
Bachelor thesis

Suitability analysis of Object Storage for
HPC workloads
by Lars Thoms

Scientific Computing
Department of Informatics
Faculty of Mathematics, Informatics and Natural Sciences
Universität Hamburg

Course of studies: Informatics
Matriculation number: 6415095

First reviewer: Dr. Michael Kuhn
Second reviewer: Prof. Dr. Thomas Ludwig

Advisor: Dr. Michael Kuhn

Hamburg, 2017-03-23

Contents

1 Abstract 5

2 Introduction 7
2.1 Motivation . 7

3 Storage techniques 9
3.1 Filesystems . 9

3.1.1 Storage management . 9
3.2 Distributed filesystems . 10

3.2.1 Architecture of Lustre (example) . 12
3.3 Object storages . 13

4 Ceph 15
4.1 Functionality . 15
4.2 Cluster . 16
4.3 Object Storage Device . 16
4.4 Storage Management . 17

4.4.1 Read/Write an object . 18
4.4.2 CRUSH . 18

5 Experimental setup 21
5.1 Configuration of VirtualBox . 21
5.2 Configuration of Debian “jessie” . 22

5.2.1 GRUB . 22
5.2.2 Network . 23
5.2.3 User permissions . 24
5.2.4 Cloning . 24
5.2.5 Post-Cloning . 24

5.3 Deployment of Ceph . 25

6 Ceph-FUSE driver 29
6.1 FUSE . 29
6.2 How does FUSE work . 29
6.3 A simple FUSE driver for Ceph . 30

6.3.1 Implementation of FUSE operations . 31
6.3.2 Renaming . 36
6.3.3 Compile and run . 36

7 Benchmarks 37
7.1 Setup . 37
7.2 Measurement methodology . 37
7.3 Results from IOR . 40
7.4 Results from RADOS . 45
7.5 Evaluation . 46

8 Conclusion 47
8.1 Future work . 47
8.2 Design of a fictional HPC Ceph Cluster . 48

8.2.1 HDF5 . 48
8.2.2 Metadata Server . 48

3

8.2.3 Ceph Cluster . 49
8.2.4 I/O Interface . 49

9 Eidesstattliche Versicherung 53

List of Figures 55

Bibliography 57

4

1 Abstract

This bachelor thesis reviews the possibility of using an Object Storage system like Ceph Object Stor-
age (RADOS) especially about its performance and functionality of partial rewrite.

Scientific high-performance computing produces large file objects and its metadata has to be fast
searchable. That is why Object Storages are a good solution because they store data efficiently with
simple API calls without the requirement to comply with POSIX specification. Unfortunately, these
are overloaded and not performant.

Above all, object storing in combination with metadata separation to store them in a search-efficient
database will increase the performance of searching.

Furthermore, per definition objects are supposed to be immutable, but if RADOS API calls are used,
they are mutable and can be rewritten like on other filesystems.

In this thesis, I am going to investigate whether that objects could be segmented rewritten. Accordingly,
I am going to program a FUSE driver as a proof of concept and prepare a series of measurement to
show performance and issues.

Thereby, it is possible to use Ceph as normal Filesystem, because of mutable objects. Unfortunately,
the write performance of this driver was low (around 3 MiB/s).

At the end, there is a design concept of an HPC application using a Ceph cluster in combination with
a document-oriented database to store metadata.

5

2 Introduction

In recent years, it has become clear that scientific research increasingly uses more sophisticated com-
puter simulations and models to achieve newer, better and more precise research results. For in-
stance developing a new pharmaceutical is nearly unimaginable without modeling and simulation
molecules to understand and proof the dynamics and kinetics of the pharmaceutical. However, most
of the pharmacokinetics software1 runs on a single computer with above-average computer hard-
ware.

Furthermore, other disciplines like weather and climate research even require entire high-performance
clusters to calculate their models. During their calculation, they produce a lot of data output, which
has to be stored on disk. Moreover, during the last years, clusters get more efficient and power-
ful, that is why models could be calculated more precisely, which in turn produces more data to
store.

At this point, storage systems become more and more necessary. Plugging in a single hard drive disk is
no longer enough because the current throughput of an HPC application is about 15 GB/s [11, pp. 122]
and rising. To manage, store and search this amount of information in real-time it is necessary to
distribute files or parts of it to many nodes (computers).

A standard technology for this kind of problem is called Storage Area Network (SAN). It consists
of many nodes, each of them contains a few drives (typically from 12-24 pieces)2, which are connected
to each other (usually via fiber).

Depending on requirements and configurations, file objects are stored redundantly distributed over
several drives and nodes. Each node has to be configured to deal with their disks. So they need a
filesystem or object storage to save the file(-parts) to an interpretable format.

In this bachelor thesis I am going to analyze Ceph Object Storage (RADOS) as a representative of the
Object Storage Systems. The central question is whether they are capable of doing partial updates to
existing objects, how this works and if there are performance issues.

That is why I describe the functionality and features of this storage system at first. Followed by an
implementation of a FUSE driver as a proof of concept and a series of measurements while using my
implementation as a reference.

2.1 Motivation

Why using an Object Storage System instead of a legacy storage system like Lustre or other POSIX
related solutions?

The main goal of a file storage solution in HPC is to dump huge measure data files. It is not necessary
to use an overloaded File I/O API like POSIX, which often lead to a lack of performance. Furthermore,
many features like directory hierarchy, extended attributes are not needed. Only a naive, simple storage
system, where many large files are put in, is required.

1List of pharmacokinetics software: https://www.pharmpk.com/soft.html (retrieved on 26/10/2016)
2On 2U in a 19" rack; 12 pieces correspond to 3.5" drives, while more to 2.5" drives; ex. https://www.thomas-krenn.
com/en/products/storage-systems/jbod-systems.html (retrieved on 26/10/2016)

7

https://www.pharmpk.com/soft.html
https://www.thomas-krenn.com/en/products/storage-systems/jbod-systems.html
https://www.thomas-krenn.com/en/products/storage-systems/jbod-systems.html

Additional problems to use POSIX for distributed filesystems are the strict consistency requirements.
Most operations have to be done atomically and the results of each write operation have to be visible
to all after returning. Moreover, every access to a file is noted with a timestamp in files property
atime which lead to an extra write operation for a read operation. The possibility of synchronous and
asynchronous operations is available, but unfortunately, it has to be declared at mount time and is not
decidable by a user, who has different requirements [10, p. 42-43]. These facts are problematic for
distributed filesystems because they decrease performance and demand mechanism like locks to ensure
POSIX requirements.

Another important point is the separation of metadata into a powerful database, instead of filing it into
a normal storage. Therefore, files could be sorted, filtered and found more efficiently than crawling a
whole filesystem.

These aspects may be met with an Object Storage System like Ceph.

8

3 Storage techniques

3.1 Filesystems

Let us begin with the primary question: how should a program save its data on a storage medium,
like hard disk drive, solid-state drive or tape drive? Furthermore, how should they read the stored
data?

Andrew S. Tanenbaum wrote that storing information has to pass three requirements [1, pp. 263]:

1. It must be possible to store a very large amount of information.
2. The information must survive the termination of the process using it.
3. Multiple processes must be able to access the information at once.

One possible solution is to organize the data, in which self-contained data are seen as a file, in a
classical local filesystem. They even do not need to be sophisticated because data could be writ-
ten consecutively on a storage device and signal begin and end of the files with a magic flag (see
figure 1).

Figure 1: Simple filesystem

Storing information in this way is strongly disadvantageous because to separate files all data has to be
iterated through, and there is no additional information.

Despite this, standards are required to interfere with different file systems or storage solutions – the
important one is called POSIX3. It describes which metadata has to been stored and functions, who
read this information, have to been implemented at least. As well POSIX requires a hierarchical
directory-/filestructure. Moreover, POSIX has specifications, which lead to performance issues (as
described in 2.1).

As an example, the command ls -la has to display several properties as seen in figure 2, which are
described in [IEEE [5], vol. “Shell & Utilities”; chap. “Utilities”; par. “ls”].

3.1.1 Storage management

Filesystems usually partition their available space into several areas with specific tasks. The first blocks
contain information about the partition. In figure 3 the data layout of ext4, a widely-used filesystem,
can be seen [25][17, pp. 227].

3Portable Operating System Interface, specified by the IEEE Computer Society

9

Figure 2: List content of directory (extract)

Figure 3: Data layout of ext4

The Superblock logs data like the number of available blocks, supported features and amount of inodes.
Each group of blocks starts with a Group Descriptor with flags about them. Followed by a negligible
reserved block and the Data Block Bitmap, tracking the usage of data blocks, and Inode Bitmap,
recording used inode entries.

The last block in the range of metadata blocks is called inode table. It contains all inodes – each
of them describe a file with attributes like permissions, ownership, create- and modified dates and a
limited map of pointers, directing to the data block via LBA4.

Thereby two possible address destinations exist: blocks and extents. Addressing blocks is a big
drawback caused by limited address space, thus constant file size. By contrast, extents consist of
many contiguous blocks, which allow huge files. According to this, fragmentation to some extent is
intended.

3.2 Distributed filesystems

At some point, a single storage server is no longer sufficient. Because of reasons like overall storage capac-
ity, read/write throughput or reducing the probability of failure, which is needed in HPC. Another reason
is the requirement of geographical redundancy if extra data integrity is required.

Thereby many nodes (computers) are connected via Ethernet or Infiniband to each other directly or in-
directly and provide a storage network. From the user perspective, this network is transparent, and they
only have to connect with a special client to a gateway server (see figure 4).

There are various methods to store files on different disks or nodes. One simple possibility is to store
the whole files on distinct nodes, where the disk configuration is a simple, not redundant logical volume.
It is important to note that read/write throughput for a single file is not increased (sequential access) –

4Logical Block Address

10

Figure 4: Client connects to transparent storage cluster

disadvantageous for large scientific files. Furthermore, filesize is limited to the greatest free space on a
node.

A better solution is to stripe files over many nodes to increase read/write throughput (parallel access) and
maximum filesize. On top of that, parities reduce the probability of failure.

Underneath the nodes, there are physical disks or similar storage devices, which contain a filesystem to
store file(-parts). It is common to use good long-proven solutions like ZFS, EXT4 orXFS.

Figure 5: Files distributed over nodes without (left) and with striping (right)

Nowadays there exist many different implementations and products, here is a short overview of the
popular ones:

• GlusterFS5

An open source software, licensed under GNU GPL v3, which works with common hardware
configurations. Initially developed by Gluster Inc. and currently maintained by Red Hat Inc. [16]
Technically, it works without dedicated metadata server, and its modules are loaded via FUSE 6.
Therefore it is POSIX compatible. [3]

• BeeGFS7

A high-performance parallel filesystem developed by Fraunhofer-Institut für Techno- und Wirtschafts-
mathematik, original named FhGFS.
Its server modules also run in userspace, but unlike GlusterFS metadata of files are stored
separately to increase lookup performance. Furthermore, a special client is required. [9]

• Lustre8

Similar to GlusterFS it is an open-source software, licensed under GNU GPL v2, for high-

5https://gluster.org
6Filesystem in Userspace
7https://beegfs.com
8http://lustre.org

11

performance parallel storing. Likewise, it uses separated metadata storages and is compatible
with POSIX. [12]

3.2.1 Architecture of Lustre (example)

The architecture of distributed filesystems may vary in their implementation, but the fundamental
techniques are very similar. Most of them split metadata and object data, use distributed nodes with
storage devices, which contains common filesystems like ZFS.

Lustre is widely-used, and its essential architecture is a good example to show how these kind of storage
systems are created.

The main philosophy of Lustre is the disjunction of servers and targets. Technically, a server
provides a service, without storing information on its system. This part is taken by a target. Al-
though a target could be connected to more than one server (failover or balancing, as seen in fig-
ure 6).

There are different services, which has to run to form a cluster: MGS,MDS andOSS.

• Management Server (MGS)
This service is responsible for storing and providing all information about its cluster in the
Management Target (MGT).

• Metadata Server (MDS)
All metadata of are saved in the Metadata Target (MDT). Names and directories of the
Lustre filesystem are also stored.

• Object Storage Server (OSS)
They provide I/O services to the Object Storage Targets (OST), which contains the desired
data.

Figure 6: Layout of a typical Lustre cluster (adapted from [12])

12

3.3 Object storages

The difference between Object Storages and Distributed Filesystems considered on a technological level
is not that huge. It is more like another abstraction of data management. Instead of saving files with a
filename, ownership and filetype in a hierarchical directory tree there only exist an object, a collection
of metadata and an object identifier. Besides, objects are typically immutable which means object
storages are intended for archiving or sharing static data.

Figure 7: Abstraction of Object Storages

Figure 7 shows a simple scheme. As seen in Distributed Filesystems also Object Storages divide metadata
and binary data. Therefore some Metadata Server (MDS) and many Object Storage Devices (OSD)
exist. Furthermore, an OSD can contain many disks or other storage-like devices, configured in a
RAID or something else and formatted with a normal filesystem (e.g. EXT4). In addition, objects are
usually striped (redundantly) over many OSDs to increase read performance in case of load peaks or
failure.

However, the configuration of the OSDs or the distribution management is opaque. The users can only
push, get or list their objects via an API like REST, SOAP and S3.

At the end of the day, Object Storages write files on a filesystem. Only without hierarchy and possibility
of updates, but with a simplified API. [18]

Although an object could contain everything: a database, a filesystem or just a gallery of pictures. That
means storing objects is more flexible for storage clusters, because of the fact that they are immutable.
No locking features, fragmentation or reallocation is needed. The application behind an object is
handling them and implements fitted algorithms to work with them. Besides, numerous applications
do not require filenames and file hierarchy.

For example, rich-text documents like DOCX or ODT are already objects. They contain a filesystem,
directories with pictures, graphs, spreadsheets and many XML files.

13

4 Ceph

One of the well-known software packages, providing storage clusters, is Ceph. Initially it was developed
at the University of California, Santa Cruz, by Sage Weil and his working group in 2007 as his
dissertation [23]. Later on, he founded Inktank Storage to enhance and support his filesystem. In 2014
Red Hat Inc. acquired Inktank Storage and have been continuing development since, which resulted in
a stable version (10.2.0) of Ceph in April 2016 called “Jewel”. There are also other contributors of Ceph
like SUSE LINUX GmbH, Canonical Ltd., Fujitsu Ltd. and Intel Corporation.

4.1 Functionality

Ceph is only a package of many modules; the important ones are RADOS, librados, RADOSGW, RBD
and CephFS.

Figure 8: Architecture diagram showing the component relation of the Ceph storage platform (adapted
from [22])

RADOS – A reliable autonomic distributed object store. The centerpiece of Ceph because this is where
all data belongs to. How exactly this component works is shown in the next paragraph.

librados – A library, written in C++, to interact with RADOS so that a programmer could implement
Ceph Storage to an application. Which means interacting withObject Storage directly, there are no meta-
data servers included. This library is also available in C, Python and Java.

RADOSGW – A gateway to RADOS. Ceph provides with this module a solution for cloud applications
to interfere. This gateway is a RESTful API, which is compatible with two popular APIs: Amazon S3
and OpenStack Swift. Although, it arbitrates as a wrapper for librados.

RBD – RADOS Block Device. If an application wants the possibility to access a “raw” logical block,
this module offers a way to store data in blocks (e.g. 512 bytes per block), which are still striped over
multiple OSDs. This functionality is useful for virtualization (QEMU/KVM).

CephFS – Ceph’s file system, is a client to enable the possibility to mount a Ceph Cluster in a POSIX

15

filesystem. Therefore, a Metadata Server (MDS) is mandatory, which stores all POSIX relevant
information like timestamps, ownership, filename and directory. In turn, these data are saved as an
object in Ceph’s Object Storage. The MDS is crucial for commands like ls and other metadata specific
commands because an Object Storage does not handle metadata like these.

In the beginning, CephFS was implemented as an FUSE 9 driver, which meant to be slow. Therefore,
the step to include CephFS as a kernel module was not too far. Linus Torvalds packaged kernel 2.6.34
(May 2010) with the Ceph Client.

4.2 Cluster

A Ceph Cluster is a distributed filesystem, so there have to be many nodes with different tasks, where
a node is a dedicated server. The essential ones are Monitoring Nodes, Object Storage Nodes and
Metadata Nodes.

Figure 9: Ceph Object Storage Cluster Setup

Monitoring Node – A highly available daemon, which manages and holds the master copy of the
cluster map and configurations. Clients receive their copy from them. Furthermore, there has to be an
odd amount of monitoring nodes and if more than 50% are offline/down, the cluster is locking down.
Meanwhile, no client can connect to ensure cluster consistency.

An important note is monitors are not storing data to the cluster, instead of that they keep it local on
disk.

Metadata Server – They are only relevant in combination with CephFS or another POSIX -compliant
shared filesystem. At least it is a simple key-value store with information about directory hierarchy,
ownership, timestamps, permissions and snapshots on any directory.

Certainly, the data itself is saved as an object in RADOS.

Object Storage Node – A dedicated server containingObject Storage Devices (OSDs).

4.3 Object Storage Device

They are the core of every Object Storage Cluster. An OSD consists of an active daemon and a single
disk or raid containing a filesystem. Ceph allows three underlying filesystems: XFS, Ext4 or btrfs. It is

9Filesystem in USErspace

16

possible to add more than one disk to an OSD, but this is not recommended. Finally, all object(parts)
are stored as a file in the root directory / of e.g. btrfs.

By default, a primary OSD exists for every object; thence replication and striping to other devices is
starting. Moreover, it is possible to add a tier level to OSDs. This allows promotion and degradation
of object importance, which could decide about storing on an SSD or HDD.

Another strategy to handle different access importances e.g. cold data, which means they were written
once, but rarely read, are different hardware configurations (higher HDD capacity, lower throughput
vs. low SSD capacity, higher throughput).

4.4 Storage Management

How are objects saved, striped, replicated, recovered and managed? Foremost, there are different layers
to arrange objects. Figure 10 shows three layers: Pools, Placement Groups (PG) and Object Stor-
age Devices (OSD).

Figure 10: Object management

Pools are logical partitions, containing many Placement Groups and Object Storage Devices exclusively.
Therefore another pool cannot accessOSDs from another pool. Each pool contains a set of configurations:
Resilience indicates the maximum number of OSD failures. On a fully replicated pool it represents the
number of copies. Furthermore, choosing a specific CRUSH rule, which best fits the scenario, setting
ownerships by user ID to limit access, enabling quota by restricting amount of bytes or objects and the
creation of snapshots, to versioning given objects, are part of the settings.

Moreover, each object is assigned to a Placement Group. Thereby, it is intended to have a high
amount of PGs; ca. 100 per OSD are recommended, which is configured in the pools’ settings. PGs
do not own an OSD exclusively but share them. As seen in figure 11 the pool has a replication level
of “2”, corresponding to this each object in each PG is stored on two different OSD. Furthermore, the
three PGs share four OSDs among each other.

The advantage of replication is, of course, load balancing, in the case of a slow, overloaded or offline
OSD. Additionally, data consistency is enhanced, the higher the redundancy level, the more fail-safe
the data. PGs make sure that objects are distributed equally to all OSDs.

How do PGs increase recovery speed? If “OSD 2” in figure 11 lost data and needs a recovery, it could
copy objects from “OSD 1” and “OSD 4” simultaneously without causing heavy loads on one node only.
Let’s assume that there are 20 OSDs and 2000 PGs. If one OSD needs to recover, it is very likely it

17

Figure 11: Object distribution in a pool (adapted from [20])

could copy objects from all OSDs, because many PGs use this OSD in combination with one of the
other 19.

4.4.1 Read/Write an object

If a user wants to write an object to the cluster, a special algorithm called CRUSH10 decides
which OSD is the primary one for that object. CRUSH maps contain a topological view of the
cluster and pseudo-randomly store and retrieve data to ensure an equal distribution. Furthermore,
Ceph clients are always connected directly to the primary OSD without a particular gateway or like-
wise.

Is is also possible to stripe objects to many OSDs, comparable to RAID 5 or 6. As seen in fig-
ure 12, an object is striped with a variable shard size over six devices. The first four devices are
used to stripe original pieces of an object (part 1 to 14) and the last two save parities of the object
parts.

Figure 12: Object striping (adapted from [24, pp. 54])

4.4.2 CRUSH

The abbreviation CRUSH stands for Controlled, Scalable, Decentralized Placement of Replicated Data.
This set of algorithms ensures replication and distribution of objects in a Ceph cluster.

CRUSH is a “pseudo-random placement algorithm” to construct a deterministic, stable and repeatable
mapping path from an object ID and cluster topology. Thereby, it is not possible to rename an object
(i.e. change the object ID), because there are no lookup tables, metadata servers or comparable services.
10Controlled, Scalable, Decentralized Placement of Replicated Data

18

This results in the advantage because every location of an object can be calculated from object ID and
cluster map.

Compared to other storage solutions, locating an object can be done decentralized and without crawling
inodes (POSIX) or dedicated servers (Lustre).

The mapping is to ensure that object distribution proceeds even and balanced. It is aided from a
CRUSH map configuration file, which contains rules, infrastructure topology and weighting of devices
(e.g. OSDs).

A CRUSH map includes devices, bucket-types, buckets and rules. As seen in the following code block,
devices are OSDs and all of them must be listed.

1 device 0 osd-0
2 device 1 osd-1
3 device 2 osd-2
4 device 3 osd-3

Furthermore, buckets are nodes in a hierarchy, e.g. OSDs, racks or data centers (as seen in figure 13,
and not the bucket concept as seen in RADOS Gateway API. To describe the hierarchy, an enumerated
list with bucket-types has to been defined. The name and the structure can be selected according to
the own infrastructure plan. Here is an example:

1 type 0 osd
2 type 1 host
3 type 2 rack
4 type 3 datacenter
5 type 4 root

Every bucket with its configuration has to been defined, too. In this example, two hosts, each with two
OSDs, and one rack are described.

1 host host-01
2 {
3 id -2
4 alg straw
5 hash 0
6 item osd-0 weight 1.000
7 item osd-1 weight 1.000
8 }
9 host host-02

10 {
11 id -2
12 alg straw
13 hash 0
14 item osd-2 weight 1.000
15 item osd-3 weight 1.000

19

16 }
17 rack rack-01
18 {
19 id -1
20 alg straw
21 hash 0
22 item host-01 weight 2.000
23 item host-02 weight 2.000
24 }

Figure 13: CRUSH map topology

At last, rules to control the data distribution can be deployed, too. The following example defines a
rule for OSDs containing SSDs, like host-02. Its ruleset could set into pool configuration to make
use of it. The type defines a storage drive (replicated) which content has to be replicated between
min_size and max_size. Otherwise, this rule is ignored by CRUSH. The last three options (step)
determine parameters for the named operation.

1 rule ssd
2 {
3 ruleset 1
4 type replicated
5 min_size 1
6 max_size 5
7 step take host-02
8 step choose firstn 0 type osd
9 step emit

10 }

A detailed documentation can be found at the official Ceph website [7] and papers from Sage Weil [15],
[14], [13]. Parts of the configuration examples are adopted from Sébastien Han [4].

20

5 Experimental setup

For later use of this bachelor thesis, a testing environment is needed. Therefore, a simple, mini-
malistic Ceph Storage Cluster has to been setup. To conserve hardware resources, all Ceph nodes
are virtualized on one hardware node. The smallest possible cluster consists of four nodes: Admin,
Monitor and two OSDs. An Admin Node is needed to configure and deploy Ceph on the other
nodes.

Figure 14: Experimental setup

In this thesis, the hardware node consists of a Thinkpad X230 :

• CPU: Intel® Core™ i7-3520M CPU @ 2.90 GHz (2 cores; hyperthreading and VT-x enabled)
• Memory: 8GiB SODIMM DDR3 Synchronous 1600 MHz

As a virtualization program VirtualBox (version 5.1.14) is used. The operating system of the host is
Fedora 25 (64-bit) and of the nodes Debian “jessie” (64-bit).

5.1 Configuration of VirtualBox

First of all, it is necessary to implement two network interfaces to the nodes. The first one to gain
access to the internet via NAT 11 and the second one to communicate to each other, called Host-only.
Figure 15 shows a possible configuration of interface vboxnet0, a Host-only adapter. DHCP12 has to
be turned off because only static IPs13 are used.

In return, it is indispensable to make sure that all IP addresses are configured manually and added to
a host-list (/etc/hosts; see next sections).

Moreover, each node is setup with 1024 MB base memory, one CPU core, a PIIX3-chipset and the
following enabled features:

11Network Address Translation
12Dynamic Host Configuration Protocol
13Internet Protocol

21

• I/O APIC : Input/Output Advanced Programmable Interrupt Controller
• PAE/NX : Physical Address Extension
• VT-x : Intel hardware virtualization extension
• Nested Paging : Also called Second Level Address Translation to accelerate virtual memory ad-

dressing

Beside of that, all nodes have a storage device with a capacity of 8 GB. They are flagged as
Solid State Disk, to ensure proper handling. To reduce available storage capacity and prevent quadrupli-
cation, it is advisable to create a linked clone from a freshly installed/configured VM.

The twoOSDs contain a second storage device, which is used forCeph Object Storage.

Figure 15: VirtualBox Host-only Network Interface

5.2 Configuration of Debian “jessie”

At first, a clean preconfigured Debian VM for cloning is required. For that, it is enough to install a
minimal Debian, like selecting the “debian-8.7.1-amd64-netinst” image. Special configurations during
the installation are not required, except for selecting primary network interface, hostname and user
creation.

It is necessary to choose the interface, which is configured as NAT in VirtualBox, as primary to gain
access to the internet. As a hostname terms like “ceph-admin” are useful.

Entering a root password is not essential because a user with administrative rights (sudo) is setup. Later,
Ceph’s deployment scripts create a user called “ceph”. Therefore, another username like “vm” should be
used as a default user. Furthermore, enabling the SSH -server is recommended!

5.2.1 GRUB

To accelerate booting of the VMs, lower the timeout of GRUB.

1 # /etc/default/grub
2

3 GRUB_TIMEOUT=0

22

1 $ grub-mkconfig -o /boot/grub/grub.cfg
2 Generating grub configuration file ...
3 Found linux image: /boot/vmlinuz-3.16.0-4-amd64
4 Found initrd image: /boot/initrd.img-3.16.0-4-amd64
5 done

5.2.2 Network

Before configuring network interfaces, it is required to create a network map. All nodes are con-
nected to each other via DHCP -less Host-only connections. Therefore, all four VMs should gain an
address.

Virtual Machine IP-Address

ceph-admin 192.168.56.10
ceph-mon 192.168.56.20
ceph-osd0 192.168.56.30
ceph-osd1 192.168.56.40

In the following case, the interface eth0 is Host-only and eth1 is NAT with access to the internet.
Accordingly, the first one has to be configured with a static address and the second with a dynamic
one.

1 # /etc/network/interfaces
2

3 source /etc/network/interfaces.d/*
4

5 # localhost
6 auto lo
7 iface lo inet loopback
8

9 # Internet
10 allow-hotplug eth1
11 iface eth1 inet dhcp
12

13 # Host-only
14 auto eth0
15 iface eth0 inet static
16 address 192.168.56.10
17 netmask 255.255.255.0

Additionally, the /etc/hosts file has to been customized, too. For the reason that no DHCP and DNS
exist, the nodes needed to know the translation between hostname to IP address.

23

1 # /etc/hosts
2

3 127.0.0.1 localhost
4 ::1 localhost ip6-localhost ip6-loopback
5 ff02::1 ip6-allnodes
6 ff02::2 ip6-allrouters
7

8 192.168.56.10 ceph-admin
9 192.168.56.20 ceph-mon

10 192.168.56.30 ceph-osd0
11 192.168.56.40 ceph-osd1

5.2.3 User permissions

There is a problem with the Ceph deployment scripts. They connect via SSH to the nodes, to
configure, install and deploy. But not with the user “root”, they require a user with sudo (“vm” in this
case)!

Additionally, the command ssh is called without a TTY 14, and that is the reason why sudo can-
not prompt a password request. According to this, /etc/sudoers has to be specially configured.
Simply remove password request. NO, this is really NOT a good idea on a production sys-
tem!

1 # /etc/sudoers
2

3 vm ALL=(ALL) NOPASSWD: ALL

5.2.4 Cloning

To avoid non-essential work and storage capacity, VirtualBox can clone a VM and link storage de-
vices, like overlaying a snapshot. Thus, “ceph-mon”, “ceph-osd0” and “ceph-osd1” are linked clones as
seen in figure 16. Although, it is wise to Reinitialize the MAC address of all network cards during
cloning.

5.2.5 Post-Cloning

After successful cloning, the new instances have to be reconfigured. The following steps have to be
accomplished:

1. Change hostname in /etc/hostname
2. Change IP address in /etc/network/interfaces, corresponding to the network map
3. Add an additional storage device to “ceph-osd0” and “ceph-osd1”

14TeleTYpewriter

24

Figure 16: VirtualBox Linked Clones

5.3 Deployment of Ceph

All operations are done on the node “ceph-admin”. To increase comfort, a SSH-Key should be created
and deployed to all nodes.

1 $ ssh-keygen -f ~/.ssh/ceph
2 Generating public/private rsa key pair.
3 $ ssh-copy-id -i ~/.ssh/ceph vm@ceph-mon
4 Number of key(s) added: 1
5 $ ssh-copy-id -i ~/.ssh/ceph vm@ceph-osd0
6 Number of key(s) added: 1
7 $ ssh-copy-id -i ~/.ssh/ceph vm@ceph-osd1
8 Number of key(s) added: 1

Also, configure SSH to use this identity file.

1 # ~/.ssh/config
2

3 Host ceph-*
4 User vm
5 IdentityFile ~/.ssh/ceph

Now SSH is able to connect to other nodes neither asking for a login password nor an adminis-
trative one. The next step is to add ceph-deploy to APT repository configuration and install
it.

1 $ echo "deb https://download.ceph.com/debian-jewel/ jessie main" >
/etc/apt/sources.list.d/ceph.list↪→

2 $ wget -q -O- ’https://download.ceph.com/keys/release.asc’ | sudo apt-key add -
3 $ apt install apt-transport-https
4 $ apt update
5 $ apt install ceph-deploy

25

Now, create a directory where the deploy script can store its configuration files.

1 $ mkdir ceph-cluster
2 $ cd ceph-cluster

After that, a monitoring node has to be added. It is necessary to specify an IP range to enforce
usage of the Host-only network interface; simply use the --public-network argument. Addition-
ally, to ensure that the initial monitors use the correct IP range, it is recommended to append its
IP address.

1 $ ceph-deploy new --public-network 192.168.56.0/24 ceph-mon:192.168.56.20
2 [ceph_deploy.new][DEBUG] Creating new cluster named ceph
3 [ceph_deploy.new][INFO] making sure passwordless SSH succeeds
4 [ceph-mon][DEBUG] connected to host: ceph-admin
5 [ceph-mon][INFO] Running command: ssh -CT -o BatchMode=yes ceph-mon
6 [ceph-mon][DEBUG] connection detected need for sudo
7 [ceph-mon][DEBUG] connected to host: ceph-mon
8 [ceph-mon][DEBUG] *IP* addresses found: [u’192.168.56.20’, u’10.0.2.15’]
9 [ceph_deploy.new][DEBUG] Resolving host ceph-mon

10 [ceph_deploy.new][DEBUG] Monitor ceph-mon at 192.168.56.20
11 [ceph_deploy.new][DEBUG] Monitor initial members are [’ceph-mon’]
12 [ceph_deploy.new][DEBUG] Monitor addrs are [’192.168.56.20’]
13 [ceph_deploy.new][DEBUG] Creating a random mon key...
14 [ceph_deploy.new][DEBUG] Writing monitor keyring to ceph.mon.keyring...
15 [ceph_deploy.new][DEBUG] Writing initial config to ceph.conf...

To ensure thatCeph is healthy with only twoOSDs, a little config snippet is needed:

1 # ceph.conf
2

3 [global]
4 osd pool default size = 2

The next steps are the installation ofCeph on all nodes and initializing the monitoring node.

1 $ ceph-deploy install ceph-admin ceph-mon ceph-osd0 ceph-osd1
2 [ceph-admin][INFO] installing *Ceph* on ceph-admin
3 [ceph-mon][INFO] installing *Ceph* on ceph-mon
4 [ceph-osd0][INFO] installing *Ceph* on ceph-osd0
5 [ceph-osd1][INFO] installing *Ceph* on ceph-osd1
6 $ ceph-deploy mon create-initial
7 [ceph_deploy.mon][DEBUG] Deploying mon, cluster *Ceph* hosts ceph-mon
8 [ceph_deploy.gatherkeys][INFO] Storing ceph.client.admin.keyring
9 [ceph_deploy.gatherkeys][INFO] Storing ceph.bootstrap-mds.keyring

10 [ceph_deploy.gatherkeys][INFO] keyring ’ceph.mon.keyring’ already exists

26

11 [ceph_deploy.gatherkeys][INFO] Storing ceph.bootstrap-osd.keyring
12 [ceph_deploy.gatherkeys][INFO] Storing ceph.bootstrap-rgw.keyring

As seen in the last few lines of debug output, the monitoring node sent a collection of keyrings, which
have to be deployed to all nodes later. At first, each OSD has to be configured to use the second disk
as cluster storage. In this case, the second disk is completely available.

1 $ ceph-deploy *OSD* create ceph-osd0:/dev/sdb
2 [ceph_deploy.osd][DEBUG] Deploying *OSD* to ceph-osd0
3 $ ceph-deploy *OSD* create ceph-osd1:/dev/sdb
4 [ceph_deploy.osd][DEBUG] Deploying *OSD* to ceph-osd1
5 $ ceph-deploy admin ceph-admin ceph-mon ceph-osd0 ceph-osd1
6 [ceph_deploy.admin][DEBUG] Pushing admin keys and conf to ceph-admin
7 [ceph_deploy.admin][DEBUG] Pushing admin keys and conf to ceph-mon
8 [ceph_deploy.admin][DEBUG] Pushing admin keys and conf to ceph-osd0
9 [ceph_deploy.admin][DEBUG] Pushing admin keys and conf to ceph-osd1

In the end, Ceph status and health report can be seen via ceph status. However, these commands have
to be submitted via root, because ceph-admin is now a node and contains the keyrings in /etc/ceph/
with restricted permissions.

1 $ *Ceph* status
2 cluster f753696a-978b-45bd-aeb1-60e5bef21c2c
3 health HEALTH_OK
4 monmap e1: 1 mons at {ceph-mon=192.168.56.20:6789/0}
5 election epoch 3, quorum 0 ceph-mon
6 osdmap e10: 2 osds: 2 up, 2 in
7 flags sortbitwise,require_jewel_osds
8 pgmap v20: 64 pgs, 1 pools, 0 bytes data, 0 objects
9 68960 kB used, 6054 MB / 6121 MB avail

10 64 active+clean

If the cluster is setup correctly, the status message is health HEALTH_OK. Now, it is the time to add
pools, to store objects inside.

A Ceph cluster already contains pools, depending on deploymemt. However, in this example, another
pool is created, a list of available pools and the configuration of the new one is printed out.

1 # Name: data
2 # Number of PGs: 8
3 $ *Ceph* *OSD* pool create data 8
4 pool ’data’ created
5 $ *Ceph* *OSD* lspools
6 0 rbd, 1 data
7 $ *Ceph* *OSD* pool get data all
8 size: 2
9 min_size: 1

27

10 crash_replay_interval: 0
11 pg_num: 64
12 pgp_num: 64
13 crush_ruleset: 0
14 hashpspool: true
15 nodelete: false
16 nopgchange: false
17 nosizechange: false
18 write_fadvise_dontneed: false
19 noscrub: false
20 nodeep-scrub: false
21 use_gmt_hitset: 1
22 auid: 0
23 min_write_recency_for_promote: 0
24 fast_read: 0

One of the last steps is testing the new storage cluster. A simple one is to create and copy a file to
Ceph, check its existence and locate its position.

1 $ echo "Sample Data" > testfile.txt
2 $ rados put testobject testfile.txt --pool=data
3 $ rados -p data ls
4 testobject
5 $ *Ceph* *OSD* map data testobject
6 osdmap e27 pool ’data’ (1) object ’testobject’ -> pg 1.98824931 (1.31) -> up ([0,1],

p0) acting ([0,1], p0)↪→

An overview of a quickCeph installation can be found on the online documentation [6].

28

6 Ceph-FUSE driver

6.1 FUSE

FUSE is an abbreviation and stands for “Filesystem in Userspace”. It is itself a kernel module allowing
users to deploy their filesystem driver without root privileges. Instead, they run in user space and
communicate via the kernel module libfuse.

Thereby, system (kernel) stability is not deteriorated by additional modules, which can crash and cause
a kernel panic. Furthermore, it is easier to program a filesystem driver against libfuse than writing a
whole kernel module. Above all, these programs could run by a user without loading into the kernel or
sign it, if secure boot is used.

One of the big disadvantages of FUSE in comparison to a native filesystem driver is the IO performance.
Thus, FUSE driver runs in user mode; a handful context switches are required to handle user-to-kernel
operations.

6.2 How does FUSE work

Figure 17: Context switches of a Ceph-FUSE driver (adapted from [21])

To use a FUSE resource, it has to been mounted in the Virtual Filesystem like a normal block device.
Therefore, a normal user cannot distinguish this mountpoint from a directory, a mounted block device
or a network-attached FUSE resource.

For every operation the client requests there is a long chain of modules to walk through (as seen
in figure 17). For example: If a client makes an operation request on the filesystem, e.g. stat to
receive file or directory information, this is passed through the kernel and Virtual Filesystem to the
FUSE. This kernel module interacts with the FUSE Client, which was started by a user in user
space.

In this case, a network connection is required to receive data. Therefore, the request is transmitted to
the network stack, which operates in kernel space.

29

6.3 A simple FUSE driver for Ceph

A FUSE driver is usually written in C and consists of a list of supported operations, the implementations
of these and a main() entry point. This proof-of-concept uses a flat directory hierarchy to keep it
simple. Besides, it is not necessary for functionality or benchmarking.

The needed information can be looked up in the documentation of librados [8] and libfuse [2].

Needed headers
To compile this driver, a few developer packages are needed. Both libfuse and librados have to be in-
stalled. It is also recommended to set the used FUSE version to ensure correct API usage.

1 #define FUSE_USE_VERSION 26
2

3 #include <fuse.h>
4 #include <rados/librados.h>
5 #include <errno.h>
6 #include <stdio.h>
7 #include <stdlib.h>

Configuration
For this experiment, pool name and the paths to keyring and ceph.conf are compiled in to minimize
complexity.

1 #define POOL_NAME "data"
2 #define CONF_PATH "/etc/ceph/ceph.conf"
3 #define KEYRING_PATH "/etc/ceph/ceph.client.admin.keyring"

Operation list
At first, a list of implemented operations should be determined. It contains, among other things, POSIX
operations like open, read or write. Technically, this list is a struct and maps operations to their
callback functions, using a function pointer.

Some POSIX File IO commands like getattr and readdir are recommended to ensure interoperability.
Otherwise, the mountpoint has no permissions or ownership set and cannot list any entries, which leads
to a curious state. This driver uses the following POSIX operations:

• create – it is called, if a new file should be created
• getattr – which is responsible for information presented in stat. Therefore, it has to return

permissions, ownership, modification/create/access times, block type, etc.
• read – map (parts) of the file to memory for processing in other programs
• write – save (parts) of a file to disk. As usual in normal POSIX filesystems, parts of the file can

be overwritten and writing above file size is interpreted as an addition
• readdir – list all entries of the given path
• truncate – trim a file to given size parameter
• unlink – remove a file or directory and free space

30

Additionally, two commands, which are part of FUSE, are added to the operations list: init and
destroy. They are responsible for connecting and disconnecting to the cluster.

1 static struct fuse_operations fuse_ceph_operations =
2 {
3 .init = init_callback,
4 .destroy = destroy_callback,
5 .read = read_callback,
6 .write = write_callback,
7 .create = create_callback,
8 .truncate = truncate_callback,
9 .unlink = unlink_callback

10 .getattr = getattr_callback,
11 .readdir = readdir_callback,
12 };

Main entry point
The main()-function only calls the main-function of FUSE. In this process, all command line arguments
and the list of operations are passed on.

1 int main(int argc, char *argv[])
2 {
3 return fuse_main(argc, argv, &fuse_ceph_operations, NULL);
4 }

6.3.1 Implementation of FUSE operations

Two variables have to be declared. One of them contains the cluster handler to interact with. The
other one is an IO handler for the POSIX -like operations such as read() and write(). Besides, a
helper function to raise an error is defined, too.

1 rados_t cluster; rados_ioctx_t io;
2

3 static int is_error(int err, char *message)
4 {
5 if(err < 0)
6 {
7 fprintf(stderr, "%s: %s\n", message, strerror(-err));
8 return 1;
9 }

10 else
11 {
12 return 0;
13 }
14 }

31

The initialization is only called at startup to read config files, connect to the cluster and select a
specific pool. At line 3 a cluster handle is created, which is used to read the specified config file
(line 8). Moreover, a keyring with the permissions to connect is loaded (line 13), too. Thereafter, the
handle opens a connections to the Ceph cluster (line 18). In the last step an IO handle is initialized
while selecting a pool (line 23). This IO handle is needed to interact with objects of the selected
pool.

1 static void* init_callback(struct fuse_conn_info *conn)
2 {
3 if(is_error(rados_create(&cluster, NULL), "Cannot create a cluster handle"))
4 {
5 exit(1);
6 }
7

8 if(is_error(rados_conf_read_file(cluster, CONF_PATH), "Cannot read config file"))
9 {

10 exit(1);
11 }
12

13 if(is_error(rados_conf_set(cluster, "keyring", KEYRING_PATH), "Cannot read
keyring"))↪→

14 {
15 exit(1);
16 }
17

18 if(is_error(rados_connect(cluster), "Cannot connect to cluster"))
19 {
20 exit(1);
21 }
22

23 if(is_error(rados_ioctx_create(cluster, POOL_NAME, &io), "Cannot open RADOS
pool"))↪→

24 {
25 rados_shutdown(cluster);
26 exit(1);
27 }
28

29 return NULL;
30 }

Shortly before termination of the driver, the deconstructor-like function destroy() is called to close
existing connections to leave the cluster clean and fresh.

1 static void destroy_callback(void* private_data)
2 {
3 rados_ioctx_destroy(io);
4 rados_shutdown(cluster);
5 }

32

To read an object, it is possible to pass buffer, size and offset directly to librados. Only the
path has to be modified. It contains the full path of the selected object, e.g. /object_name. To
get only the object name, a simple pointer arithmetic is sufficient to eliminate the leading slash. If
ret on line 3 is negative, an error is raised (line 7), otherwise the size of read bytes is returned
(line 11).

1 static int read_callback(const char *path, char *buf, size_t size, off_t offset,
struct fuse_file_info *fi)↪→

2 {
3 int ret = rados_read(io, (path + 1), buf, size, offset);
4

5 if(is_error(ret, "Cannot read part of the object"))
6 {
7 return 0;
8 }
9 else

10 {
11 return ret;
12 }
13 }

The write operation is almost equal to the previous command. In this case, RADOS will over-
write objects with given buffer, size and offset, similar to other POSIX filesystems. If ret on
line 3 is not zero, an error is raised (lines 7,15), otherwise the size of written bytes is returned
(line 11).

1 static int write_callback(const char *path, const char *buf, size_t size, off_t
offset, struct fuse_file_info *fi)↪→

2 {
3 int ret = rados_write(io, (path + 1), buf, size, offset);
4

5 if(is_error(ret, "Cannot write to object"))
6 {
7 return -errno;
8 }
9 else if(ret == 0)

10 {
11 return size;
12 }
13 else
14 {
15 return -errno;
16 }
17 }

If a new file is created, the function create() is called. It is necessary to store at least an empty object
(i.e. with a size of zero bytes) because if this new file is saved, there have to be stat() information,
otherwise FUSE is raising errors.

33

1 static int create_callback(const char *path, mode_t mode, struct fuse_file_info *fi)
2 {
3 if(is_error(rados_write_full(io, (path + 1), "", 0), "Cannot create new object"))
4 {
5 return -errno;
6 }
7 else
8 {
9 return 0;

10 }
11 }

Truncating is not necessary, but since it is supported by librados, it should be implemented.

1 static int truncate_callback(const char *path, off_t size)
2 {
3 if(is_error(rados_trunc(io, (path + 1), size), "Cannot truncate object"))
4 {
5 return -errno;
6 }
7 else
8 {
9 return 0;

10 }
11 }

Moreover, deleting an object is implemented with a single API call (line 3).

1 static int unlink_callback(const char* path)
2 {
3 if(is_error(rados_remove(io, (path + 1)), "Cannot delete object"))
4 {
5 return -errno;
6 }
7 else
8 {
9 return 0;

10 }
11 }

Attributes are an important component of an entity. Ceph stores the object name as well the modifi-
cation time and size. However, neither permissions nor ownership are filed.

To reduce problems, the easiest way is to set permissions to default (0755 for directories (line 9), 0644 for
files (line 17)) and ownership to the executing user (lines 11,12,19,20). Size and modification time were re-
trieved while calling rados_stat() (line 15) and are committed to FUSE (lines 21,22)

34

1 static int getattr_callback(const char *path, struct stat *stbuf)
2 {
3 memset(stbuf, 0, sizeof(struct stat));
4 uint64_t size;
5 time_t mtime;
6

7 if(strcmp(path, "/") == 0)
8 {
9 stbuf->st_mode = S_IFDIR | 0755;

10 stbuf->st_nlink = 2;
11 stbuf->st_uid = getuid();
12 stbuf->st_gid = getgid();
13 return 0;
14 }
15 else if(!is_error(rados_stat(io, (path + 1), &size, &mtime), "Object not found"))
16 {
17 stbuf->st_mode = S_IFREG | 0644;
18 stbuf->st_nlink = 1;
19 stbuf->st_uid = getuid();
20 stbuf->st_gid = getgid();
21 stbuf->st_size = size;
22 stbuf->st_mtime = mtime;
23 return 0;
24 }
25

26 return -ENOENT;
27 }

Readdir is implemented, to return always the root directory with all objects. Like a POSIX filesystem,
the own and previous directory are set (lines 11,12) and since there are no subdirectories, all other
requests are invalid (line 8). The API call rados_objects_list_open creates a list of all objects, which
is iterated through (lines 14-19).

1 static int readdir_callback(const char *path, void *buf, fuse_fill_dir_t filler,
off_t offset, struct fuse_file_info *fi)↪→

2 {
3 rados_list_ctx_t object_list;
4 const char *object_name;
5

6 if(strcmp(path, "/") != 0)
7 {
8 return -ENOENT;
9 }

10

11 filler(buf, ".", NULL, 0);
12 filler(buf, "..", NULL, 0);
13

14 rados_objects_list_open(io, &object_list);
15 while(rados_objects_list_next(object_list, &object_name, NULL) != -ENOENT)

35

16 {
17 filler(buf, object_name, NULL, 0);
18 }
19 rados_objects_list_close(object_list);
20

21 return 0;
22 }

6.3.2 Renaming

Since Ceph uses object names to calculate the position of the data on the cluster, it is not possi-
ble to change an objects’ name. Solutions are to create a new object and copy all data, manage
object names in a separate database or use extended file attributes to store an alternative name to
show.

6.3.3 Compile and run

In this experiment, GCC 6.3.1 is used as a compiler. Furthermore, it is always recommended to show
all warnings.

1 $ gcc -Wall -pedantic -O3 ceph-fuse.c -lrados $(pkg-config *FUSE* --cflags --libs) -o
ceph-fuse↪→

To mount Ceph to a selected directory, simply execute the binary and pass targeted mountpoint as an
argument.

1 $./ceph-fuse /mnt

36

7 Benchmarks

Last but not least, it is interesting to look at the performance of Ceph. Therefore, two testing processes
to compare to each other are presented. The first one benchmarks read/write performance of previously
mentioned FUSE driver with IOR. At the second one, the native rados shell command is used to
measure the maximum possible throughput in this test constellation.

7.1 Setup

The benchmarks were done on a single host, namely a monitor and two OSDs running on the same
dedicated hardware; due to available testing resources.

The host consists of two Intel® Xeon® CPU X5560 @ 2.80G Hz CPUs (hyperthreading was deac-
tivated) with 12 GB RAM. The two OSDs share an HDD (Hitachi HUA72202; 512 physical and
logical block size) with two partitions à 500 GB, each formatted with XFS and used by one OSD.
Ubuntu 16.04.2 LTS 64bit with kernel 4.4.0-63 was installed on the node.

Thus, a single host is used for the entire storage cluster with two OSDs and a monitor, the preferences
in the following example have to been added in ceph.conf to ensure the ability to run. The option in
line 4 set the minimal amount of pools to two and line 5 allows Ceph to replicate objects on the same
node.

1 # /etc/ceph/ceph.conf
2

3 [global]
4 osd pool default size = 2
5 osd crush chooseleaf type = 0

7.2 Measurement methodology

The first series of benchmarks is done by IOR15, which is used for benchmarking filesystems via interfaces
like POSIX, MPI-IO and HDF5.

IOR in version 3.0.1, which was published by the Lawrence Livermore National Laboratory, was compiled
with GCC16 6.3.0 and OpenMPI 2.0.1.

1 // Compile IOR
2 $./configure --prefix=${HOME} --with-posix --without-mpiio --without-lustre

--without-hdf5 --without-ncmpi↪→

3 $ make
4 $ make install

15Interleaved-Or-Random
16GNU Compiler Collection

37

IOR was programmed to measure the time between beginning and ending of a transfer. The amount of
data to transmitted and the size of every chunk (block size) have to been set. In the end, the transfer
volume is divided by elapsed time to determine average throughput.

Ceph was mounted via the FUSE driver with two additional options: direct_io and big_writes.
Direct IO is enabled to bypass read and write caches, managed by the kernel. Big Writes allows the
possibility to write larger blocks than e.g. 4K per time. In this scenario the biggest block size was
128K.

1 // Mount FUSE
2 $ ${HOME}/ceph-fuse -o direct_io -o big_writes ${HOME}/mount/

Each benchmark configuration was repeated 20 times to get a significant dataset. In IOR the amount
of data is called block size and was varied between 1 M, 10 M, 100 M and 1 G. The size per transaction
is called transfer size and was set to 4 K, 8 K, 16 K, 32 K, 64 K and 128 K, but only the last three
options are submitted for 100 M and 1 G block size because the duration of one iteration would exceed
processing time limits on the cluster.

Also, Direct IO was enabled to bypass kernel caches by setting -B.

1 // Run IOR
2 $ ${HOME}/bin/ior -a POSIX -b ${BLOCKSIZE} -t ${TRANSFERSIZE} -i 20 -B -o

${HOME}/mount/ior_test↪→

To compare throughput via FUSE with another I/O technique, which connects to Ceph in a native
way, a simple setup with rados and time commands was built.

Specific data packages were prepared with dd and /dev/urandom, which are transferred later.

1 $ dd if=/dev/urandom of=/dev/shm/1m.data bs=1M count=1
2 $ dd if=/dev/urandom of=/dev/shm/10m.data bs=1M count=10
3 $ dd if=/dev/urandom of=/dev/shm/100m.data bs=1M count=100
4 $ dd if=/dev/urandom of=/dev/shm/1g.data bs=1M count=1000

The write operation is done via rados put and read operation via rados get, in which the file is stored
to /dev/shm/. This path is mounted via TMPFS, thus located in RAM.

Before downloading an object from Ceph, kernel’s PageCache has to been freed. So that the real
download bandwidth could be measured. This is done by calling sync and setting a variable in
/proc.

One important fact is, that the original time command is used, not the built-in from BASH.

38

1 // Write
2 $ /usr/bin/time rados -p data put 10m.object /dev/shm/10m.data
3

4 // Read
5 $ for n in {1..100}; do \
6 $ sync; \
7 $ echo 3 > /proc/sys/vm/drop_caches \
8 $ done
9 $ /usr/bin/time rados -p data get 10m.object /dev/shm/dummy

39

7.3 Results from IOR

1M Filesize, writing

4K 8K 16K 32K 64K 128K

Average (MiB/s) 0.0685 0.1429 0.2690 0.5116 0.9574 1.7690
Median (MiB/s) 0.0675 0.1440 0.2758 0.5189 0.9720 1.8400
Standard Deviation (MiB/s) 0.0044 0.0100 0.0176 0.0416 0.0850 0.1805

10M Filesize, writing

4K 8K 16K 32K 64K 128K

Average (MiB/s) 0.0683 0.1384 0.2761 0.5376 1.1086 2.0920
Median (MiB/s) 0.0682 0.1381 0.2784 0.5343 1.1300 2.1300
Standard Deviation (MiB/s) 0.0019 0.0042 0.0102 0.0402 0.0689 0.1371

100M Filesize, writing

4K 8K 16K 32K 64K 128K

Average (MiB/s) n/a n/a n/a 0.7827 1.8035 3.2035
Median (MiB/s) n/a n/a n/a 0.7903 1.8200 3.1900
Standard Deviation (MiB/s) n/a n/a n/a 0.2387 0.1064 0.1119

1G Filesize, writing

4K 8K 16K 32K 64K 128K

Average (MiB/s) n/a n/a n/a 0.9483 1.6930 3.2650
Median (MiB/s) n/a n/a n/a 0.9734 1.6900 3.1700
Standard Deviation (MiB/s) n/a n/a n/a 0.0554 0.0142 0.1767

1G Filesize, writing, without Direct IO

4K 8K 16K 32K 64K 128K

Average (MiB/s) n/a n/a n/a 0.9889 1.6790 3.1095
Median (MiB/s) n/a n/a n/a 1.0050 1.6800 3.1100
Standard Deviation (MiB/s) n/a n/a n/a 0.0427 0.0152 0.0296

40

1M Filesize, reading

4K 8K 16K 32K 64K 128K

Average (MiB/s) 8.9710 15.3330 25.7895 42.8885 73.0165 126.7385
Median (MiB/s) 9.1950 15.5800 25.8500 43.3400 72.4200 124.2550
Standard Deviation (MiB/s) 1.6733 3.6199 3.6195 4.2888 4.7250 8.3922

10M Filesize, reading

4K 8K 16K 32K 64K 128K

Average (MiB/s) 9.7975 17.2015 35.2115 62.3080 90.0935 142.3180
Median (MiB/s) 10.0000 18.0250 34.8450 55.3700 86.0500 143.5800
Standard Deviation (MiB/s) 0.9691 2.7249 7.9593 17.2743 12.1261 10.5217

100M Filesize, reading

4K 8K 16K 32K 64K 128K

Average (MiB/s) n/a n/a n/a 60.1045 85.8680 145.0535
Median (MiB/s) n/a n/a n/a 62.2500 84.7200 145.3650
Standard Deviation (MiB/s) n/a n/a n/a 8.3921 5.8874 5.9266

1G Filesize, reading

4K 8K 16K 32K 64K 128K

Average (MiB/s) n/a n/a n/a 52.3410 89.1605 153.6635
Median (MiB/s) n/a n/a n/a 52.7550 89.3200 154.1600
Standard Deviation (MiB/s) n/a n/a n/a 3.8361 3.2917 5.3540

1G Filesize, reading, without Direct IO

4K 8K 16K 32K 64K 128K

Average (MiB/s) n/a n/a n/a 312.3930 316.5310 325.9650
Median (MiB/s) n/a n/a n/a 310.7350 313.9150 317.8400
Standard Deviation (MiB/s) n/a n/a n/a 5.7526 9.4835 44.7208

41

1 4 7 10 13 16 19

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

4K 8K 16K 32K 64K 128K

Iteration (sorted)

B
a

n
d

w
it

h
 (

M
iB

/s
)

(a) 1M filesize

1 4 7 10 13 16 19

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

4K 8K 16K 32K 64K 128K

Iteration (sorted)

B
a

n
d

w
it

h
 (

M
iB

/s
)

(b) 10M filesize

1 4 7 10 13 16 19

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

32K 64K 128K

Iteration (sorted)

B
a

n
d

w
it

h
 (

M
iB

/s
)

(c) 100M filesize

1 4 7 10 13 16 19

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

32K 64K 128K

Iteration (sorted)

B
a

n
d

w
it

h
 (

M
iB

/s
)

(d) 1G filesize

Figure 18: IOR benchmark with write operations at different block sizes (iterations are sorted by
throughput)

42

1 4 7 10 13 16 19

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

4K 8K 16K 32K 64K 128K

Iteration (sorted)

B
a

n
d

w
it

h
 (

M
iB

/s
)

(a) 1M filesize

1 4 7 10 13 16 19

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

4K 8K 16K 32K 64K 128K

Iteration (sorted)

B
a

n
d

w
it

h
 (

M
iB

/s
)

(b) 10M filesize

1 4 7 10 13 16 19

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

32K 64K 128K

Iteration (sorted)

B
a

n
d

w
it

h
 (

M
iB

/s
)

(c) 100M filesize

1 4 7 10 13 16 19

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

32K 64K 128K

Iteration (sorted)

B
a

n
d

w
it

h
 (

M
iB

/s
)

(d) 1G filesize

Figure 19: IOR benchmark with read operations at different block sizes (iterations are sorted by through-
put)

43

1 4 7 10 13 16 19

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

32K 64K 128K

Iteration (sorted)

B
a

n
d

w
it

h
 (

M
iB

/s
)

(a) Write operations

1 4 7 10 13 16 19

250

300

350

400

450

500

32K 64K 128K

Iteration (sorted)

B
a

n
d

w
it

h
 (

M
iB

/s
)

(b) Read operations

Figure 20: IOR benchmark with 1G filesizes and without Direct IO (iterations are sorted by throughput)

44

7.4 Results from RADOS

Writing

1M 10M 100M 1G

Average (MiB/s) 9.7348 27.4459 22.4197 20.6449
Median (MiB/s) 10.0000 27.7778 22.2718 20.6122
Standard Deviation (MiB/s) 0.8565 1.7695 0.8201 0.1499

Reading

1M 10M 100M 1G

Average (MiB/s) 1.3043 11.9779 59.5689 100.2713
Median (MiB/s) 1.3158 12.0482 59.7020 100.2507
Standard Deviation (MiB/s) 0.0254 0.4489 0.7718 0.2492

1 4 7 10 13 16 19

0

5

10

15

20

25

30

1M 10M 100M 1G

Iteration (sorted)

B
a

n
d

w
it

h
 (

M
iB

/s
)

(a) Write operations

1 4 7 10 13 16 19

0

10

20

30

40

50

60

70

80

90

100

1M 10M 100M 1G

Iteration (sorted)

B
a

n
d

w
it

h
 (

M
iB

/s
)

(b) Read operations

Figure 21: Benchmark with different filesizes while using RADOS

45

7.5 Evaluation

The measuring results of the FUSE driver are quite unsurprising. As seen in figures 18a, 18b, 18c
and 18d, the writing performance via FUSE is not that fast as it could be (c.f. to 21a). The average
throughput of FUSE started at 0.07MiB/s and ended at 3.27MiB/s. Compared to this, native writing
reached 9.73 MiB/s to 27.78 MiB/s. The differences between small and large block sizes are enor-
mous. Each of the datasets proves that a smaller block size is responsible for a massive performance
issue.

The problem of FUSE is, the more callbacks are requested – caused by small block sizes – the
more context switches are needed (as described in section 6.2). Because of that, FUSE can be very
slow.

Also, for each write callback Ceph has to allocate space, open a file descriptor, change or append data
and close the handler. This caused a very low throughput.

Another interesting fact is that a larger filesize (c.f. 1 M + 10 M to 100 M + 1 G) increased the average
throughput. It is likely that initializing write operations took some time till it reached an acceptable
transmission rate. Accordingly, 1 M and 10 M are an inadequate measuring size to determine average
throughput.

A curious discrepancy among half of the measure data appeared in figure 18c. The difference between
these two groups amounts to 0.4 MiB/s, but this is, unfortunately, inexplicable so far.

The next four figures (19a, 20b, 19c and 20a) present the read throughput at different file and block sizes
using FUSE. Thereby, the file size is not a significant factor while reading. The differences between
1 M, 10 M, 100 M and 1 G are small. However, larger block sizes increased read performance, as seen
before.

Again, there is an anomaly in the data. The standard deviation of the dataset 10 M file size, 32 K
block size is abnormal high: 17.2743 MiB/s.

The last two IOR benchmarks (figure {fig:1g_write_dio} and {fig:1g_write_dio}) evaluate the
performance without the option “Direct IO”. But the differences between writing with or without Direct
IO are not significant. In contrast, reading is highly significant faster than without this option. The
reasons for this are memory caches because there are bare HDD requests.

The other benchmark method shows the limits ofCeph Storage Cluster in this scenario.

Figure 21a clearly shows how slow a FUSE implementation is. The throughput in writing is around
ten times higher. Interestingly, writing 10M to disk is around 5 MiB/s faster than 100 M or 1 G with
a difference of 7 MiB/s. Perhaps, allocating larger disk space takes more time than expected. On
the other hand, the standard deviation was smaller at larger file sizes – almost a constant through-
put.

Reading objects from Ceph is another important point. As seen in graph 21b, throughput varied with
respect to file size. Presumably, the initialization of rados and requesting an object over network took
more time than transferring it to the client. Therefore, Ceph is not suitable for many small files, but
good in archiving and reading large files. But, the difference between FUSE and native reading came
from the fact that IOR did not eliminate kernel’s PageCache. From this point of view, rados is much
faster.

46

8 Conclusion

Is Ceph suitable as a storage solution for HPC ? In my estimation, it is an eligible distributed file
system with reservations.

At first, Ceph is scalable and extendable, which is an important characteristic. It is possible to add or
remove OSDs and monitors at any time to change the topology of an existing cluster. Besides, OSDs do
not have to contain similar hardware configurations, which is useful if a new rack with state-of-the-art
hardware is put into operation.

Furthermore, thanks to CRUSH maps monitors do not have to store object location and therefore no
big tables like inodes are needed. On the other hand, objects can not be renamed. If setting a new
name is indispensable, the object has to be rewritten.

Another point is the simple API of librados, which can be used to manage and transfer objects in the
cluster. It is well documented and bindings are available in C, C++, Python and Java; other languages
like Rust are unofficially supported, too

As seen in the chapter 7, which is about benchmarking, the proof-of-concept FUSE driver is not very
suitable if it comes to fast I/O throughput. It is a better solution to implement librados into a
high-performance application to take the advantages of Ceph’s performance. That means further work
because there are no interfaces for MPI-IO or HDF5.

Also, as described in section 8.2.2, a combination of Ceph as an object storage cluster and a database
as a metadata server could be a fast and user-optimized way to improve current data storage solu-
tion.

8.1 Future work

My estimation was with reservations. One reason for this is that a benchmark on a real cluster with
more than a handful nodes has to be done. This is the only way to estimate the performance in
comparison to other storage solutions like Lustre.

There are some characteristics of Ceph, which are not mentioned yet. This includes caching of object and
tiering of hosts, which should also be evaluated in the test as mentioned above.

Furthermore, implementing an interface to create a transparent layer while splitting data and metadata
into different storages endpoints has to be examined. Because it is important to know its performance
compared to the current solution.

Another important point needs an evaluation: the backup/restore algorithms. Backups are important
and great until the restore function fails. Therefore, a test with random failures like offline hosts or
faulty storage devices has to be done.

47

8.2 Design of a fictional HPC Ceph Cluster

This section is about a fictional HPC application whose results has to be stored in a Ceph cluster.
Thereby, this application generates the very common filetype HDF5.

The proposal contains a cluster structure, separation of metadata and an I/O interface.

8.2.1 HDF5

The Hierarchical Data Format (5th version) is a self-describing data format, stored in a single file,
developed by The HDF Group and released under a BSD-like license.

It contains a hierarchical POSIX -like directory structure with grouped datasets. These datasets consist
of multidimensional, homogeneous, numerical arrays, as seen in figure 22. Also, HDF5 supports lossless
compression of these.

Furthermore, it is possible to add comprehensive metadata to each group of datasets to describe
presented data. [19]

Figure 22: Exemplary structure of a simple HDF5 file

8.2.2 Metadata Server

The fact that each group of an HDF5 file could contain searchable metadata it is eligible to separate
metadata and data. The detachment makes it possible to store the metadata in a document-oriented
database, for example MongoDB or Elasticsearch. Therefore, clients and their users can find a spe-
cific dataset much faster than crawling through all HDF5 files. Moreover, these databases have the
opportunity to replicate and distribute data over a database cluster.

For the reason that metadata in HDF5 files are assigned to tree like groups and contains different
key-value pairs, it makes sense to organize and map this structure into a document-oriented database.
Thus, the original structure is preserved and visible to the user (figure 23.

48

Figure 23: Visualisation of a virtual HDF5 file

8.2.3 Ceph Cluster

The size and amount of nodes in a cluster is coupled to required throughput and quantity of stored data.
Accordingly, this proposal offers a structural overview of a Ceph cluster.

There must be an odd number of monitors. Additionally, it is wise to use SSDs and a high memory capac-
ity, comparable to a database server, so that initial client requests are processed fast.

Also, a combination of different HDD sizes can be placed on the storage nodes (OSDs). Thereby, OSDs
with lower capacity must be weighted lower in the global CRUSH map to ensure that data is distributed
uniformly.

Figure 24 shows a possible cluster map hierarchy, which is deposited in the monitors for a CRUSH map.
In this scenario, there are two server rooms with rows of racks, containingOSD hosts.

8.2.4 I/O Interface

As seen in figure 25 the best solution for efficient read/write operations is to implement an I/O interface
directly into HPC application. A great adventage over MPI-IO or a POSIX /FUSE solution is the
reduction of complexity by removing unnecessary layers and in the case of FUSE decreasing context
switches.

Of course, it is possible to program an adapter for applications usingMPI-IO to simplify integration with
many application, but this will decrease performance. More layers would be added to the application
and the storage cluster, which caused more callbacks and context switches.

49

Figure 24: Structural cluster design

Figure 25: Application design with an I/O interface

50

51

9 Eidesstattliche Versicherung

Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit im Studiengang Informatik selbst-
ständig verfasst und keine anderen als die angegebenen Hilfsmittel – insbesondere keine im Quellenverze-
ichnis nicht benannten Internet-Quellen – benutzt habe. Alle Stellen, die wörtlich oder sinngemäß aus
Veröffentlichungen entnommen wurden, sind als solche kenntlich gemacht. Ich versichere weiterhin, dass
ich die Arbeit vorher nicht in einem anderen Prüfungsverfahren eingereicht habe und die eingereichte
schriftliche Fassung der auf dem elektronischen Speichermedium entspricht.

Ich bin damit einverstanden, dass meine Arbeit in den Bestand der Bibliothek des Fachbereichs Infor-
matik eingestellt wird.

Hamburg, den 23. März 2017

Lars Thoms

53

List of Figures

1 Simple filesystem . 9
2 List content of directory (extract) . 10
3 Data layout of ext4 . 10
4 Client connects to transparent storage cluster . 11
5 Files distributed over nodes without (left) and with striping (right) 11
6 Layout of a typical Lustre cluster (adapted from [12]) 12
7 Abstraction of Object Storages . 13
8 Architecture diagram showing the component relation of the Ceph storage platform

(adapted from [22]) . 15
9 Ceph Object Storage Cluster Setup . 16
10 Object management . 17
11 Object distribution in a pool (adapted from [20]) . 18
12 Object striping (adapted from [24, pp. 54]) . 18
13 CRUSH map topology . 20
14 Experimental setup . 21
15 VirtualBox Host-only Network Interface . 22
16 VirtualBox Linked Clones . 25
17 Context switches of a Ceph-FUSE driver (adapted from [21]) 29
18 IOR benchmark with write operations at different block sizes (iterations are sorted by

throughput) . 42
19 IOR benchmark with read operations at different block sizes (iterations are sorted by

throughput) . 43
20 IOR benchmark with 1G filesizes and without Direct IO (iterations are sorted by through-

put) . 44
21 Benchmark with different filesizes while using RADOS 45
22 Exemplary structure of a simple HDF5 file . 48
23 Visualisation of a virtual HDF5 file . 49
24 Structural cluster design . 50
25 Application design with an I/O interface . 50

55

References

[1] Andrew S. Tanenbaum; Herbert Bos. Modern operating systems. 4th ed. Pearson, 2015. isbn:
1-292-06142-1.

[2] Doxygen. libfuse API documentation. url: https://libfuse.github.io/doxygen/index.html
(visited on 02/18/2017).

[3] Gluster. GlusterFS Documentation. url: http://gluster.readthedocs.io/en/latest/Quick-
Start-Guide/Terminologies (visited on 11/25/2016).

[4] Sébastien Han. Ceph: manage storage zones with CRUSH. url: https://www.sebastien-
han.fr/blog/2012/12/07/ceph-2-speed-storage-with-crush/ (visited on 03/01/2017).

[5] IEEE. IEEE Std 1003.1-2008. 2016. url: http : / / pubs . opengroup . org / onlinepubs /
9699919799/ (visited on 11/13/2016).

[6] Inktank Storage Inc. Storage Cluster Quick Start. url: http://docs.ceph.com/docs/giant/
start/quick-ceph-deploy/ (visited on 02/07/2017).

[7] Red Hat Inc. CRUSH Maps. url: http://docs.ceph.com/docs/master/rados/operations/
crush-map/ (visited on 03/01/2017).

[8] Red Hat Inc. Librados (C) – API call. url: http://docs.ceph.com/docs/master/rados/api/
librados/#api-calls (visited on 02/18/2017).

[9] Yves Kemp. BeeGFS at DESY. url: https://indico.cern.ch/event/346931/contributions/
817830/attachments/684674/940478/beegfs-at-desy.pdf (visited on 11/25/2016).

[10] Michael Kuhn. “Dynamically Adaptable I/O Semantics for High Performance Computing”. PhD
Thesis. Universität Hamburg, Apr. 2015. url: http : / / ediss . sub . uni - hamburg . de /
volltexte/2015/7302/.

[11] Julian Martin Kunkel; Michael Kuhn; Thomas Ludwig. “Exascale Storage Systems – An Analyt-
ical Study of Expenses”. In: (2014). doi: 10.14529/jsfi140106.

[12] Lustre. Lustre Operations Manual. url: http://doc.lustre.org/lustre_manual.xhtml
(visited on 11/25/2016).

[13] Sage A. Weil; Andrew W. Leung; Scott A. Brandt; Carlos Maltzahn. “RADOS: A Scalable,
Reliable Storage Service for Petabyte-scale Storage Clusters”. In: Proceedings of the 2Nd Inter-
national Workshop on Petascale Data Storage: Held in Conjunction with Supercomputing ’07.
PDSW ’07. Reno, Nevada: ACM, 2007, pp. 35–44. isbn: 978-1-59593-899-2. doi: 10.1145/
1374596.1374606. url: http://doi.acm.org/10.1145/1374596.1374606.

[14] Sage A. Weil; Scott A. Brandt; Ethan L. Miller; Carlos Maltzahn. “CRUSH: Controlled, Scalable,
Decentralized Placement of Replicated Data”. In: Proceedings of the 2006 ACM/IEEE Conference
on Supercomputing. SC ’06. Tampa, Florida: ACM, 2006. isbn: 0-7695-2700-0. doi: 10.1145/
1188455.1188582. url: http://doi.acm.org/10.1145/1188455.1188582.

[15] Sage A. Weil; Scott A. Brandt; Ethan L. Miller; Darrell D. E. Long; Carlos Maltzahn. “Ceph:
A Scalable, High-performance Distributed File System”. In: Proceedings of the 7th Symposium
on Operating Systems Design and Implementation. OSDI ’06. Seattle, Washington: USENIX
Association, 2006, pp. 307–320. isbn: 1-931971-47-1. url: http://dl.acm.org/citation.cfm?
id=1298455.1298485.

[16] Timothy Prickett Morgan. Red Hat snatches storage Gluster file system for $136m. url: http:
//www.theregister.co.uk/2011/10/04/redhat_buys_gluster (visited on 11/25/2016).

[17] Steve D. Pate. UNIX Filesystems. Wiley, 2003. isbn: 0-471-16483-6.

[18] Mike Mesnier; Greg Ganger; Erik Riedel. “Object-based storage”. In: (2003). doi: 10.1109/
MCOM.2003.1222722.

57

https://libfuse.github.io/doxygen/index.html
http://gluster.readthedocs.io/en/latest/Quick-Start-Guide/Terminologies
http://gluster.readthedocs.io/en/latest/Quick-Start-Guide/Terminologies
https://www.sebastien-han.fr/blog/2012/12/07/ceph-2-speed-storage-with-crush/
https://www.sebastien-han.fr/blog/2012/12/07/ceph-2-speed-storage-with-crush/
http://pubs.opengroup.org/onlinepubs/9699919799/
http://pubs.opengroup.org/onlinepubs/9699919799/
http://docs.ceph.com/docs/giant/start/quick-ceph-deploy/
http://docs.ceph.com/docs/giant/start/quick-ceph-deploy/
http://docs.ceph.com/docs/master/rados/operations/crush-map/
http://docs.ceph.com/docs/master/rados/operations/crush-map/
http://docs.ceph.com/docs/master/rados/api/librados/#api-calls
http://docs.ceph.com/docs/master/rados/api/librados/#api-calls
https://indico.cern.ch/event/346931/contributions/817830/attachments/684674/940478/beegfs-at-desy.pdf
https://indico.cern.ch/event/346931/contributions/817830/attachments/684674/940478/beegfs-at-desy.pdf
http://ediss.sub.uni-hamburg.de/volltexte/2015/7302/
http://ediss.sub.uni-hamburg.de/volltexte/2015/7302/
http://dx.doi.org/10.14529/jsfi140106
http://doc.lustre.org/lustre_manual.xhtml
http://dx.doi.org/10.1145/1374596.1374606
http://dx.doi.org/10.1145/1374596.1374606
http://doi.acm.org/10.1145/1374596.1374606
http://dx.doi.org/10.1145/1188455.1188582
http://dx.doi.org/10.1145/1188455.1188582
http://doi.acm.org/10.1145/1188455.1188582
http://dl.acm.org/citation.cfm?id=1298455.1298485
http://dl.acm.org/citation.cfm?id=1298455.1298485
http://www.theregister.co.uk/2011/10/04/redhat_buys_gluster
http://www.theregister.co.uk/2011/10/04/redhat_buys_gluster
http://dx.doi.org/10.1109/MCOM.2003.1222722
http://dx.doi.org/10.1109/MCOM.2003.1222722

[19] PhD Cyrille Rossant. Moving away from HDF5. url: http://cyrille.rossant.net/moving-
away-hdf5/ (visited on 03/08/2017).

[20] Karan Singh. How Data Is Stored In CEPH Cluster. url: http://karan-mj.blogspot.de/
2014/01/how-data-is-stored-in-ceph-cluster.html (visited on 12/14/2016).

[21] Sumit Singh. Develop your own filesystem with FUSE. url: https://www.ibm.com/developerworks/
library/l-fuse/ (visited on 02/22/2017).

[22] Ross Turk. Architecture diagram showing the component relation of the Ceph storage platform.
url: https://raw.githubusercontent.com/ceph/ceph/master/doc/images/stack.png
(visited on 01/18/2017).

[23] Sage A. Weil. “Ceph: Reliable, Scalable, and High-performance Distributed Storage”. PhD thesis.
University of California Santa Cruz, 2007.

[24] Sage A. Weil. Erasure coding and cache tiering. url: http://www.slideshare.net/sageweil1/
20150222-scale-sdc-tiering-and-ec (visited on 01/19/2017).

[25] Ext4 Wiki. Ext4 Disk Layout. url: https://ext4.wiki.kernel.org/index.php/Ext4_Disk_
Layout#Layout (visited on 11/13/2016).

58

http://cyrille.rossant.net/moving-away-hdf5/
http://cyrille.rossant.net/moving-away-hdf5/
http://karan-mj.blogspot.de/2014/01/how-data-is-stored-in-ceph-cluster.html
http://karan-mj.blogspot.de/2014/01/how-data-is-stored-in-ceph-cluster.html
https://www.ibm.com/developerworks/library/l-fuse/
https://www.ibm.com/developerworks/library/l-fuse/
https://raw.githubusercontent.com/ceph/ceph/master/doc/images/stack.png
http://www.slideshare.net/sageweil1/20150222-scale-sdc-tiering-and-ec
http://www.slideshare.net/sageweil1/20150222-scale-sdc-tiering-and-ec
https://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout#Layout
https://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout#Layout

Attachment

IOR / 1M filesize / variable blocksize / write operation / bandwith in MiB

Iteration 4K 8K 16K 32K 64K 128K

1 0.062748 0.123691 0.230038 0.421136 0.784773 1.43
2 0.063273 0.125761 0.230310 0.446140 0.805621 1.45
3 0.063646 0.126278 0.234361 0.449433 0.845283 1.49
4 0.063981 0.132703 0.264042 0.463360 0.876203 1.58
5 0.064295 0.134210 0.264305 0.489973 0.901641 1.60
6 0.064672 0.137405 0.264803 0.493949 0.909593 1.65
7 0.065098 0.141820 0.266547 0.497531 0.916524 1.67
8 0.066279 0.141822 0.267825 0.502191 0.930787 1.74
9 0.066832 0.142150 0.273309 0.510712 0.945284 1.79
10 0.067250 0.142158 0.275202 0.518814 0.960403 1.83
11 0.067738 0.145787 0.276482 0.519052 0.983613 1.85
12 0.069182 0.147757 0.277743 0.526358 0.997362 1.88
13 0.070181 0.149484 0.278418 0.533086 1.01 1.88
14 0.071582 0.149978 0.279055 0.533423 1.01 1.90
15 0.072223 0.150729 0.279722 0.540600 1.02 1.91
16 0.072240 0.150887 0.280992 0.547961 1.03 1.91
17 0.073022 0.151110 0.281023 0.548027 1.03 1.91
18 0.073505 0.152064 0.281644 0.550582 1.04 1.94
19 0.073642 0.155815 0.282914 0.568851 1.06 1.97
20 0.078200 0.156628 0.290869 0.571472 1.09 2.00

IOR / 10M filesize / variable blocksize / write operation / bandwith in MiB

Iteration 4K 8K 16K 32K 64K 128K

1 0.064674 0.129916 0.252512 0.480870 0.991532 1.80
2 0.065916 0.131772 0.255577 0.483191 1.00 1.86
3 0.066295 0.133696 0.265414 0.488678 1.01 1.88
4 0.066707 0.134745 0.268381 0.503429 1.02 1.93
5 0.066822 0.136152 0.270923 0.508777 1.03 2.01
6 0.067130 0.136538 0.272454 0.509886 1.05 2.03
7 0.067261 0.136872 0.272559 0.513081 1.07 2.06
8 0.067541 0.137053 0.276995 0.515339 1.11 2.09
9 0.067827 0.137259 0.277301 0.524786 1.12 2.12
10 0.068158 0.137414 0.278084 0.533685 1.13 2.13
11 0.068321 0.138777 0.278663 0.534880 1.13 2.13
12 0.068553 0.138832 0.278923 0.535795 1.15 2.15
13 0.068701 0.139620 0.279823 0.538446 1.15 2.15
14 0.069177 0.140238 0.280408 0.548566 1.15 2.16
15 0.069381 0.140309 0.280683 0.555658 1.15 2.17
16 0.069625 0.140555 0.282482 0.570164 1.16 2.17
17 0.070298 0.143244 0.283334 0.595625 1.17 2.20
18 0.071044 0.143855 0.283939 0.596810 1.19 2.22
19 0.071330 0.144218 0.285358 0.601598 1.19 2.26
20 0.071565 0.146632 0.297380 0.612359 1.20 2.32

IOR / 100M filesize / variable blocksize / write operation / bandwith in MiB

Iteration 4K 8K 16K 32K 64K 128K

1 n/a n/a n/a 0.511391 1.67 2.99
2 n/a n/a n/a 0.512702 1.67 3.04
3 n/a n/a n/a 0.541388 1.69 3.12

59

Iteration 4K 8K 16K 32K 64K 128K

4 n/a n/a n/a 0.549397 1.69 3.14
5 n/a n/a n/a 0.550298 1.69 3.14
6 n/a n/a n/a 0.556560 1.70 3.15
7 n/a n/a n/a 0.560595 1.71 3.16
8 n/a n/a n/a 0.562824 1.72 3.16
9 n/a n/a n/a 0.563428 1.74 3.19

10 n/a n/a n/a 0.602301 1.80 3.19
11 n/a n/a n/a 0.978276 1.84 3.19
12 n/a n/a n/a 0.983901 1.85 3.20
13 n/a n/a n/a 1.00 1.86 3.21
14 n/a n/a n/a 1.01 1.86 3.21
15 n/a n/a n/a 1.02 1.87 3.22
16 n/a n/a n/a 1.03 1.93 3.22
17 n/a n/a n/a 1.03 1.94 3.32
18 n/a n/a n/a 1.03 1.94 3.35
19 n/a n/a n/a 1.03 1.95 3.42
20 n/a n/a n/a 1.03 1.95 3.45

IOR / 1G filesize / variable blocksize / write operation / bandwith in MiB

Iteration 4K 8K 16K 32K 64K 128K

1 n/a n/a n/a 0.866656 1.67 3.05
2 n/a n/a n/a 0.873445 1.67 3.10
3 n/a n/a n/a 0.876178 1.68 3.11
4 n/a n/a n/a 0.877902 1.68 3.11
5 n/a n/a n/a 0.881121 1.68 3.12
6 n/a n/a n/a 0.884385 1.68 3.12
7 n/a n/a n/a 0.918111 1.68 3.13
8 n/a n/a n/a 0.923424 1.69 3.14
9 n/a n/a n/a 0.927250 1.69 3.14

10 n/a n/a n/a 0.962354 1.69 3.14
11 n/a n/a n/a 0.984536 1.69 3.20
12 n/a n/a n/a 0.986219 1.70 3.26
13 n/a n/a n/a 0.986631 1.70 3.28
14 n/a n/a n/a 0.990702 1.70 3.41
15 n/a n/a n/a 0.996332 1.71 3.43
16 n/a n/a n/a 1.00 1.71 3.45
17 n/a n/a n/a 1.00 1.71 3.50
18 n/a n/a n/a 1.01 1.71 3.51
19 n/a n/a n/a 1.01 1.71 3.54
20 n/a n/a n/a 1.01 1.71 3.56

IOR / 1G filesize / variable blocksize / write operation / without Direct IO / bandwith in MiB

Iteration 4K 8K 16K 32K 64K 128K

1 n/a n/a n/a 0.866442 1.65 3.06
2 n/a n/a n/a 0.876175 1.66 3.06
3 n/a n/a n/a 0.955648 1.66 3.07
4 n/a n/a n/a 0.982942 1.66 3.08
5 n/a n/a n/a 0.991272 1.66 3.08
6 n/a n/a n/a 0.994531 1.67 3.09
7 n/a n/a n/a 0.994597 1.67 3.09
8 n/a n/a n/a 0.996249 1.68 3.10
9 n/a n/a n/a 1.00 1.68 3.10

10 n/a n/a n/a 1.00 1.68 3.11
11 n/a n/a n/a 1.01 1.68 3.11
12 n/a n/a n/a 1.01 1.68 3.13

60

Iteration 4K 8K 16K 32K 64K 128K

13 n/a n/a n/a 1.01 1.69 3.13
14 n/a n/a n/a 1.01 1.69 3.13
15 n/a n/a n/a 1.01 1.69 3.14
16 n/a n/a n/a 1.01 1.69 3.14
17 n/a n/a n/a 1.01 1.69 3.14
18 n/a n/a n/a 1.01 1.70 3.14
19 n/a n/a n/a 1.02 1.70 3.14
20 n/a n/a n/a 1.02 1.70 3.15

IOR / 1M filesize / variable blocksize / read operation / bandwith in MiB

Iteration 4K 8K 16K 32K 64K 128K

1 5.31 9.61 19.73 35.97 62.39 114.67
2 6.30 10.32 20.68 36.04 67.04 119.03
3 6.77 10.99 20.73 38.45 67.91 119.18
4 7.56 11.18 22.22 38.56 69.44 120.23
5 7.83 12.17 23.34 38.58 70.99 120.80
6 7.91 12.85 23.36 39.43 71.32 120.98
7 8.45 12.95 23.99 40.22 71.53 121.23
8 8.81 12.96 24.42 42.11 71.54 122.50
9 8.92 14.60 24.80 42.15 71.68 122.75

10 9.15 14.78 25.13 43.14 72.07 123.71
11 9.24 16.38 26.57 43.54 72.77 124.80
12 9.26 16.44 26.76 44.09 73.77 126.84
13 9.31 16.53 27.30 44.30 73.85 128.30
14 9.69 16.99 27.62 44.85 74.60 128.95
15 10.08 17.98 27.65 45.20 74.83 130.68
16 10.35 19.08 28.41 45.99 75.54 130.74
17 10.45 19.30 29.13 47.17 75.75 133.58
18 11.13 19.32 29.39 47.68 79.24 136.42
19 11.38 20.56 30.97 48.15 81.67 139.03
20 11.52 21.67 33.59 52.15 82.40 150.35

IOR / 10M filesize / variable blocksize / read operation / bandwith in MiB

Iteration 4K 8K 16K 32K 64K 128K

1 7.87 11.10 23.90 43.40 74.60 123.69
2 8.09 13.25 24.64 43.58 77.68 125.68
3 8.75 13.57 27.32 45.10 81.42 125.75
4 8.84 13.99 27.63 49.92 82.34 127.61
5 9.09 15.16 27.99 50.40 82.99 137.35
6 9.23 15.54 28.20 51.62 83.70 137.86
7 9.46 16.77 28.26 52.65 83.89 139.01
8 9.47 16.91 31.48 53.42 84.66 139.34
9 9.78 17.07 32.42 55.13 85.57 139.80
10 9.95 17.99 33.01 55.29 85.85 142.41
11 10.05 18.06 36.68 55.45 86.25 144.75
12 10.07 18.14 36.76 56.82 88.02 145.19
13 10.21 18.21 36.98 60.84 88.43 146.56
14 10.21 18.48 37.19 62.04 89.71 148.03
15 10.27 19.03 41.56 69.61 90.38 148.09
16 10.41 19.03 41.67 79.69 90.96 152.53
17 10.51 19.31 45.20 80.36 101.17 154.72
18 10.94 19.82 47.40 85.17 106.90 155.42
19 11.01 20.58 47.47 88.48 117.14 156.11
20 11.74 22.02 48.47 107.19 120.21 156.46

61

IOR / 100M filesize / variable blocksize / read operation / bandwith in MiB

Iteration 4K 8K 16K 32K 64K 128K

1 n/a n/a n/a 42.28 79.09 135.74
2 n/a n/a n/a 46.75 79.32 137.81
3 n/a n/a n/a 48.77 80.11 138.61
4 n/a n/a n/a 50.30 80.32 138.66
5 n/a n/a n/a 52.10 80.73 138.82
6 n/a n/a n/a 55.21 80.74 139.67
7 n/a n/a n/a 57.58 81.55 141.08
8 n/a n/a n/a 60.03 83.29 143.30
9 n/a n/a n/a 61.95 83.35 143.45

10 n/a n/a n/a 62.00 84.07 145.32
11 n/a n/a n/a 62.50 85.37 145.41
12 n/a n/a n/a 63.79 86.12 146.31
13 n/a n/a n/a 63.84 87.16 146.72
14 n/a n/a n/a 64.31 87.78 147.12
15 n/a n/a n/a 65.36 89.08 147.68
16 n/a n/a n/a 66.82 89.66 150.13
17 n/a n/a n/a 66.86 90.89 152.56
18 n/a n/a n/a 66.96 93.06 153.13
19 n/a n/a n/a 71.94 94.33 153.29
20 n/a n/a n/a 72.74 101.34 156.26

IOR / 1G filesize / variable blocksize / read operation / bandwith in MiB

Iteration 4K 8K 16K 32K 64K 128K

1 n/a n/a n/a 44.27 83.67 144.27
2 n/a n/a n/a 45.97 85.06 144.56
3 n/a n/a n/a 47.19 85.56 147.52
4 n/a n/a n/a 49.46 85.61 148.72
5 n/a n/a n/a 49.66 85.88 149.09
6 n/a n/a n/a 50.89 86.30 149.72
7 n/a n/a n/a 51.06 87.05 150.85
8 n/a n/a n/a 51.08 87.24 150.93
9 n/a n/a n/a 51.83 89.17 151.40
10 n/a n/a n/a 52.30 89.20 153.78
11 n/a n/a n/a 53.21 89.44 154.54
12 n/a n/a n/a 53.28 89.53 156.50
13 n/a n/a n/a 53.60 89.76 156.80
14 n/a n/a n/a 54.08 90.84 157.78
15 n/a n/a n/a 54.34 92.07 158.09
16 n/a n/a n/a 54.79 92.08 158.14
17 n/a n/a n/a 56.10 92.30 159.01
18 n/a n/a n/a 56.68 93.63 159.16
19 n/a n/a n/a 57.88 93.73 159.39
20 n/a n/a n/a 59.15 95.09 163.02

IOR / 1G filesize / variable blocksize / read operation / without Direct IO / bandwith in MiB

Iteration 4K 8K 16K 32K 64K 128K

1 n/a n/a n/a 301.48 303.38 302.57
2 n/a n/a n/a 306.16 304.36 302.70
3 n/a n/a n/a 306.20 307.51 302.83
4 n/a n/a n/a 308.69 307.90 303.77
5 n/a n/a n/a 308.89 309.93 305.42
6 n/a n/a n/a 309.48 310.56 306.63
7 n/a n/a n/a 310.00 311.33 315.95

62

Iteration 4K 8K 16K 32K 64K 128K

8 n/a n/a n/a 310.27 313.08 316.83
9 n/a n/a n/a 310.64 313.38 316.88
10 n/a n/a n/a 310.64 313.58 317.51
11 n/a n/a n/a 310.83 314.25 318.17
12 n/a n/a n/a 312.03 315.90 318.77
13 n/a n/a n/a 312.10 318.71 318.79
14 n/a n/a n/a 313.87 319.20 318.87
15 n/a n/a n/a 315.54 321.28 320.42
16 n/a n/a n/a 317.30 323.80 321.26
17 n/a n/a n/a 317.45 324.34 325.59
18 n/a n/a n/a 319.34 324.64 334.22
19 n/a n/a n/a 320.06 331.35 341.28
20 n/a n/a n/a 326.89 342.14 510.84

RADOS / variable filesize / write operation / duration in seconds

Iteration 1M 10M 100M 1G

1 0.12 0.46 4.81 49.03
2 0.12 0.40 4.66 48.94
3 0.12 0.39 4.64 48.79
4 0.11 0.38 4.61 48.78
5 0.11 0.37 4.57 48.76
6 0.11 0.37 4.56 48.64
7 0.11 0.37 4.54 48.60
8 0.10 0.36 4.53 48.59
9 0.10 0.36 4.50 48.54
10 0.10 0.36 4.50 48.53
11 0.10 0.36 4.48 48.50
12 0.10 0.36 4.46 48.42
13 0.10 0.35 4.40 48.40
14 0.10 0.35 4.39 48.31
15 0.10 0.35 4.37 48.26
16 0.10 0.35 4.37 48.01
17 0.10 0.35 4.30 47.98
18 0.09 0.35 4.29 47.94
19 0.09 0.34 4.18 47.92
20 0.09 0.34 4.16 47.87

RADOS / variable filesize / read operation / duration in seconds

Iteration 1M 10M 100M 1G

1 0.81 0.91 1.74 10.02
2 0.79 0.88 1.70 10.00
3 0.78 0.88 1.70 9.99
4 0.78 0.86 1.70 9.99
5 0.78 0.85 1.69 9.99
6 0.77 0.85 1.69 9.99
7 0.77 0.85 1.69 9.98
8 0.77 0.84 1.69 9.98
9 0.77 0.84 1.68 9.98
10 0.76 0.83 1.68 9.98
11 0.76 0.83 1.67 9.97
12 0.76 0.83 1.67 9.97
13 0.76 0.83 1.67 9.97
14 0.76 0.83 1.67 9.97
15 0.76 0.83 1.67 9.97
16 0.76 0.81 1.66 9.96

63

Iteration 1M 10M 100M 1G

17 0.75 0.80 1.66 9.96
18 0.75 0.79 1.65 9.96
19 0.75 0.79 1.65 9.92
20 0.75 0.79 1.65 9.91

64

	Abstract
	Introduction
	Motivation

	Storage techniques
	Filesystems
	Storage management

	Distributed filesystems
	Architecture of Lustre (example)

	Object storages

	Ceph
	Functionality
	Cluster
	Object Storage Device
	Storage Management
	Read/Write an object
	CRUSH

	Experimental setup
	Configuration of VirtualBox
	Configuration of Debian jessie
	GRUB
	Network
	User permissions
	Cloning
	Post-Cloning

	Deployment of Ceph

	Ceph-FUSE driver
	FUSE
	How does FUSE work
	A simple FUSE driver for Ceph
	Implementation of FUSE operations
	Renaming
	Compile and run

	Benchmarks
	Setup
	Measurement methodology
	Results from IOR
	Results from RADOS
	Evaluation

	Conclusion
	Future work
	Design of a fictional HPC Ceph Cluster
	HDF5
	Metadata Server
	Ceph Cluster
	I/O Interface

	Eidesstattliche Versicherung
	List of Figures
	Bibliography

