
Bachelorarbeit

Learned Index Structures: An Evalution of
their Performance in Key-Value Storage

Solutions

vorgelegt von

Leonhard Reichenbach

Fakultät für Mathematik, Informatik und Naturwissenschaften
Fachbereich Informatik
Arbeitsbereich Wissenschaftliches Rechnen

Studiengang: Computing in Science Sp. Physik
Matrikelnummer: 6689683

Erstgutachter: Dr. Michael Kuhn
Zweitgutachter: Jakob Lüttgau

Betreuer: Dr. Michael Kuhn, Jakob Lüttgau

Hamburg, 2018-09-10



Abstract

Traditional index structures like B-Trees and hash tables have reached the peaks
of their performance. Their existing implementations are highly tuned to use the
hardware as efficiently as possible. However, they are static solutions and do not
exploit existing inner structures in the indexed data which would offer another source
for further performance increases. Additionally, some of their underlying techniques
are fundamentally flawed. For instance, the hash function in a hash table that hashes
keys to uniformly distributed random numbers will always inevitably cause a collision
rate of approximately 36% due to statistic phenomena. Thereby, creating a demand
for better solutions.

One of those solutions could be learned index structures. The traditional index
structures are in the wide sense just models taking a key and predicting an index
position. If the resulting array is sorted, the index is effectively modeling a cumulative
distribution function. If this distribution can be learned by a machine learning model
like a neural network, the potential to reduce collisions further is given.

In this thesis, an in-memory key-value store named HTableDB was implemented. It is
able to use learned index models as well as regular hash functions for indexing and thus
offers an easy way to compare the two. Using HTableDB this comparison was made for
keys consisting of various file paths taken from a scientific computing environment.
The learned index model used was a two-stage feed-forward network. For datasets
with keys that belong to a cluster of similar ones, like the ImageNet dataset, the
learned index models showed a collision rate of 43% while being approximately
45 times slower than regular hash functions. However, more sophisticated network
architectures could lower the collision rate of learned index models in the future.
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1. Introduction

This chapter explains the goals of this thesis and the motivation behind them. First,
the importance of modern high-performance computing (HPC) and the need for better
index structures is elaborated. Afterwards, the goals of this thesis are defined. Finally,
the thesis outline is presented.

1.1. Motivation

The rapid technological progress of the last century has impacted society in a way
comparable to the discovery of fire, the first domestication of agricultural plants
and the invention of the steam machine. Nowadays, the vast majority of the human
population carries a smartphone, enabling them to communicate with others, take
pictures and videos, show their exact location and velocity, the current time and
an accurate weather forecast. On large supercomputers physical experiments can
be simulated and medical diagnoses have improved to levels previously unthought
of. These developments are fueled by the ever-improving performance of computer
systems, founded on the invention of integrated circuits.

Following Moore’s Law, the number of transistors in dense integrated circuits doubles
every 18 months, increasing computational power at a rapid pace. This rapid increase
leads to the emergence of ever-new technologies and computational approaches as
the implementation of once purely theoretical concepts becomes feasible. An area
benefiting from this is the field of artificial intelligence (AI), neural networks and
deep learning in particular. As deep learning becomes cheaper due to the increase in
computational power, new applications using it keep appearing, solving previously
hard problems with ease. These problems include, but are not limited to, human-like
tasks like image recognition, speech synthesis, automatic translation and medical
diagnosis.

With increasing computational power the need to store and access data increases
as well. To access data, index structures are essential. The commonly found index
structures like B-Trees or hash tables are general purpose data structures not making
any use out of a possible internal structure of the stored data. For example, when
storing n fixed-length entries having continuous integers as keys in a conventional
B-Tree the lookup time scales with O(log(n)), whereas the keys itself could be used
as an offset, shrinking the lookup time to O(1) [Kra+18]. Hash tables already
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achieve O(1) lookup times. However, the used hash functions do inevitably suffer
from collisions as they distribute values in an independent uniform manner. Those
collisions cause the hash table’s performance to degrade and, depending on the hash
table implementation, waste memory.

One of the key strengths of neural networks is their ability to learn structures hidden
in data. If a neural network can perfectly learn the data’s distribution and successfully
generalize it to similar data, it would have zero collisions while maintaining an access
time of O(1). Therefore, the approach to enhance traditional index structures using
learned models is taken.

1.2. Related Work

Kraska et al. analyzed the performance of learned indexes in comparison to B-Trees,
hash tables and Bloom-Filters with promising results [Kra+18]. They used a concept
they called the recursive-model index, consisting of multiple stages of layered networks.
For hash tables, they found a collision reduction of up to 77% when using integer keys.
This was achieved by learning the cumulative distribution function (CDF) of the keys.
Additionally, a string dataset was tested and the index model was compared against
B-Trees resulting in less memory used and, in some cases, faster lookup time.

1.3. Thesis Goals

The goal of this thesis is to evaluate and compare the performance of learned index
structures to traditional methods. In particular, the hash table data structure will be
analyzed and its hash function will be replaced by a learned index model. The goal
of this replacement is to reduce the rate of collisions and thus the amount of space
wasted by them. Additionally, the index model’s execution speed will be compared
to regular hash functions to decide if the replacement is feasible in practice. The
combination of index models and hash tables integrated into a key-value store and
evaluated for its applicability for storing file system metadata. Thereby, the keys to
calculate the indexes from will be strings, in particular, file paths.

1.4. Thesis Outline

Chapter 1 motivates this thesis and defines its goals. Chapter 2 introduces the nec-
essary background knowledge of local and parallel file systems, key-value stores,
hash tables and hashing in general as well as neural networks. Chapter 3 explains
the approach taken as well as the design choices for the key-value store HTableDB.
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Chapter 4 contains implementation details of HTableDB and its subcomponents.
In Chapter 5, several aspects of those components are evaluated. Chapter 6 con-
cludes this thesis and presents an outlook on future work regarding learned index
structures.

Summary

This chapter explained the shortcomings of traditional index structures and introduced
learned index models as a potential way to solve those issues. Additionally, the
thesis goals of comparing learned index models to regular hash functions were defined.
Finally, the structuring of the thesis was outlined.
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2. Background

This chapter provides the necessary background knowledge of storage systems, data
structures and machine learning. First, the concept of local file systems and metadata
is introduced. Then the scope is widened to parallel file systems and JULEA, a flexible
storage framework. Afterwards, key-value stores, hash tables and (fixed-length)
hashing approaches are elaborated. The chapter concludes with an overview of neural
networks and their training, followed by a brief explanation of linear regression.

2.1. Local File Systems

In Section 1.3 file system metadata and file paths were mentioned, to understand
both, first, the concept of file systems is needed. Local hierarchical file systems, for
example, ext4 or XFS, are used to manage and store data on local block devices
like hard disk drives (HDDs) or solid state drives (SSDs). Instead of having to deal
with raw memory addresses and offsets, they present a tree-like structured overlay
to the user. The structuring is done by using directories and files constituting the
essential components. Files are named blocks of data ranging from simple text files
to complex executables. Directories, on the other hand, are a special kind of file
containing other files and (sub)directories. Directories do not physically contain the
data of the files residing inside of them, instead, they contain information referencing
those files. Thereby, a tree-like structure, the so-called directory tree, with the root
directory / at the top, is formed. In Figure 2.1 a small example directory tree is
shown.

Every file in the file system is part of the directory tree and can be identified by
its path. The path is a unique identifier, meaning that an absolute path is only
pointing to one specific file on the file system. A file can be referenced by more
than one path to be made available in different parts of the file system. The path is
the textual representation of a walk through the directory tree to reach the file. In
Figure 2.1 the path to the file file is shown. The path consists of three parts, the
names of the root directory /, the subdirectory dir/ and the file file. This path
layout is common through most file systems as it is part of the portable operating
system interface (POSIX) standard which Unix-like operating systems adhere to.
The length and the character set of a path can be limited on certain systems but on
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/

dir/

file
absolute
path: /dir/file

Figure 2.1.: A directory tree

modern systems, a path can usually be of arbitrary length containing any Unicode
character.

To achieve its task of managing and storing data the file system requires an amount
of additional information, like the file’s access permissions, the ID of the user that
owns it and, most importantly, the file’s size and location on the block device. This
is the so-called metadata. The metadata of a file is saved in a so-called inode, an
object not directly visible to the user. Table 2.1 shows the structure of an ext4 inode.
It stores the aforementioned metadata and the data’s location in a 256-byte small
structure. The inodes are stored at the beginning of the block device and need to be
accessed first before the actual data of file can be accessed. If the file is smaller than
60-bytes it is stored in the inode itself.

2.2. Parallel File Systems

Modern high-performance computing requires massively parallel compute architec-
tures with thousands of compute nodes as described in Section 1.1. The data gener-
ated by those computations is in the range of petabytes which is too much to fit on
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size content
2 bytes permissions and type
2 bytes lower 16-bits of owner UID
4 bytes lower 32-bits of size in bytes
4 bytes last access time
4 bytes last inode change time
4 bytes last data modification time
4 bytes deletion time
4 bytes lower 16-bits of group ID
... ...
60 bytes block map, extent tree or inline data
... ...
4 bytes project ID
96 bytes free space for extended attributes
256 bytes overall

Table 2.1.: ext4 inode [Djw17]

a single storage server with a local file system. To keep up with the resulting I/O
needs of such systems the parallel file systems were created. Parallel file systems can
store data distributed over a vast amount of block devices located in several servers,
aggregating their capacity. Compute nodes request access to this data through local
clients over a network connection to the storage servers of the parallel file system.
Large files can be split up into multiple stripes residing on different servers to aggre-
gate the performance of multiple storage devices to achieve maximum throughput
for the clients. This is necessary, as the interconnect throughput excels the drive
throughput by a factor of up to 30001.

Additional metadata is required to keep track of where a file is stored, as the
mapping of file stripes to servers becomes essential. At scale, the differences between
accessing data and metadata come to play. Data is usually “big” and can be read in a
continuous stream, while metadata is small and needs to be randomly accessible. As
the parallel file system needs to first access the metadata of a file because it contains
the data’s location, metadata and data are commonly stored separately to enable
faster accesses. To achieve this, parallel file systems use separate servers dedicated
only to metadata. The metadata servers (MDS) can be outfitted with faster storage
devices like (NVME) SSDs, more memory for caching and powerful CPUs to handle
large numbers of concurrent accesses. Data servers, however, can be fitted with
HDDs as they mainly deal with large chunks of data. HDDs are better suited for

1For instance, the 100 GBit/s data rate of Infiniband EDR in contrast to the 255MB/s sustained
transfer rate of a HGST Ultrastar DC HC520 12TB HDD
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this case as they deliver a higher capacity for less money than SSDs. This enables
sufficient file system performance while keeping the costs acceptable [Lüt+18].

A typical access of a client to a file consists of multiple steps. First, the file systems
management server is contacted to gather the information which server to contact
next. Then, the right metadata server is contacted to find out on which data servers
the file is located. Afterwards, the corresponding data servers are accessed in parallel
to maximize throughput.

Network / High Speed Interconnect

Metadata Data Data

Clients Clients

SSD SSD

HDD HDD HDD HDD

Memory

Memory

Memory Memory

Memory

Memory

Figure 2.2.: Schematics of a parallel file system

2.3. JULEA

Parallel file systems as introduced in Section 2.2 are complex and hard to extend
further. However, most scientific software already uses data description frameworks
such as the NetCDF [Uni18] and HDF5 [The18] libraries for I/O. Thus, they do not
need all of the features offered by a classic parallel file system and could profit from
simpler storage systems offering a direct interface to those libraries [Lof+16].

JULEA [Kuh17] is such a flexible storage framework offering dynamic I/O semantics
as well as interchangeable interfaces and backends as needed in the future. The
proposed I/O stack difference is shown in Figure 2.3. It is intended to be a platform for
teaching and academic research of future I/O solutions. JULEA is written completely
in userspace C which, combined with the modular backend design, enables students
and researchers to rapidly prototype and test their ideas. In contrast, parallel file
systems like Lustre require changes to kernelspace code to implement new features
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(a) I/O stack commonly found in
HPC (b) Proposed I/O stack with JULEA

Figure 2.3.: I/O stack differences
Taken from [Kuh17]

which makes debugging and testing more complex. Following the established concept
JULEA also differentiates between data and metadata. The data is saved in an
object store, while the metadata is put in a key-value store like Leveldb [GD] or
LMDB [Sym]. For this thesis, the focus lies on the key-value stores.

2.4. Key-Value Stores

A key-value store offers a simple yet efficient way of managing (storing and accessing)
arbitrary data. The fundamental working principle behind a key-value store is
the associative array, also known as the dictionary. Associative arrays reference
their entries by a key e.g. a naming string or an integer id. In key-value stores,
the entries also referred to as values are opaque blocks of data from the system’s
point of view with the possibility to have a different internal structure for every
entry. This is the major difference in contrast to relational databases where data is
stored in the predefined fields of various tables. While relational databases have the
possibility to use the well-defined structure of the stored data to apply optimizations,
key-value stores offer a simpler interface and additional flexibility. Basic key-value
stores can store their data in an unordered fashion, more complex ones offer features
such as storing the data sorted by the keys. This mostly depends on the choice
of index structure for the array, e.g. hash tables in contrast to trees. Key-value
stores are a widely used concept and most programming languages either provide
associative arrays as a primitive type (e.g. Python dictionary) or via libraries (e.g.
C++ std::map, Java Map). However, until recently, key-value stores were rarely
deployed at large-scale as relational databases were and are still better at handling
traditional workloads dealing with relationally structured data like e.g. managing
customer records. Today, key-value stores are used almost anywhere, from large cloud
providers and hyperscalers (Amazon DynamoDB [AWS]) to the local IndexedDB
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in web browsers (LevelDB in Google Chrome [Chr]). Implementations exist in a
wide variety of different persistence and consistency levels, from in-memory variants
like Memcached [Fit+] to persistent ordered ones like LMDB [Sym]. For this thesis,
the most important aspect of key-value stores is the already mentioned simplicity
of the interface. Using a key-value store only requires the following three basic
functions:

• put(key, value)

• get(key)

• delete(key)

To store a key-value pair put(key, value) is used. get(key) returns the value
for a given key, provided that such a key-value pair was previously stored. Finally,
delete(key) is used to delete the corresponding key-value pair from the store.

2.5. Hash Tables

Hash tables are key-value stores. They store key-value pairs in an array also referred
to as table. The table’s slots are called buckets. The position p of a key-value pair’s
bucket is computed by an index function

p = f(k, n) (2.1)

where k is the key and n is the array’s size. This is usually done by hashing the key
k with a hash function which turns it into a scalar value. Afterwards, this value is
shrunk to get a valid array index. This is achieved by using the modulo operation.
Hence, f is of the form

f(k, n) = h(k) mod n (2.2)

where h is a hashing function [Knu98]. Hash functions will be explained with further
detail in Section 2.6.

The amount of time needed to compute a key’s hash does not increase with the
number of entries stored by the hash table. Thus, an entries lookup time is constant
and the time-complexity of the three basic operations, in the average case, is O(1).
This is the major benefit, in contrast to, e.g. the time-complexity of O(log(n)) when
the indexing is done with B-Trees.

Table 2.2 shows a comparison of the time-complexity of B-Trees and hash tables
in the average as well as in the worst case. To explain the hash table’s complexity
of O(n) in the worst case the concept of collisions is needed. Hash functions can
output the same hash for two (or more) different keys, thus, the hash table needs a
mechanism to handle these so-called (hash-)collisions. More details regarding the
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Hash table B-Tree
Average O(1) O(log(n))
Worst O(n) O(log(n))

Table 2.2.: Time-complexity of hash tables and B-Trees

mathematical background of collisions will be given in Section 2.6.1. In the worst
case, the index function maps all keys to the same bucket, thus, a linear search is
required to find the right key-value pair. An important measure when talking about
hash tables and collisions is the load factor α defined by

α =
m

n
(2.3)

where m is the number of entries in the hash table and n is the total number of
buckets. When assuming that any given key has equal probability to get mapped
to each of the n buckets, independent of where other keys are mapped to, the load
factor α is also the average number of elements mapped to the same bucket.

The previous assumption is called simple uniform hashing [Cor+09]. Under this as-
sumption, the hash table’s operations should maintain their excellent time-complexity
up to a load factor of one. In practice, however, the hash table’s performance
starts to degrade before reaching that. The reason for this is the unexpectedly
high collision rate explained in Section 2.6.1. A common approach to maintain a
hash table’s performance is to increase its size before the load factor gets close to
one. For instance, in Google’s dense_hash_map [Goo05], by default, the table size is
doubled after reaching a load factor of 0.5. This thesis only considers fixed size hash
tables to compare hash functions with index models without impacts caused by the
resizing.

2.5.1. Separate Chaining

To deal with collisions different approaches exist. In the following, two of them will
be discussed further, namely separate chaining and open addressing. In separate
chaining, every bucket of the hash table contains a pointer to a corresponding list
structure. The elements that are mapped to this bucket are appended to its list.
These lists are called the hash table’s chains commonly implemented using simple
linked lists.

When a collision occurs the additional, colliding, key-value pair gets added to the end
of the bucket’s list. Here, the load factor α also corresponds to the average number
of elements per chain, also referred to as the average chain length. When assuming
simple uniform hashing, the search for a key has a time-complexity of Θ(1 + α),
in the average case. With this approach, hash tables can be overloaded to contain
more elements than buckets. Even when a hash table is massively overloaded its
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keys

John Smith

Lisa Smith

Sam Doe

Sandra Dee

Ted Baker

buckets

000

001

002

: :

151

152

153

154

: :

253

254

255

entries

Lisa Smith 521-8976

John Smith 521-1234

Sandra Dee 521-9655

Ted Baker 418-4165

Sam Doe 521-5030

Figure 2.4.: A hash table using separate chaining with simply linked lists. The red
arrows indicate colliding entries.

Taken from [Sto09c]

performance is still sufficient as on average the list’s length is still small compared
to the table’s size. So, only a small part of the elements must be searched to find
the right one. The ability of overloading can make later resizing of the hash table
unnecessary. However, the traversal of linked lists can be slow as the entries usually
are non-contiguous in the memory leading to potential cache misses.

To explain what cache misses are and how they are impacting an operation’s execution
time, first, an overview over a computer’s memory architecture is necessary. The
actual operations in the processor are done on values residing in the processor’s
registers, a really fast type of memory located directly next to the processor’s other
components on the chip. However, the data that the processor is supposed to operate
on is located in the main memory located on different dedicated memory chips as the
registers are too small to fit the necessary amounts of data. Furthermore, the main
memory is made out of a different type of memory called DRAM, which is cheaper
and can be packed tighter. This difference enables the large amounts of main memory
needed for current programs. For instance, the number of registers for floating point
operations in a core of a processor supporting Advanced Vector Extensions is 16,
each having a capacity of 256 bits for a total of 512 bytes respectively 1024 bytes in
a dual-core processor like the Intel® Core™ i5-4210U. However, the same processor
supports up to 16 GB of main memory. The DRAM used for the main memory is
slower than the registers. This is mitigated by several layers of caches. Caches are
made from another type of memory SRAM and are also located on the processor’s
chip.
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When a part of the computer’s memory is accessed by the processor, a fixed-size
region of the memory is stored in the cache. This cache entry is called a cache line.
Subsequent processor accesses to the same portion of memory are now faster. If none
of the stored cache lines contain the wanted portion of memory a cache miss occurs.
A cache line is evicted from the cache when the place is needed for another portion
of memory. To decide which cache entries should be evicted the processor can use
different strategies. Two of those strategies are to either remove the least recently
used (LRU) entry or the least frequently used (LFU) entry. As the bucket array is
contiguous in memory and frequently accessed, it is likely stored in the cache if it
fits [AA15].

When one of the hash table’s entries is searched, first, its position in the bucket array
is accessed. This position contains a pointer to the head of that bucket’s list and
is cached if the array is cached. However, it is likely that the list entry itself is not
cached. If this is the case a cache miss occurs and the data needs to be transferred
from the memory, which takes an additional time of up to 100 ns, depending on the
hardware. For instance, for an Intel® Xeon® Processor E5-2699 v4, the difference
in access time is 75 ns [7CPU]. The probability of the returned list entry to be the
searched one is only 1/α, likely making it necessary to traverse to the next list element
which again can lead to a cache miss. Additionally, the chance of a list element to be
in the cache decreases when traversing the chain as elements located further to the
end are less likely to be accessed during previous searches for other elements. This
leads to high search times. Thus, a hash table using separate chaining requires a size
such that the load factor is low.

keys

John Smith

Lisa Smith

Sam Doe

Sandra Dee

Ted Baker

buckets

000

001 Lisa Smith 521-8976

002

: : : :

151

152 John Smith 521-1234

153 Ted Baker 418-4165

154

: : : :

253

254 Sam Doe 521-5030

255

overflow
entries

Sandra Dee 521-9655

Figure 2.5.: A hash table using separate chaining with head entries. The red arrows
indicate colliding entries.

Taken from [Sto09a]
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To decrease the number of pointer traversals, and thereby the number of cache misses,
the list’s head records can be directly stored in the bucket array itself. Ideally, no list
traversal is needed in this case. Figure 2.5 shows such a hash table and the according
collision handling. The disadvantage of this approach is that empty buckets use more
space than just a pointer to a list. Over-allocating the bucket array to guarantee
a low load factor can become unfeasible as the memory need for the initial bucket
array can can increase by a factor of two or more. The memory requirement doubles
if a pointer to a container structure containing key and value is stored in addition to
the list pointer; assuming all pointers are of the same size. It triples if instead of a
container pointer, the pointers to key and value are stored directly in the buckets.
If keys and/or values are fixed in size they can be placed directly into the buckets,
decreasing the number of pointer traversals even further while increasing the penalty
for empty buckets.

2.5.2. Open Addressing

Similar to the previously discussed approach of separate chaining with the head
entries in the table’s buckets, the concept of open addressing stores the key-value
data in the array itself. If the bucket returned by the index function is already
taken another bucket is picked during insertion. The choice complies with a probing
scheme like linear or quadratic probing or double hashing. In linear probing, the
next bucket chosen has a fixed (linear) offset to the initial bucket. In contrast, in
quadratic probing, this offset is increased quadratically. Double hashing scales the
offset with a value computed by a second hash function.

In the following, linear probing with a probing interval of one is used. The next free
bucket when storing a colliding entry is therefore acquired by linear search. When
the position of a previously stored element is needed to get or delete a key-value pair
and the position returned by the index function for said element does not match it
is necessary to search the next buckets in the array. The search continues until the
entry with the desired key is found.

This scheme introduces additional collisions for keys with distinct hashes when
reaching a certain load factor as keys get mapped to buckets already used by
the overflow of the previous collisions. An example of this is shown in Figure 2.6,
where the entry with the key ”Ted Baker” collides with the entry with key ”Sandra
Dee” despite being mapped to different array positions. The additional collisions
and increasing distances between mapped and real bucket further increase the time
needed for the hash table operations. Fixed size hash tables using open addressing
cannot be overloaded as it is not possible to store additional entries once the bucket
array is full.
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keys

John Smith

Lisa Smith

Sam Doe

Sandra Dee

Ted Baker

buckets

000

001 Lisa Smith 521-8976

002

: : :

151

152 John Smith 521-1234

153 Sandra Dee 521-9655

154 Ted Baker 418-4165

155

: : :

253

254 Sam Doe 521-5030

255

Figure 2.6.: A hash table using open addressing with linear probing. The red arrows
indicate colliding entries.

Taken from [Sto09b]

2.6. Hashing and Index Functions

A good hash function should
satisfy two requirements:

a) Its computation should be
really fast.

b) It should minimize
collisions.

Knuth

In Section 2.5 a distinction was made between hash functions and index functions.
Books like The art of computer programming, Volume III, 2nd Edition and Introduc-
tion to Algorithms, 3rd Edition call the whole function mapping a key to an index
the hash function. However, in practice, hash table implementations commonly use
the modulo reduction approach shown in Equation (2.2), where the key is hashed
by a function and then reduced to fit the table. For this reason, in this thesis, the
distinction is made and the outer function is called index function.

An index function is a function

f : K × N → I (2.4)
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where K is the keyspace and I = {i ∈ N|i < n} is the set of possible indices for an
array of size n, which maps keys k ∈ K to array indices i ∈ I. This function neither
needs to be injective or surjective, in particular, this means that the trivial index
function

ft : (k, n) 7→ 0, (2.5)

mapping every key to the first slot of the array, is an index function. When the
keyspace K and the index space I have the same number of elements (|K| = |I|), a
bijection exists mapping keys to indices with no collisions and no empty array slots
left, this is called a (minimal) perfect index function. In practice, such a function
can only be found when all possible keys to be stored are already known beforehand.
This is called static hashing [FKS84]. Another approach, called dynamic perfect
hashing, exists working with subtables where parts of the hash function are altered if
a collision occurs. Afterwards, the corresponding subtable is rebuilt [Die+88].

A hash function h is the part of an index function f that reduces the possibly multi-
dimensional key k to a scalar value so that

f(k) = s(h(k), n) (2.6)

where s is a function that scales the output of h so that it fits into I. In this thesis
two variants of s are used

s1(h(k), n) = bn ∗ h(k)c (2.7)
s2(h(k), n) = h(k) mod n (2.8)

where n = |I|. When h maps to {x ∈ R|0 ≤ x ≤ 1} s1 is used to scale up the value
to fit the elements of I. When h maps to {x ∈ N|x ≤ INT_MAX_VALUE} s2 is used to
reduce the value to fit the elements of I. The first case is needed when using neural
networks instead of a classic hash function. The reasons for this differentiation will
be explained in Section 2.7. The latter case is used with classic unlearned hash
functions.

2.6.1. Collisions

In Section 2.5, the performance impact of collisions on hash tables was explained. In
this section, the collision rate of the index function will be analyzed further.

Assuming simple uniform hashing, every key ki has the same probability to get
mapped to any of the n buckets. Thereby, the probability P (A) of the event
A : f(ki, n) = j that a key ki gets mapped to a bucket bj is

P (A) =
1

n
and the complement is (2.9)

P (Ac) = 1− P (A) = 1− 1

n
. (2.10)
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The probability of the event B : f(ki, n) = f(k`, n) = j that another key k` is mapped
to the same position is given by

P (B) = 1− P (Ac)m. (2.11)

where m is the number of keys added to the hash table. When m = n, as in the case
of α = 1, Equation (2.11) is

P (B) = 1− P (Ac)n = 1− (1− P (A))n (2.12)

= 1− (1− 1

n
)n which converges fast to (2.13)

lim
n→∞

1− (1− 1

n
)n =

−1 + e

e
≈ 63.21% (2.14)

However, this is not the probability of a collision to occur in the whole array. This
is only the probability of two of the n keys colliding in a specific bucket. It is a
common mistake to confuse these two events and, thus, their probabilities. This is
called the birthday paradox.

To calculate the probability for the event C : f(ki, n) = f(k`, n)∀i, ` ∈ N<m : i 6= `)
that a single collision occurs when inserting m keys into the hash table, a different
approach is needed. Let u be the number of possible non-colliding key combinations
and g the number of all possible key combinations. Then one has

u =
n!

(n−m)!
g = nm (2.15)

P (Cc) =
u

g
(2.16)

⇒ P (C) = 1− u

g
= 1− n!

(n−m)! · nm
(2.17)

P (C) is the probability that at least one collision occurs. Let now n = 1000, then
for m = 38, P (C) ≈ 50%. Although only 38 entries were added to the hash table
the probability that a collision occurs is already higher than 50%.

The total number of collisions when inserting a fixed number of entries into the hash
table can also be calculated. Let i− 1 be the number of entries already in the hash
table. Then the probability that a key ki does not collide with any previous key
is

P =

(
n− 1

n

)i−1

and (2.18)

P c = 1− P = 1−
(
n− 1

n

)i−1

. (2.19)

As each new entry can either collide or not P c is also the average number of collisions
added by a key ki. To get the total number of collisions N the sum over all P c(i) is
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taken

N =
m∑
i=1

(
1−

(
n− 1

n

)i−1
)

(2.20)

= m−
m∑
i=1

((
n− 1

n

)i−1
)

(2.21)

geometric series ⇒ N = m− n+ n

(
n− 1

n

)m

(2.22)

Furthermore, if m = n, Equation (2.22) reduces to

N = n

(
n− 1

n

)n

(2.23)

⇔ N

n
=

(
n− 1

n

)n

which quickly converges (2.24)

lim
n→∞

N

n
= lim

n→∞

(
n− 1

n

)n

(2.25)

= lim
n→∞

(
1 +

−1

n

)n

(2.26)

def
= exp(−1) =

1

e
≈ 0.367 (2.27)

In conclusion, when a hash table has a load factor of one, 36% of the entries caused
a collision. Moreover, if a hash table with separate chaining is used as described in
Section 2.5.1, 36% of the buckets are remaining empty as the colliding entries are
stored in the chains. This is a waste of space. Therefore, a need arises for index
functions that distribute the data in a more efficient way than with simple uniform
hashing.

2.6.2. Computation of Hash Functions

All possible keys k can be expressed as byte arrays k = {b0, . . . , bm−1}. To map the
whole array to a single value the hash function needs to condense the array. This
can be as simple as just adding up the bytes

h(k) =

|k|∑
i=0

bi.

An implementation of this approach in C is shown in Listing 2.1.

To achieve a better distribution, a hash function often includes a mixing step. Instead
of addition, the key’s bytes can also be combined by using the exclusive-or operator.

17



1 uint32_t additive(char* key, uint32_t len)
2 {
3 uint32_t hash , i;
4 for (hash = i = 0; i < len; i++)
5 hash += key[i];
6 return hash;
7 }

Listing 2.1: Additive hashing, adapted from [Jen97].

1 uint32_t rotating(char* key, uint32_t len)
2 {
3 uint32_t hash , i;
4 for (hash = len, i = 0; i < len; i++)
5 hash = (hash << 4) ^ (hash >> 28) ^ key[i];
6 return hash;
7 }

Listing 2.2: Rotation hashing, adapted from [Jen97].

A simple example making use of both mixing and exclusive-or combining is shown in
Listing 2.2. There, the value of the variable hash is rotated to the left by four in
every step to mix the data. Rotation by four means that the bits of the value get
shifted to the left by four and the overflowing upper four bits are placed in the now
empty lower four bits. The function adheres to the common hash function pattern
shown in Listing 2.3.

Hash functions like the ones shown in Listings 2.1 to 2.2 output a fixed amount of
bits, this behavior is called fixed-length hashing.

1 initialize(internal state)
2 for each block in key:
3 combine(internal state , block)
4 mix(internal state)
5 return postprocess(internal state)

Listing 2.3: Common hash function pattern, adapted from [Jen97].
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2.7. Neural Networks

Artificial neural networks, often just called neural networks, are a computation
concept inspired by the biological neural networks found in the brains of humans and
other animals. In biological neural networks, neurons are connected by synapses which
are used to transmit signals. Those connections are formed by learning processes
during early brain development but continue to adapt more during a human’s or
animal’s lifetime. Biological neural networks are able to perform tasks that are hard
even for powerful computers in a fast and efficient manner. This includes tasks like
image and pattern recognition (seeing), natural language procession (hearing and
speaking) and predictions of various kind (where a thrown ball hits, the relative
speed of another object etc.). Neural networks try to model this behavior by using
artificial neurons.

Modern neural networks even achieve better-than-human scores on image recognition
tasks [He+15].

A neural network is made up of several layers of those artificial neurons. This will be
explained in Section 2.7.3. Beforehand, artificial neurons are described further.

2.7.1. Artificial Neurons

An artificial neuron is an information-processing unit that computes one output
value given several input values.

Figure 4: artificial neuron

An artificial neuron k has a weight wki for each of its m inputs xi, the weights and
inputs are multiplied and then combined in a sum

uk =
m∑
i=1

wkixi. (2.28)

Additionally, a bias bk is added and the sum is put through an activation function σ.
With this the output yk of a neuron k is

yk = σ(uk + bk). (2.29)

Therefore, an artificial neuron is a function

f : X → Y (2.30)

with input space X and output space Y . Common choices for X and Y are [−1, 1]n

or [0, 1]n where, for X, n is the number of inputs and n = 1 for Y . The reasons for
this are related to the training and will be explained in Section 2.7.4.
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Figure 2.7.: Θ: Heaviside, sig: Sigmoid, r: ReLU

2.7.2. Activation Functions

Activation functions act as thresholds for the neurons. The intention behind them
is that a neuron’s inputs have to add up to a certain amount before its output
is activated, hence the name. In this section, several activation functions are
introduced.

Heaviside Function

The Heaviside function is a step function, named after Oliver Heaviside. Originally
developed for operational calculus it has found widespread application in physics
and other disciplines as a convenient way to model on/off relationships.

The Heaviside function Θ: R → {0, 1} is defined as

Θ(x) =

{
0 x ≤ 0

1 x > 0
(2.31)

This activation function was used in early neural networks, first introduced in
1943 [MP43]. However, in modern neural networks, it is not used as it renders
the network unable to be trained by gradient descent as described in Section 2.7.4.
The reason for this is that the derivative of Θ is not defined for x = 0 and is zero
everywhere else, which causes the gradient to vanish.
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Sigmoid Functions

A sigmoid function is a function sig : R → I where either I = [0, 1] or I = [−1, 1]
depending on the definition. In neural networks, the commonly found sigmoid
functions are logistic functions and the hyperbolic tangent.

The standard logistic function is

sig(x) = 1

1 + exp(−x)
. (2.32)

A visualization of this function is shown in Figure 2.7. The logistic function can be
made steeper by introducing a factor α, so that

sigα(x) =
1

1 + exp(−αx)
. (2.33)

This modification can influence the learning speed immensely [HM95].

Interestingly the hyperbolic tangent is a scaled and offset version of the standard
logistic function.

tanh = 2 sig(2x)− 1 (2.34)

Both the standard logistic function and the hyperbolic tangent are still used in neural
network examples and teaching. However, due to their characteristic of being almost
completely flat for input values outside of (−4, 4), neural networks using them also
tend to suffer from the vanishing gradient problem, especially in deeper networks.
The vanishing gradient problem will be explained further in Section 2.7.4.

Rectified Linear Unit

Due to the limitations of logistic functions a different function was needed to efficiently
train deep and very deep neural networks. This function turned out to be the ramp
function r : R → [0,∞)

r(x) = max(0, x) (2.35)

In the beginning, a node utilizing this activation function was called a Rectified
Linear Unit (ReLU). Over time this name was also used to refer to the function
itself. The derivative of r is the Heaviside function Θ. This helps with avoiding
the vanishing gradient problem. Also, the ReLU is closer to the activation of real
biological neurons and lets networks train faster than the hyperbolic tangent or the
other logistic functions [GBB11] [KSH17].

State of the art image classification networks employ enhanced variants of ReLU,
known as leaky ReLU (LReLU) and parametric ReLU (PReLU). These variants
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introduce an additional parameter 0 < a ≤ 1 to further reduce issues with the
vanishing gradient problem.

ra(x) = max(x, ax). (2.36)

In LReLU activation, this parameter is fixed while in PReLU activations it is trainable.
Current image classification networks using PReLU achieve higher-than-human
performance on the ImageNet 2012 dataset [He+15].

2.7.3. Feed-Forward Networks

When several neurons are connected they form a directed graph called a neural
network. Those networks can be constructed to have layers. A layer is a set of
neurons that are connected to two other sets (layers) of neurons for in and output,
while not having any connections to each other. When the resulting graph has no
circles the network is called a feed-forward network. When each neuron in a layer
is connected to every node in the following and the previous layer it is called a
dense layer. Layers that are between the in and the output layer and, thus, have no
connections to the outside, are called hidden layers. Figure 2.8 shows a feed-forward
network with four input nodes, five nodes arranged in one hidden dense layer and
one output node.

To calculate the output of a dense layer, linear algebra is essential. Let n be the
number of inputs (nodes in the previous layer) and m the number of outputs (nodes
in the current layer) of the layer. Additionally, let x be the input vector composed of
the inputs xi. Furthermore, let b be the bias vector composed of the nodes biases bj .
Every of the m nodes has a weight vector wj, with wj = (wj1, . . . , wjn). The weight
vectors form the weight matrix W = (w1, . . . ,wm)t. Thereby, allowing to express
the output y as

z = Wx + b (2.37)
y = σ(z) (2.38)

where σ is the component-wise activation function. This simple matrix-vector
product allows fast computation as it is a common operation for which highly
optimized libraries exist. It also allows for easy parallelization and benefits from
processor instruction set extensions like single instruction, multiple data (SIMD) and
fused multiply-add (FMA). SIMD allows doing certain floating-point operations like
multiplication and addition on a vector of multiple values at once. FMA fuses a
multiplication followed by an addition into a single operation. Obviously, both cases
are given in a matrix-vector multiplication as in Equation (2.37).

The calculation of a whole neural network’s output on a dataset is called inference.
For a feed-forward network with n inputs and one hidden layer containing m nodes
the inference time scales with O(nm).
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Figure 2.8.: Simple Feed-Forward Network

2.7.4. Training

Like their biological counterparts, neural networks need to be trained to learn what
the right response for their input is. This is commonly done by supervised learning.
In supervised learning, the network is fed with training data consisting of training
inputs and their corresponding correct outputs. During training, the network’s
weights and biases are modified so that the network’s output comes as close as
possible to the correct outputs. This is done by first defining a loss function for the
network and then minimizing it.

A common loss function is the L2 loss

L2(x) = (F (x)− y)2 (2.39)

where F is the network’s output function and y the correct output for the training
input x. The L2 loss is often chosen as it grows quadratically, penalizing large errors
more than smaller ones. The average loss of the network is

L =
1

n

n∑
i=1

L2(xi) (2.40)

This function is minimized by backpropagation and gradient descent explained in
Section 2.7.4.
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Gradient Descent

The training’s goal is to minimize the loss function, more precisely to find a local
minimum of it. Normally, in calculus, a function’s extrema are found by finding
a zero of its derivative. To identify if it is a minimum the second derivative of
the function is evaluated at the found variable if it is positive the found point is
a minimum. For functions of one variable, this is straightforward. However, the
calculation already becomes much more complex for a function f of two variables x
and y. There, instead of a simple derivative, the gradient ∇f(x, y) is needed. The
gradient of a function is the vector containing all the functions partial derivatives, in
the case of the previously mentioned function f it is

∇f =

(∂f
∂x
∂f
∂y

)
. (2.41)

After values for x and y are found so that ∇f = 0 the second derivative is given by
the Hessian matrix

H(f) =

(
∂2f
∂x2

∂2f
∂x∂y

∂2f
∂y∂x

∂2f
∂y2

)
. (2.42)

If H(f) is positive semi-definite, the found point is a local minimum of f .

However, the loss function of a neural network depends on hundreds to billions of
variables in a non-trivial way. Thus, this approach will not work for most neural
networks. Hence, an alternative way to minimize the loss function is needed. A
common approach to do this is the so-called gradient descent.

Let L(v1, . . . , vn) be the loss function. Then a change ∆L is related to changes ∆vi
in the arguments of L. This relationship is approximately given by

∆L =
n∑

i=1

∂L

∂vi
∆vi. (2.43)

This can also be written as

∆L = 〈∇L,∆v〉 (2.44)

where 〈•, •〉 denotes the Euclidean scalar product and v = (v1, . . . , vn)
t. Now it is

possible to chose

∆v = −η∇L (2.45)

so that

∆L = −η 〈∇L,∇L〉 = −η‖∇L‖2 (2.46)
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where η is a small positive number called the learning rate. ∆L is always negative as
the norm of ∇L is always positive. Thereby, a way of decreasing L until ∇L = 0
which indicates a found local minimum is given.

The gradient ∇L can be calculated by repeated execution of the chain rule. The
first step is shown in Equation (2.47). However, the further steps as well as the
application of the changes to the weights and biases go beyond the scope of this
thesis. In particular, Equation (2.47) causes every input x that produces an output
z where the derivative σ′(z) = 0 to be “stuck” as it does not actively influence the
network’s weights anymore.

∇L = ∇σ(z) = σ′(z) ·∇z (2.47)

Edge Case: Zero Hidden Layer Networks

When a neural network that uses the L2 loss and has no hidden layers is used the
training can be simplified immensely. Ignoring the activation function, the output
function of such a network is

f(x) = 〈w,x〉+ b (2.48)

where w is the weight vector and b is the bias. Obviously, this is equivalent to the
equation

f(x′) = 〈w′,x′〉 (2.49)

where x′ = (x, 1) and w′ = (w, b). Let now X = (x1, . . . ,xn)
t and y = (y1, . . . , yn)

be all the input values and the output values the networks is supposed to be trained
on. Given the L2 loss this is equivalent to solving

min
w′

‖Xw′ − y‖22. (2.50)

Thus, the goal is to find the least squares solution w′ for the equation

Xw′ = y. (2.51)

Using the Gaussian normal equation, Equation (2.51) becomes

X tXw′ = X ty. (2.52)

This equation always has a solution and the solution is unambiguous if X is of full rank.
If X is rank deficient the solution can be found with the pseudoinverse [DH08].
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Summary

This chapter provided the essential knowledge of hash functions and neural networks
necessary to design and evaluate an index model. First, the characteristics of file
system metadata was explained, including file paths. Then parallel file systems were
introduced and it was highlighted that they separate between the handling of data and
metadata for performance reasons. The flexible storage framework JULEA and its
usage of key-value stores was mentioned. The simple put, get, delete interface
of key-value stores was elaborated. Then, hash tables were explained in detail with
a focus on the impact of collisions on their performance. Afterwards, regular hash
functions were introduced and the source of their high collision ratio of 36% was
discussed. Finally, neural networks and their training was explained. In particular,
the troubles arising with vanishing gradients were highlighted.
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3. Design

This chapter provides insights on the approach taken to compare learned index
structures to regular hash functions. First, the key-value store HTableDB and
its components are introduced. Afterwards, the index model structure is explained
further. Finally, the design decisions influencing HTableDB and its components are
elaborated.

3.1. Approach

The goal of this thesis is to evaluate the performance of learned index structures,
similar to the ones used in Section 1.2, in the context of high-performance storage
applications. As storage frameworks like JULEA, mentioned in Section 2.3, use
key-value stores to store metadata, the choice was made to test the learned index
in a similar fashion. For this, an in-memory key-value store was implemented to
enable the comparison of different index models and hash functions. The underlying
index structure used is a hash table, as the structure enables the storage of new
entries in contrast to the tree-like approach from “The Case for Learned Index
Structures” [Kra+18]. Therefore, the implementation of a key-value store becomes
possible. The key-value store and the index model were designed to use strings,
e.g., file paths as keys. Further details on the used index models are given in
Section 3.2. The developed key-value store is named HTableDB and is detailed
further in Section 3.3.1.

HTableDB was designed to be compatible to JULEA’s key-value store backend. In
particular, HTableDB was designed to wrap around standard hash table implemen-
tations to take care of operation batching and to handle and provide multiple hash
functions and index models to determine an entry’s position. To facilitate an easy ex-
change of the hash table implementation and the used index model a layered modular
approach was chosen. Figure 3.1 shows the three separate components: HTableDB,
HTable and Indexnet. An application interacts only with HTableDB without any
knowledge of the underlying components. HTable is the hash table implementation
used to store the key-value pairs. The interaction with the hash table is done through
a clean interface as the hash tables internal state is private. This enables an easy
exchange of the hash table implementation in the future. Indexnet handles the index
model, its internal state is private as well. Indexnet provides a simple index model
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based on a two-stage feed-forward network. It could be easily replaced by other
index models for further tests in the future.

HTableDB

HTable

Indexnet

Application

Figure 3.1.: Interaction of an application with HTableDB and its components

3.2. Index Models

Pos

Key

Figure 3.2.: Key indexes as cumulative distribution function.
Taken from [Kra+18]

An index model is a machine learning model used to calculate an index position
from a key. This is done by scaling the model’s output with the number of possible
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indexes. The basic approach is to view the key indexes as a cumulative distribution
function as seen in Figure 3.2 and to label them accordingly. For integer keys this is
straightforward. The keys are first sorted in ascending order. Afterwards, each of
the n keys ki is assigned a label `(ki) = i/n. For strings, the labeling can be done
using a different sorting approach like ordering by string numerical value.

The index models used in this thesis are feed-forward networks ordered in two stages.
To process integer keys, such a network only needs one input node. To input strings,
a common approach is to use one input node per character in the string. As the
number of input nodes is constant, the strings have to be of a limited length. The
ASCII values of the characters are divided by 127 to scale them to values in [0, 1]
before putting them into the network. If a string is shorter than the number of
input nodes the remaining inputs are set to zero. The number of input nodes chosen
depends on the keys used.

The first stage of the index model is a single feed-forward network f0 with zero or
one hidden layer. The second stage consists of m feed-forward networks f

(j)
1 with

zero hidden layers. To calculate the index of a key x, first, the output f0(x) of the
first network is computed. Then, the index of the subnet to be used is calculated.
Afterwards, the output of the subnet is computed and scaled with the total number
of keys to calculate the final index. In short

F (x) = f
bm·f0(x)c
1 (x). (3.1)

Thereby, the two-stage loss of key x is

L(x) = (F (x)− y)2. (3.2)

3.3. Components

3.3.1. HTableDB

HTableDB is the overlaying component and provides the external interface of the
key-value store. It wraps around HTable and offers the user the choice between
multiple hash functions and index models.

Currently, HTableDB offers the choice between using the trivial hash function shown
in Equation (2.5), an adapted version of the Linux kernel’s jhash [JK10], another
hash function called fast-hash [Tan15] used in Apple’s iOS kernel and GNU Hurd
as well as position determination by Indexnet. Both jhash and fast-hash are in
their function similar to the hash function shown in Listing 2.2. The differences
are a more sophisticated mixing and that the data is read in chunks to increase the
performance.
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If one of the regular hash functions is chosen during the initialization, it is passed
to HTable. The following operations are directly passed through from HTableDB
to HTable which then uses the provided hash function with modulo reduction, as
shown in Equation (2.2), to determine the position of the entries. This behavior is
visualized in Figure 3.3.

HTableDB

put(key,value)
get(key)
delete(key)

HTable

Hashfunc
get_pos(key)

put(key,value)
get(key)

delete(key)

Figure 3.3.: HTableDB operations using regular hashing

If Indexnet is chosen, HTableDB takes care of Indexnet’s initialization. When one
of the HTableDB operations is called the entry position is determined by a call to
Indexnet and then passed to HTable. This is shown in Figure 3.4.

3.3.2. HTable

HTable is a small hash table implementation using separate chaining with head
entries as described in Section 2.5.1. Every bucket of the hash table stores three
pointers, one to the key, one to the value and one to the next entry in the chain.
This approach was chosen as it offers a good trade-off between memory demands of
the bucket array and latency of the pointer traversal. The chains are made of singly
linked lists.

Interface

The interface of HTable is shown in Listing 3.1. Similar to HTableDB, HTable is
initialized with a function named hashtable_init which then returns a pointer to
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HTableDB

put(key,value)
get(key)
delete(key)

HTable

Indexnet

predict_pos(key)_put(key,value,pos)
_get(key,pos)

_delete(key,pos)

Figure 3.4.: HTableDB operations using Indexnet

a hashtable struct containing the state of the hash table HTable. This struct is
needed by the remaining functions. During initialization, a hash function and a
compare function have to be provided. When the hash table is no longer needed its
memory has to be freed with hashtable_free. The hash table can either be used
regularly with the provided hash function or with externally calculated positions. To
store, retrieve or delete entries the functions hashtable_put, hashtable_get, and
hashtable_del are used. When the position is determined externally, the functions
have to be prefixed with an _ and the position has to be given as an argument.
HTable has additional functions to get data about its size, the number of total
collisions and the maximum chain length.

3.3.3. Indexnet

Following the index model approach described in Section 3.2 a two-stage model was
chosen. The first stage consists of a feed-forward network with one hidden layer (see
Section 2.7.3). The second stage consists of several feed-forward networks with zero
hidden layers (linear regression). The number of epochs trained, the number of nodes
in the hidden layer and the number of second stage networks was varied. The results
of this variation will be presented in Chapter 5. The rectified linear unit (ReLU)
described in Section 2.7.2 was used as activation function. Furthermore, the sigmoid
activation function was tried. The number of input nodes was varied depending on
the dataset used.
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1 struct hashtable* hashtable_init(uint64_t size , uint64_t
↪→ (*hash_fn)(void*), bool (*cmp_fn)(void*, void*));

2
3 int hashtable_free(struct hashtable* ht);
4
5 int hashtable_put(struct hashtable* ht, void* key, void*

↪→ value);
6
7 int hashtable_del(struct hashtable* ht, void* key);
8
9 void* hashtable_get(struct hashtable* ht, void* key);

10
11 void _hashtable_put(struct hashtable* ht, void* key, void*

↪→ value , uint64_t pos);
12
13 int _hashtable_del(struct hashtable* ht, void* key,

↪→ uint64_t pos);
14
15 void* _hashtable_get(struct hashtable* ht, void* key,

↪→ uint64_t pos);
16
17 uint64_t hashtable_get_collisions(struct hashtable* ht);
18
19 uint64_t hashtable_get_max_chain_length(struct hashtable*

↪→ ht);
20
21 uint64_t hashtable_get_size(struct hashtable* ht);

Listing 3.1: HTable Interface
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1 struct indexnet* indexnet_init(char* filename);
2
3 void indexnet_predict(struct indexnet* inet , const float*

↪→ x, int batch_size , float* y);
4
5 void indexnet_free(struct indexnet* inet);
6
7 int indexnet_get_i_size(struct indexnet* inet);

Listing 3.2: Indexnet Interface

Interface

The interface of Indexnet is shown in Listing 3.2. Again, the internal state of Indexnet
is saved in an opaque struct indexnet. A pointer to this struct is returned by the
initialization function indexnet_init which takes the file name of a weight file as
an argument. The structure of this file is explained in Section 4.3.1. The weight
file contains the parameters and weight necessary to initialize the internal neural
networks. If the instance of Indexnet is no longer needed it has to be freed by calling
the indexnet_free function. To let users of Indexnet determine the right input
size, the indexnet_get_i_size function exists. The remaining function indexnet_-
predict grants access to the main functionality, calculating the relative position in
the bucket array for a given key. It takes a pointer to a float array x containing
batch_size many keys of the input size. It also takes a pointer to another float
array y of size batch_size which is used as the output.

Summary

This chapter provided insights into the design decisions taken and the overall approach.
First, the key-value store HTableDB was introduced. It was developed to easily
compare learned and unlearned index models. Then, the two-stage network approach
was explained. It consists of a first stage made out of one feed-forward network which
maps keys to a second layer of subnetworks. Afterwards, HTableDB was detailed
further. The underlying components and their interfaces were introduced.
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4. Implementation

This chapter provides further insights into the implementation details of HTableDB
and its components. First, HTableDB and its interface are discussed. Then, the hash
table used in HTable and the reasons for its implementation are explained. In the
end, the separate training and inference of Indexnet is described.

4.1. HTableDB

As most file systems are written in the C programming language, the choice was made
to use it for this component as well. C is a compiled, low-overhead programming
language offering great portability as compilers exist for nearly any platform.

HTableDB’s interface is shown in Listing 4.1. A HTableDB instance is initialized by
the HTableDB_init function which returns a pointer to a struct htabledb. The
initialization function takes two arguments size and hash_type. size is the number
of buckets in the underlying hash table. hash_type sets the hash function used. It
can be set to TrivHash, JHash, FHash or IndexNet to either use one of the regular
hash functions trivial hash, jhash and fast-hash or to use the index model provided
by Indexnet. To finalize the HTableDB instance the HTableDB_fini function is
used. The three key-value store operations put, get and delete are implemented
by the functions HTableDB_put, HTableDB_get and HTableDB_delete. These are
implemented by wrapping around the HTable functions to handle the differences
between the regular hash functions and the index models.

Additionally, the HTableDB_print_debug function was implemented. It prints several
parameters to the console. The parameters are the hash table’s total number of
buckets, number of entries, number of collisions, collision ratio, max chain length
and the size in bytes as well as the number of bytes wasted due to collisions. This
function is used to print status information during benchmarks.

4.2. HTable

Like HTableDB, the implementation of HTable was done in the C programming lan-
guage. The choice to implement a hash table from scratch was made after evaluating

34



1 enum HASH_TYPE {TrivHash , JHash , FHash , IndexNet};
2
3 struct htabledb* HTableDB_init(uint64_t size , enum

↪→ HASH_TYPE hash_type);
4
5 void HTableDB_fini(struct htabledb* htdb);
6
7 int HTableDB_put(struct htabledb*, void* key, void* value);
8
9 int HTableDB_delete(struct htabledb*, void* key);

10
11 void* HTableDB_get(struct htabledb*, void* key);
12
13 void HTableDB_print_debug(struct htabledb*);

Listing 4.1: HTableDB Interface

several other hash table implementations e.g. glibc’s GHashTable. Most hash table
implementations offered features unnecessary for the planned benchmarks like resiz-
ing. Additionally, those implementations were hard to modify to output additional
information and allow direct placement of entries needed with Indexnet as lots of un-
known code would have to be examined. The simple linked list implementation used
for the chaining was also implemented from scratch. Currently, it is located inside
of HTable.c, but in the future, it could be externalized to be used for HTableDB’s
batching.

4.3. Indexnet

4.3.1. Training

Initially, the full first stage training was implemented from scratch in C. However,
the training loss never decreased. In retrospect, this could have had two reasons.
The first one being that the paths were not sorted before being labeled. The second
reason being that the initialization of the neural network’s weights was always the
same as it was done with the same seed and not done carefully enough. In particular,
the random number generator used was drand48 which is a linear congruential
generator and known to produce pseudo-random numbers that do not pass some of
the statistical tests random numbers should pass [LS07].

To rule out the training implementation of the first stage as a source of error, the
well-tested Keras [Cho+15] Python library with TensorFlow [Mar+15] as backend
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was used. The weights of the second stage networks are calculated with the linear
regression method described in Section 2.7.4 using the NumPy [Oli06] Python library.
Afterwards, the weights and biases of the first and second stage networks are written
to a binary file. As NumPy internally uses C arrays this process is straightforward
and guarantees compatibility with C code executed on the same machine. This
binary file has three parts: the first part is 24 bytes long and contains the number of
inputs n, the number of nodes m in the hidden layer and the number of second stage
networks ` as signed 64 bit integers. The second part is (nm + 2m + 1) · 4 bytes
long and contains the weights and the biases of the first stage’s hidden layer and the
weights and the bias of the first stage’s output node as 32 bit floating point numbers.
The third part is `(n+ 1) · 4 bytes long and contains the weights and the bias of the
second stage networks, again as 32 bit floating point numbers.

4.3.2. Inference

The inference step is done by a C implementation made from scratch. Not only does
this help to reduce the overhead induced by the TensorFlow and Python runtime
environments, but also aids portability by reducing dependencies. Training and
inference can be done on different computers as long as their word size and byte
order (endianness) are the same. This constraint could be lifted by storing the
network’s data in a self-describing data format e.g. HDF5 [The18]. This was not yet
implemented as it goes beyond the scope of this thesis.

As mentioned in Section 3.3.3, the inference can be done in batches. This is achieved
by a generalization of the Equations (2.37) to (2.38). Instead of just one input vector
x, a number of n input vectors xj is composed into an input matrix X = (x1, . . . ,xn).
Hence, the new equations are

Z = WX +B (4.1)
Y = σZ (4.2)

where σ is the component-wise activation function. The matrix B is composed out
of the layer’s bias vector n times side by side.

B = (b, . . . ,b). (4.3)

However, the batching is not used at the moment as the batching functionality of
HTableDB remains future work.

For the second stages, the inference step is not done in batches as it would require
an expensive reordering of the input array. Thus, the inference is still the scalar
product shown in Equation (2.48).

To implement the matrix-matrix multiplications and the scalar product the well-
established Basic Linear Algebra Subprograms (BLAS) library was chosen. In spite
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of being written in Fortran, BLAS provides a C interface called CBLAS. CBLAS
offers a well-defined interface which enables the code to be linked against several
optimized implementations of the linear algebra operations like the Intel® Math
Kernel Library (Intel® MKL) [Int18] or OpenBLAS [Xia+18]. In particular, the
two functions used by Indexnet are cblas_sgemm and cblas_sdsdot. The sgemm
function is used for single-precision general matrix multiplication as occurring in the
first stage (see Equation (4.1)). The sdsdot function implements a single-precision
scalar product with additional precision during the accumulating step and is needed
for the second stages (see Equation (2.48)).

Summary

In this chapter, first, the HTableDB key-value interface with its put, get, delete
interface was presented. Then, the choice to implement a hash table from scratch
for HTable was explained. This choice was taken as it enabled faster integration
of additional functions for the gathering of performance statistics. Afterwards, the
Keras, TensorFlow, Python stack of Indexnet’s training was introduced. Finally,
Indexnet’s inference step and its batching was explained.
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5. Evaluation

In this chapter, the learned index models will be evaluated. First, the influence
of a network’s parameters on its loss will be analyzed. Then, the distribution of
entries to subnets as well as the influence of the number of subnets on the loss will
be studied. Finally, an index model will be compared to the jhash and fast-hash hash
functions.

Datasets

Several datasets were used during the evaluation. As a foundation, a dump of all the
file paths of a file system, used for multiple scientific software workloads in a small
cluster, was acquired via find /. Afterwards, the paths longer than 256 characters
were removed and the order of the paths was shuffled. Then, it was split in two with
each dataset containing 2180000 file paths. Finally, those datasets were sorted with
sort -n. These datasets will be called set A and set B. Additionally, a third dataset
was created containing a subset of the initial file paths. That subset contains the
unpacked ImageNet dataset [Rus+15] and will be called dataset I. Dataset I has
1878718 entries.

5.1. Optimization of First Stage Loss

The first step taken was to optimize the training parameters of Indexnet’s first stage.
For the first stage with zero hidden layers, this is trivial as there are no training
parameters. This is due to the closed form solution explained in Section 2.7.4. To
find the optimal model parameters for the first stage with one hidden layer, the
grid search approach was used. Grid search is the evaluation of a model for every
parameter p in a parameter space P . The parameter space searched was

P = {1, 2, 4, 8}× {1, 2, 4, . . . , 512, 1024, 2048} (5.1)

with P 3 p = (i, j) where i is the number of epochs the network was trained for
and j the number of nodes in the hidden layer. For every parameter p the network
was trained five times on dataset A. Results were the network did not converge, i.e.
where the loss did not decrease, were removed. Afterwards, the arithmetic mean of
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Figure 5.1.: Loss for a given node/epoch combination (lower is better).

the results was calculated and visualized in Figure 5.1. Although the training time
was still in the range of tens of minutes for the tested number of epochs, the number
of epochs for further measurements was set to four as it was a good trade-off between
training time and loss minimization. In practice, the network could be trained for
more epochs as the training is only done once and the number of epochs has no
influence on the time needed for inference. However, the training becomes slower
over time while the risk of overfitting increases. The number of nodes in the hidden
layer was set to 16 as more nodes only marginally lowered the loss while directly
increasing the inference time. The inference time of a feed-forward network with one
hidden layer scales with O(i`) where i is the number of inputs and ` the number of
nodes in the hidden layer. For this reasons, p = (4, 16) was chosen for some of the
further measurements.

The average first-stage loss for a network with 16 nodes in the hidden layer trained
for four epochs was approximately 0.00387. For 2048 nodes and eight epochs the
average loss was approximately 0.00282. However, for a simple first-stage with
zero hidden layers the loss was already 0.00329, making networks like the first one
potentially irrelevant in practice.
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5.2. Distribution of Entries to Subnets

Another important aspect is the distribution of keys to the second-stage networks
also called subnets. Ideally, every subnet should get an equal amount of entries as
the subnets partition the bucket array into equally sized chunks. Thus, a subnet
getting a number of entries higher than the total number of entries divided by the
number of subnets inevitably leads to collisions. The labels for the training data are
chosen to be equally partitioned, therefore, minimization of the loss should lead to
equally distributed entries per subnet. This was again tested on dataset A.
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Figure 5.2.: Number of entries per subnet for 100 subnets and a first stage with
16 nodes in the hidden layer, trained for 4 epochs. First-stage loss:
0.00387, total loss: 0.000991.

Figure 5.2 shows the distribution of entries to 100 subnets with a first-stage network
with one hidden layer containing 16 nodes trained for four epochs. As the size of
the dataset was 2180000 entries, subnets with more than 2180000/100 = 21800 entries
inevitably cause collisions. The figure shows that the first 50 subnets got a number
of entries that can be considered close to optimal. Only a couple subnets after the
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first got a number of entries lower than optimal. The subnets around the indexes
60 and 80 got numbers of entries exceeding the optimal value by a factor up to 6,
while the subnets between them are nearly empty. The remaining subnets are also
close to empty. The last and the first subnet are standing out as they catch all the
entries where the networks output before the last activation function is negative
respectively greater than one. In the following, the subnet distribution for several
different first-stage parameters is discussed.
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Figure 5.3.: Number of entries per subnet for 100 subnets and a first stage with zero
hidden layers. First-stage loss: 0.00329, total loss: 0.000883.

Figure 5.3 shows the subnet distribution for a zero hidden layers network and 100
subnets. The overall distribution is similar to the one in Figure 5.2, just not as
smooth for the first half of the subnets. However, the loss of the first stage, as well
as the total loss over both stages, was lower. Additionally, the peaks at 60 and 80
are sharper and higher than before. Also, the peaks in the first half are over 25000
entries per subnet and will cause additional collisions. In conclusion, this net should
perform worse when used for indexing even though its loss is lower.
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Figure 5.4.: Number of entries per subnet for 100 subnets and a first stage with
16 nodes in the hidden layer, trained for 32 epochs. First-stage loss:
0.00221, total loss: 0.000371.

In an attempt to smooth the distribution seen in Figure 5.2 further, the number of
epochs was increased to 32. The result of this is shown in Figure 5.4. The peaks
around 60 and 80 got broader and lower as expected. However, the previously smooth
first half of the subnet distribution has become rougher, with lots of subnets having
either half or twice as many entries as optimal. The subnets between the two main
peaks remain empty. The last subnet has over 70000 entries, indicating that the
network tries to output a lot of values greater than one. This is problematic as the
gradient of the ReLU activation function is zero for those values, thus, they are not
actively influencing the gradient descent anymore. Therefore, the weights influencing
them the most are “stuck”. The network can only recover from this problem if there
are still values for which the activation function’s gradient is not zero connected to
those weights. Again, the loss has decreased compared to the previous networks. The
number of epochs was further increased to 64 and 128 with similar results. Again,
the distribution became less smooth while the loss decreased. This behavior can be
seen in Figures A.1 to A.3.
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Figure 5.5.: Number of entries per subnet for 100 subnets and a first stage with
64 nodes in the hidden layer, trained for 64 epochs. First-stage loss:
0.00120, total loss: 0.000187.

As the grid search results suggested, more nodes in the hidden layer trained for more
epochs further decrease the loss. The numbers of epochs and hidden layer nodes were
set to 64. The results are visualized in Figure 5.5. The first-stage loss, as well as the
total loss, have both approximately halved from the previous network. Additionally,
the peaks at 60 and 80 have become less pronounced. However, the distribution of
entries in the first half became worse having single spikes up to 80000 entries per
subnet. Like before, the first and the last subnet have a lot of entries indicating that
the network architecture is not optimal.

After doubling the number of hidden layer nodes and number of epochs to 128, the
loss stays approximately the same as before. The inequalities in the distribution
of the first half of the subnets became more extreme. This behavior is shown in
Figure 5.6. When the number of nodes in the hidden layer is increased further to
256, the overall distribution stays the same. However, the number of entries in the
last subnet has increased further. This can be seen in Figure A.4.
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Figure 5.6.: Number of entries per subnet for 100 subnets and a first stage with
128 nodes in the hidden layer, trained for 128 epochs. First-stage loss:
0.000673, total loss: 6.455e-5.

In conclusion, the measurements in this section suggest that the chosen first-stage
network architecture in combination with the equal partitioning of the bucket array
by the subnets is not ideal. The first-stage is unable to distribute the tested entries
equally, independent of the choice between a zero and a one hidden layer network.
This also occurs when dataset I is used as shown in Figures A.5 to A.11. To improve
further, either a different first-stage architecture is needed or the way the subnets
partition the array has to be more dynamic, attributing for the number of entries
mapped to a subnet. Additional approaches to address this problem will be discussed
in Chapter 6.
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5.3. Number of Subnets

The impact of the number of subnets on the total loss over both stages was evaluated
as well. For this, the number of hidden layer nodes was set to 16 and the network
was trained for four epochs. Afterwards, the number of subnets was varied and the
loss was calculated. The results are shown in Figure 5.7. After 1000 subnets, which
is equal to one subnet for every 21800 entries, the loss only marginally decreased,
suggesting that more subnets are unnecessary. The data that Figure 5.7 is based on
can be seen in Table A.1. The initial step-like decrease of the loss likely stems from
peaks as the ones discussed in Section 5.1 being distributed to multiple subnets.

Figure 5.7.: Overall loss by number of subnets

5.4. Comparison to Hash Functions

To compare the learned index models to regular hash functions HTableDB was
used. Dataset B was chosen for the comparison to test how well the neural network
generalized to previously unseen data. Additionally, dataset I was used to evaluate
the performance of learned indexes on homogeneous data. The benchmark used
consisted of three parts. First, every entry of the dataset was put into the HTableDB.
Afterwards, a get request was made for every entry. Finally, all the entries were
deleted. In total, the benchmark causes 3n lookups for n entries in a dataset.
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Method Time Collision Rate Max Chain Length Bytes Wasted
Fast-Hash 0m2,645s 0.368 9 18M

JHash 0m2,765s 0.367 10 18M
Indexnet 33m24,249s 0.789 210507 39M

Table 5.1.: Benchmark results for dataset B

Test Environment

Hardware used:
Intel® Core™ i5-4210U processor
2×4 GiB 1600MHz DDR3L

5.4.1. Results for Dataset B

The results for dataset B are shown in Table 5.1. The index model used in Indexnet
had one hidden layer with 16 nodes trained on dataset A for four epochs. It was
the most promising candidate after analysis of the results in Section 5.1. However,
its performance was not sufficient. Apparently, large numbers of the paths from
the input data were mapped to the same bucket arrays, not only causing a high
collision ratio but also really long chains. Further analysis with gprof showed that a
significant part of the execution time was spent traversing the chains. The longest
chain was 210507 entries long, it alone caused

210507 · 210508
2

· 3 = 66470111334 (5.2)

linked list hops. If all of those hops were cache misses as explained in Section 2.5.1
the whole chain would have added over one hour to the benchmark time. The jhash
and fast-hash hash functions performed as expected. In particular, they achieved a
collision ratio of ≈ 0.367 as calculated in Section 2.6.1.

5.4.2. Results for Dataset I

The results for dataset I are shown in Table 5.2. The index model used had one
hidden layer with 16 nodes trained on dataset I for four epochs. The collision rate of
the index model was 0.432 which is worse than that of the hash functions. However,
the overall performance was better than for dataset B and further improvements
might be possible if the large number of entries mapped to the last slot can be
reduced. The hash functions performed as expected.
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Method Time Collision Rate Max Chain Length Bytes Wasted
Fast-Hash 0m1,728s 0.367 8 16M

JHash 0m1,700s 0.367 8 16M
Indexnet 1m17,988s 0.432 61557 18M

Table 5.2.: Benchmark results for dataset I

Summary

In this chapter, various aspects of an index model as described in Chapter 3 were
evaluated. Evaluation of the loss reduction and subnet distribution showed that
minimization of the average mean squared error does not necessarily lead to a
good index model in the short term. Furthermore, problems with the used network
architecture were found, in particular, the vanishing of the gradient for a significant
portion (> 10%) of the test data. For general datasets containing very different paths,
the tested networks were unable to distinguish similar paths sufficiently. However,
for datasets containing similar paths, the tested networks performed better.
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6. Summary, Conclusion and Future
Work

This chapter summarizes and concludes the thesis. Additionally, this chapter discusses
future work regarding learned indexes and the developed components.

6.1. Summary

In Chapter 1, it was stated that exploitation of data’s inner structure by learned
index models could lead to better performing index structures. As a use case hash
tables were introduced and the goal to compare an index model’s performance against
regular hash functions was defined. Chapter 2 provided the essential knowledge to
achieve this goal. It introduced file system metadata and file paths, the separate
handling of data and metadata by parallel file systems and the novel approach of
using object and key-value stores taken by modern storage frameworks like JULEA.
Furthermore, hash tables and hash functions were explained with a focus on their
performance degradation due to collisions. In Chapter 3, the decision to implement
a key-value store was reasoned. The modular design for future extensibility of
HTableDB was explained and the index model architecture was detailed. The index
model used consists of two stages of feed-forward networks. The first stage consists
of one network that maps keys to one of the subnetworks for index calculation.
Chapter 4 further detailed the implementation of HTableDB and its components. It
elaborated the Keras, TensorFlow, Python stack used for training and the BLAS
interface used for inference. Chapter 5 evaluated the learned index models used.
It was found that minimizing the average mean squared error does not necessarily
lead to a good index model in the short term. Furthermore, it was found that with
the used architecture about 10% of the input keys cause the gradient to vanish and
therefore inevitably cause a collision. Additionally, these values are “stuck” and, thus,
further training does not resolve the issue. For datasets containing homogeneous
paths the index model performed slightly worse than the hash functions.
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6.2. Conclusion

Chapter 5 showed that simple feed-forward networks with one hidden layer do not
perform sufficiently to be competitively used to index large amounts of non-similar
file paths. However, it was shown that they already come close to the collision rates
of commercial-grade hash functions when used for file paths that are more similar to
each other. A potential cause for their weak performance with the datasets A and
B introduced in Chapter 5 is that both datasets contain strongly clustered parts of
dataset I. An additional weak point of the taken approach was the supervised training.
Supervised training needs pre-defined labels which impose a strong structure on the
data. If this structure is not similar to an internal “hidden” structure of the data the
network is unable to learn a good distribution. The imposed structure was labeling
by increasing numerical string value (sort -n), however, a different structure might
be more optimal. A significant portion of the tested dataset’s entries was mapped to
either the first or the last slot in the hash table, thus, indicating problems with the
network’s architecture. If those problems can be resolved the index model has the
potential to be a valid competitor to the regular hash functions when considering
space efficiency.

6.3. Future Work

HTableDB

During the design of HTableDB and its components decisions were made to increase
their extensibility. Batching is already supported by Indexnet and would lower the
overall index calculation time by efficiently calculating the indexes for multiple keys
at once. Additionally, the BLAS interface offers further performance gain by using a
variant optimized more than the reference implementation. As HTableDB’s design
was influenced by JULEA’s key-value backends the implementation of such a backend
for HTableDB is feasible and offers a good way to further test learned indexes in real-
life applications. After further modularization Indexnet could become a basis that
supports various index model architectures. One of those modularization steps would
be to support the HDF5 model and weight files as exported by Keras, drastically
simplifying the testing of new index models.

Additional Index Models

Simple feed-forward networks showed various shortcomings when indexing file paths,
however, the variety of machine learning models still offers different architectures to

49



be tested. Two of them are self-organizing maps (SOM) and one-dimensional convo-
lutional neural networks (1D-CNN). Self-organizing maps are trained unsupervised
and thus are not influenced by suboptimal structures chosen by the user. Convolu-
tional neural networks in their 2D and 3D variants are largely used in current image
recognition networks. They have also been successfully used in natural language
processing, analyzing sentences [CW08].

Summary

This chapter summarized and concluded this thesis. First, it recalled the overall
structure of the thesis and summarized its chapters. Then, it was concluded that the
tested index models do not yet perform sufficiently but show room for improvement.
Finally, possible future work was discussed, including improvements to HTableDB as
well as testing of machine learning models like self-organizing maps or convolutional
neural networks.
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A. Additional Measurements

This chapter contains additional measurements to the ones in Chapter 5.

A.1. Distribution of Entries to Subnets

A.1.1. Dataset A
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Figure A.1.: Number of entries per subnet for 100 subnets and a first stage with
16 nodes in the hidden layer, trained for 64 epochs. First-stage loss:
0.00125, total loss: 0.000159.
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Figure A.2.: Number of entries per subnet for 100 subnets and a first stage with
16 nodes in the hidden layer, trained for 128 epochs. First-stage loss:
0.00111, total loss: 0.000116.
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Figure A.3.: Number of entries per subnet for 100 subnets and a different first stage
also with 16 nodes in the hidden layer, trained for 128 epochs. First-
stage loss: 0.00112, total loss: 0.000112.
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Figure A.4.: Number of entries per subnet for 100 subnets and a first stage with
256 nodes in the hidden layer, trained for 128 epochs. First-stage loss:
0.000567, total loss: 5.756e-5.

59



A.1.2. Dataset I
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Figure A.5.: Number of entries per subnet for 100 subnets and a first stage with zero
hidden layers. First-stage loss: 0.00712, total loss: 6.202e-5.
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Figure A.6.: Number of entries per subnet for 100 subnets and a first stage with 16
nodes in the hidden layer, trained for 4 epochs. First-stage loss: 0.0269,
total loss: 0.000612.
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Figure A.7.: Number of entries per subnet for 100 subnets and a first stage with
16 nodes in the hidden layer, trained for 16 epochs. First-stage loss:
0.0174, total loss: 0.000166.
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Figure A.8.: Number of entries per subnet for 100 subnets and a first stage with
32 nodes in the hidden layer, trained for 16 epochs. First-stage loss:
0.00822, total loss: 5.972e-5.
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Figure A.9.: Number of entries per subnet for 100 subnets and a first stage with
64 nodes in the hidden layer, trained for 64 epochs. First-stage loss:
0.00314, total loss: 2.405e-5.
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Figure A.10.: Number of entries per subnet for 100 subnets and a first stage with
128 nodes in the hidden layer, trained for 128 epochs. First-stage loss:
0.00226, total loss: 2.187e-5.
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Figure A.11.: Number of entries per subnet for 100 subnets and a first stage with
256 nodes in the hidden layer, trained for 128 epochs. First-stage loss:
0.00300, total loss: 2.394e-5.
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A.2. Number of Subnets

Number of Subnets One Hidden Layer Zero Hidden Layers
0 0.00395 0.00329
10 0.00160 0.00159
50 0.00111 0.000883
100 0.000991 0.000810
500 0.000564 0.000551
1000 0.000353 0.000339
5000 0.000322 0.000305
10000 0.000314 0.000301
50000 0.000284 0.000285
100000 0.000253 0.000267

Table A.1.: Overall loss in relation to the number of subnets. Zero subnets means
that the loss of the first stage was taken.
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