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Abstract

Throughout the last years, the trend in HPC is towards heterogeneous cluster architectures
that make use of accelerators to speed up computations. For this purpose, many current
HPC systems are equipped with Graphics Processing Units (GPUs). These deliver a high
floating-point performance, which is important to accelerate compute-intensive applications.
This thesis aims to analyze the suitability of CPUs and GPUs for graph algorithms, which
can be classified as data-intensive applications. These types of applications perform fewer
computations per data element and strongly rely on fast memory access.

The analysis is based on two multi-node implementations of the Graph500 benchmark,
which execute a number of Breadth-first Searches (BFS) on a large-scale graph. To enable a
fair comparison, the same parallel BFS algorithm has been implemented for the CPU and
the GPU version. The final evaluation does not only include the performance results but the
programming effort that was necessary to achieve the result as well as the cost and energy
efficiency.

Comparable performance results have been found for both the versions of Graph500, but
a significant difference in the programming effort has been detected. The main reason for
the high programming effort of the GPU implementation is that complex optimizations are
necessary to achieve an acceptable performance in the first place. These require detailed
knowledge of the GPU hardware architecture. All in all, the results of this thesis lead to
the conclusion that the higher energy efficiency and, depending on the point of view, cost
efficiency of the GPUs do not outweigh the lower programming effort for the implementation
of graph algorithms on CPUs.
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1 Introduction

High Performance Computing (HPC) is essential to many application areas today such as
climate and chemical research, biosciences as well as fluid dynamics and financial analysis.
The increase in available computational power was the driving force behind the progress
that has been made in those fields throughout the last decades. These days it is possible
to predict weather catastrophes precisely as for example the position, at which a hurricane
reaches the coastline as well as the path it will take, can be calculated [Cha14]. The human
genome has been decoded and atom-to-atom interactions can be simulated for drug discovery
[SCM14]. Solving increasingly complex problems seems to be in feasible reach, provided that
the performance of supercomputers will rise even further. The computational strength of
current supercomputer architectures arises from parallelism. In the 1990s a fundamental
change took place with a shift away from specialized supercomputing hardware and towards
cluster architectures that are built up from standard hardware connected through a network.
Today, a compute node of a high performance cluster contains multiple Central Processing
Units (CPUs), which contain multiple CPU cores themselves. Introducing parallelism to
a single CPU’s architecture was the solution to the problem of no longer increasing clock
rates, which led to a steady performance increase of processors until then. The number of
CPU cores per CPU is limited to a few dozen, while the number of compute nodes of a
cluster is highly scalable. The era of high performance clusters began with a few compute
nodes and reached a dimension of multiple ten thousand nodes by now1. Such a machine
requires a lot of physical space and consumes a great amount of energy, of which a large
portion is used for cooling. That way the performance of a supercomputer, which is usually
measured through the number of Floating-point Operations Per Second (FLOPS), is not only
limited by investment cost but by the immense operating costs related to energy consumption.

During the last couple of years, a new trend has emerged that led to the usage of ac-
celerators, especially Graphics Processing Units (GPUs). These derive very high performance
from a highly parallel hardware architecture. A GPU cluster is built up from CPU nodes that
are equipped with at least one but more likely multiple GPUs. According to [Fel15], a third of
all HPC systems make use of accelerators, of which 80% are GPUs. Cost and energy efficiency
with regard to the delivered floating-point performance can be considered as the main reasons
for this development. In contrast, the main obstacle preventing GPU usage from spreading
even further in HPC is the necessity to port applications to GPU. Frequently, this process
includes significant changes to the code through switching to a GPU-capable language as
well as adapting algorithms to fit the GPU hardware architecture. A number of publications
have shown notable performance improvements for compute-intensive applications containing
a substantial portion of parallelism, e.g., [GLR+14][BKS15]. For this kind of applications the
effort to enable GPU support seems to pay off, but unfortunately, not all HPC applications

1The Sunway TaihuLight supercomputer located in China, heading the TOP500 list from June 2016, is
composed of 40,960 nodes that contain 10,649,600 cores in total.
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1 Introduction

can be described this way. While compute-intensive applications perform a high number of
computations per data element, data-intensive applications process large amounts of data
with much fewer computations per data element. As a result, the floating-point performance
of a system is strongly related to the performance of compute-intensive applications, whereas
other properties, as for example memory access time, have a greater impact on the per-
formance of data-intensive applications as well. To take this into account, the Graph5002

benchmark was introduced in 2010 to measure the performance of a supercomputer with
regard to data-intensive applications.

The Graph500 benchmark performs a Breadth-first Search (BFS) on a large-scale graph.
This means that the graph structure is traversed from one starting point until all nodes
in the connected component are reached. A system’s performance is measured through
the number of Traversed Edges Per Second (TEPS). A BFS on a large-scale graph was
chosen for the Graph500 benchmark with the objective that “the benchmark must reflect
a class of algorithms that impact many applications” [MWBA10]. As the structure of a
graph is capable of representing complex dependencies, graphs and thus graph algorithms
are used in many application fields. These include national economy, logistics, social media
as well as biology [FDB+14]. The performance of a system on running BFS is considered
a meaningful indicator for the performance of a wide range of graph applications. On the
one hand, this is deduced from the fact that BFS is a fundamental building block for many
other graph applications and, on the other hand, many typical characteristics of graph
algorithms are inherent in BFS. This includes unstructured memory access as well workloads
that are difficult to balance. These characteristics, in particular, led to the assumption that
graph algorithms, as well as other data-intensive applications, cannot benefit from GPU usage.

Nevertheless, a lot of research has been done on this topic recently with the hope to turn the
high floating-point performance of modern GPUs into a high graph algorithm performance.
Several implementations delivering great results for BFS on GPUs have been published.
According to Luo, Wong and Hwu in [LWH10] the GPU-enabled Graph500 implementation
even outperforms the available CPU implementations and Merrill, Garland and Grimshaw
conclude in [MGG12] that “GPUs are well-suited for sparse graph traversal”. However, it
has to be remarked that in the great majority of cases the published results are for a single
GPU or a multiple GPUs but single node implementation. This is true for both of the
publications cited above. If considering the size of real-world graph data sets, which can
contain billions of nodes and edges, it becomes visible that a single node or a single GPU
implementation does not target real-world graph problems. Multi-node GPU implementa-
tions of Graph500 have been published as well, but their performance results can only be
a partial answer to the question of the suitability of GPU clusters for graph algorithms.
In [MGG12], the statement on the suitability of GPUs for BFS is based on a performance
comparison only, which omits a number of other important factors. The performance will
usually be the highest rated characteristic, but the effort that has to be made to achieve
the performance results should be taken into account as well. This is a relevant point in
HPC as code will not only be written by computer scientists but domain scientists as well.
A hardware configuration that delivers a sufficient performance at low programming effort
might appear more suitable for their research than a hardware configuration that has the po-
tential of delivering an even better performance but featuring a highly complex programming

2http://www.graph500.org
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model. The goal of this thesis is the evaluation of the suitability of a GPU cluster for graph
algorithms in comparison with a CPU cluster, not only based on the performance but also
the programming effort to achieve the performance results as well as energy and cost efficiency.

High GPU performance results are often found through the comparison with a CPU imple-
mentation that uses an obsolete algorithm or is not well optimized [LKC+10]. To enable a fair
comparison, the CPU, as well as the GPU version of Graph500, have been implemented for
this thesis with comparable optimization effort. Both implementations are based on the same
algorithm structure, which is the key to allowing a conclusive comparison of the program’s
complexity together with the programming effort. The same algorithm structure means that
the same data partitioning scheme, as well as inter-node communication pattern, is used.
Local computations on the graph data have been optimized for the hardware architecture.
The main contribution of this thesis is the analysis of the suitability based on two comparable
implementations taking into account not only the resulting performance but other criteria,
which will have a strong impact on the choice of a hardware configuration.

The remainder of this thesis is structured as follows. Chapter 2 provides an overview
of the modern GPU architecture as well as GPU programming concepts. A number of
GPU programming platforms are introduced, which will be evaluated in this thesis to find
a preferably simple and suitable platform for the implementation of Graph500 on a GPU
cluster. In addition, the key features of a modern CPU and the parallel programming model
for CPUs are described. The third chapter describes the characteristics of graph algorithms
and highlights the difficulties in utilizing the hardware of CPUs and GPUs for this kind of
applications. A brief introduction of the Graph500 benchmark is included in this chapter as
well as an overview on the current state of research. Chapter 4 explains the common algorithm
structure of the implemented parallel BFS. It focuses on the overall structure and leaves
out details on the hardware specific optimization for the next chapter. Chapter 5 includes
these details and a comparison of three GPU programming platforms that aims to choose the
most promising approach for further optimization. Multiple optimization steps are explained
for the GPU implementation of Graph500 as well as for the CPU implementation. The 6th
chapter introduces the test system and provides a detailed analysis of the performance results
along with programming effort as well as the cost and energy efficiency. A final conclusion
will be given in Chapter 7.
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2 High Performance Computing with GPUs
and CPUs

The following chapter provides an overview of CPU and GPU programming concepts in the
context of High Performance Computing (HPC).

2.1 Modern GPU Architecture

The modern Graphics Processing Unit (GPU) has its origin in 3D graphics rendering. For
this purpose, a highly parallel and throughput-oriented architecture is suitable because the
pixels of an image can be processed independently and the computation time of a single pixel
is not important as long as the computation of the whole image can be completed within a
certain time frame. The modern GPUs still follow these design principles but their usage is
not restricted to graphics processing anymore. Instead, the great computational power is
used to accelerate HPC applications.

According to [Fel15], a survey by Intersect Research from October 2015 reveals Nvidia
as the dominant vendor of accelerator hardware in HPC. In the summary, it is stated that
78% of all accelerator hardware used in HPC is manufactured by this company. For that
reason and because Nvidia K80s are used for measurements in this thesis, Nvidia hardware
will be used as an example during the next sections. From the information provided by the
current Top500 list from June 20161, it can be inferred that the Nvidia Kepler architecture
is one of the most commonly used GPU architectures in the HPC area today, most likely
because the architecture is dedicated to accelerating HPC applications [NVI12]. A Nvidia
K80 contains two separate GK210 graphics cards with also disjunct memories. These two
GPUs are connected to a PCI switch inside the chassis. The K80 is then connected to
the hosting CPU through a PCIe bus. This leads to a programming model employing the
following steps: copying data to the GPU’s global memory, doing computations on the GPU
and copying the results back to the CPU.

2.1.1 Execution Model

The GPU utilizes an execution model called Single Instruction Multiple Threads (SIMT),
which is deduced from the fact that one instruction is executed by a very large number

1https://www.top500.org/lists/2016/06/
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2 High Performance Computing with GPUs and CPUs

of threads. The threads are running on processing units called “CUDA cores” in Nvidia’s
terminology. Compute Unified Device Architecture (CUDA) refers to a GPU programming
platform that is introduced later in this chapter. A GK210 contains 2496 CUDA cores,
which are evenly distributed over 13 Streaming Multiprocessors (SMs). The 192 CUDA
cores are colored green in the block diagram of a Kepler SM, depicted in Figure 2.1. The
Kepler SM architecture is called SMX by Nvidia. A group of up to 1024 threads forms a
block, which is assigned to one SM and subdivided into groups of 32 threads. These groups
are named a warp. All threads in the same warp are scheduled together and execute the
same instruction synchronously. If a conditional control construct leads threads of the same
warp to take different paths, those paths are executed in sequence. Threads that follow
a different path stall until their path is being evaluated. The orange line at the top of

Figure 2.1: Streaming multiprocessor (SMX) architecture [NVI12, p. 8]

the block diagram (Figure 2.1) shows four warp schedulers with two dispatch units each.
Either of them selects a warp with threads ready to execute and dispatches up to two in-
dependent instructions to be executed by the threads of the warp per clock cycle [NVI12, p. 9].

The computational power of a GPU can only be utilized if there are always enough ac-
tive warps. If the threads of a warp have to access data from the global memory, they have
to wait many clock cycles for the data to arrive. In this case, the warp scheduler switches
to another warp and dispatches its next instructions. As soon as the data has arrived the
warp is set active again and the warp scheduler can select it to dispatch its next instructions.
The switching between warps has no overhead as the execution context of each warp is kept
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2.1 Modern GPU Architecture

on-chip the entire time [NVI15, p. 81]. Therefore, enough active warps make it possible
to hide memory latency completely. As the scheduling of warps in a block is independent
of each other, no assumptions on the execution order of instructions executed by threads
belonging to different warps can be made. To enforce synchronization between the threads
of a block, the intrinsic function __syncthreads() can be called [NVI15, p. 12]. The same
holds true for the blocks of threads that are scheduled to run on a SM: no assumption on the
execution order can be made. To synchronize threads in different blocks the function that is
executing on the GPU has to be split at the planned synchronization point. A function that
is executed on the GPU is often called a kernel. The new kernels have to be invoked one
after another from the hosting CPU.

2.1.2 Memory Model

The GPU’s memory is usually disjoint from the CPU’s memory, which enforces the typical
workflow of any GPU program to start with copying data to the device’s global memory
[Bar15, p. 410]. A GK210 comes with 12GB on-board DRAM memory, whereof the most
falls to global memory. This reveals a huge difference to high-end CPUs, which can be
equipped with multiple times as much memory. It is common that compute nodes have
256 GB or even more RAM available. Additionally, the CPU memory access is accelerated
through a cache hierarchy, which is transparent to the programmer in respect of functionality,
whereas the GPU uses both a cache hierarchy and user-managed shared memory. Shared
memory is located on-chip and within a streaming multiprocessor. In Figure 2.1, it is depicted
through one of the light blue bars at the bottom. The memory available on every streaming
multiprocessor is split into shared memory and L1 cache. A limited number of configurations
is available2 and a preference can be chosen through the call of a CUDA Runtime API
function. As blocks of threads are assigned to streaming multiprocessors in an unpredictable
way, only threads of the same block can use shared memory for communication purposes.

The GPU provides a very high theoretical bandwidth to global memory, 240GB/s for a
GK210, but such a performance can only be seen if the data is accessed in a way such that
the memory access is coalesced by the device. Memory coalescing, which leads to a reduction
of the number of memory transactions, takes place if the threads of a warp access contiguous
data in global memory at the same time [Har13a]. The access to shared memory is much
faster than to global memory as the former takes 1-32 clock cycles and the latter takes
400-600 clock cycles [Bar15, p. 415]. Similarly to global memory, the variance in shared
memory access time depends on the access pattern used. To minimize latency, bank conflicts
have to be avoided when accessing shared memory. Banks are memory modules, which
can be accessed simultaneously. Those banks are arranged in a way such that contiguous
addresses map to different banks. One bank can serve 32-bit per clock cycle, but requests for
addresses located in the same memory bank are processed in sequence. This is referred to
as bank conflict and results in higher latency. An exception occurs in the case of the same
address being requested by multiple threads because these requests can be served together
[Har13b].

2For devices using the Nvidia Kepler architecture, it is possible to choose a 48KB/16KB or a 32KB/32KB
split of the total 64KB [Bar15, p. 417].

13
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2.2 GPU Programming Platforms

Throughout the last years, a great number of platforms has established to simplify GPU
programming. The two most important ones and the basis of all other approaches are
CUDA and OpenCL. Both follow a similar programming model but CUDA is limited to
Nvidia Hardware, while OpenCL is an open standard. According to research of Fang,
Varbanescu and Sips in [FVS11], similar performance can be achieved with either of them.
Different programming platforms are introduced in this chapter, whose performance for graph
algorithms will be compared in Chapter 5 to find the most promising approach with respect
to performance and programming ease for the GPU implementation. CUDA has been chosen
over OpenCL since the measurements for this thesis will be performed on Nvidia hardware
and CUDA gives access to specific features of that hardware. The comparable reference code
is written in CUDA too, which simplifies a comparison.

2.2.1 CUDA

The Compute Unified Device Architecture (CUDA) is a parallel computing platform revealed
by Nvidia in 2006, which supports the development of non-graphic applications utilizing the
power of GPUs. It was the first platform fitting the needs of general purpose computations
on GPUs (GPGPU) by eliminating the necessity to translate general computational problems
into a graphic-related problem [Bar15, p. 393]. CUDA can be used in C/C++ and Fortran
programs, but in this thesis, CUDA refers to the C/C++ language-extension. A number of
syntactic elements and key words to express massive parallelism and its mapping to the GPU
hardware is introduced as well as two APIs. To compile CUDA code, the Nvidia compiler
nvcc is used. It distinguishes between host code, which is the code to be executed on the
CPU, and device code that will be executed on a Nvidia GPU. The custom functions that
will be executed on the GPU are often called a kernel.

The CUDA example code in Listing 2.1 clearly follows the typical structure of copying data
from the CPU to the GPU (line 19-20), do computations on the GPU (line 23) and copy the
results back (line 26). The last parameter of the cudaMemcpy function states the direction of
the copy. In line 19 data is copied from x to d_x, which is named with respect to the naming
convention of starting pointer variables to the GPU memory with a “d_”. The cudaMemcpy
function, as well as cudaMalloc, is provided by the CUDA Runtime API, which is built
on top of the Driver API. The Driver API is considered to be closer to the hardware and
includes access to more features than the Runtime API. Nonetheless, the Runtime API is
used in the majority of cases because it provides the commonly used functions with an easier
interface and negligible performance loss. The function qualifier __global__ in line 1 is a
keyword introduced by CUDA and denotes that the saxpy function in line 2-6 will be called
from the CPU but executed on the GPU. saxpy (single precision a times x plus y) computes
the arithmetic expression a ·x+ y with two vectors x and y and a factor a. Since it is possible
to compute every entry in the result vector independently from any other, this is a common
example used in parallel programming. On the GPU, every entry is computed by another
thread. In order to achieve this, as many threads as there are entries in x and y have to
be launched. The number of threads to launch on the GPU is specified through the launch
configuration given after the kernel name. As can be seen in line 23 the launch configuration
is framed with three angle brackets.

14
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1 __global__
2 void saxpy ( float a , float *x , float *y )
3 {
4 int i = b l o c k I d x . x* blockDim . x + t h r e a d I d x . x ;
5 y [ i ] = a*x [ i ] + y [ i ] ;
6 }
7
8 void main ( )
9 {

10 int N = 1<<20 ;
11 float *x , *y , *d_x , *d_y ;
12 . . .
13
14 // a l l o c memory on the GPU
15 cudaMal loc (&d_x , N* sizeof ( float ) )
16 cudaMal loc (&d_y , N* sizeof ( float ) )
17
18 // copy from CPU to GPU memory
19 cudaMemcpy ( d_x , x , N, cudaMemcpyHostToDevice ) ;
20 cudaMemcpy ( d_y , y , N, cudaMemcpyHostToDevice ) ;
21
22 // c a l l the GPU k e r n e l
23 saxpy<<<2048 ,512>>>( 2 . 0 , d_x , d_y ) ;
24
25 // copy r e s u l t back to CPU memory
26 cudaMemcpy ( y , d_y , N, cudaMemcpyDeviceToHost ) ;
27 }

Listing 2.1: CUDA SAXPY example3

CUDA organizes threads into 3-dimensional blocks. These blocks are arranged in a grid that
can take up to three dimensions as well. The first parameter of the launch configuration
in line 23 specifies the number of blocks in the grid and the second parameter specifies
the number of threads to launch per block. In this example, both are one-dimensional, a
call with <<<dim3(2048,0,0), dim3(512,0,0)>>> would be equivalent. Every thread has
access to built-in variables that indicate the thread’s position. In line 4 these variables
are used to determine which entry has to be calculated by the executing thread. The
kernel launch configuration in CUDA is directly related to the execution model described
in Section 2.1.1. The blocks of threads, whose total number can be calculated from the
first launch configuration parameter, are scheduled to run on a streaming multiprocessor.
As the threads of a block are divided into warps, the total number of threads per block
should always be a multiple of 32, so there are no underutilized warps. Furthermore, when
choosing a launch configuration it should be considered that a block should contain many
warps such that latency of global memory access can be hidden successfully. A reason not
to choose the maximum number of threads per block, which is 1024 threads, could be that
not enough resources are available, namely the amount of shared memory or the number
of registers. A kernel call using too much shared memory per block will refuse to run and
is, therefore, easy to detect. If more registers than available are used, their content will
be stored in local memory, which is a fraction of the global memory only accessible by
one thread. This will result in a poor performance and can be avoided by compiling with
the –ptxas-option=-v option to get information on a kernel’s memory usage [NVI15, p. 416].

3This example is taken from [Har12c] with slight modifications.
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Earlier, kernels could only be launched from the CPU. This changed with the release
of CUDA 5.0 as it introduces the Dynamic Parallelism (DP) feature that enables kernels
to be launched from within a CUDA kernel. The same syntax that specifies the launch
configuration enclosed with angle brackets is used in the CPU and GPU code. The launched
child kernel will run asynchronously but always finishes its execution before the parent kernel
returns [Adi14].

2.2.2 Thrust

Thrust is a template library for the C++ programming language and provides a selection of
parallel algorithms. It follows the concept of the C++ Standard Template Library (STL)
to provide generic implementations of algorithms that can be adapted to the user’s needs
easily. Since the concept is already known to C++ programmers there is no new language or
programming paradigm to learn. Thrust was intended to be a high-level CUDA front-end in
the first place but turned into a rather general library that features parallel programming
in many different ways. This includes a CUDA back-end as well as an OpenMP or an Intel
Building Blocks back-end. Therefore, the same code can be used to target different hardware
architectures.

1 struct saxpy
2 {
3 float a ;
4
5 saxpy ( float f a c t o r _ a ) : a ( f a c t o r _ a )
6 {}
7
8 __device__
9 int o p e r a t o r ( ) ( float &x , float &y )

10 {
11 return a * x + y ;
12 }
13 } ;
14
15 void main ( )
16 {
17
18 int N = 1<<20 ;
19 t h r u s t : : h o s t _ v e c t o r x (N) , y (N) ;
20 . . .
21
22 // copy from CPU to GPU memory
23 t h r u s t : : d e v i c e _ v e c t o r d_x = x ;
24 t h r u s t : : d e v i c e _ v e c t o r d_y = y ;
25
26 // c a l c u l a t e saxpy on GPU
27 t h r u s t : : t r a n s f o r m ( d_x . beg in ( ) , d_x . end ( ) , d_y . beg in ( ) , d_y . beg in ( ) , saxpy ( a ) ) ;
28
29 // copy r e s u l t back to CPU memory
30 y = d_y ;
31 }

Listing 2.2: Thrust SAXPY example4

4This example is taken from [Hwu12] with slight modifications.
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Thrust provides two containers of which one is using host memory, the thrust::host_vector,
while the other, the thrust::device_vector, refers to memory in the GPU address space.
To copy data from a host_vector to a device_vector a simple assign statement can be
used, which can be seen in line 23 and line 24 of Listing 2.2. The strengths of Thrust are
generic implementations of fundamental parallel algorithms such as sorting, reduction or
transformation. These can be extended with user defined behavior in order to match specific
requirements. As visible in line 1-13, the user defined behavior is specified through a struct
that overloads the ()-operator. This construct is called a functor in Thrust’s terminology.
The __device__ function qualifier is used, which is also available in CUDA and denotes the
functor will be called from within a GPU kernel.

thrust::transform, called in line 27, takes two input vectors, executes a function with two
parameters using the entries of both input vectors for every index as parameters and stores
the result at the corresponding index of a result vector. The first input vector passed to the
function is d_x. The starting point of the vector d_x as well its end is given to determine
how many elements the transformation will be executed on. The vector d_y is used as second
input vector as well as result vector, which leads to an in-place transformation. The most
important difference to a CUDA implementation of SAXPY is that no launch configuration
has to be specified. Thrust completely abstracts from the fact that the function will be
executed in parallel and can be executed on a GPU. The exact same code can even be
compiled using an OpenMP back-end or a CUDA back-end [Bar15, p. 527].

The high-level character of the Thrust library eases GPU programming significantly if
an algorithm is to be implemented that fits any of the provided templates. In those situations
Thrust provides good performance without the need to dive into the details of a CUDA
implementation. On the downside, Thrust does not enable the user to do fine-grained
optimization and does not give access to all CUDA features, for example, shared memory
[Hwu12], which is important for some kind of algorithms. In these cases, it is very helpful that
Thrust maintains interoperability with CUDA. A thrust::device_vector can be casted to
a usual pointer to GPU memory with thrust::raw_pointer_cast(). Afterwards it can be
passed to any CUDA kernel. Mixing Thrust and CUDA often seems to be a good approach
to get the most performance out of GPU code.

2.2.3 OpenACC

OpenACC follows the well-established approach of OpenMP to provide compiler directives,
which are used to automatically generate code that can be executed on a GPU or other
accelerator cards. The current OpenACC 2.0 specification was released in June 2013 under
the cooperation of many partners from industry and academia. The open standard aims for
code portability between different hardware configurations including hardware from different
vendors.

Only one line has to be added to a sequential SAXPY implementation to achieve off-loading
the loop execution to a GPU with OpenACC. In the example, shown in Listing 2.3, this
is line 3. A simple #pragma acc parallel loop causes a number of complex tasks to be
performed. This includes the copying of all data, which is accessed in the following loop,
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1 void saxpy ( int n , float a , float *x , float *y )
2 {
3 #pragma acc p a r a l l e l l oop
4 for ( int i = 0 ; i < n ; ++i )
5 y [ i ] = a*x [ i ] + y [ i ] ;
6 }
7
8 void main ( )
9 {

10 int N = 1<<20 ;
11 float *x = new float [N ] ;
12 float *y= new float [N ] ;
13 . . .
14
15 saxpy (1<<20 , 2 . 0 , x , y ) ;
16 }

Listing 2.3: OpenACC SAXPY example5

to GPU memory as well as the generation of a GPU kernel that will be launched and the
back-transfer of all computed results to CPU memory. As all the GPU related work is done
by the compiler, OpenACC is a very comfortable and easy to use programming platform,
which is especially true for programmers that are familiar with OpenMP. Unfortunately, it
is likely that a situation occurs, in which the completely unassisted parallelization by the
compiler fails with regard to performance. This is shown in [Har12a] with an OpenACC
parallelization of the Jacobi method, which iteratively solves a linear equation. The key
issue for the example is the code structure with nested loops, which is displayed in Listing
2.4. The outer loop controls the number of iterations and contains another loop that is
parallelized with the #pragma acc parallel loop directive. The compiler parallelizes the
inner loop correctly but enforces the data to be copied back and forth between the CPU and
GPU for every iteration of the outer loop. The performance can be improved by adding a
data directive, #pragma acc data copy(...), surrounding the outer loop, which ensures
the variables named in the brackets will be copied to the GPU before the outer loop begins
and copied back afterwards. A data directive can also be used to hint the compiler a variable
is pointing to GPU memory already, which obviates the need for copying it before executing
code on the GPU. This enables interoperability with other programming techniques. Further
tuning is possible with directives that influence the launch configuration of the generated
kernel as it is shown in [Har12b]. It can be concluded that regardless of which programming
platform used, it is necessary for the programmer to have deeper knowledge on the details of
how code is executed on a GPU in order to exploit the possible performance.

1 while ( i t e r a t i o n > 0)
2 {
3 #pragma acc p a r a l l e l l oop
4 for ( int i = 0 ; i < n ; ++i )
5 {
6 . . .
7 }
8 - - i t e r a t i o n ;
9 }

Listing 2.4: OpenACC nested loop structure of the Jacobi method

5This example is taken from [Har12c] with slight modifications.
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2.3 Modern CPU Architecture

The previous sections explained the GPU hardware architecture that aims to achieve high
performance through massive parallelism. In contrast, the CPU hardware is designed for
fast processing of a sequence of instructions. Since a CPU contained a single processing unit
for decades, this focus is not surprising. As a result, the performance of a CPU could only
be increased if the hardware was optimized to process instructions faster than before. A
number of complex architectural optimizations have been introduced such as pipelining, which
leads to a higher instruction throughput, the installation of multiple functional units and
out-of-order execution, which tries to avoid idle times due to memory access latencies. To do
this, instructions that turn up later in the instruction stream are executed if their parameters
reside on-chip already [HW11, p. 8]. Additionally, a cache hierarchy was introduced with
graded access times for different cache levels to solve the problem of a much faster processor
than memory subsystem. Along with this a prefetching mechanism was established to avoid
cache misses. All those optimizations improved the performance significantly, but the most
important factor for the performance increase of CPUs was a higher clock speed. According
to [Rau13, p. 10] the annual increase of the clock speed came to about 40% between 1987
and 2003. Unfortunately, the higher frequencies were accompanied with elevated power
consumption and heat generation, which made a further increase impossible. For this reason,
CPU clock frequencies are stable at a level of 2 to 3 GHz [HW11, p. 4]. Further improvements
in the performance were only possible through placing multiple independent CPU cores inside
a CPU. Such a CPU is called a multicore CPU. In addition to that, the instruction set of the
x86 architecture has been extended with Single Instruction Multiple Data (SIMD) operations.
These operate on a vector and apply the same instruction simultaneously to a number of data
elements. In 1999, the Streaming SIMD Extensions (SSE) have been introduced that work
on 128-bit registers. The Advanced Vector Extensions (AVX) provide 3-operand versions of
the SSE instructions and enlarge the size of the registers up to 256-bit for AVX2 [Rau13, p.
125][Kus14, p. 327].

To fully utilize the capabilities of a multicore CPU, the workload of a program has to
be split across a number of threads that execute on the different cores in parallel. The
responsibility for this falls to the programmer. An established platform for parallel pro-
gramming with threads is OpenMP, which is a portable standard that provides compiler
directives along with several library functions and environment variables. An OpenMP
implementation of SAXPY replaces line 3 of the OpenACC implementation in Listing 2.3
with #pragma omp parallel for. The code generated by the compiler follows the fork-join
pattern [Ben15]. A program starts with one master-thread, that creates other threads at
the beginning of the parallel region. These execute the code within the parallel region on
different cores in parallel. The same memory can be accessed by all threads, which leads to
the necessity to coordinate memory access. For this reason, OpenMP provides constructs
such as critical sections (#pragma omp critical) and reductions (#pragma omp reduction
(variable: operator)). At the end of the parallel region only the master-threads contin-
ues to exist. All details regarding the thread creation and the data partitioning over the
threads are hidden from the programmer, who can focus on identifying parallelism in the
code.
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2.4 Message Passing Interface

The modern supercomputers are composed of a great number of compute nodes that are
connected through a network. Typically every node has two or four sockets that are equipped
with a multicore CPU. As the memory of different compute nodes is distinct from each other,
the communication cannot rely on shared variables but has to be performed with messages
transferred over the network. The de facto standard for distributed memory programming is
the Message Passing Interface (MPI), which provides a set of functions for communication.
Different implementations of the specification exist, for example, OpenMPI and MVAPICH.

A compute node of a GPU cluster is equipped with additional GPUs that are connected
to the node through PCIe. As described in the earlier sections of this chapter, a GPU
program always contains a CPU part that controls one or more GPUs. The exchange of
data between GPUs connected to the same node can be performed without CPU assistance
through technologies like GPUDirect. This allows the data of GPUs, which are connected
to the same PCI switch, to be copied directly between the GPUs’ global memories. Data
exchange between two GPUs that are not connected to the same node requires the call of
MPI functions. For GPU clusters CUDA-aware MPI is used, which enables passing pointers
to GPU memory to the functions and obviates the need of copying the data to CPU memory
first. The implementation of CUDA-aware MPI functions is still in progress, so far, most
of the blocking functions have been implemented but not all asynchronous functions are
available yet.

Summary In this chapter, the parallel hardware architecture of the GPUs has been
explained. A closer look at the execution model has revealed that applications require a
substantial degree of parallelism to exploit the capabilities of a GPU. The CPUs follow a
different approach that focuses on fast sequential execution and a comparably low degree of
parallelism as the number of cores per CPU is quite limited.
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In this chapter the characteristics of graph algorithms are identified and their impact on
the choice of a suitable hardware configuration is explained. Additionally, the Graph500
benchmark is introduced and finally an overview of the relevant research that has previously
been done on the subject will be given.

3.1 Characteristics of Parallel Graph Algorithms

Graph algorithms have always been an important topic in computer science, as “hundreds of
interesting computational problems are couched in terms of graphs” [CLRS09, p. 587]. A
graph G=(V,E) is a formal abstraction of objects and their relations among each other. These
objects are represented by the vertices of the graph, a set V, and relations between vertices are
specified through a set of edges E, which contains pairs of vertices that are connected to each
other. Due to their capability of expressing complex dependencies, graphs are found in various
application areas. A graphical illustration of a graph can be found in Figure 4.3 in Section 4.2.

It is very common for graph algorithms to compute information related to the underly-
ing graph’s structure. As the structure of a graph can only be detected by traversing it in
a systematic way, this is the main part of many graph algorithms [LGHB07]. Breadth-first
Search, Single-source Shortest Path (SSSP) and Connected Component Labeling (CCL) can
serve as an example for this attribute. To traverse a graph, the neighborhood of the vertices
is examined through following the out-going edges of a vertex to find all adjacent vertices.
The order, in which vertices are chosen to be the starting point for further exploration of the
graph structure, depends on the algorithm, but often a great number of vertices has to be
processed in the same execution step. As these usually can be processed independently, many
graph algorithms benefit from parallelization. This is important because graphs today contain
billions of nodes and edges, which leads to the situation that large graphs can not be stored in
one single computer’s main memory and not be processed by a single processing unit [KKI14].
Therefore, graph data partitioning is the first challenge to be addressed in large-scale graph
processing. As usually little knowledge about the graph structure is present at the time the
graph is distributed over multiple processing units, an uneven distribution is very difficult to
avoid. The problem of unbalanced workload is inherent to parallel graph algorithms as it
does also appear during computation within a single processing unit. The reason for it is that
“graph problems are typically unstructured and highly irregular” [LGHB07] and computations
in graph algorithms directly depend on the graph data. This is also evident from the fact,
that the effort to explore the neighborhood of a vertex is dependent on the number of
out-going edges. The same algorithm will perform different computations on different input
data as the computation steps usually depend on the result of previously processed graph data.
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Following the edges of a graph to explore its structure corresponds to many memory access
operations. This results in a dominance of these operations in comparison with computational
operations [KKI14]. Due to the irregular structure graphs, the memory access patterns have
low locality [LGHB07], which results in high memory access costs. The reason is that modern
processors try to accelerate memory access through exploiting locality. This is done with a
cache hierarchy on CPUs and coalesced memory access on GPUs.

3.2 Mapping to GPU and CPU Clusters

While the last section has presented the characteristics of parallel graph algorithms, this
section aims to point out the potential and difficulties of choosing a CPU or GPU cluster
to run graph algorithms. For graph algorithms, the distribution over multiple nodes is
easily possible through a partitioning of the graph data. Splitting up the graph data is a
necessity as the amount of data easily exceeds the capabilities of a single compute node. As
described in Section 2.1.2 the amount of memory available on a GPU is far less than on a
CPU. Consequently, the number of GPUs necessary to fit the graph data onto on-board
memory will be much higher than the number of CPUs. A CPU contains multiple CPU
cores, therefore, to fully utilize the CPU hardware computations on a single CPU should be
parallelizable. As described before, this is possible for graph algorithms as vertices often
can be processed in parallel. However, the presence of “enough” parallelism is even more
important if a GPU is used. To exploit the capabilities of a GPU, a much higher degree of
parallelism is required as it would for a CPU. If this constraint is met, a GPU is expected
to outperform a CPU. Since the amount of parallelism depends on the input graph, no
statement which hardware configuration will be favored can be made regarding this property.

Accelerating HPC applications with GPUs has been an emerging trend throughout the
last years, “due to their high memory and computational throughput, low costs and power
efficiency” [ZLL14]. In respect to memory bandwidth, the current GPUs exceed high-end
CPUs by far: 240 GB/s bandwidth to off-chip memory on a GPU compare to 76.8 GB/s
memory bandwidth for a recently released CPU from Intel1. In the previous section, it is
revealed that memory access time is very critical to graph algorithm performance. Neverthe-
less, a profound evaluation which hardware configuration has more potential to provide good
graph algorithm performance can not be reasoned with the theoretical maximum value as
these stem from optimum conditions. Because memory access is unstructured, those values
will never be seen when running graph algorithms. Computational throughput in the above
quote refers to the number of Floating-point Operations Per Second (FLOPS). A theoretical
peak performance of 2.91 TFLOPS of a Nvidia K80 [Gün14], which results in 1.455 TFLOPS
for both contained GK210 GPUs, exceeds an Intel Broadwell CPU1 with 604.8 GFLOPS2. As
cost and energy efficiency are usually calculated with regard to the floating-point performance
as FLOPS/Watt and FLOPS/e, it is not hard to imagine a GPU achieves better values
than a CPU. As visible from the fact that the TOP500 list ranks supercomputers according

1IntelR© XeonR© CPU ES-2695 v4 http://ark.intel.com/de/products/91316/Intel-Xeon-Processor-E5-
2695-v4-45M-Cache-2_10-GHz

22.1 GHz × 18 CPU cores × 16 instructions per cycle = 604.8 GFLOPS
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to their FLOPS performance in running a High Performance Linpack (HPL), this is a very
common measure to quantify a system’s performance. A reason for this is that the main part
of many scientific applications are floating-point calculations [HW11, p. 3]. This does not
apply to graph applications, which invalidates the FLOPS performance as a good measure to
estimate how well a graph application will run on a system. For this reason, the cost and
energy efficiency will be evaluated based on the achieved TEPS values in Section 6.3.

3.3 Graph500 Benchmark

The Graph500 list, which was introduced in 2010, ranks supercomputers according to their
performance on running a BFS on a large-scale graph. It was established to provide a metric
that gives useful information on the suitability of supercomputing systems for data-intensive
applications [Gra]. A BFS starts at one source vertex and visits all vertices of the connected
component. In every iteration, all direct, unvisited neighbors of the current set of active
vertices are computed. They become the new set of active vertices, often denoted as the
frontier, in the next iteration. The graph traversal stops if all reachable vertices are visited,
which results in an empty frontier. Performance on running a BFS is measured in Traversed
Edges Per Second (TEPS).

The Graph500 specification includes the following parts:

• Edge list generation

• Graph construction

• Search key selection

• Breadth-first Search

• Validation of results

• Performance statistics

The edge list consists of tuples of vertices that are connected by an edge. A Kronecker graph
generator is used to generate an undirected graph that may contain self-loops and multiple
edges between the same two vertices. Its degree distribution follows a power law, which
means that there is a great fraction of vertices that are connected to many other vertices,
while there are only a few vertices having a low degree. It is permitted to run the generator
in parallel, but the generated data should not contain any locality. The overall number
of vertices N is determined by an input parameter called SCALE with N = 2SCALE . The
number of edges in the edge list is given by N · edgefactor, whereas 16 is a commonly used
value for the edgefactor parameter.

During the graph construction phase, an arbitrary graph representation is built up from the
edge list. This representation is used during 64 BFS runs. The source vertices for these runs
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are sampled randomly from the available vertices with the condition that the source vertex
has to be connected to at least one other vertex. All BFS runs are executed on the same
graph data. The output of one BFS is a parent array, that denotes the predecessor of each
vertex. The predecessor of the source vertex is the source vertex itself. Vertices that have not
been visited during graph traversal, because they are not in the same connected component,
are marked with a “-1”. There is not one unique correct result because two vertices can
discover the same vertex in the same BFS iteration and the parent vertex assignment is not
further specified. Therefore, no check against a reference is employed, but a validation verifies
the result by testing on a number of properties that have to be present if the result is valid.
In the end statistics on the number of traversed edges, the time needed for BFS runs and
reached TEPS are provided. Additional information about input parameter values and time
measured for the graph construction phase are given as well.

Graph500 seems to be a good choice for an application to be implemented in the course of
this thesis for two major reasons. On the one hand, this is the fact, that Breadth-first Search
is the underlying graph algorithm. BFS is one of the most basic and simple graph algorithms,
but “is perhaps the most challenging parallel graph problem because it has the least work
per byte” as is stated in [FDB+14]. A low number of computations per vertex amplifies
the importance of fast memory access to prevent the processing units from underutilization.
Additionally, the other main characteristics of graph algorithms such as unbalanced workloads
and a dependency on the input graph data are inherent in BFS. For this reason, it can be
assumed, that results on BFS can be transferred to a wide range of other graph algorithms.
On the other hand, Graph500 has the advantage of being a benchmark with a detailed
specification. This enables a comparison not only between the implemented CPU and GPU
version but also with published results.

3.4 Related Work

The specification of Graph500 [MWBA10] was published together with reference code. The
current reference implementation (Version 2.1.4) provides a sequential, OpenMP, XMT and
MPI version which can be found on the Graph500 website3. Checconi et al. have published
an improved MPI version for CPU clusters in [CPW+12]. They use 2D partitioning of the
graph data, which is explained further in the next chapter, and introduce a communication
pattern following the rows and columns of the adjacency matrix. The multi-node GPU
implementations of Ueno and Suzumura [US13] as well as the one by Fu, Dasari, Bebee,
Berzins and Thompson [FDB+14] follow the same overall structure and focus on local GPU
specific optimization. A greater number of publications targets a single GPU implementation
of BFS such as [MGG12], [LWH10] and [ZLL14]. The first one by Merrill, Garland and
Grimshaw focuses on load-balancing through warp cooperation, while the other ones propose
fast GPU queue implementations.

Many papers on GPU implementations include a section with a comparison to a CPU
implementation and speed-ups of 100-200x are stated. In their paper [LKC+10] Lee et al.
from the Intel Corporation showed these values cannot be achieved in comparison against

3http://www.graph500.org/referencecode
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a fully tuned CPU implementation. A similar finding is made by Jaros and Pospichal
[JP12]. As these authors focus on a fair comparison of performance only, they do not in-
clude programming effort or cost and energy efficiency in their comparison. With regard
to programming effort some recently developed frameworks for graph algorithms on GPUs
have to be mentioned. Very promising are Gunrock [PWW+15] and MapGraph [FPT14] as
these aim to provide a graph algorithm building kit, that eases the development of custom
graph algorithms optimized for GPUs. The importance of the topic can also be seen from
the fact, that Nvidia announced a new graph library called nvGRAPH4 to be released with
the next CUDA versions. Unfortunately, none of the existing frameworks targets multi-node
configurations and for this reason, they have not been taken into account for the comparison
of this thesis.

Summary This chapter described the general graph algorithm characteristics that can
also be found in BFS, which is the basis of the Graph500 benchmark. The contemplation of
the CPU and GPU hardware architectures with regard to graph algorithm requirements reveals
that it is difficult to draft an expectation regarding the finally delivered performance of the
different hardware configurations.

4https://developer.nvidia.com/nvgraph
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This chapter introduces the parallel BFS algorithm implemented for this thesis. It includes an
explanation how the algorithm works with an example and a pseudo code. Information on
the graph partitioning over the processes and representation is given in the first part of this
chapter.

4.1 Graph Partitioning and Representation

To perform a parallel Breadth-first Search on a large-scale graph, the graph data has to be
partitioned and distributed over the processes participating in the search. There are two
commonly used strategies to assign parts of the graph data to the processes, which are named
1D partitioning and 2D partitioning. 1D partitioning assigns each vertex to a process. For
every assigned vertex the owning process has information on all the vertices that are adjacent
to it. It will also keep track of the states associated with that vertex. Depending on the
algorithm used, this can include the information whether a vertex has been visited during
the graph traversal, information regarding the predecessor of a vertex or the level in which a
vertex was discovered. During graph traversal, a process that discovers a vertex, owned by
another process, has to notify the owning process to change the vertex’s state. Therefore, 1D
partitioning leads to a communication structure that is determined by the graph structure
and has a high overall communication cost.

2D partitioning follows another approach, which is based on a grid of processes that com-
municate in a regular way. This is achieved by assigning parts of the graph’s adjacency
matrix to the processes, which is illustrated in Figure 4.1. The example uses four processes
P0 to P3 that are organized in a 2 × 2 grid. The emphasized grid lines indicate how the
adjacency matrix is split across the processes. For example, the edge (2, 0) is assigned to
process P0, whereas (2, 4) is assigned to P1. Distributing the edges and not the vertices
leads to the situation that information regarding the same vertex is present on multiple
processes and needs to be synchronized in every BFS iteration. With 2D partitioning, it is
determined which processes need to synchronize through the way the processes are arranged.
For the most part, communication is restricted to processes located in the same row or
column. This will be explained further in the next section. Reducing the number of possible
communication partners and forcing the communication pattern into a regular structure,
reduces the complexity of the algorithm and is beneficial for a GPU implementation. This is,
because the inter-node communication is issued from the host CPU and, therefore, a regular
structure obviates the need for communication between GPU and CPU to determine which
data that is located on the GPU has to be sent to other processes. 2D partitioning is used by
the state of the art multi-node CPU and GPU implementations [CPW+12] [US13]. Therefore,
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Figure 4.1: 2× 2 grid of processes

the choice of this partitioning approach for both implementations does not privilege one over
the other in the final comparison.

The decision of how to represent graph data is usually a decision between an adjacency list
and adjacency matrix based approach. A representation with an adjacency matrix takes
up a lot of memory, O(|V |2), which is especially adverse for sparse graphs. In return, such
a representation gives fast access to the information whether a specific edge exists or not
[CLRS09, p. 589]. As the BFS algorithm does not make use of this property and very large
and sparse graphs are considered here, an adjacency list based representation is the better
choice. This is because the memory requirements grow linearly with the number of edges
in the graph and the adjacency list based approach enables fast iteration over all neighbors
of a vertex, which is necessary during graph traversal. Allocating a separate list for every
vertex will be very inefficient on the GPU as the addresses of the first list element will
“always be aligned to at least 256 bytes” [NVI15, p. 80]. Due to padding a lot of memory
would be left unused. For this reason a concatenated adjacency list together with an indices
array will be used, equivalent to the representation in [HN07]. An illustration of the graph
representation is given in Figure 4.2. It depicts the same graph as the adjacency matrix
above. However, for the conduction of the parallel BFS algorithm that is explained in the
next chapter, every process builds up a graph representation that only represents its assigned
part of the adjacency matrix. The indices array contains a value for every vertex, which

0 3 5 9 12 15 18 22 24
0 1 2 3 4 5 6 7 8

2 3 4 5 7 2 4 5 6 3 6 7 0 2 6 1 2 6 2 3 4 5 1 3
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

indices

neighbors

Figure 4.2: Graph representation
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specifies the index of the start of the adjacency list in neighbors. Indices are used instead of
pointers to enable copying the structure between CPU and GPU memory.

4.2 Algorithm Structure

Both, the GPU-enabled versions of Graph500 and the CPU-only version, use the same basic
algorithm structure, which will be explained in this section. The behavior of the algorithm
has been split into a number of functions regarding computations and communication. Listing
4.1 presents the layout of these functions in pseudo code. This section aims to provide
an overview of the inter-process communication patterns and the computations that are
performed. Therefore, no parameters are listed for any of the functions as those can be
different for the GPU and CPU implementation and this section focuses on the functionality
of the algorithm. The implementation details will be described in the next chapter. The
overall structure of the algorithm implemented for this thesis mainly follows the approach
described in [FDB+14] with a difference in the communication pattern. Through an additional
communication step Fu et al. ensure that exactly one process will compute the predecessor
of a vertex. As the additional communication has proven to be more overhead than some
unnecessary computations for my implementation, this step is omitted.

0

4

2

6 5

3 1

7

Figure 4.3: Graph

Figure 4.3 shows a small graph with eight nodes, that will be used as an example during
this chapter. The nodes, numbered from 0 to 7, are colored depending on the iteration, in
which they are discovered in a BFS starting at vertex 0. Vertices that are found in the same
iteration are said to be found at the same BFS level. For example, all blue colored vertices
are found at the second BFS level. The parallel BFS algorithm follows a level-based approach,
which means that all processes have to be done with exploring the current level until any
process proceeds with the next.

The overall work is split in a graph traversal part (lines 8-24 of Listing 4.1) and final result
computation (lines 27-29). The result will be an array that contains information on the
predecessor of every vertex. The algorithm is based on the idea that one row of processes

29



4 Parallel Breadth-First Search

1 // s e t r o o t i n IN if r o o t f a l l s i n range o f p r o c e s s
2 // s e t r o o t i n VISITED if r o o t f a l l s i n range o f p r o c e s s
3
4 int l e v e l = 0 ;
5 int f r o n t i e r = t r u e ;
6
7 // graph t r a v e r s a l
8 while ( f r o n t i e r )
9 {

10 u p d a t e _ l e v e l s _ w i t h _ i n ( ) ;
11 compute_expans ion ( ) ;
12 update_as s i gned ( ) ;
13
14 a l l r e d u c e _ o u t ( ) ; #row communicat ion
15 u p d a t e _ v i s i t e d ( ) ;
16 upda te_ l eve l s_w i th_out ( ) ;
17 f r o n t i e r = v e r t i c e s _ i n _ o u t ( ) ;
18
19 a l l r e d u c e _ f r o n t i e r ( ) ; #g l o b a l communicat ion
20 broadca s t_nex t_ in ( ) ; #column communicat ion
21
22 r e s e t _ o u t ( ) ;
23 ++l e v e l ;
24 }
25
26 // computat ion o f p r e d e c e s s o r s
27 compute_predeces so r s ( ) ;
28 a l l r e d u c e _ r e s u l t s ( ) ; #row communicat ion
29 g a t h e r _ r e s u l t ( ) ; #d i a g o n a l communicat ion

Listing 4.1: Structure of the parallel Breadth-first Search algorithm

collectively discovers the predecessors of a set of vertices. For the example, provided in
Figure 4.4, this means that P0 and P1 are responsible for detecting the predecessors of
vertices 0-3 while P2 and P3 do the same for the vertices 4-7. These numbers correspond to
the vertical numbering of the rows in the example. Each BFS iteration, which corresponds
to one execution of the while loop in Listing 4.1, builds up a set of vertices, named out
in the following, that includes the vertices, which were discovered during that iteration.
This set is the starting point for further discovering in the next iteration and is then called
in. All processes in one row build up one out, while in is shared by all processes in one column.

Figure 4.4 shows the initial state of the arrays visited, assigned and levels exemplary for
process P0. The array levels is as long as the number of matrix columns plus the number of
rows that are assigned to a process. For the purpose of demonstrating the array has been
split in Figure 4.4. The first part of the levels array of P0 is depicted vertically on the left
side, while the second part is depicted horizontally above the adjacency matrix. As can be
identified from Listing 4.1, update_levels() is called twice in each iteration. The first call
in line 9 updates the horizontal part and the second call in line 16 updates the vertical part
with the current value of level. In the visited array of a process vertices are marked that
have been discovered by another process of the same row or the process itself. In contrast, a
vertex is marked in assigned only if it was discovered by the process itself. As mentioned
in the previous section, information is duplicated across the processes. P0 and P1 maintain
the information regarding the same vertices (0-3) in visited and the vertical part of levels.
These arrays have to contain the same values on all processes located in the same row, while
values of assigned are independent. Additionally, the horizontal levels array should contain

30



4.2 Algorithm Structure

1 1
1 1 1 1

1 1 1
1 1 1
1 1 1
1 1 1 1

1 1
1 1 1

0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7

-1 -1 -1 -1levels

-1
-1
-1
-1

levels

0
0
0
0

assigned

0
0
0
0

visited P0 P1

P2 P3

Figure 4.4: Before start of BFS

the same values for processes in the same column such as P0 and P2. During the predecessor
computation phase, a process will compute a predecessor only for those vertices that have
been set in assigned.

Before the graph traversal starts, the root vertex has to be set in the in array and gets marked
as visited. This corresponds to the comments at the top of Listing 4.1 and is illustrated in
Figure 4.5 for root vertex 0. The in-vertices are represented as red arrows pointing to one
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Figure 4.5: Set values for root vertex 0

column and are set for all processes in that column. The entry in visited that corresponds to
the root vertex 0 has been circled. Not only P0 will mark vertex 0 as visited but also P1.
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The first step in each iteration is to update levels for all vertices in in. In the first it-
eration in contains only the root vertex. The corresponding entry in the horizontal levels
array has been marked with a circle again in Figure 4.6 . Additionally the results of the func-
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Figure 4.6: Results of update_levels(), compute_expansion() and update_assigned()

tions compute_expansion() and update_assigned are depicted. compute_expansion()
aims to discover all unvisited vertices reachable from the vertices contained in in. The vertices
that are found by compute_expansion(), are highlighted with a red circle. Those three
vertices correspond to blue colored ones in the graph depicted in Figure 4.3. The vertices
2 and 3 will be set in the local out array of P0 and vertex 4 will be set in local the out
array of P2. The call of update_assigned in line 12 of Listing 4.1 sets the corresponding
entry in assigned if a vertex is set in the local out array. This is illustrated through the blue
marking on the left side of Figure 4.6. After the graph traversal phase, an entry of assigned
will be set if the corresponding vertex was discovered by the process in any of the BFS
iterations. There is a possibility that the same vertex is set in the local out array of multiple
processes in the same row. In this case, all of those processes mark the vertex as assigned and
will calculate a predecessor. All those predecessors are valid as Graph500 does not specify
which vertex to choose as predecessor in the case of concurrent discovery by multiple processes.

The next step is the concatenation of out for all processes in one row. This refers to
the call of allreduce_out() in line 14 of Listing 4.1. All vertices contained in the concate-
nated out are represented by a green, horizontal arrow in Figure 4.7. The combined out of
P0 and P1 contains two vertices, the out of P2 and P3 contains one vertex. In this iteration,
only the processes P0 and P2 contribute to the concatenated out. The row-wide out is used
to update levels and visited for all processes in the row. The result of these function calls are
marked in the horizontal levels and visited array.

Every process checks if there is any vertex set in out. The result of this check is assigned
to frontier in line 17. If no vertex is set in any of the row-wide concatenated out arrays
there are no more reachable, unvisited vertices and the termination condition is met. A
global MPI_Allreduce() on the loop control variable frontier ensures all vertices have the
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Figure 4.7: Results of concat_row_out(), update_visited() and update_levels()

correct value of frontier. The computed row-wide out arrays are used as in in the next
iteration. Therefore, they are broadcasted to all processes in the column by the processes
in the diagonal. This relationship becomes clearer if the green arrows in Figure 4.7 are
compared to the red ones in Figure 4.8, which presents the setup for the second iteration.
The in vertices correspond to the vertices that are directly reachable from the root vertex 0
as can be identified from the graph in Figure 4.3.
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Figure 4.8: Setup for the second iteration

After the graph traversal, each process computes the predecessors for its assigned vertices.
This information can be computed from the horizontal and vertical part of levels. The vertices
2 and 3 have been discovered in level 0, which can be deduced from the 0 entries in the
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4 Parallel Breadth-First Search

corresponding fields of the vertical part of levels. A vertex that was contained in the in array
in the same iteration is a valid predecessor. As one can see in the horizontal part of the levels
array in Figure 4.8, this is true for vertex 0. This vertex will be set as a predecessor for vertex
2 as well as 3 in compute_predecessors(). These results are merged for the processes in a
row and then gathered to build up the global result.

Summary The adjacency matrix is split across the processes using the 2D partitioning
approach, which leads to a regular communication structure that follows the rows and columns.
To show the functionality of the algorithm, it was gone through the first iteration of a BFS
on a small graph.
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This chapter introduces the implementation of Graph500 that is used for the measurements in
the next chapter. The focus will be on the implementation of the parallel BFS algorithm that
has been explained before. Optimizations that were undertaken for the GPU and the CPU
version will be described.

5.1 Parallel BFS Implementation for GPUs

Section 4.2 explains the parallel BFS algorithm that has been implemented for this thesis.
To give a better overview, the computational steps of the algorithm have been presented as
function calls in Listing 4.1. Those functions can be divided into two groups: the ones that
carry out communication between the processes and the ones that perform computations on
the graph data and update the status values of the vertices. The former map to similar MPI
function calls in the CPU and the GPU version, while the implementation of the latter differs
to target the specific hardware. As described in Chapter 2, different GPU programming
platforms exist that focus on a high level of abstraction or provide a low-level programming
model, which offers many opportunities for optimization. As the programming effort will be
taken into account for the final evaluation, those different approaches have been tested to find
the GPU programming platform that has the potential of delivering the best performance at
the lowest programming effort.

5.1.1 Selection of a GPU Programming Platform

The compute_expansion() function, described in the previous chapter, implements the graph
traversal and can be seen as the core part of the BFS algorithm. The adjacency lists of all
active vertices are traversed to find yet unvisited neighbors, whose status will be set to active
for the next iteration. This procedure is reflected in the OpenACC implementation of the
compute_expansion() function, provided in Listing 5.1. The data clause in line 3 states
that d_in, d_out, d_visited, d_indices and d_adjacencyarray are pointers to the GPU’s
global memory. This obviates the need of copying the data before the OpenACC accelerated
loop is executed. The loop in line 6 iterates over all vertices assigned to the executing process
and checks if they are set in line 8. If this is the case, the starting index and the ending index
of the adjacency list are calculated. The loop in line 12 iterates over all adjacent vertices and
sets them in the d_out array if they are unvisited.
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1 void compute_expans ion ( vertex_type * d_ ind i c e s , vertex_type * d_ad jacencya r ray , char *
d _ v i s i t e d , char *d_in , char *d_out , vertex_type m a t r i x _ s i z e )

2 {
3 #pragma acc data d e v i c e p t r ( d_in , d_out , d _ v i s i t e d , d_ ind i c e s , d _ a d j a c e n c y a r r a y )
4 {
5 #pragma acc p a r a l l e l l oop
6 for ( int i = 0 ; i < m a t r i x _ s i z e ; ++i )
7 {
8 if ( d_in [ i ] )
9 {

10 const vertex_type n e i g h b o r s _ s t a r t = d _ i n d i c e s [ i ] ;
11 const vertex_type ne ighbor s_end = d _ i n d i c e s [ i+1 ] ;
12 for ( int j = n e i g h b o r s _ s t a r t ; j < ne ighbor s_end ; ++j )
13 {
14 vertex_type n e i g h b o r = d _ a d j a c e n c y a r r a y [ j ] ;
15 if ( ! d _ v i s i t e d [ n e i g h b o r ] )
16 {
17 d_out [ n e i g h b o r ] = t r u e ;
18 }
19 }
20 }
21 }
22 }
23 }

Listing 5.1: Implementation of compute_expansion() with OpenACC

As described in Section 2.2.2, Thrust provides generic implementations of parallel algorithms
like transformations, reductions and for-each loops that can be customized with functors.
The functor that implements the adjacency list traversal, compute_expansion(), takes the
same parameters as the OpenACC compute_expansion() function. This is visible in line
7 and 8 of Listing 5.2. The implementation of the functor is not shown as it resembles the
lines 8 to 20 of the OpenACC implementation. The functor is used to customize the for-each
template. The call of thrust::for_each() is depicted in line 4 to 8 of Listing 5.2. A glance
at the code reveals that Thrust cannot demonstrate its strength of enabling a high level of
abstraction and providing readable code for this problem. The main reason for this is visible
from the OpenACC implementation. In line 10 and 11, access to the outer for-loop’s running
index is required, which also applies to the functor implementation and cannot be avoided. As
thrust::for_each() abstracts from the loop index as usual for-each loops, this information
has to be added manually. In order to achieve this, every entry of d_in is mapped to its
corresponding index with thrust::make_tuple() and thrust::make_zip_iterator() is
called to enable iterating over these tuples.

1 t h r u s t : : c o u n t i n g _ i t e r a t o r<vertex_type> m a t r i x _ i n d e x _ s t a r t (0 ) ;
2 t h r u s t : : c o u n t i n g _ i t e r a t o r<vertex_type> matr ix_index_end = m a t r i x _ i n d e x _ s t a r t +

m a t r i x _ s i z e ;
3
4 t h r u s t : : f o r_each (
5 t h r u s t : : m a k e _ z i p _ i t e r a t o r ( t h r u s t : : make_tuple ( m a t r i x _ i n d e x _ s t a r t , d_in . beg i n ( ) ) ) ,
6 t h r u s t : : m a k e _ z i p _ i t e r a t o r ( t h r u s t : : make_tuple ( matr ix_index_end , d_in . end ( ) ) ) ,
7 compute_expans ion ( d _ i n d i c e s . data ( ) , d _ a d j a c e n c y a r r a y . data ( ) ,
8 d _ v i s i t e d . data ( ) , d_out . data ( ) ) ) ;

Listing 5.2: Implementation of compute_expansion() with Thrust

With regard to programming effort and code complexity, Thrust only seems to be a valid
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option if the algorithm to be implemented exactly matches one of the generic algorithms.
In that case, the implementation with Thrust is very comfortable. This can be seen from
the implementation of the vertices_in_out() function in Listing 5.3, which calculates a
boolean value that indicates if any vertex in d_out is set or not. The thrust::reduce()
function is used to compute the bit-wise OR-conjunction of all values in d_out in just one line.

1 f r o n t i e r = t h r u s t : : r educe ( d_out . beg i n ( ) , d_out . end ( ) , 0 , t h r u s t : : b i t _ o r<char>( ) ) ;

Listing 5.3: Implementation of vertices_in_out() with Thrust

The third programming platform that has been taken into account for the GPU implemen-
tation is CUDA. The CUDA kernel that implements the compute_expansion() function is
given in Listing 5.4. The main difference in comparison to the OpenACC implementation is
that no for-loop is used to iterate over all vertices’ entries in d_in. Instead, every entry of
d_in is assigned to a separate thread.

1 __global__ void compute_expans ion ( vertex_type * i n d i c e s , vertex_type a r r ay _ l en g t h ,
vertex_type * a d j a c e n c y a r r a y , unsigned int * in , unsigned int * out , unsigned int *
v i s i t e d )

2 {
3 unsigned int g l o b a l _ t h r e a d _ i d = g e t _ g l o b a l _ t h r e a d _ i d ( ) ;
4 unsigned int l a n e _ i d = g l o b a l _ t h r e a d _ i d % 32 ;
5 unsigned int in_chunk = i n [ g l o b a l _ t h r e a d _ i d / 3 2 ] ;
6 bool v e r t e x _ a c t i v e = i s _ b i t _ s e t ( in_chunk , l a n e _ i d ) ;
7
8 if ( v e r t e x _ a c t i v e )
9 {

10 for ( int i = i n d i c e s [ g l o b a l _ t h r e a d _ i d ] ; i < i n d i c e s [ g l o b a l _ t h r e a d _ i d+1 ] ; ++i )
11 {
12 vertex_type n e i g h b o r = a d j a c e n c y a r r a y [ i ] ;
13 if ( ! i s _ n e i g h b o r _ v i s i t e d ( ne ighbor , v i s i t e d ) )
14 {
15 s e t _ b i t ( ne ighbor , out ) ;
16 }
17 }
18 }
19
20 }

Listing 5.4: Implementation of compute_expansion() with CUDA

The first step for every thread is to check if its corresponding vertex is active or not. A
function, get_global_thread_id(), is used to determine the unique id across all launched
threads. The ids range from zero to the overall number of vertices assigned to the processes
and indicate which vertex a thread is responsible for. The current states of the vertices in
d_in are stored in 32-bit integers of which each bit denotes the state of a vertex. For this
reason, 32 threads with continuous thread-ids request the same integer from d_in, which
can be seen in line 5. Every thread out of the 32 tests another bit and stores the result in a
boolean variable called vertex_active. Based on this value, each thread decides whether to
perform the exploration of the adjacency list of its vertex. This is implemented in the same
way as it is in the OpenACC version.

A comparison of the performance of the initial implementations has shown that CUDA
and Thrust deliver better results than OpenACC, with Thrust being ahead of CUDA. For
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the sake of a fair comparison it has to be mentioned, that the CUDA version already uses
integer instead of char as the datatype of d_in. A single integer stores the status values of
32 vertices, while a char only stores one. Therefore, the use of integers reduces the memory
requirements significantly, which is important to enable the BFS on large graphs since the
global memory of the GPU is very limited. The code examples of the compute_expansion()
function have shown that is far easier to express the graph traversal in OpenACC and CUDA
than in Thrust. Finally, CUDA has been chosen as programming platform to implement the
functions as it has more potential for further optimization. The reason for this is that CUDA
gives access to shared memory and other special features of the GPUs. The only exception
is the vertices_in_out() function, which is implemented with a thrust::reduce() call
as an own CUDA implementation is not expected to give as good results as the optimized
thrust::reduce() function.

5.1.2 Optimization

The initial CUDA implementation has been profiled with nvprof1. According to the profiling
results, the execution of the compute_expansion() function takes up about 80% of the
overall GPU execution time in the initial CUDA implementation. This also includes calls
to cudaMemcpy. In contrast, the GPU implementations of update_levels(), update_-
assigned() and update_visited() to do not consume more than 1-2% of the runtime for
the unoptimized GPU implementation. For this reason all optimizations explained in this
section target the compute_expansion() function. The second largest amount of GPU time
(about 14%) is spent on the compute_predecessors() function. As the structure of the
compute_predecessors() kernel is similar to the one of compute_expansion(), it will also
benefit from all optimizations introduced for the compute_expansion() function. As the
initial implementation delivers a limited performance, further optimization is necessary. This
section introduces the main optimizations that have been tested.

Warp Cooperation The main performance problem of the initial implementation of com-
pute_expansion(), provided in Listing 5.4, is unbalanced work across the threads. On the
one hand, threads will correspond to non-active vertices and not execute the rather expensive
loop in line 10, but they will stall and block the resources of the GPU as long as other threads
in the same warp have not finished the loop execution. On the other hand, the number
of loop iterations is determined by the length of the adjacency list that is to be processed.
Therefore, not all threads with active vertices will perform the same number of iterations. All
threads of a warp will occupy the GPU resources until the last thread has finished the loop
execution. This situation can be improved with an optimization introduced by Merill et al.
[MGG12]. They suggest that all threads of a warp should cooperate to process the adjacency
lists of the active vertices assigned to the warp. The adjacency list of an active vertex can be
divided into blocks, which are collectively processed by all threads in the warp. One after
another, the adjacency lists of all active vertices assigned to the warp are processed. Listing
5.5 shows the implementation of this optimization.

1http://docs.nvidia.com/cuda/profiler-users-guide/
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1 __global__ void compute_expans ion ( vertex_type * i n d i c e s , vertex_type a r r ay _ l en g t h ,
vertex_type * a d j a c e n c y a r r a y , unsigned int * in , unsigned int * out , unsigned int *
v i s i t e d )

2 {
3 unsigned int g l o b a l _ t h r e a d _ i d = g e t _ g l o b a l _ t h r e a d _ i d ( ) ;
4 int b l o c k _ o f f s e t = get_b lock_ id ( ) * NUM_WARPS_PER_BLOCK;
5 int t h r ead_ id = g e t _ b l o c k _ l o c a l _ t h r e a d _ i d ( ) ;
6 unsigned int l a n e _ i d = th r ead_ id % 32 ;
7 int warp_id = th r ead_ id / 32 ;
8
9 volatile __shared__ int communicat ion [NUM_WARPS_PER_BLOCK ] ;

10 // assumes the number o f t h r e a d s pe r b l o c k i s a m u l t i p l e o f w a r p s i z e
11
12 //32 t h r e a d s i n a warp r e q u e s t one word from g l o b a l memory (32 - b i t i n t e g e r )
13 unsigned int in_chunk = i n [ b l o c k _ o f f s e t+warp_id ] ;
14 // e v e r y t h r e a d checks if c o r r e s p o n d i n g IN b i t i s s e t
15 bool v e r t e x _ a c t i v e = i s _ b i t _ s e t ( in_chunk , l a n e _ i d ) ;
16
17 vertex_type n = i n d i c e s [ g l o b a l _ t h r e a d _ i d ] * v e r t e x _ a c t i v e ;
18 vertex_type n_end = i n d i c e s [ g l o b a l _ t h r e a d _ i d+1 ] * v e r t e x _ a c t i v e ;
19
20
21 // whole warps a s s i s t s i n g a t h e r i n g n e i g h b o r s and check on v i s i t e d
22 while ( __any ( n_end - n ) )
23 {
24
25 if ( n_end - n )
26 {
27 communicat ion [ warp_id ] = l a n e _ i d ;
28 }
29
30 int n_gather ;
31 int n_gather_end ;
32
33 int winne r = communicat ion [ warp_id ] ;
34 if ( w inne r == l a n e _ i d )
35 {
36 n_gather = n ;
37 n_gather_end = n_end ;
38 n = n_end ;
39 }
40
41 n_gather = __shf l ( n_gather , w inne r ) + l a n e _ i d ;
42 n_gather_end = __shf l ( n_gather_end , w inne r ) ;
43
44 vertex_type n e i g h b o r ;
45 while ( n_gather < n_gather_end )
46 {
47 n e i g h b o r = a d j a c e n c y a r r a y [ n_gather ] ;
48
49 // s t a t u s lookup and p o s s i b l y s e t v e r t e x i n out
50 if ( ! i s _ n e i g h b o r _ v i s i t e d ( ne ighbor , v i s i t e d ) )
51 {
52 s e t _ b i t ( ne ighbor , out ) ;
53 }
54 n_gather += warpS i ze ;
55 }
56
57 }
58
59 }

Listing 5.5: compute_expansion() optimized with warp cooperation
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The first part of the compute_expansion() is similar to the first implemented version: all
threads of a warp request the same integer from d_in and every thread checks if its correspond-
ing bit is set. This value is assigned to the vertex_active variable, which can be observed in
line 15 of Listing 5.5. Before that, a number of auxiliary variables have been defined with one
major difference to the initial implementation. In line 9, an array, named communication,
is allocated in shared memory. It has as many fields as there are warps in the thread-block
and is used by the threads of a warp to communicate. The qualifier volatile is necessary to
prevent the compiler from optimizing the memory location. Otherwise, it would be possible
that the compiler locates the memory in the local registers of the threads. This would lead to
the situation that writes to the fields of the array would not be visible to other threads. In
lines 17 and 18, every thread calculates the starting and ending index of its vertex’ adjacency
list or sets them to 0 if the vertex is non-active. The loop in line 22 to 57 will be executed
by all threads of the warp together as long as there are unprocessed adjacency lists. Every
thread that still needs the adjacency list of its vertex to be processed, writes its lane_id,
which is the position within the warp, in the warp’s field of the communication array. This is
visible in lines 25 to 28. As the communication array is located in shared memory, the writes
to the same memory location lead to a bank conflict (explained in Section 2.1.2) and will be
executed in sequence. The last write succeeds and determines whose thread’s adjacency list
is the next to be processed collectively by the threads of a warp. In line 33, every thread
reads the entry of the shared memory array that states the “winner”. Since all threads are
scheduled to execute the same instruction synchronously, it is not possible that any thread
reads the corresponding field of communication before all threads have completed the write
operation in line 27. The winning thread communicates the start and end of its vertex’
adjacency list to all other threads (lines 41 and 42). For this propose, the Kepler intrinsic
shuffle instruction __shfl is used, which provides the functionality of a warp-wide broadcast.
Every thread adjusts the starting index with its lane_id, which ensures all threads process
a different vertex from the adjacency list. The processing is done in the same way as before,
visible in line 47 to 53. Afterwards, every thread adds 32 to its index such that the threads
will process the next block of 32 vertices from the adjacency list. This process is repeated
until the ending index of the adjacency list is reached.

The described approach ensures that the work is split across the threads of a warp and
reduces the waste of compute resources. A significant increase of the performance can be
observed for this optimization. The effects of the optimizations described in this chapter are
presented in detail in Section 6.4 of the next chapter.

Memory Access Pattern The second optimization addresses the access of values from
d_in and tries to optimize the access pattern in a way such that coalesced memory access is
possible. As described in Section 2.1.2, the memory access can be coalesced by the device
if the threads of the warp access continuous addresses of the global memory at the same
time. In the previous versions of compute_expansion() all threads of a warp access the
same integer from the global memory. There are 32 times more threads than entries in
d_in. This is changed for the optimization of the memory access pattern. The number of
threads is reduced to match the number of entries in d_in. Every thread accesses the integer
corresponding to its global_thread_id. As the threads are divided into warps according
to their thread-id, the threads of a warp will access continuous addresses, which enables
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memory coalescing. Afterwards, the thread with the lane_id 0 starts and broadcasts the
value it obtained from d_in to all other threads in the warp. The integer is processed in the
cooperative fashion that has been explained before. One after another, every thread of the
warp broadcasts an integer value such that all values from d_in are processed. In comparison
to the previously described optimization, the change of the access pattern makes only a small
improvement on the performance.

Dynamic Parallelism The optimization that introduced the warp cooperation to the com-
pute_expansion() function aims to reduce unbalanced workloads of threads in the same
warp. Unfortunately, unbalanced work of warps is not handled through this optimization
as the work is only redistributed between the threads within the same warp. Dynamic
Parallelism is used to address this problem. As every thread has to calculate the start
and end index of its corresponding vertex’ adjacency list, the total number of adjacent
vertices can be calculated with negligible overhead. If this number exceeds a threshold, the
task of processing the adjacency list is handed over to a child kernel. The thread calls a
compute_expansion_device() kernel with a launch configuration such that the number
of threads in the child grid matches the number of vertices in the adjacency list. Every
thread in the child grid processes one vertex of the adjacency list. This means that the
status of the vertex is checked and it is added to d_out if it is still unvisited. After calling
compute_expansion_device(), the thread in the parent grid continues to assist in pro-
cessing the adjacency lists of other threads in its warp as before. The only difference is
that it will not try to write its lane_id in the shared memory as the adjacency list of its
vertex is asynchronously processed by the child kernel instead. This procedure does not lead
to fully balanced workloads between the warps, but it reduces the possible spread of imbalance.

Unfortunately, this optimization attempt did not improve the performance due to a lot
of overhead when launching a child kernel. If the chosen threshold is too small, it even leads
to a great decrease in the performance.

5.2 Parallel BFS Implementation for CPUs

The functionality that has been implemented in GPU kernels for the GPU implementation is
realized as OpenMP parallelized for-loops in the CPU implementation. The code implementing
the equivalent functionality to the compute_expansion() kernel is shown in Listing 5.6. The
code in line 4 to 16 is very similar to the lines 8 to 18 in the initial GPU kernel in Listing 5.4.
The major difference is that in, out and visited are char arrays in the CPU version. This
obviates the need for functions that read and write the correct bit and ensure those actions
are atomic if necessary. Line 2 reflects the architectural difference between the CPU and
the GPU hardware. The GPU version does not need a loop as it is unrolled and a separate
thread is launched to execute one loop iteration. On the other hand, the CPU executes one
iteration of the loop after another. With the OpenMP directive in line 1, it is possible to split
the loop execution across multiple threads, but those will still run their assigned iterations in
sequence. The optimizations that haven been undertaken for the CPU implementation will
be described in the following part.
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1 #pragma omp p a r a l l e l f o r
2 for ( int i = 0 ; i < m a t r i x _ s i z e ; ++i )
3 {
4 if ( i n [ i ] )
5 {
6 const vertex_type n e i g h b o r s _ s t a r t = i n d i c e s [ i ] ;
7 const vertex_type ne ighbor s_end = i n d i c e s [ i + 1 ] ;
8 for ( int j = n e i g h b o r s _ s t a r t ; j < ne ighbor s_end ; ++j )
9 {

10 vertex_type n e i g h b o r = a d j a c e n c y a r r a y [ j ] ;
11 if ( ! v i s i t e d [ n e i g h b o r ] )
12 {
13 out [ n e i g h b o r ] = t r u e ;
14 }
15 }
16 }
17 }

Listing 5.6: Neighborhood exploration on the CPU

Loop Structures The first optimization applied to the CPU implementation, besides the
usage of asynchronous MPI communication whenever possible, was a simplification of the
structure. Functions of Listing 4.1 that are called one after another have been implemented
as separate for-loops in the initial version. Those loops with the same number of iterations
and often iterating over the same array, in or out, have been merged. This reduces the
overhead for thread creation and splitting the work across the threads. Furthermore, the
C++ std::fill() function calls, used for the array initialization, in the beginning, have
been replaced with OpenMP parallelized loops.

Scheduling Strategy An equal distribution of the loop iterations of compute_expansion()
across the threads does not necessarily lead to an equally distributed workload. This is
because the amount of work a thread has to perform is related to the number of active vertices
in its part of in. With a static assignment of the loop iterations to the threads, a waste
of computational resources is likely to occur as some threads will finish earlier than others.
OpenMP dynamic scheduling seems to be the solution for this problem. The scheduling
clause determines the assignment of work to threads. The use of #pragma omp parallel
for schedule(dynamic, 10) will assign chunks of ten loop iterations to the threads. As
soon as they have finished the execution, they obtain the next chunk. This strategy reduces
the imbalance between the threads at the cost of more scheduling overhead. The scheduling
overhead cannot be ignored as it has a noticeable impact on the performance if the chunk-size
is too small. Tests have shown that a good chunk-size for the compute_expansion() function
and compute_predecessors() also is a fraction of about 1

1024 of the total number of vertices
in the graph. As this number changes with the scale factor, the scheduling strategy has been
set to schedule(runtime) to enable an adaption to the scale factor through an environment
variable.

Both optimizations lead to a noticeable improvement of the average performance. As
mentioned before, the optimization results will be further examined in Section 6.4.

42



5.3 Other Parts of Graph500

Frontier Representation The frontier is the set of active vertices during one graph traversal
iteration. In the previous versions of the parallel BFS implementation, the frontier is stored
as a fixed-size array with one entry per vertex. The CPU implementation uses a char array
for this purpose. Towards the beginning and end of a BFS run, the number of vertices in
the frontier is small. This leads to many unset values in the out arrays and accordingly
the in arrays of the next iteration. As a consequence, the amount of data that has to be
communicated to concatenate the out arrays and to broadcast the new in values is very high
in comparison to the contained information. The better option seems to communicate the
vertex-ids of the discovered vertices instead of a status value for every vertex. This approach
does also have the advantage that the compute_expansion() does not have to iterate over
all vertices to check if they are active, but only over the vertices that are actually contained in
the frontier. The reduced communication volume comes at the cost of an increased overhead
for insertion into the list by multiple threads in parallel. Nevertheless, a positive impact on
the overall runtime can be measured for the iterations in the beginning and end of the BFS
run. However, the runtime of the BFS iterations that add many vertices to the frontier is
significantly increased such that the overall performance decreases. The reason for this is
that the global vertex-ids use 64-bit integers, which is required by the Graph500 specification.
This leads to a much higher communication volume for these iterations than before. Even the
calculation of local vertex-ids using 32-bit does not have a positive effect due to the insertion
overhead for many vertices. To overcome these problems, a hybrid approach has been tested.
Locally a fixed-size array is used for out and a compressed list representation is generated
for communication purposes if it is worthwhile. The in representation depends on the choice
of the frontier representation of out in the previous iteration. The communication time
can be reduced with this strategy but the generation time of the compressed representation
varies depending on the number of collisions at atomic operations. For this reason a, higher
maximum performance can be achieved, but the average performance decreases.

5.3 Other Parts of Graph500

Section 3.3 introduces the specification of the Graph500 benchmark, which includes additional
parts besides the BFS implementation. In this thesis, the focus was on the implementation
of the parallel BFS. Therefore, some components have been taken from the reference imple-
mentation or the version of Graph500 that has been implemented for the Student Cluster
Competition 20162. This applies, in particular, to the Kronecker graph generator that creates
the edge list as well as the validation. The authorship is disclosed in the beginning of the
source files. For debugging purposes and to ensure the correctness of the results, tests have
been implemented for the CPU and GPU version. These operate on a tree graph, which
leads to an unambiguous result.

Summary CUDA has been chosen as main programming platform for the GPU imple-
mentation as it is the only platform that provides the necessary optimization capabilities. The
optimizations of the GPU version try to adapt the compute_expansion() function to the

2http://www.hpcadvisorycouncil.com/events/2016/isc16-student-cluster-competition/index.php
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GPU’s hardware architecture and execution model. The optimizations of the CPU implemen-
tation require only small modifications, for example merging some for-loops and changing the
OpenMP scheduling strategy.
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6 Evaluation

This chapter analyses the CPU and GPU implementations with regard to a number of different
criteria. At the beginning, an overview is given on the system that was used to conduct the
measurements.

6.1 Test Environment

All measurements have been performed on the DKRZ’s1 supercomputer Mistral. In addition
to the approximately 3000 compute nodes that contain two CPUs of Intel Haswell or Broadwell
processors, Mistral includes twelve GPU nodes equipped with Nvidia K80s. The following
lists show the configuration details of the CPU and GPU nodes. Up to 64 nodes have been
used to measure the performance of the CPU implementation. The maximum number of
GPU nodes per job was limited to four. Since each node contains four GPUs, the maximum
number of GPUs that has been used for measurements is 16.

CPU Node

• Processors: 2x Intel R© Xeon R© acCPU E5-2680 v3 @ 2.50GHz (Haswell)

• RAM: 64 GB or 128 GB

• Operating System: Red Hat Enterprise Linux Server release 6.7 (Santiago)

GPU Node

• Processors: 2x Intel R© Xeon R© CPU E5-2680 v3 @ 2.50GHz (Haswell)

• GPUs: 2x Nvidia K80 with two GK210 each

• RAM: 256 GB

• Operating System: Red Hat Enterprise Linux Server release 6.7 (Santiago)

1Deutsches Klimarechenzentrum https://www.dkrz.de
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Network

• FDR-Infiniband

Software

• Compilers: gcc/g++ 5.1.0, nvcc, PGI 16.5

• CUDA 7.5

• MPI: OpenMPI v1.10.2 with CUDA support

6.2 Performance Analysis

This section aims to analyze the performance characteristics of Graph500 running on CPUs
and GPUs. For this purpose, the two versions of the parallel BFS implementation that deliver
the best average performance for 64 BFS runs have been chosen for further analysis. These
make use of all the optimization steps that were explained before except the last ones, that
make use of Dynamic Parallelism and introduce a hybrid frontier representation, as these do
not increase or even lower the average performance. The 64 BFS runs are executed on the
same graph data but with different starting vertices. The performance is measured in TEPS,
which is the performance metric introduced by the Graph500 benchmark. A BFS traverses
all edges in the connected component of the source vertex, which usually are about 99.9995%
of the edges of a graph that has been created with the Graph500 graph generator. The exact
number of traversed edges is obtained from the validation that is employed after every BFS
run to ensure the result is correct. To calculate the TEPS performance, this count is divided
by the execution time of the BFS run.

At first, the performance of both implementations for different size graph data sets is
examined. Two parameters are used to determine the number of vertices and edges in the
graph. The scale parameter affects the number of vertices, which is calculated as 2scale. The
number of edges depends on the graph’s scale and the edgefactor parameter, which influences
the average number of out-going edges of a vertex. The overall number of edges is calculated
as 2scale · edgefactor. Figure 6.1 depicts the average GTEPS performance of the GPU and
CPU implementation for different scales and a constant edgefactor of 16. Because the TEPS
measure is a rate, the harmonic mean is used to calculate the average performance as it
is also required by the Graph500 specification for the final output statistics. The number
of BFS iterations that is necessary to explore the entire connected component as well as
the distribution of the workloads across the processes differ depending on the graph data
and the chosen start vertex. Therefore, the average performance of multiple BFS runs with
different start vertices is considered in order to enable a comparison of the performance
results for graphs with a different scale. Both implementations use 16 MPI processes to
run the benchmark. The GPU version utilizes 16 GPUs attached to four nodes, while the
CPU implementation of Graph500 is executed on 16 nodes with two CPUs each. All 24
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Figure 6.1: Average performance of 64 BFS runs with 16 MPI processes

available CPU cores are utilized, but no Hyper-Threading is applied as this has shown to
lower the average performance. The red graph in Figure 6.1 represents the performance
of the CPU implementation. A huge increase of the performance can be observed for the
smaller scale values from 16 up to 20. In this range, the performance roughly triples. An
increase of the scale factor by one leads to a graph with a doubled vertex count. For the
smaller scales the CPU implementation benefits from an increased graph size. At scale 20,
the maximum performance is achieved with 1.54 GTEPS. Subsequently, the performance
remains nearly constant at a slightly lower value for the scale values of 21 to 24. For higher
scales, a significant decrease of the performance can be observed with an increased graph
size. The blue graph in Figure 6.1 shows the performance of the GPUs. It is visible that
this implementation benefits from an increased number of vertices in the graph. Withal, the
increase of performance is relatively small for scale 16 to 18, then intensifies for the scale
values from 19 to 24 and levels off towards the highest tested scale values. The maximum
performance is achieved on the highest scale of 27 with 1.58 GTEPS.

The differences in the courses of the graphs can be explained by the underlying hardware’s
characteristics. The CPU implementation achieves the best average performance for a graph
with 220 vertices. What makes this setting special is the amount of memory that is used.
Adding up the amount of memory that is used to store the graph data set and to hold the
status values of all vertices of a single process, it can be found that about 40 MB of memory
are used. Therewith, it is the largest setting for which all data fits into the L3 caches of the
two CPUs of a node. For the graphs that are generated with the Graph500 generator, the
number of iterations of a single BFS run increases slowly as the number of vertices in the
graph rises. For this reason, the number of communication steps remains relatively constant
in spite of the increasing graph size. The communication effort mainly increases as a result of
the higher amount of data that has to be transferred over the network. For the smaller graph
sizes, this increase does not have a great impact, which leads to a better communication to
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calculation ratio. This explains the rise of the performance until scale 20 is reached. From
that point on, the effort of the calculations on the graph data and status values of the vertices
increases disproportionately. Figure 6.2 depicts this development. The yellow bars represent
the time that is spent in OpenMP accelerated regions accumulated for all threads and all 64
BFS runs. In contrast, the black line shows the calculation time that would be expected if
the calculation effort increased proportionally with the graph size.
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Figure 6.2: Accumulated time spent in OpenMP regions

As described before, the communication effort depends on the amount of data that has to be
communicated. An increase of the graph’s scale leads to a doubled amount of data that has
to be communicated. The effect on the communication effort is noticeable for the lager graph
scales, especially because the MPI communication has to be split into multiple function calls
for scale values larger than 27 as the 2 GB data limit is exceeded. As a consequence, a further
decrease of the performance can be expected for rising scale values. However, an advantage
of executing the benchmark of CPUs is that scale values larger than 27 are possible, while
this is the limit for the current GPU implementation. The reason for this is the limited
amount of global memory of the GPUs. In Figure 6.1 it is visible that the GPUs exceed
the performance of the CPUs only for the largest scales that have been tested. With the
limitation through the available memory, it can be concluded that the usage of GPUs instead
of CPUs is only advantageous for a small number of settings. The course of the graph that
depicts the GPU performance can be explained by the degree of utilization of the hardware.
The small graphs do not hold enough parallelism to successfully utilize the available hardware.
As the number of vertices doubles for every increase of the scale value, a significant increase
of the performance can be seen in the middle part. Different from the CPUs, the GPUs have
very small caches that do have a noticeable impact on the performance. Instead, the GPUs
can make use of the high bandwidth to global memory and can achieve a good performance
on large graphs that hold a high enough degree of parallelism.

Doubling the edgefactor has the same effect on the edge list’s size as an increase of the
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scale by one. In either case, the amount of data doubles, but the parameters affect the
graph’s internal structure differently. The effects on the performance can be viewed in Figure
6.3. Both, the CPUs and the GPUs benefit from a higher average number of out-going
vertices. This change in the graph structure means that the length of the adjacency list
increases. Therefore, more contiguous memory addresses of the concatenated adjacency array
are requested to process one vertex in the frontier. This leads to a better exploitation of
the cache hierarchy on the CPUs and enables coalescing of memory accesses on the GPUs,
resulting in the visible performance increase.
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Figure 6.3: Average performance of 64 BFS runs with 16 MPI processes

Figure 6.4 presents the strong scaling behavior of the implementations. For this purpose, the
execution time of a BFS is measured using a different amount of compute resources. The
problem size, which corresponds to the graph size, stays fixed in this contemplation. TEPS
values instead of BFS execution times are depicted in Figure 6.4 to enable a comparison
with the previous results. This is possible because the TEPS values are derived through the
division by the number of traversed edges, which does not change if the size of the graph
stays fixed. To enable a simple partitioning of the adjacency matrix across the MPI processes
and a simple calculation of launch configurations, only settings with 22·x MPI processes can
be chosen (with x > 0). Runs with 4 and 16 MPI processes were possible for the GPU and
the CPU implementation, while a run with 64 MPI processes was only possible for the CPU
implementation due to the limited number of GPUs available. For the GPU implementation,
the number MPI processes equals the number of utilized GPUs, whereas an MPI process of
the CPU implementation is mapped to an entire CPU node.

The GPU results are depicted on the left side and the CPU results can be seen on the right
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side of Figure 6.4. A different scaling of the y-axis has to be considered if the results are
compared. For both implementations, it is visible that the performance characteristics, which
have been found for the execution with 16 MPI processes, can also be recognized if more
or fewer resources are used. It is remarkable that the increase of the performance cannot
keep up with the increase of the compute resources. The resources quadruple, while the
performance increase is in the range of a factor of about 1.5 to 2.5. This can be put down to
the common algorithm structure of the parallel BFS as the communication effort rises with
an increased grid size. By means of the CPU strong scaling results, it is once again evident
that exceeding the cache capacity of the CPUs leads to an inflection of the performance.
Distributing the adjacency matrix across more processes leads to a smaller amount of data
per process and shifts this point to a larger scale value. For the GPU implementation, Figure
6.4 reveals that the saturation of the hardware starts later if more compute resource are
added.
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Figure 6.4: Average performance of 64 BFS runs on GPUs (left) and CPUs (right)

As Graph500 is an approved benchmark, other implementations have been published. In
Figure 6.5, the performance of two additional implementations is depicted. 2D partitioning
has been chosen for both implementations, that are described in [CPW+12] and [US13].
Additionally, both publications implement a parallel BFS algorithm similar to the one
described in Chapter 4. The comparison of the performance holds a surprise. While the CPU
implementation does not seem to deliver a good performance, the GPU version outperforms
all other implementations by far. All tests have been conducted on the Mistral supercomputer.
For the CPU reference implementation, 18 MPI processes were executed on 18 compute
nodes as 16 MPI processes was not a valid choice for that implementation. A closer look at
the GPU reference implementation reveals that a compression algorithm is used to reduce
the amount of data that is communicated between the nodes. As this is the only major
difference, it can be assumed that the higher performance is a result of this optimization for
the most part. In contrast, the reference CPU implementation does not deliver a comparable
performance to any of the other, but it has to be remarked that in [CPW+12] good results
for a very large number of nodes are represented, starting the tests with 512 compute nodes.
The implementation might not be optimized to run on such a small configuration.
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Figure 6.5: Average performance of 64 BFS of the reference implementations

6.3 Cost and Energy Efficiency

To evaluate the potential of using GPUs and CPUs for the execution of graph algorithms,
it makes sense to compare the delivered performance with respect to the initial investment
costs and the costs that arise from the consumed energy as these two make up a great part
of the Total Cost of Ownership (TOC). Figure 6.6 provides a breakdown of the investment
costs of the hardware that was used to measure the performance depicted in Figure 6.1. This
only includes the core components, therefore, CPU chip costs and GPU costs.

Intel R© Xeon R© CPU E5-2680 v3 @ 2.50GHz (Haswell): $1,747.502 ≈ 1,555.97e
Nvidia Tesla K80: $4,349.993 ≈ 3,873.23e

CPU hardware: 16 x 2 x 1,555.97e = 49,791.04e

GPU hardware: 4 x 2 x 1,555.97e
+ 4 x 2 x 3,873.23e = 43,433.6e

Figure 6.6: Hardware costs of the GPU and CPU configuration

The costs that are calculated are for 16 CPU nodes with two CPUs each and for four GPU
nodes that have 2 Nvidia K80s attached. As a K80 contains two GPUs, this makes up a total

2http://ark.intel.com/products/81908/Intel-Xeon-Processor-E5-2680-v3-30M-Cache-2_50-GHz
3http://www.acmemicro.com/Product/14303/NVIDIA-Tesla-K80-GPU-875-MHz-4992-cores-PCI-

Express-3-0-x16-24GB-GDDR5-GPU-Accelerator?c_id=566
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of 16 GPUs. The costs of the CPUs have been included as the computations on the GPUs are
issued from a CPU process and the CPUs are necessary for the MPI communication. For this
reason, a GPU cluster will always contain CPUs up to a certain ratio. The CPU hardware
costs exceed the GPU hardware costs by about 6,350e. This is a sizable amount, especially
as both configurations deliver a comparable maximum TEPS performance. Converted
in TEPS/e, the CPU hardware delivers a maximum of 30.9 KTEPS/e, while the GPU
hardware reaches 36.4 KTEPS/e. It seems that the statement that GPUs are cost efficient
is valid. However, this only holds true if the TEPS/e result for the maximum performance
is considered. If an average of all performance results for graphs with scale 16 to 27 is
compared, the CPU hardware delivers the higher value of 25.71 KTEPS/e in comparison to
20.43 KTEPS/e for the GPUs. This can be reasoned with the bad GPU performance on
small graphs.

Energy efficiency can be measured as performance per watt, therefore, TEPS/W is the metric
for graph algorithms. For each job on Mistral the consumed energy is measured in Joule
and provided in the job statistics. This includes general job setup, the graph generation
and source vertex sampling, the execution of a number of BFS runs and the validation.
To calculate the energy efficiency, the average performance and energy consumption of a
single BFS run is required. The validation has been turned off for the energy measurement,
unfortunately this is not possible for the graph generation. In order to subtract out the graph
generation and general overhead, the benchmark has been executed twice with a different
number of BFS runs. As an example, a run with 12288 searches and a second one with 16384
BFS runs has been executed on a graph with 220 vertices. In this case, the difference in the
energy consumption of the program executions complies the energy consumption of 4096
BFS runs without additional overhead. The Graph500 benchmark requires the execution
of only 64 BFS searches. This number has been raised for the energy measurements as
considerable variations in the measured energy consumption have been found for short runs
of the benchmark. For the graph with scale 20, 12288 and 16384 searches have been executed
and 1024 and 1536 for a graph with scale 27. These numbers have been chosen as they restrict
the relative standard deviation of the measured energy consumption for the same setting to
a max of 2.5%. Based on the obtained energy consumption for a number of searches without
overhead, the average consumption of a single BFS run can be calculated and converted in
watts with the the average BFS execution time. Finally the average performance of a single
BFS run has been divided by this value. The results are depicted in Table 6.1.

Scale 20 Scale 27
CPU 0.487 0.371
GPU 0.371 0.749

Table 6.1: Energy efficiency in MT EP S
W

The energy efficiency has been calculated for the two scale values that deliver the best
performance on CPUs and GPUs. The measurements have been conducted using 16 MPI
processes and the same configuration as before when measuring the performance for different
scale values. A comparison of the results, 0.749 MTEPS/W for the GPU and 0.487 MTEPS/W
for the CPU implementation, reveals that a higher efficiency is achieved by the GPUs.
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6.4 Productivity Analysis

This section aims to compare the programming effort that has to be made to implement a
parallel BFS algorithm on CPUs or GPUs. Figure 6.7 compares the performance of the initial
GPU and CPU implementations. A huge gap in the average performance of 64 BFS runs
can be noticed as the CPUs deliver a maximum performance that exceeds the GPU results
by a factor of about three. With reference to these results, it can be inferred that graph
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Figure 6.7: Performance results of the inital implementations

algorithms do not naturally match the GPU hardware architecture. Instead, complex opti-
mizations have to be employed to reach a performance that is comparable to the initial CPU
implementation. Table 6.2 lists the number of code lines for all non-communication functions
of the parallel BFS algorithm. Only the initial implementation and the first optimization step
are included. The total sum in the last line reveals that the initial GPU implementation does
not only deliver a worse performance but also needs more lines of code. The Source Lines of
Code (SLOC) metric does not allow reliable conclusions on the code complexity in general
cases. Nevertheless, as the functionality of the compared entities is clearly defined and not
too complex, it is acceptable to conclude that in the most cases more steps are required
to implement the same functionality on the GPU than on the CPU. A comparison of the
implementations shows that this overhead is introduced by the CUDA programming model.
The additional lines in the initial GPU implementation arise from the need to determine
the position of the thread in the grid, which is used for the data partitioning across the
threads. An interesting development becomes visible if the overall lines of code of the initial
versions are compared with the count for the first optimization in the next column. While the
CPU optimization reduces the number of lines, the GPU optimization increases this number
significantly. This does also apply to the other two GPU optimizations that were introduced
in Section 5.1.2. In contrast, only one CPU optimization step increases the number of lines.
This refers to the optimization that targets the frontier representation and does not improve
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CPU GPU
initial loop

struc-
ture

initial warp
coopera-
tion

update_levels_with_in 4 10 8 8
compute_expansion 9 20 34
update_assigned 3 3 4 4
update_visited 4

7
4 4

update_levels_with_out 4 8 8
vertices_in_out 3 4 4
compute_predecessors 11 11 13 39
reset_out 4 4 1 1
sum 42 35 62 100

Table 6.2: Source Lines of Code (SLOC)

the average performance. The scheduling optimization does not change the number of code
lines as the scheduling clause is added to already existing OpenMP directives.

The effects of the different optimizations undertaken for the GPU implementation are shown
in Figure 6.8 on the left side. Every optimization step that is depicted includes all previous
optimizations. The order is as follows: initial, warp cooperation, memory access patter and
finally dynamic parallelism. It is visible that only the fist optimization achieves a significant
increase of the performance. In comparison, the memory access pattern optimization makes
only a little improvement and the GPU implementation that uses Dynamic Parallelism does
not increase the performance at all. The right side of Figure 6.8 plots the effects of the
CPU optimizations. The optimization that merges OpenMP parallelized loops and the one
that applies the OpenMP dynamic scheduling strategy, make only little changes to the
code. These optimizations do not increase the complexity of the implementation but lead to
noticeable performance improvements. Moreover, the optimizations do not require advanced
knowledge beyond common parallel programming skills. This is contrary to the GPU case as
all optimizations require specific knowledge of the hardware architecture and the execution
model.

It can be concluded that the performance that can be achieved with the initial CPU im-
plementation is quite close to the final result that is depicted in Figure 6.1. Not much
effort has to be made to improve the performance with optimizations that include only little
changes to the code. On the other hand, the GPU implementation only reaches a comparable
performance if very complex and specific optimizations are applied.
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Figure 6.8: Effect of optimizations on the performance on GPUs (left) and GPUs (right)

Summary A comparison of the performance of the GPU and GPU implementation
reveals that a comparable maximum performance is achieved. However, the size of the
graph that delivers the best performance is different. It appears that the GPUs are more
energy efficient when running BFS and achieves a higher cost efficiency for the maximum
performance. For the average performance on different size graphs, the picture is different.
The productivity section points out that optimizations are necessarily required for the GPU
implementation to reach an acceptable performance. Additionally, it is found that the GPU
implementation requires more lines of code than the CPU version.
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7 Conclusion

This thesis analyzes the suitability of GPUs and CPUs for graph algorithms based on a
number of different criteria. The first attribute that was considered in the last chapter is the
delivered performance. The results of the performance analysis show that the implemented
GPU and CPU versions of Graph500 achieve a comparable maximum performance. Since real-
world graph applications deal with graph data sets of an enormous size, it can be considered
positive that the GPU version reaches the maximum performance when operating on the
largest possible graph data set. Apparently, the GPUs can exploit the higher bandwidth to
their memories and find “enough” parallelism in large graph problems to utilize the capacity
of their parallel hardware architecture. On the other hand, the GPUs’ capabilities are limited
by the quite small amount of available memory. Especially with regard to the size of real
world graph data sets, this restriction weighs heavy. In contrast, the CPUs can be equipped
with a great amount of memory and are easily capable of processing graphs with a lot
more edges and vertices. However, the performance that can be achieved for large graphs is
restricted due to slow access to main memory in the frequently occurring cases of a cache
miss. Based on the performance results, it is difficult to become convinced that one hardware
configuration is generally more suitable to run parallel graph algorithms than the other.

In Section 6.3, the GPU have been found to be more energy efficient than the CPUs. Re-
garding the cost efficiency, the picture varies depending on the which performance result
is used for the calculation. Based on the maximum performance, the GPUs appear to
be more cost efficient. On the other hand, if the average performance on different size
graphs is used, the CPUs achieve the better value. The analysis of the programming ef-
fort confirms the generally accepted opinion that GPUs are harder to program than CPUs.
This finding is deduced from the fact that more lines of code are necessary to implement
the same functionality, which points out the more complex programming model. Another
reason for the higher programming effort is that complex optimizations are required to
achieve an acceptable performance. The optimizations that were undertaken for the GPU
implementation can be considered as complex since they depend on detailed knowledge of
the hardware architecture and execution model. This becomes also apparent through the
fact that none of the examined high-level GPU programming platforms make the required
optimizations even possible. The development time, which is a metric that provides definite
information on the programming effort, has not been measured during the implementation
phase. This is an improvement that should have been made to supplement the picture. How-
ever, the subjective impression is that programming for GPUs takes more time than for CPUs.

For the evaluation of the suitability of a hardware configuration, the performance that
can be delivered is a key criterion in HPC. As expressed earlier, the result of the performance
analysis of the two implemented versions of Graph500 does not allow an unquestionable
conclusion on this point. However, in Section 6.2 it has also been observed that a reference
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7 Conclusion

implementation running on GPUs exceeds all other tested implementations’ performance.
Based on this, one could argue that GPUs seem to be more suitable to run graph algorithms.
However, one reason for the higher performance is an optimization that introduces the use of
a compression algorithm to reduce the data that has to be communicated. It is reasonable to
assume this optimization would also improve a CPU implementation’s performance. This
reveals the importance of taking the programming effort, which has been made to achieve the
result, into account if the suitability of a hardware configuration is to be evaluated based on
the performance. Usually, the performance that is found in research publications is the result
of a long process of optimization and the development of new approaches. These results can
serve as guide values that show what is possible. Nevertheless, estimating the suitability of
a hardware configuration based on these values and not including the programming effort
might lead into the wrong direction. Especially taking the overall costs into account, the
more relevant question seems to be, which hardware configuration will more likely deliver the
better performance for an adequate amount of effort put into it. It is reasonable to assume
that this question will gain importance as more different products enter the HPC market.

From the analyses of this thesis, it can be concluded that even though the GPUs are more
energy efficient and, depending on the point of view, more cost efficient, the programming
effort bears no relation to the achieved performance. Since the energy and cost efficiency is
calculated based on the performance, a considerably greater programming effort is included
in the better efficiency results as well. Overall, it seems that the GPU efficiency results
exceed the CPU results not far enough to compensate the higher programming effort that
was required to achieve the result.
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A. Source Code

The source code is handed in on the CD in the printed versions. The master branch of the
repository includes the final versions that were used for the performance and energy efficiency
measurements. The code of the different optimization steps can be found on different branches.
This is further explained in the included README.md, which also includes a setup guide.
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