impression of clut-
tering. Both for attempting
to reduce the number of con-
ditional branches, and for re-
ducing the overall number of
instructions as well, the two
smallest variants of Tracker-
Sim (ts_fence, ts_lock) were
recompiled using the -0s flag,
requesting the compiler to op-
timize the compilation for a re-
duced size of the executed bi-
nary file.

As demonstrated by table 5.3,
the impact of the compiler op-
tion is rather huge from the per-

Program # win. Flags | # instr. | # cond. branches
ts_fence 5 2682 61
-0W 2682 61

-OR -0W 2645 60

ts_lock 5 2595 57
-0W 2595 57

-OR -0W 2558 56

ts_shared 5 3773 74
-0w 3768 73

-0R -0W 3731 72

ts_shared_inner 5 3970 75
-0w 3965 74

-OR -0W 3928 73

ts_shared_outer 5 3960 75
-0W 3955 74

-OR -0W 3918 73

ts_fence_0s 5 1158 50
-ow 1155 49

-OR -0W 1143 48

ts_lock_0s 5 1124 47
-0W 1121 46

-OR -OW 1109 45

Table 5.3.: TrackerSim preflight data, with -0s programs.

spective of the preflight, reducing the total number of instructions by more than 50%° and the
number of conditional branches by a notable degree, leaving attempts of shrinking the CFGs
again at a petty level. Again, under the observation of section 5.1, even the smallest program
(ts_lock_0s) remains infeasible to analyze on a personal computer.

5.4. Summary

In this chapter, a number of notable observations have been made with respect to the feasibility
of a static analysis with Phasar and the model implementation of an MPI RMA static analysis

in particular:

e By default, when using Phasar, there is no linear growth of costs over an increasing
program size but a polynomial one.

e Path sensitivity as an IFDS problem contributes exponentially to the growth of the

5 Actually, this is of a cheating nature: Flang largely achieves this by inlining 1lvm: :BitCastInst instructions, a
legal way by the IR specification. Regardless of this method, Phasar only perceives the subset of instructions,

resulting in a smaller number of edges.

73

CHAPTER 5. EVALUATION

run time: The feasibility currently reaches its pain threshold slightly above of a trivial
program complexity, having between 10 and 13 conditional branches.

o Attempts to reduce a CFG by removing seemingly irrelevant parts and skipping the
inter-rank analysis show ambiguous results: Satisfying ones in case of the OMB programs,
neglectable ones for TrackerSim. It is currently unknown whether this is a matter of the
actual source code or the two different compilers.

None of the tests was performed successfully on any example program as the test platform
always ended up in memory excess during the IFDS problem solution after roughly forty
minutes. Overall ideas and suggestions, especially to the show-stopping performance of the
current implementation, are given by the next two chapters.

74

6. Remodeling the IFDS problem

Given the results of chapter 5, further refinements of the IFDS problem design are discussed,
presented and given a re-evaluation.

Considering the perspective of the scalability measurements of section 5.1 and the preflight
data of the programs under analysis in section 5.3 as discouraging, it is worth putting effort
into modeling the IFDS problem in a way that circumvents path sensitivity a priori, avoiding
an exponential growth of the state space as an average expectation over the determination by
the number of conditional branches.

While the first approach of the IFDS problem model allows an arbitrary fat state of facts,
the overall idea now is to restrict the generation of facts to the traversal through production
rules of the context-free grammar specified by section 4.2 while also allowing the reuse of
previous achievements of the pre-IFDS problem stage, such as the Unlock-Map algorithm (sub-
section 4.1.5) and the graph slicing (subsection 5.2.2), but also by using the first IFDS problem
model as a reference in the testing process.

6.1. The revised model

In contrast to the first IFDS problem model of subsection 4.1.3, the range of fact types is
trimmed to Null, Comm and Win. In addition, the following simplifications are made to the
implementation:

e Symbol tracing is limited to the tracing of the own handle,

 inter-fact referencing is restricted to the direct ancestor relation between Win facts,

e 1o information on post-IFDS problem aspects is collected along the way, such as true or
false branching and calls to the rank value acquisition,

o the history of Win facts is strictly limited to verbose calls of methods that contribute to
the grammar and

e as a result of the previous circumstances, tracking of the implicit communication in the
shared window flavor is not supported by the implementation.

The notable change to the Win fact type lies in the behavior of creating successor facts:
Previously, the fact domain exploded by a sweeping forking on reaching a conditional branch
instruction, regardless if a fork was considered promising with respect to the upcoming nodes
for both successors — at best, such a region of the CFG could have been replaced by a wormhole
(cf. subsection 5.2.2) for not contributing to the static analysis.

In the second IFDS problem model, calling it the lazy mode of the initially presented
IFDS problem, window facts no longer fork on crossing a conditional branch: Instead, each

75

CHAPTER 6. REMODELING THE IFDS PROBLEM

Wn
e
A
call MPI Win fence(...)
(o e e

Wf +
I [br ... %$true, %false]

J\

-+

o——o =
>

— o=

<

Figure 6.1.: Transition-driven flow mapping of a window state.

window fact is generated for living no longer than the single state it is representing between
two occurrences of MPI RMA calls, or one call and the end of the CFG. This way, two paths
following a conditional branch will not make the fact space grow unless one or both of them
change the window’s state on either path. If an upcoming call to an MPI RMA method is
covered by the grammar specification of section 4.2, the incoming Win fact object generates
a successor that attempts to advance over the legality of the transition and continues in the
graph reachability analysis in case of success, leaving the parent killed.

This behavior is demonstrated by figure 6.1, taking a CFG derived from the one of figure 4.3
(p. 40): A newly created window object is denoted w,,, and upon reaching the call to MPI_-
Win_fence, its successor w; now represents the fenced-state. As wy is distributed across both
branches, it is killed by a call to MPI_Put in the %false-node and replaced by w., the window
in the state of non-synchronized fence-communication. At the flow function A;, Phasar will
provide the two facts wy and w,: If the call to MPI_Put had been absent, at this point, there
would have been wy only.

Another computationally significant change has been made to the handling of loops: Instead
of stabilizing Win facts by locking the individual facts over the information by the unlock map
on facing the re-entry of a loop (cf. subsection 4.1.5), the respective flow functions can now
perform an early elimination on the edge that leads into the loop’s body for facts that have
been newly generated inside of that particular body, saving a large amount of otherwise dry
processing of locked facts as part of the IFDS problem reachability analysis.

76

6.2. SCALABILITY

512.000

32.000
setup
8 — first_ifds
@ 2.000 -- lazy_idle
= lazy_busy
0.125

1 2 3 4 5 6 7 8 9 10 11 12 13
cond. branches

Figure 6.2.: Computational time over a growing program size and constant facts.

6.2. Scalability

The lazy mode is unable to computationally perform better on programs that actually model
an exponential growth of the Win state space, yet it is expected to outperform in the average
case: non-artificially crafted source code. This assumption is derived from repeating the test 2
of section 5.1:

In the previous test setup, there was a customizable number of conditional branches that
lead to code presumably irrelevant to the static analysis of MPI RMA, calling this the idle
setup. Now, in a second version of this test, the code inside of the conditional branches is
replaced by calls to an MPI RMA method, making this test the busy one.

For the revised model, the idle setup is expected to have a stable and insignificant low
consumption of time over an increasing number of conditional branches whereas the cost of time
of the busy setup will remain at growing exponentially — possibly at a lower scale due to the
overall lighter implementation. Indeed, these assumptions are confirmed by the measurements
depicted by figure 6.2.

As the idle setup will never generate more than a single Win fact under the lazy mode of
the IFDS problem (plot line lazy_idle) its run time remains constant. It is unknown what
exactly causes the busy setup’s run time to initially grow steeper without hitting the step as
observed in the first model (plot lines lazy_busy, first_ifds) at n = 11 but at the scale of the
test setup, given 13 conditional branches, the time to finish is reduced by nearly two minutes.

Estimating the actual number of different window state transitions of TrackerSim between
100 and 1000 per window, the IFDS problem solution in the lazy mode is expected to pivot
around ten seconds for one given window on the test hardware — a fairly promising duration.

77

CHAPTER 6. REMODELING THE IFDS PROBLEM

1.00 20

0.75 15

win

8050
go.

0.25

MW N R
e
[
o
aswN e

0.00

» & N
PO S - N & N o)
) 5 5@ 5@ A 9 N 2 & > X A
AN SN G SN S SR S N & N & & 4
4 I % R RS
& & S & T o & < &7 i $ 87 50
S/ S/ &7 & Y < N &7 & &
& & < S S S 5 5
7
oa}’ &7 &7
benchmark benchmark

Figure 6.3.: OMB (left), TrackerSim (right).

6.3. Examples

Again, the examples under analysis are TrackerSim and the OSU Micro-Benchmarks (OMB).
Ranging from three to five window instances per benchmark, every i-th window has been
analyzed by the window isolation mode (cf. subsection 5.2.3), again averaging the run time
over five runs.

The resulting run times, grouped by the programs and window instances, are presented by
figure 6.3. For the OMB, the required run times are homogeneously located around the half
of a second. In case of TrackerSim, more dynamics can be observed: Both the shared and
non-shared instances significantly differ by the required time, partially explained by the up to
50% higher number of lines of IR code of the shared-flavor programs, as well as having peaking
efforts in analyzing a single window in the non-shared programs, code-wise for roughly twice
the amount of actions taking place on the CFG for the first windows.

In addition, for none of the presented programs the lazy mode IFDS problem solution reported
any violations under the grammatical specification.

6.4. Summary

Considering a different approach to model the IFDS problem for testing an essential MPT RMA
property has been shown to be a success with respect to scalability under ordinary circumstances:
For the presented examples, despite their overall potential size of the state space, the static
analysis has turned into a matter of seconds, even on a personal computer.

Nonetheless, the lazy mode IFDS problem model currently sacrifices any tests beyond the
initial IFDS problem solution: From the lack of the ability to properly order and group Win
facts afterwards to the missing of IntConst facts that may be useful to further investigate issues
across paths and even MPI ranks. Yet, the model may serve as a basis for further enhancements
to the overall IFDS problem specification towards recovering features from the initial, naive
attempt to model path sensitivity and inter-fact relations.

78

7. Related work

Other work in the context of static analysis and MPI — and more globally: APIs — is reported
by this chapter.

With the topics of static analysis, IFDS problems, LLVM and MPI being a wide field for
related work, this chapter focuses on publications that closely cover the core topic of this thesis:
the typestate analysis of API objects. The individual summaries attempt to highlight concepts
of the problem modeling and approaches to tame the state space explosion.

MPI & Clang

In a close context, A. Droste et al. have already implemented a static analyzer of certain
generic properties of MPI by using Clang [DKL15]. A version of this tool is now part of the
official Clang repository providing path-sensitive and syntactical tests. The path-sensitive set
includes tests for mismatches in pairs of non-blocking MPI method calls and the respective call
to a Wait-method; the syntactic analyses identify type incompatibilities between types of the
programming language and MPI, as well as bad memory references when using MPI methods.
Although being limited to the family of the C languages, the tool has been shown to detect
violations in open source projects using MPIL.

The tool by Droste demonstrates how Clang serves as a framework for static analysis, allowing
a developer to hook into multiple stages and tools around the Clang environment:

e Diagnostic. A diagnostic is best described as a compiler feedback being tightly bound to
features of the programming language in use, even to its surrounding macros. Aside from
reporting errors, maintaining genericness over any kind of use case or target platform,
it is known to developers for the wide set of -w flags' in the driver invocation of both
Clang and compilers by GCC.

e Clang-tidy. clang-tidy is a stand-alone tool providing a wider range of static code analysis
tests: Given the abstract syntax tree (AST) of a program, a check defines AST-based
matchers, testing any match reported by the tool for properties. Currently, clang-tidy
fits multiple uses?: domain-specific, local checks (e. g. for Android, Boost or MPI) and
the analysis of both specific (e. g. conventions by Google or LLVM) and generic coding
styles and conventions (addressing performance, portability or readability), also known
as a linter program.

1Clang 8 documentation — Diagnostic flags in Clang: https://clang.llvm.org/docs/DiagnosticsReference.html,
last seen 2019-01-12.

2Extra Clang Tools 8 documentation — Clang-Tidy: http://clang.llvm.org/extra/clang-tidy/, last seen 2019-
01-12

79

https://clang.llvm.org/docs/DiagnosticsReference.html
http://clang.llvm.org/extra/clang-tidy/

CHAPTER 7. RELATED WORK

o Clang Static Analyzer (CSA). The CSA is another stand-alone program, providing an IDE
integration and visually enriched results of path-sensitive static analyses, allowing the user
to trace violations across the source code. Again, there exist multiple checkers® examining
the source code for generic (e. g. null pointer dereferencing) or specific violations (e. g.
MPI, C library or POSIX methods), given a path-sensitive context.

FLAVERS

G. Naumovich et al. presented a tool named FLAVERS/Java for testing concurrency properties
of programs using the native threading API of Java [NAC99]. It makes use of concepts that are
similar to this thesis: In a first attempt, CFGs are attempted to be shrunk over the absence
of user-defined events at a node. A so-called trace flow graph is constructed from inlining
all CFGs, with a layer of start and end nodes of each thread mapping to the underlying
CFG. An additional set of nodes and edges models synchronization and concurrency between
execution paths. Also, a FSM accepts a language of valid sequences of API method calls. In a
domain specific language (DSL), it allows the specification of feasible thread interactions for
synchronization models such as locks or monitors. The original FLAVERS was designed for
the Ada language, and although its inter-thread interactions have been subject to research
for improving the analysis performance, there is no explicit information on measurements to
reduce the intra-thread state space with respect to path sensitivity [NCC99].

Microsoft SLAM

A project by Microsoft named SLAM targets the static analysis of C source code in order
to test drivers for Windows API compliance [BR02]. In a first step, the C program code
is translated into a Boolean program that maintains the original CFG but exclusively uses
Boolean variables to model predicates. In the next step, it is tested whether an erroneous
state is reachable over some path, otherwise satisfying the property specified by a DSL named
SLIC. In case of a violation in the Boolean abstraction, the feasibility of a violating path is
tested for the original program, possibly ending up in undecidability and demanding human
assistance. In another step, the Boolean program is refined by the insights of the previous
step, modifying the coarseness of predicates, and then revisited. Similar to this thesis, the
reachability analysis suffers from an exponential growth of the number of program states in a
worst-case scenario. The authors claim to have reached a fair degree of scalability by carefully
adjusting the precision of predicates in the Boolean abstraction.

Object aliasing & permissions

The work of K. Bierhoff and J. Aldrich addresses the topic of aliases of objects, having this
kind of challenge in the context of verification of protocol compliance of Java APIs in mind
[BAO7]. With respect to aliasing of integers and to MPI, that uses opaque and C-compatible
handle types preventing rich object-oriented semantics as provided by C++, this topic is of
less relevance to this thesis in particular, yet it demonstrates the issue of permissions when

3Clang Static Analyzer — Available Checkers: https://clang-analyzer.llvm.org/available_checks.html, last
seen 2019-01-12.

80

https://clang-analyzer.llvm.org/available_checks.html

attempting to verify API usage in an object-oriented environment. For Java, Bierhoff and
Aldrich have developed a tool called Plural out of this research, allowing users to enrich certain
types of object-based APIs by annotations for automated verification purposes [BA0S].

Tracematches as an IFDS problem

N. Naeem and O. Lhotak cover the modeling of interactions of objects in a typestate analysis
using a generalized IFDS problem, again demonstrating the application to Java code [NLOS§].
With a formalism called tracematches, that allows the specification of labeling object interactions,
and using these labels to compose a regular expression of the accepted language of interactions,
the authors propose to use two IFDS problem solution passes: one for the objects, and a
following one for the tracematch analysis. Worth being mentioned is the idea to model the
tracking of transitions towards the tracematch state over an IDE problem model.

IDE problems

An inter-procedural, distributive environment problem (IDE problem) is a generalization of an
IFDS problem, formalized by the inventors of the IFDS problems, M. Sagiv et al. [SRH96]:
While an IFDS problem is primarily seen as a reachability problem, allowing the context-
sensitive mapping of the liveliness state of a fact to a node of the CFG, an IDE problem
formally models the piggybacking of values obtained along the path of a fact, with the join of
two or more values states depictable as a lattice. Thus, a join operation of a fact over distinct
value states may increase its ambiguity, for example in an attempt to model a propagation of
constants. In a formal IFDS problem, the value state is simply one of the two states present
or not present. Next to the solver of IFDS problems, Phasar also offers the specification and
solution of IDE problems.

81

8. Recapitulation

To round up this thesis, in the last chapter, after the observations of chapter 5 and chapter 6, it
is worth collecting further ideas to better suit non-trivial programs at a wider range of property
tests while highlighting already existing limitations to possibly combine speed and completeness
in future work.

8.1. Future work

As the choice between the two IFDS problem models is currently driven by the mutually
exclusive demand for features and an acceptable performance for non-trivial programs, there is
a need to investigate the modeling of property tests and working on existing limitations more
deeply. As shown by section 5.1, any choice to implement a static analysis using Phasar is
currently accompanied by polynomial costs.

In this section, limitations to any of the presented IFDS problem models as well as their actual
implementations are being discussed in detail with possible solutions being proposed. Some
topics can be considered a threat to completeness of verification or falsification of MPI RMA
programs, some as attempts to improve the run time, and some as justification of skipping
certain MPI RMA property tests so far, and thus serve as potential subjects to future work.

LLVM IR

With more than 400 items, the intermediate representation of LLVM provides a rich set of
instructions, types and intrinsic functions, richer than other common IRs such as Vex IR by
Valgrind [Ma17]. While LLVM IR puts great effort into balancing the availability of platform-
specific exploits of features and reusability of the IR, as a consequence, any tool claiming
completeness over the LLVM IR must adopt the IR specification completely.

As some considerations have been addressed by the implementation in subsection 4.1.2
already, technically, the IR still provides features of general relevance to the IFDS problem
handling that have been omitted by the current implementation.

For example, the implementation is able to trace uses of data inside of aggregate types of
the IR (arrays, structs) but not when loaded and used as an SIMD vector element. As a
consequence, when using highly optimized code, the static analysis fails to recognize local or
buffer actions on such data.

In another observation, when using the graph slicing algorithm of subsection 5.2.2, LLVM
may complain about the incorrect — or worse — missing specification of symbols to consider in
a ¢-instruction: For an SSA-style language, a ¢-instruction indicates a path-sensitive choice
between symbols that are mutually exclusive over an actual predecessor basic block (BB) that

83

CHAPTER 8. RECAPITULATION

reached that statement. For the plain purpose of a static analysis, an incomplete set of symbols
in a ¢-instruction is not disrupting to the CFG, yet it may have an impact to the soundness in
some cases, rendering the graph slicing inappropriate.

To fully achieve completeness from the perspective of the IR, every single IR instruction
relevant for the control flow and data flow must be addressed by the various steps in the
implementation. While the IR by LLVM has a respectable size, it is still an acceptable tradeoff
compared to handling various programming languages individually.

Dynamic window memory deallocation

In the context of MPI RMA, for windows that are subject to the dynamic flavor, MPI provides
the methods MPI_Win_attach and MPI_Win_detach to adjust the amount of available memory at
the window’s lifetime. While the implementation is able to trace the base address of memory
blocks that have been attached to a window by a call to MPI_Win_attach for the purpose of
identifying local actions via Win facts, there is currently no modeling of retracting memory
locations for instructions following after a call to MPI_Win_detach.

1 %3 = alloca i8x, align 8
2 %4 = alloca i8%, align 8
1 MPI_Win_attach(win, data, ...); 3 %6 = alloca i8x, align 8
2 MPI_Win_attach(win, data2, ...); 4 %8 = load i8x, i8*x %3, align 8
3 5 %9 = call 132 @MPI_Win_attach(..., i8% %8, ...)
4 uint8_t xslice = data2; 6 %11 = load i8x, i8xx %4, align 8
5 7 %12 = call i32 @MPI_Win_attach(..., i8x %11, ...)
6 MPI_Win_detach(win, data2); 8 %13 = load i8x, i8x* %4, align 8
7 9 store i8* %13, i8*x %6, align 8
8 while (...) { 10 ..
9 uint8_t zero = slice[0]; 11 %20 = load i8*, i8xx %4, align 8
10 12 %21 = call 132 @MPI_Win_detach(..., i8x% %20)
11 slice += step; 13 %23 = load i8*, i8%x %6, align 8
12} 14 %24 = getelementptr inbounds i8, i8* %23, i64 0
load i8, i8+ %24, align 1

==
o o
o
N
(&)
L}

Listing 8.1: Aliasing of dynamic window memory (left), IR representation (right).

In the example given by listing 8.1, memory is attached to a window twice, and once
detached. The pointer variable slice (%6) is an alias of data2 (%4), used to iterate over sections
of the window memory. After removing data2 from the window memory and performing a
synchronization (not shown by the listing), %6 is still part of the known, local memory base
addresses: The first dereferencing of slice (%23 to %25) is then considered a local action.

As a consequence of this gap, a fact may wrongly accept a local memory access as a local
action that is actually no longer part of the window memory, possibly resulting in false positives
in the inter-rank analysis of concurrent local actions.

To overcome this limitation, a Win fact has to group the set of local base address aliases by
the one that has been used by the call to MPI_Win_attach to allow the removal of the set of
invalidated symbols on the occurrence of a call to MPI_Win_detach by any such symbol. The
implementation was postponed as it requires an additional layer of storage and look-up across
the path sensitivity of Win facts, with its run time maintenance costs probably outweighing

84

8.1. FUTURE WORK

false positives for a rather dynamic use case, only supported by one window flavor.

MPI handle reassignment

Currently, any Win or Comm fact assumes that memory locations holding any of its handles
(MPI_Comm, MPI_Win) never get lost to a nullification or an override by another fact: Practically,
this may result in a leak of MPI resources, possibly making a process hang at a call to MPI_-
Finalize [Forl5, section 8.7]. In contrast, for the static analysis, a respective fact, that has
been robbed its handle before reaching a call to a proper MPI cleanup method, continues to
erroneously assume ownership on the occurrence of future history items.

This circumstance becomes an issue even by non-erroneous use of handle variables if the
data flow of the program is modeled by reassigning handles to global or module variables
instead of passing them by value to a procedure. Facing an increased risk of races or stalls by
this programming pattern in the context of a multi-threaded environment, there may be valid
reasons for such a design.

MPI_Win winl, win2;
MPI_Win_create(..., &winl);
MPI_Win_create(..., &win2);

win2 = winl;

MPI_Win_free(&winl);
MPI_Win_free(&win2);

© 0 N O A W N =

Listing 8.2: Losing an MPI_Win handle.

In the source code given by listing 8.2, the implementation will by-catch the error secondarily:
Given two Win facts representing winl and win2, win2 becomes a handle-copy for winl eventually.
As a consequence, the original fact of win2 will continue to record its history until MPI_Win_free
whereas winl will encounter two calls to MPI_Win_free, resulting in a violation of the grammar
specified by subsection 4.2.1.

To solve this problem, all handle-maintaining fact types have to scan for store instructions
to known memory locations, invalidating these locations and all of their loads inside of the
current procedure frame.

Request-based MPl communication

For MPI windows in an access epoch of the passive target synchronization (PTS), request-based
remote actions are allowed: MPI_Raccumulate, MPI_Rget, MPI_Rget_accumulate and MPI_Rput.
For each of these functions, the user is required to provide an MPI_Request handle that is used
to later query and await the state of the local consistency of the originating remote action. The
request-terminating functions include MPI_Wait{all/any/some} and MPI_Test{all/any/some}.

While calls to MPI_Wait or MPI_Test are fairly simple to implement in the context of an
IFDS problem, whether as part of a Win fact or as a distinct Request fact type, the derivatives

85

CHAPTER 8. RECAPITULATION

of the suffices all, any and some are non-trivial and require a well-defined semantics: These
methods accept a list of MPI_Request objects and return the completion state if all, one, or
any non-zero number of requests have completed. Aside from properly monitoring the list
composition and use of the respective request handles, this imposes the following challenge:
On the occurrence of a call to MPI_{Test/Wait}{any/some}, how can a static analysis generally
assume the effect or voidness of local consistency after such a query? A request may or may
not be locally synchronized after a return, thus any local or buffer action directly following
may or may not be locally consistent to the remote action. Consequently, both outcomes have
to be modeled.

An additional question arises from the use of MPI_Test: When moving this call into a loop,
the host process can be designed to continue working on other operations in the meantime until
reaching completion. While a single call to MPI_Test may or may not return completion of a
request, repeatedly calling this method and correlating the return to the loop’s exit condition,
then after leaving the loop, any subsequent buffer action can be considered synchronized. An
example of this case is given by listing 8.3.

int doneWaiting = 0;
MPI_Request request;
MPI_Rget(..., &request);

MPI_Test(request, &doneWaiting, ...);
while (0 == doneWaiting) {
// ... (do other operations)
MPI_Test(request, &doneWaiting, ...);
}

© 0 N DOk W N

Listing 8.3: Active polling using MPI_Test.

The IFDS problem model requires modifications to reliably identify correlations of the return
value of a call to MPI_Test to the evaluation of a loop condition, allowing the respective fact to
acknowledge local consistency of the remote action.

Any modeling of actions related to request-based MPI RMA communication has been skipped
for this thesis as partial modeling of this feature yields the unsatisfying consequences and
open questions described by the previous paragraphs. Analogously, the RMA-specific method
MPI_Win_test of the gemeral active target synchronization (GATS) synchronization mode is
currently ignored.

From a distance of RMA communication, modeling of request handles is also beneficial to
the deadlock analysis described in section 4.2.3: As calls to MPI_Barrier block the invoking
process, a call to MPI_Ibarrier defers blocking until the appropriate call to MPI_Wait, asking
for a more granular modeling in this case.

Context sensitivity

Previously justified by subsection 3.6.1, the IFDS problem solution of Phasar prohibits certain
assumptions on other facts while processing a given fact in a flow function: Most notably,
any post-generation correlation of two facts must not take place during the execution of
the IFDS problem solution. Without revamping the IFDS problem fact domain presented by

86

8.1. FUTURE WORK

main: void interact (int rank, int role):
A 4
[var = 0;] '@
0xA [o [if (rank == role)] 0xB

0xC [interact (rank2, var);]‘

Figure 8.1.: Fact correlation over multiple call sites.

subsection 4.1.3, a minimum degree of building correlations between facts is still desirable, e. g.
for the rank attribution.

Yet, the current implementation of fact correlation is limited, losing the state under a given
call site context: Consider the example presented by figure 8.1.

In figure 8.1, CFGs of two procedures are shown: main and interact. For the variable
var, there exists an IntConst fact cyar, as well as two facts of type Null or Comm trace the
variables rankl, rank2 for containing the result of a call to MPI_Comm_rank. In the CFG of
interact, there is a comparison of the rank value and var, locally known as role. cy,; persists
its currently known integer constant into a global map, indexed by 1lvm::Instructionx. If the
rank comparison is symbolically located at some location 0xB throughout the IFDS problem,
the map neglects the context sensitivity of the call site, as cyay Will later overwrite 0xB — 0 of
the first call site (6xA) by 0xB — 1 of the second call site (0xC) after var has been assigned a
new value.

For MPI windows generated by the facts holding rankl or rank2, it is only correct to correlate
the rank and the integer value if both facts can be subsumed to the same context. Similarly,
the deadlock test of section 4.2.3 could then be extended to calls to MPI_Barrier to arbitrary
MPI communicators at any suitable place.

Since context sensitivity requires capturing the necessary closures for an arbitrary number
and depth of call stacks, this feature will greatly increase the memory consumption and decrease
the performance of the IFDS problem solution and inter-rank tests.

Procedure coloring
In subsection 5.2.2, two DFS-based algorithms were presented that make use of binary node

colors of a given CFG, based on simple assumptions of their relevance of contributing to
MPI RMA static analysis results. Currently, one of the criteria for a relevant, black node is

87

CHAPTER 8. RECAPITULATION

o OO

\2 ¥

Figure 8.2.: Coloring by the implementation (left), with call site elimination (right).

the presence of a call to a procedure (1lvm::Function) that is defined by the same IR module.

This may introduce an overly high number of black nodes under the following condition: If
the called procedure itself is free of black nodes, then there is no need to mark the caller node
black. For every procedure, on the first occurrence of such a call, the setup may iterate the call
tree and respective CFGs recursively, caching the overall color state of every procedure for any
future reference.

This mechanism will not only reduce the number of black nodes but also allow to completely
remove seemingly irrelevant call sites from every CFG if the type of the returned value allows
a trivial replacement by a surrogate value. A visual demonstration of the call site elimination
by a global CFG color is given by figure 8.2.

Scheduling of intra-path tests

One of the ideas to improve the performance of the implementation while not considering
fundamental changes to the IFDS problem model is the embedding of all suitable intra-path
tests (subsection 4.2.2) into the online IFDS problem solution (subsection 4.2.1).

Despite considerations of violating best-practices of model and software engineering over
separating these concerns, there is no technical inhibition to merge these tests: As a window’s
flavor is identified by its generating MPI method call, the very first one in every case, tests for
illegal attempts of dynamic memory management or queries for shared memory ranges can be
embedded into the IFDS problem solution for free, without asking for changes to the grammar
of subsection 4.2.1.

With the exception of rank-specific calls to MPI_Win_flush or MPI_Win_unlock, this is also
feasible to a subset of RMA synchronization modes when testing for non-synchronized buffer
actions.

88

8.2. CONCLUSION

Overlapping analysis

When two or more non-synchronized actions target an overlapping memory region, and at least
one performs a write, then a data race is imminent. While in theory this is a particularly
interesting property to test for MPI RMA at the inter-rank analysis stage, it also suffers from
a high dimensionality of variables:

wys : the size of the window’s displacement unit, in bytes
¢q : the number of target displacements of a remote action
Ce : the number of target elements of a remote action

¢t : the MPI_Datatype of all target elements of a remote action

The tuple (s, e) describing the positions of the first byte s and last byte e of a remote action
¢ inside of an MPI window w is then calculated as follows:

(s,e) = (wqs + Cqy Wys - €4 + Ce - MPI_Type_size(c;))

Even if all variables were available as constants, a static analysis would have to correctly
follow the setup of a possibly non-basic data type ¢, and to correctly perform the calculation
of its size as MPI_Type_size would, too. The deriving of types from basic types is covered
by chapter 4 of [Forl5] completely, rendering the whole idea of a static analysis that detects
potential risks of overlapping memory operations — balanced to a reasonable degree of warnings
or false positives — infeasible for this thesis.

8.2. Conclusion

In this thesis, a tool pipeline to perform a static analysis in the domain of MPI one-sided
communication has been evaluated to a satisfying degree: For programming languages commonly
found in the context of HPC, LLVM has been proven to act as a convenient intermediate
platform to operate a static analysis on, free of drawbacks. A typestate analysis, such as
testing an API call sequence for its correctness, can be modeled as an IFDS problem to a
certain extent, and given its expressive and mostly one-dimensional design, the specification of
MPI RMA fits sufficiently well over its essential parts.

Nevertheless, IFDS problem modeling requires an attentive development if the implementation
of facts and flow functions is supposed to lift heavy states and non-trivial use cases. Unless
precautions were taken, program structures as simple as a loop may render a problem model
useless for its non-finiteness.

Despite the title of this thesis, the implementation is still far away from reaching the rank
of a verification tool at the current state, notably for gaps being discussed in section 8.1.
Yet, it shows promising approaches to already act as a tool for falsification of software using
MPI RMA, following a grammatical specification and heuristics in the post-IFDS problem
stage.

The two IFDS problem models presented by chapter 4 and chapter 6 demonstrate how to
differently approach the implementation of a verification idea: While the first one aims to

89

CHAPTER 8. RECAPITULATION

enable a wide range of property tests over the cost of a very limited scalability, the second one
attempts to be light and lazy, sacrificing features for a content degree of performance in the
online IFDS problem solution of a typestate analysis. Out of the act of necessity to tailor an
implementation of the first model that leads to an acceptable run time, steps for optimizations
surfaced that benefit both models when facing larger or more complex programs.

For the future development, core topics include the questions of convergence of these two
approaches, the modeling of the open topics, the incorporation of techniques to better eliminate
infeasible execution paths, or even an evaluation against solutions that use different models,
for example an IDE problem model.

8.3. Acknowledgments

A special acknowledgment shall be devoted to the authors of Phasar for the software and their
support: For its young age, the framework provides a stable and surprisingly simple environment
to quickly model, evaluate and customize an IFDS problem and its implementation — with
some background in the LLVM IR programming interface being helpful. With Phasar, the
overall acceleration of the progress of this thesis has been substantial.

90

Bibliography

[AT94]

[AWH16]

[BAO7]

[BAOS]

[BBL10]

[BCD*18]

[BHO9S]

[BHJIMO7]

[BRO2]
[CFS09]

[DBB*16]

[DKL15]

L.O. Andersen and Kgbenhavns Universitet. Datalogisk Institut. Program Analysis
and Specialization for the C' Programming Language. DIKU rapport. Datalogisk
Institut, 1994.

Mario Arkenberg, Viktoria Wichert, and Peter H. Hauschildt. Proceeding On :
Parallelisation Of Critical Code Passages In PHOENIX/3D. In 19th Cambridge
Workshop on Cool Stars, Stellar Systems, and the Sun (CS19), Cambridge Workshop
on Cool Stars, Stellar Systems, and the Sun, page 31, October 2016.

Kevin Bierhoff and Jonathan Aldrich. Modular Typestate Checking of Aliased
Objects. SIGPLAN Not., 42(10):301-320, October 2007.

Kevin Bierhoff and Jonathan Aldrich. Plural: Checking protocol compliance
under aliasing. In Companion of the 30th International Conference on Software
Engineering, ICSE Companion ’08, pages 971-972, New York, NY, USA, 2008.
ACM.

1. S. Bajwa, B. Bordbar, and M. G. Lee. OCL Constraints Generation from Natural
Language Specification. In 2010 14th IEEE International Enterprise Distributed
Object Computing Conference, pages 204—213, Oct 2010.

Roberto Baldoni, Emilio Coppa, Daniele Cono D’Elia, Camil Demetrescu, and Irene
Finocchi. A Survey of Symbolic Execution Techniques. ACM Comput. Surv., 51(3),
2018.

E. Baron and Peter H. Hauschildt. Parallel Implementation of the PHOENIX
Generalized Stellar Atmosphere Program. II. Wavelength Parallelization. The
Astrophysical Journal, 495(1):370, 1998.

Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar. The
software model checker blast. International Journal on Software Tools for Technology
Transfer, 9(5):505-525, Oct 2007.

Thomas Ball and Sriram K. Rajamani. The SLAM Project: Debugging System
Software via Static Analysis. SIGPLAN Not., 37(1):1-3, January 2002.

Satish Chandra, Stephen J. Fink, and Manu Sridharan. Snugglebug: A Powerful
Approach to Weakest Preconditions. SIGPLAN Not., 44(6):363-374, June 2009.

James Dinan, Pavan Balaji, Darius Buntinas, David Goodell, William Gropp, and
Rajeev Thakur. An Implementation and Evaluation of the MPI 3.0 One-sided
Communication Interface. Concurr. Comput. : Pract. Exper., 28(17):4385-4404,
December 2016.

Alexander Droste, Michael Kuhn, and Thomas Ludwig. MPI-checker: Static
Analysis for MPIL. In Proceedings of the Second Workshop on the LLVM Compiler

91

Bibliography

[DLS02]
[For15]

[FOSM17]

[HDT*15]

[Hoa69]

[JKK10]

[IMOY]
[Kin76]

[KLM*15]

[Lat02]

[M&17]

[NAC99]

[INCC99]

92

Infrastructure in HPC, LLVM ’15, pages 3:1-3:10, New York, NY, USA, 2015. ACM.

Manuvir Das, Sorin Lerner, and Mark Seigle. ESP: Path-sensitive Program Verifi-
cation in Polynomial Time. SIGPLAN Not., 37(5):57-68, May 2002.

Message Passing Interface Forum. MPI: a Message-passing Interface Standard:
Version 3.1. High-Performance Computing Center, 2015.

Frank Flederer, Ludwig Ostermayer, Dietmar Seipel, and Sergio Montenegro. Source
Code Verification for Embedded Systems using Prolog. In Proceedings 29th and 30th
Workshops on (Constraint) Logic Programming and 24th International Workshop on
Functional and (Constraint) Logic Programming, and 24th International Workshop
on Functional and (Constraint) Logic Programming, WLP 2015 / WLP 2016 /
WFLP 2016, Dresden and Leipzig, Germany, 22nd September 2015 and 12-14th
September 2016., pages 88-103, 2017.

Torsten Hoefler, James Dinan, Rajeev Thakur, Brian Barrett, Pavan Balaji, William
Gropp, and Keith Underwood. Remote Memory Access Programming in MPI-3.
ACM Trans. Parallel Comput., 2(2):9:1-9:26, June 2015.

C. A. R. Hoare. An Axiomatic Basis for Computer Programming. Commun. ACM,
12(10):576-580, October 1969.

Nenad Jovanovic, Christopher Kruegel, and Engin Kirda. Static analysis for
detecting taint-style vulnerabilities in web applications. J. Comput. Secur., 18(5):861—
907, September 2010.

Ranjit Jhala and Rupak Majumdar. Software Model Checking. ACM Comput.
Surv., 41(4):21:1-21:54, October 20009.

James C. King. Symbolic Execution and Program Testing. Commun. ACM,
19(7):385-394, July 1976.

Gijs Kant, Alfons Laarman, Jeroen Meijer, Jaco van de Pol, Stefan Blom, and Tom
van Dijk. LTSmin: High-Performance Language-Independent Model Checking. In
Christel Baier and Cesare Tinelli, editors, Tools and Algorithms for the Construction
and Analysis of Systems, pages 692-707, Berlin, Heidelberg, 2015. Springer Berlin
Heidelberg.

Chris Lattner. LLVM: An Infrastructure for Multi-Stage Optimization. Master’s
thesis, Computer Science Dept., University of Illinois at Urbana-Champaign, Urbana,
IL, Dec 2002. See http://1lvm.cs.uiuc.edu.

Florian Méarkl. Case Study on LLVM as suitable intermediate language for binary
analysis. Technical report, Technische Universitdt Miinchen, 2017.

G. Naumovich, G. S. Avrunin, and L. A. Clarke. Data flow analysis for checking
properties of concurrent Java programs. In Proceedings of the 1999 International
Conference on Software Engineering (IEEE Cat. No.99CB37002), pages 399410,
May 1999.

Gleb Naumovich, Lori A. Clarke, and Jamieson M. Cobleigh. Using Partial Order
Techniques to Improve Performance of Data Flow Analysis Based Verification.
SIGSOFT Softw. Eng. Notes, 24(5):57-65, September 1999.

http://llvm.cs.uiuc.edu

Bibliography

INLOS]

[NLR10]

[NS07]

[RHS95]

[SF09]

[SHB19]

[Squl6]

[s.r18]

[SRH96]

[Str83]

[Tar71]

[WHO6]

[You66]

[Zak11]

Nomair A. Naeem and Ondrej Lhotak. Typestate-like analysis of multiple interacting
objects. SIGPLAN Not., 43(10):347-366, October 2008.

Nomair A. Naeem, Ondrej Lhotdk, and Jonathan Rodriguez. Practical Extensions
to the IFDS Algorithm. In Rajiv Gupta, editor, Compiler Construction, pages
124-144, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

Nicholas Nethercote and Julian Seward. Valgrind: A Framework for Heavyweight
Dynamic Binary Instrumentation. SIGPLAN Not., 42(6):89-100, June 2007.

Thomas Reps, Susan Horwitz, and Mooly Sagiv. Precise Interprocedural Dataflow
Analysis via Graph Reachability. In Proceedings of the 22Nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 95, pages
49-61, New York, NY, USA, 1995. ACM.

Manu Sridharan and Stephen J. Fink. The complexity of andersen’s analysis in
practice. In Jens Palsberg and Zhendong Su, editors, Static Analysis, pages 205221,
Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

Philipp D. Schubert, Ben Hermann, and Eric Bodden. PhASAR: An Inter-
Procedural Static Analysis Framework for C/C++. In International Conference on
Tools and Algorithms for the Construction and Analysis of Systems (TACAS), 2019.
To appear.

Jannek Squar. MPI-3 algorithms for 3D radiative transfer on Intel Xeon Phi
coprocessors. Master’s thesis, Universitat Hamburg, 10 2016.

JetBrains s.r.o. The State of Developer Ecosystem Survey in 2018. https://www.
jetbrains.com/research/devecosystem-2018/cpp/, 2018. [last seen: 2018-12-04].

Mooly Sagiv, Thomas Reps, and Susan Horwitz. Precise Interprocedural Dataflow
Analysis with Applications to Constant Propagation. Theor. Comput. Sci., 167(1-
2):131-170, October 1996.

Robert E. Strom. Mechanisms for Compile-time Enforcement of Security. In
Proceedings of the 10th ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, POPL ’83, pages 276-284, New York, NY, USA, 1983.
ACM.

R. Tarjan. Depth-first search and linear graph algorithms. In 12th Annual Sympo-
stum on Switching and Automata Theory (swat 1971), pages 114-121, Oct 1971.

H. Jin Q. Gao D. Panda W. Huang, G. Santhanaraman. Design and Implemen-
tation of High Performance MVAPICH2: MPI2 over InfiniBand . In Sizth IEEE
International Symposium on Cluster Computing and the Grid (CCGRID’06), pages
43-48, May 2006.

D. H. Younger. Context-free language processing in time n3. In 7th Annual
Symposium on Switching and Automata Theory (swat 1966), pages 7-20, Oct 1966.

Alon Zakai. Emscripten: An LLVM-to-JavaScript Compiler. In Proceedings of
the ACM International Conference Companion on Object Oriented Programming
Systems Languages and Applications Companion, OOPSLA ’11, pages 301-312,
New York, NY, USA, 2011. ACM.

93

https://www.jetbrains.com/research/devecosystem-2018/cpp/
https://www.jetbrains.com/research/devecosystem-2018/cpp/

A. Usage instructions

A.1. Requirements

The static analysis tool has been tested extensively under Linux. Although platform dependency
is supposed to be optional, Linux is currently recommended. The following software is required
to be present on the computer when building the tool from the source code:

e (CMake v3.10 or newer,

e a C++-14-compliant compiler,

o git,

optionally, the MPI development package of the software to inspect.

A.2. Setup

The following steps are mandatory to obtain a working binary program of the tool:

1. Obtain the source code of Phasar!, check out git tag v1218 and install all of the required
dependencies.

2. Build and install Phasar in its Release configuration.

3. Copy the tool’s source code from the given media into a local directory and move there
by a system shell.

4. Execute: $ mkdir build && cd build && cmake ..

5. Check the output for matching dependencies and desired versions. When satisfied, run $
make (or the tool that CMake has set up).

A.3. Tests

In order to run the test suite, a Ruby installation of v2.5 or newer is required. The RSpec
package is necessary and can be obtained by running $ gem install rspec. Once done, tests
can be started by launching a CMake target (usually $ make test), or directly by entering the
tests/ subdirectory and running $ rspec test suite.rb.

1https://github.com/secure—software—engineering/phasar

95

https://github.com/secure-software-engineering/phasar

APPENDIX A. USAGE INSTRUCTIONS

A.4. Usage

In the most general case, any LLVM IR file can be used directly with the created binary. Refer
to the next section for options provided by additional tool flags.

Running the tool, a decent level of activity is being printed to the output by default. After
finishing, there are up to three different CSV files in the current directory:

e windows.csv: This file contains a list of window paths in the following columns:

win_id: This column groups instructions by the actual path identifier, with individual
items sorted in ascending order by occurrence on the path.

win_state: The last known state of the window at the time of termination. It
may be valid, or violation for having identified a violation no later than the last
instruction of the current ID, or unfinished if no proper shutdown call was identified
on this path.

rank_pred: If the path could be narrowed to match a certain rank criteria, this
column contains a C-style operator as the predicate. n/a on failure or if the rank
analysis is disabled.

rank_value: If the path could be narrowed to match a certain rank criteria, this
column contains the integer value of the rank. Example: If rank_pred: >=, rank_-
value: 1, this path belongs to ranks greater or equal 1. To be ignored if the value
of rank_pred is n/a.

code_location: If debug information is provided by the given IR file, the column
shows the source code file name and a line number where to find the original code
line.

1lvm_location: This column prints a human-friendly LLVM IR instruction that has
been identified as a path-relevant MPI action.

e violations.csv: This file lists any post-analysis violations or discards, i. e. FSM
violations by illegal arrangement of instructions visible in windows.csv are not listed here,
despite their violation status. These columns are given:

win_id: This is the path identifier where the violation has been observed; please
refer to windows.csv for a complete look-up by this value.

violation: The violation code by any internal analysis.

code_location: If debug information is provided by the given IR file, the column
shows the source code file name and a line number where to find the original code
line.

1lvm_location: This column prints a human-friendly LLVM IR instruction that has
been identified as a path-relevant MPI action.

e statistics.csv: A machine-readable format containing the same number of statistics as
given in the activity output of the preflight. Primarily intended for test purposes.

96

A.5. FLAGS

A.5. Flags

When using the static analysis, several customizations of the analysis may come handy. Cur-
rently, the following flags can be passed to the tool:

Flag Description

-Bl............ Running in benchmark mode BI. Skips writing anything to the CSV files
except the header row.

-B2............ Running in benchmark mode B2. Includes the effect of -B1 and skips any
post-analysis passes.

del Debug output. If set, Phasar prints its IFDS problem detail output,

suitable for inspecting fact lifetimes over individual instructions.

-e ENTRY_POINT Entry point, defaults to main. When entering the module anywhere but
main, then override this by ENTRY_POINT. For Fortran code, setting -e
MAIN_ is likely to be required.

-h, -help...... Prints an essential usage help to the output.

e T Lazy mode IFDS problem model. Switches to the lazy IFDS problem path
sensitivity, currently skipping the post-IFDS problem analysis stage.

-0 PREFIX..... Output prefix, empty by default. Set PREFIX to some value if any CSV file
is supposed to be created in a path prefixed by PREFIX.

o 0 Optimization, assuming static rank values. If set, integer assignments are

considered immutable, resulting in a decrease of facts to generate. Do not
use if rank roles are reassigned.

OR............ Optimization, skip the inter-rank analysis passes. If set, no actions are
performed to attempt assigning paths to rank predicates, and thus no
inter-rank steps will take place.

SOW. . Optimization, wormhole mode. If set, the tool tries to eliminate sections
from the CFG that do not contribute to any analysis. This is a lossy
optimization, but it may speed up the run time a lot while possibly losing
information such as local memory operations. Refrain from using the
option on the printing of warnings about invalid IR.

S Preflight only. If set, stop after the initial analysis pass. Useful for
obtaining statistics to decide on further processing.

S Skip preflight. No statistics are collected.

Vo Prints version information, and also the MPI environment information if
it was built against some.

Voo Verbose progress. Linux only, displays a progress counter for each cre-

ated and finalized window during the IFDS problem reachability analysis.
Cannot be used together with -S.

A Window isolation. A Win fact is generated on the i-th occurrence of a
window setup call only.

97

APPENDIX A. USAGE INSTRUCTIONS

A.6. Violations

In the file violations.csv, the column violation encodes the violation that has been identified
for the given instruction. These codes are given a description below:

Code
concurrent_local_access....

elimination_by_rank........

fence_flags_mismatch.......

illegal_by other_rank......

illegal_dynamic_memory_use.

no_corresponding_rank......

unsafe_local_memory_access.

waits_forever...............

window_flavors_incompatible

98

Description

A local action takes place at the same time when some other
rank may trigger a virtual action here. Under the separate
memory model, this is not allowed to happen, regardless of
guarantees for non-overlapping.

This is not a violation but the information that a window
path described in windows.csv is no longer valid for passing
through contradicting rank predicates.

For corresponding calls to MPI_Win_fence, there is a mis-
match in the flags with respect to MPI_MODE_NOPRECEDE or
MPI_NODE_NOSUCCEED. This violation can be identified only if
the analysis tool was built against the correct MPI imple-
mentation.

A call to MPI_Win_lock_all while there is at least one path
that is not lockable at that time.

A call to MPI_Win_attach, MPI_Win_detach or MPI Win_-
shared_query that is illegal under the setup call of the win-
dow.

A call for entering an access epoch without a necessary
window path that serves as a target.

This violation indicates a conflict involving a buffer action.
A call to MPI_Barrier or MPI_Win_fence without a corre-
sponding call on every other path of this window or commu-
nicator.

Not all windows at the same level uniformly follow the shared
or non-shared flavor.

List of Acronyms

APl application programming interface
AST abstract syntax tree

BB basic block

CFG control flow graph

DFS depth-first search

DSL domain specific language

FSM finite-state machine

GATS general active target synchronization
GCC GNU Compiler Collection

HPC high-performance computing

IDE problem inter-procedural, distributive environment problem
IFDS problem inter-procedural, finite, distributive, subset problem
IR intermediate representation

LLVM Low Level Virtual Machine

MPI Message Passing Interface

MPI RMA MPI Remote Memory Access
OMB 0OSU Micro-Benchmarks

OSU The Ohio State University

PDA pushdown automaton

P/T net place/transition net

PTS passive target synchronization

RISC reduced instruction set computer
SCC strongly connected component

SIMD single instruction, multiple data

SSA static single assignment

99

Eidesstattliche Versicherung

Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit im Masterstudiengang
Informatik selbststdndig verfasst und keine anderen als die angegebenen Hilfsmittel — insbe-
sondere keine im Quellenverzeichnis nicht benannten Internet-Quellen — benutzt habe. Alle
Stellen, die wortlich oder sinngeméf aus Veroffentlichungen entnommen wurden, sind als solche
kenntlich gemacht. Ich versichere weiterhin, dass ich die Arbeit vorher nicht in einem anderen
Priifungsverfahren eingereicht habe und die eingereichte schriftliche Fassung der auf dem
elektronischen Speichermedium entspricht.

Ort, Datum Unterschrift

Veroffentlichung

Ich stimme der Einstellung der Arbeit in die Bibliothek des Fachbereichs Informatik zu.

Ort, Datum Unterschrift

	Introduction
	MPI one-sided communication
	Prerequisites
	Two-sided communication
	One-sided communication
	Communication
	Synchronization
	Correctness

	Static analysis of MPI RMA

	Static analysis and LLVM
	Static analysis
	Model checking
	Considerations & Motivation
	LLVM
	Architecture
	Anatomy of the IR
	Tool development

	Phasar
	Data-flow problems
	IFDS problems
	Implementation of IFDS problems in Phasar

	Static analysis of MPI RMA programs
	Modeling
	Process pipeline
	Preparations
	IFDS problem fact domain
	Path sensitivity
	Breaking loops
	Window ordering
	Rank attribution

	Property tests
	IFDS problem tests
	Intra-path tests
	Inter-path tests
	Inter-rank tests

	Summary

	Evaluation
	Scalability
	Approaches to run time optimization
	Beneficial assumptions
	Graph slicing
	Window isolation
	Estimation and progress
	Overview

	Examples
	OSU Micro-Benchmarks
	TrackerSim

	Summary

	Remodeling the IFDS problem
	The revised model
	Scalability
	Examples
	Summary

	Related work
	Recapitulation
	Future work
	Conclusion
	Acknowledgments

	Bibliography
	Usage instructions
	Requirements
	Setup
	Tests
	Usage
	Flags
	Violations

	List of Acronyms

