
Bachelor Thesis

Development of a decision support system
for performance tuning in Lustre

submitted by

Julius Plehn

Fakultät für Mathematik, Informatik und Naturwissenschaften
Fachbereich Informatik
Arbeitsbereich Wissenschaftliches Rechnen

Studiengang: Software-System-Entwicklung
Matrikelnummer: 6535163

Erstgutachter: Dr. Michael Kuhn
Zweitgutachter: Anna Fuchs

Betreuer: Dr. Michael Kuhn, Anna Fuchs

Hamburg, 2018-23-05

Abstract

Performance critical components in HPC require an extensive configuration. This is
especially true when a filesystem has to be configured for maximum performance, as
it is a good practice to benchmark the system every time configuration changes have
been made. Furthermore the correlation between the configuration and performance
metrics might not be obvious, especially after several benchmarks. As the configurable
components are distributed, the configuration management is an additional challenge.
This trial and error process is time consuming and error-prone. In order to be able to
make valuable decisions it is important to gain detailed insights into the system and the
state of the configurations.

The goal of this thesis is to evaluate the usage of a decision support system to simplify the
process of performance optimization. Therefore a detailed insight into the possibilities of
performance optimization is provided. Additionally, a Command Line Interface (CLI)
is developed to perform automated Lustre client changes and IOR benchmarks. The
decision support itself is supported by a web interface, which is used to visualize the
configuration changes and the benchmark results.

Contents

1. Introduction 5
1.1. Motivation . 6
1.2. Thesis Goals . 6
1.3. Outline . 7

2. Background 8
2.1. Lustre . 8

2.1.1. Architecture . 8
2.1.2. Layers . 10
2.1.3. Client Configuration . 11

2.2. IOR . 17

3. Related Work 20
3.1. Manual Benchmarking . 20
3.2. Intel Manager For Lustre . 20
3.3. Automatic Configuration within Lustre 21

4. Design and Implementation 22
4.1. CLI . 22

4.1.1. Automation JSON . 23
4.2. Web Interface . 24

4.2.1. Diff . 24
4.2.2. Benchmark Visualization . 25
4.2.3. Recommendations . 26
4.2.4. MongoDB . 26
4.2.5. Docker . 27

5. Evaluation 28
5.1. Test setup . 28
5.2. Automation configuration . 28
5.3. Standard tests . 29

5.3.1. IOR benchmark with files-per-process and reordered read back
configuration . 29

5.3.2. IOR benchmark with files-per-process, reordered read back config-
uration and continuous block size 32

5.3.3. IOR benchmark with random access configuration 35

3

5.4. Stripe size tests . 38
5.4.1. IOR benchmark with 4 MiB transfer size 38
5.4.2. IOR benchmark with 4 MiB transfer size and 4 MiB stripe size . . 39

6. Conclusion 40

7. Future Work 41

Bibliography 42

Appendices 44

A. Abbreviations 45

B. Demo 46

List of Figures 47

List of Listings 48

List of Tables 49

4

1. Introduction

High performance computing (HPC) aggregates the power of single servers to a unified
parallel computing system. While single servers have certain bottlenecks like the maxi-
mum amount of Floating Point Operations Per Second (FLOPS), memory capacities,
network bandwidth and storage size, a cluster in an HPC environment is able to overcome
those limitations. To benefit of these capacities, applications need to be optimized for
the optimal utilization of the provided hardware. For example, to use processing cores
on different servers a communication protocol is needed. The de facto standard for this
purpose is the Message Passing Interface (MPI), which makes it possible to send data
across the high speed network to other processes and to synchronize the state of the
application. Given the possibility to use independent processes to speed up the applica-
tion it is obvious that this scenario benefits of the usage of distributed parallel file systems.

A distributed parallel file system is characterized by some objectives and best practices,
which can be found in various implementations. In general, a file is split into smaller
pieces (often called stripe or chunk) which then get saved to a number of servers. The size
of those chunks and the number of servers the file gets distributed to highly depends on
the application. Besides the actual data, the meta data is distributed to specific servers
as well. This is necessary in order to be able to provide a unified view on the whole file
system, while maintaining a single access point to the clients. While this describes the
distributed aspect of those file systems, a parallel access pattern is necessary to have a
performance benefit. The general approach to archive optimal file system performance
is to have independent processes (e.g. by using MPI) which read and write to process
specific sections of a shared or exclusive file. Using this approach to vertical scaling, the
I/O performance is no longer limited by a single system.

The demand for HPC is reaching new heights as new applications suitable for this area
of computing are arising and existing applications are evolving. For example the demand
for climate models with a bigger resolution and more time steps is increasing but the
computation capabilities are not available at this time. This immediately shows the
relevance for exascale computing. An example given in [12, p. 92] describes a scenario
where a climate model requires "a calculation at 100x resolution and 10x more time-steps,
for a total of 1000x more computation than is possible today".

The computing power and memory capacities are developing much faster than the storage
capacities. Therefore it is a big challenge to develop systems where the balance between

5

those bottlenecks is even. A visualization that shows the different rates of development
is shown in Figure 1.1.

1

10

100

1000

10000

100000

1000000

10000000

100000000

 0 5 10 15 20 25 30

P
e
rf
o
rm
a
n
c
e

in
c
re
a
s
e

fa
c
to
r

Years

Computational speed Storage capacity Storage bandwidth Network bandwidth Memory bandwidth

Figure 1.1.: Development of computational speed, storage capacity and storage speed
[based on 13, p. 75]

1.1. Motivation

As shown in the section above the demand for HPC is rising and the challenges that go
along with are enormous. Efficient, reliable and predictable systems are mandatory for
performance critical applications - now and especially when facing new challenges the
future might hold. To gather more insights into the behavior of distributed parallel file
systems, a good understanding of the configuration options is necessary. Depending on
the options to set on the system, several possibilities might need valuable consideration.
Paired with specific benchmark requirements, a single option on a Lustre file system can
require an amount of manual configuration, manual benchmarking and evaluation that is
unsuitable for a production or testing environment. A tool that simplifies and automates
this recurring and error-prone process could increase the file systems performance and
provide greater insights into the file system in general. Use cases might include integration
into the existing Lustre development pipeline, general benchmarking of the file system
and training purposes to gain a better understanding of the file system internals.

1.2. Thesis Goals

The purpose of this thesis is to develop and evaluate a decision support system that
provides the user with a better understanding of the behavior of the Lustre file system.
The system developed during this thesis consists of two independent tools. A CLI
handles the Lustre client configuration and manages the benchmark runs, while a web

6

interface is used to compare the client configuration and to visualize the benchmark
results. Additionally, the web interface serves as a storage backend which enables further
data evaluation. As the configuration changes performed by the CLI are temporarily,
the regular behavior of the file system is not interrupted.

1.3. Outline

The remainder of the thesis is organized as follows:

• In the Background chapter, the fundamentals of the Lustre file system and the
IOR benchmark are presented. A special focus lies on the Lustre client, as this is
the part which is configured and evaluated later on.

• The Related Work chapter describes common approaches to evaluate and config-
ure Lustre file systems. A comparison to the attempt described in this thesis is
made.

• The Design and Implementation chapter puts the focus on the tools that have
been developed during this thesis.

• In the Evaluation chapter an overview of tested Lustre configurations is given.
Additionally, the decision support tool is used to evaluate the performance of the
current configuration while giving recommendations for further optimization.

• At the end a Conclusion for the usage of the decision support tool is given,
followed by ideas for the Future Work.

7

2. Background

This chapter gives an introduction into the fundamental concepts of the Lustre file system
and the IOR benchmark.

2.1. Lustre

Lustre is a distributed file system used in over 60% of the supercomputing sites listed
on the TOP500.org list [17]. A distributed file system is necessary if an application
exceeds the capabilities of a single server. In a vertically scaled environment the limiting
factors are networking bandwidth and storage size and speed. Even when using modern
NVMe Solid State Drives, the reading speed will not exceed 5000 MB/s while the writing
speed is limited to 3000 MB/s [7]. When using Lustre, several servers, each with their
individual limited capabilities, are unified to a single POSIX compliant file system. To
gain a speedup and to actually benefit from the distributed file system, it is necessary to
split files across several servers. This process is called file striping and more details are
provided in section 2.1.2. Using this approach Lustre "is best known for powering many of
the largest HPC clusters worldwide, with tens of thousands of client systems, petabytes
(PB) of storage and hundreds of gigabytes per second (GB/sec) of I/O throughput." [9,
p. 27].

2.1.1. Architecture

Management Server

The Management Server (MGS) provides information about the Lustre file system to all
the other components. While this server is not involved in the actual I/O, this service is
the central entry point for all other servers. Therefore, a fail-over configuration is desired.
The configuration itself is saved on a Management Target (MGT).

Metadata Server

Metadata Servers (MDSs) are providing information about the metadata to the clients.
MDSs determine the file layout either using default settings or user provided configuration

8

on a per file or directory base. Once the client received the file layout no further interaction
with the MDS is necessary. The metadata is stored on 1-4 Metadata Targets (MDTs).
Each Lustre file system has to have at least one MDS. Additional servers can add fail over
capabilities. Furthermore in Lustre 2.4 the Distributed Namespace Environment (DNE)
was introduced [9, p. 31]. It is now possible to add additional MDSs and MDTs which
hold a sub-directory of the file system. Beginning with Lustre 2.8 it is also possible to
distribute a single directory across multiple MDTs. Using this workload distribution it
is possible to increase the number of meta data operations.

Metadata Target

MDTs store the actual metadata of the file system. This includes the file names,
permissions and extended attributes. The extended attributes contain the layout EA,
which consists of the Object Storage Targets (OSTs) the file is stored on and the actual
location of the data chunks on those servers.

Object Storage Server

Object Storage Servers (OSSs) are providing file access and network request handling to
their connected OSTs. Each OSS can handle up to 32 OSTs which each hold up to 256
TB on a ZFS file system.

Object Storage Target

OSTs hold the actual data in its own local file system. It is possible to use either ldiskfs,
an improved version of the ext4 file system, or ZFS.

Client

Clients are consumers of the file system. They are able to mount the file system by
providing the address of the MGS. As Lustre is POSIX compliant there are no further
dependencies to write to the file system. However, in order to mount a Lustre file system
a kernel module needs to be installed. This module can be obtained as a RPM package
or as source code, which provides greater flexibility. An example on how to mount a
Lustre file system is given in Listing 2.1. The performance optimization of the client is
the main focus of this thesis. Other components provide configuration options as well
but the client is the perfect test candidate because the temporary configuration changes
have no affect on other users.

1 mount -t lustre $(MGS):/ lustre /mnt/lustre/client

Listing 2.1: Lustre Mounting

9

In Figure 2.1 a common setup is shown. The DNE is used to distribute the workload
of meta data operations. Additionally, the MGSs, MDSs and OSSs are configured for
fail-over.

Figure 2.1.: Lustre file system overview [4, p. 2]

2.1.2. Layers

llite

Llite depends on the Virtual File System (VFS) implemented in Linux. A VFS provides
an additional layer between a logical operation on the file system and the physical storage
of the data. As llite implements a compatible VFS interface, POSIX compliant operations
reach the Lustre stack through llite. Therefore llite provides several configuration options
to optimize the file system performance.

Object Storage Client

Every connection to an OST is handled by a dedicated Object Storage Client (OSC) that
resides on every client that mounted the file system. Requests are encoded in Remote
Procedure Calls (RPCs) which have a fixed size of 1 MB by default. This value can be
increased to up to 4 MB per RPC. The OSCs are crucial for the file system performance

10

as they are the low level connection to the actual storage. Several parameters like the
amount of parallel RPCs and data caches need to be considered.

Striping and LOV

In order to be able to save data across multiple OSTs and therefore make use of the
parallel file system, striping is used. Using this technique it is possible to spread out a file
across up to 2000 OSTs [9, p. 36]. Striping can be configured independently for directories
and files using the stripe_count and stripe_size options. The stripe_count value
specifies the number of OSTs the data should be distributed across. The default value
is one, which means the data is only saved on one OST. This works well for small files,
as every connection to another OST adds an overhead, which in many use cases is not
beneficial. The stripe_size option defines the size of the data chunks distributed. The
default value is 1 MB.

The logical object volume (LOV) provides access to the OSTs by aggregating the OSCs to
a single namespace. Therefore a client sees a "single, coherent, synchronized namespace,
and files are presented within that namespace as a single addressable data object, even
when striped across multiple OSTs." [16, p. 27].

In Figure 2.2 the whole Lustre client software stack is shown. The decision support
system developed in this thesis is applied to the llite and OSC layer.

2.1.3. Client Configuration

In this section the Lustre client configurations that are evaluated later on are reviewed.
A special focus lies on their behavior on the file systems performance and their relation to
other configurations. The configurations regarding the OSC and llite layers are reviewed
on their own, as they do not affect each other.

lctl

The main utility to manage Lustre components is lctl. For this thesis, the commands
get_param and set_param are especially important, as the management tool developed
uses these to configure the Lustre clients. To select the appropriate settings the syntax
{file-system-name}.{subsystem}.{parameter} is used. Additionally the wildcard character
* allows for filename patterns. Options set by set_param are not written to the MGS and
therefor are lost after a reboot. To set parameters permanently the command conf_param
is necessary. Listing 2.2 shows how to get and set an llite configuration.

11

Figure 2.2.: Lustre client layers [20, p.11]

1 lctl get_param llite .*. max_read_ahead_mb
2 lctl set_param llite .*. max_read_ahead_mb = 64

Listing 2.2: lctl get_param and set_param

OSC

max_rpcs_in_flight
This option sets the number of concurrent operations that will be performed by the client
per OST at the same time.

max_pages_per_rpc
This option specifies the number of pages that will be encoded in every RPC sent by
an OSC. The size of a single page is defined by the CPU. While modern hardware can
support larger page sizes it is common for operating systems to set the page size to 4

12

KiB1. RPCs are handled by the Lustre Network (LNet). In order to be able to handle
the concurrency and scheduling of RPCs a credit system is in place. Every RPC claims
one credit point while in execution and an additional MiB of data adds another credit
point. Therefore when using 256 pages/RPC every 1 MiB transaction costs two credits.
However, enabling 1024 pages/RPC results in 4 MiB of data that can be encoded into
one RPC. This results in a credit point system shown in Table 2.1. Eventually this
means that it is possible to send more data with less RPCs and credits, resulting in more
credits left for additional transfers.

Especially in combination with other configurations this setting can have a significant
impact on the performance. For example when setting max_rpcs_in_flight to 8 and
max_pages_per_rpc to 256 the theoretical amount of data which can be transferred at
the same time is limited to 8 MiB. However, when setting max_pages_per_rpc to 1024
this value rises to 32 MiB.

256 pages/RPC 1024 pages/RPC
1 MB write 1 RPC, 2 Credits 1 RPC, 2 Credits
2 MB write 2 RPC, 4 Credits 1 RPC, 3 Credits
3 MB write 3 RPC, 6 Credits 1 RPC, 4 Credits
4 MB write 4 RPC, 8 Credits 1 RPC, 5 Credits

Table 2.1.: LNet Credits [2, p. 14]

max_dirty_mb
This configuration sets the maximal amount of dirty data to be cached in the memory
for each OSC. Data that needs to be saved permanently is written to the cache first.
From the applications perspective the write process is completed at this stage. Lustre
can use this cache to queue up data to create well formed RPCs. This is especially useful
for applications that perform small I/O. When experimenting with this option one has
to keep in mind that the respective client thread is blocked while a forced cache flush
is in process. Additionally, in this phase of the transmission the data is only saved in
volatile memory. In case of a system interruption that data is inevitably lost. A rule of
thumb is to set max_dirty_mb = max_rpcs_in_flight ∗ 4.

checksums
Checksums can help to detect corrupt data early on within the Lustre stack. Every
package sent and received over the network or stored in the memory is validated using a
32-bit checksum. In case of data corruption the data is sent again up to five times. Due to
other safety precautions implemented in hardware like cyclic redundancy checks (CRC) in
networks and error-correcting code (ECC) in memory one recommendation is to disable
the checksums altogether [18].

11 KiB = 210 bytes = 1024 bytes

13

checksum_type
Lustre provides two different checksum algorithms which are used if the checksums
option above is activated.

Adler-32 is an algorithm invented by Mark Adler. It has been implemented for the first
time in the zlib library in 1995 [1]. A 32-bit checksum is made up by concatenating two
16-bit integers S1 and S2. S1 is the sum of all bytes plus one whereas S2 is the sum of
all values from the previous S1 calculation. In the end, the modulo 65521 (largest prime
number < 216) is calculated for both integers. An example is given in Table 2.2.

Character ASCII code S1 S2
L 76 1 + 76 = 77 0 + 77 = 77
u 117 77 + 117 = 194 77 + 194 = 271
s 115 194 + 115 = 309 271 + 309 = 580
t 116 309 + 116 = 425 580 + 425 = 1005
r 114 425 + 114 = 539 1005 + 539 = 1544
e 101 539 + 101 = 640 1544 + 640 = 2184

Table 2.2.: Adler-32 example

The next step is to convert S1 and S2 to their hexadecimal equivalents, which is 0x280
and 0x888 respectively.

0x888� 16 + 280 = 0x08880280 (2.1)

2.1.: Final Adler-32 checksum

As shown in Equation (2.1) the final checksum is 0x08880280. If the receiver calculates
the same checksum the chances are high that the data has not been corrupted.

Another possibility is to use a CRC-32 algorithm. In this case, a message is divided by
a polynomial and the remainder of the division is then attached to the original message.
The selection of the polynomial is the most important step in implementing a CRC
algorithm as it has a severe influence on its error-detecting capabilities. Depending on
the degree of the polynomial additional zeros have to be added to the message. For
example when sending the message 11011 while using the polynomial 1x5 + 1x4 + 1x2 + x
(110101) a CRC computation can look like shown in Listing 2.3.

14

1101100000
110101

0000110000

110101

00101

Listing 2.3: CRC example

In this case the CRC encoded message is the concatenation of the message to send and
the remainder of the division: 1101100101. In order to verify this message a receiver has
to divide the checksum by the same polynomial which has been used before.

Another possibility is to use a CRC version implemented in hardware called CRC32C.
Algorithms implemented in hardware usually mean a substantial speedup due to advanced
cycle management.

In Figure 2.3 every implementation has been benchmarked. The Adler checksums algo-
rithm is superior when hardware acceleration is not available. If both, the CRC32C and
Adler implementations are available, the hardware implementation should be preferred,
because otherwise CPU cycles are wasted.

15

Figure 2.3.: Bulk Checksum Speeds, MB/s [19]

Llite

max_cached_mb
This configuration specifies the amount of cached data within the llite layer.

max_read_ahead_per_file_mb
This configuration specifies the amount of data that can be read ahead for each file.
After a second sequential request that can not be fulfilled by the cache, the next RPC
sized chunk is requested automatically. An access to a non-sequential chunk resets the
algorithm.

max_read_ahead_mb
This configuration specifies the total amount of MB allocated to the read ahead cache.

max_read_ahead_whole_mb
This defines the maximal size of a file that can be read ahead in its entirety, regardless
of the RPC size.

16

2.2. IOR

IOR (interleave or random) is an I/O benchmarking tool, commonly used in high
performance computing (HPC). It provides special functionalities for HPC usage like
Lustre specific stripe_count and stripe_size commands. For a better understanding
of the benchmarks discussed in this thesis, a broad overview of the parameters is given
(see Table 2.3).

Parameter Meaning Default

-a S (api) API for I/O POSIX,
MPIIO,
HDF5,
HDFS,
S3,
S3_EMC,
NCMPI

-b N (blockSize) contiguous bytes to write per task 1048576
-F (filePerProc) file-per-process false
-i N number of repetitions of test 1
-N N number of tasks that should participate in

the test
0
(all
tasks)

-s N (segmentCount) number of segments 1
-t N (transferSize) size of transfer in bytes (e.g.: 8, 4k, 2m, 1g) 262144
-z access is to random, not sequential, offsets

within a file
false

-Z changes task ordering to random ordering for
readback

false

-C (reorderTasksConstant) changes task ordering to N+1 ordering for
readback

false

-e (fsync) perform fsync upon POSIX write close false
-O jsonOutput=out.json write benchmark results to specific file false

Table 2.3.: Important IOR Settings

In order to be able to post process the benchmark results a modified version of IOR was
used [23]. When using the parameter jsonOutput together with an JSON output path, a
file containing the benchmark results is created. In Listing 2.4 an example is shown. The

17

truncated parameter object contains information about the used benchmark options.
The visualization shown in Section 4.2.2 is based on the Max, Min, Mean and StdDev
variables shown in lines 7-10 and 15-18 respectively.

1 {
2 "test0": {
3 " parameter ": {...} ,
4 " results ": {
5 "write": {
6 " Operation ": "write",
7 "Max": 108538239.11535607 ,
8 "Min": 96668213.190148085 ,
9 "Mean": 104545764.23861851 ,
10 "StdDev": 5570442.3230357831 ,
11 " MeanTime ": 2.0119009017944336
12 },
13 "read": {
14 " Operation ": "read",
15 "Max": 4592876324.8021049 ,
16 "Min": 4274658493.6838164 ,
17 "Mean": 4461210704.2883301 ,
18 "StdDev": 135585275.35404551 ,
19 " MeanTime ": 0.047052780787150063
20 }
21 }
22 }
23 }

Listing 2.4: Truncated JSON output

In order to be able to benchmark a file system in a way that reflects the real world
performance, one has to keep the effects of locking mechanisms and caching in mind.

Locking:
IOR differentiates between shared and file per process I/O. When benchmarking shared
read/write performance each process handles blocks with the size defined by the block-
Size parameter. The size of each operation on these blocks is defined by the transfer-
Size parameter. Additionally the segmentCount indicates how often these blocks are
handled. The total amount of data that is read and written during one iteration of a
benchmark is therefore defined by blockSize * segmentCount. A visualization of this
access pattern is shown in Figure 2.4. As several processes are operating on the same
file, locking mechanisms are involved. This can be changed by adding the filePerProc
parameter which eliminates the need for locking mechanisms as every process operates
on its own file and therefore speeds up the I/O performance.

18

Caching:
When doing I/O benchmarks it is important to know when client side caching is involved.
Whenever data is written to the file system a copy of that data stays in the DRAM. If
the same Lustre client requests to read that data again, it is possible that the file system
is not involved in the reading process, as the data can be retrieved by the memory. In
this case a benchmark is not able to represent the performance of the file system, but the
capabilities of the memory on the client. IOR implements several parameters to avoid
these cases. By defining an offset with the reorderTasksConstant parameter one can
make sure that nodes do not re-read data they have written in the previous write step.
When activated, the task ordering is set to N + 1, meaning that node N writes data,
while node N+1 reads the data.

Another caching mechanism is involved when a client writes data, as this process is
successful as soon as the data has been written to the cache. However, this does not
necessarily mean that the data already has been committed to the Lustre file system.
IOR provides the fsync parameter to ensure, that the content of the cache is written to
permanent storage.

tr
an
sf
er
Si
ze

tr
an
sf
er
Si
ze

tr
an
sf
er
Si
ze

tr
an
sf
er
Si
ze

tr
an
sf
er
Si
ze

tr
an
sf
er
Si
ze

tr
an
sf
er
Si
ze

tr
an
sf
er
Si
ze

tr
an
sf
er
Si
ze

tr
an
sf
er
Si
ze

tr
an
sf
er
Si
ze

tr
an
sf
er
Si
ze

tr
an
sf
er
Si
ze

tr
an
sf
er
Si
ze

tr
an
sf
er
Si
ze

tr
an
sf
er
Si
ze

segment 1 segment 2

block for rank 0 block for rank 0block for rank 1 block for rank 1

Figure 2.4.: IOR file access [inspired by 14]

19

3. Related Work

This chapter provides a broad overview over existing approaches to performance optimiza-
tion in HPC.

3.1. Manual Benchmarking

The traditional way to benchmark a file system is to call the benchmark utility on its
own. While this works for a small amount of benchmarks, the effort to gain insights and
to actually improve the performance of the file system is significant. To provide some
kind of automation a widely used approach is to write a bash file containing the path to
the benchmark utility and some rules that set the benchmark options depending on the
amount of nodes participating. An example is shown in the community repository for
Lustre, where the blocksize is divided by the amount of participating nodes to keep the
total size for the benchmark runs the same [see 3].

3.2. Intel Manager For Lustre

The goal of the Intel Manager For Lustre is to "provide a unified, consistent view of
Lustre storage systems and simplify the installation, configuration, monitoring, and
overall management of Lustre" [5]. Intel justifies their effort with the "grow in complexity"
[8] of storage solutions required for today’s applications. Like the tool developed in this
thesis Intel combines the power of a CLI with the visual support only a Graphical User
Interface (GUI) can provide. The focus relies more on the overall setup and monitoring
of the Lustre components than on visualization of the similarities of Lustre configurations
and their effect on the file system performance. The Intel Manager For Lustre also focuses
on enforcement of HPC specific setups like high-availability (HA). Additionally, the GUI
enables the administrator to specify some advanced llite settings like max_cached_mb,
max_read_ahead_mb and max_read_ahead_whole_mb. Without further specifications
the Lustre default values are used. As the Intel Manager For Lustre is released under the
MIT License [6] efforts to integrate the provided web interface could be beneficial.

20

3.3. Automatic Configuration within Lustre

Lustre itself provides some kind of integrated mechanisms to tune some parameters
on its own. For example, when the RPC size (max_pages_per_rpc) or the maximal
amount of RPCs in flight (max_rpcs_in_flight) of an OSC is increased, the value for
the maximal amount of dirty data that can be queued up on the client (max_dirty_mb)
changes accordingly. This rule is implemented in [10], although it is obvious that the
value for max_dirty_mb can only be increased, which might not be ideal in every use
case. Implementing automatic tuning for every configuration option might not beneficial,
as some options are depending on the running application. In general, a transparent and
predictable behavior of the applied configurations is needed.

21

4. Design and Implementation

In this chapter, the tools developed in this thesis are shown in detail. The first section
introduces the CLI and a JSON format to define Lustre configuration changes and IOR
benchmarks. The second section gives an overview about the web interface that is used to
visualize Lustre configurations and benchmark results. Additional implementation specific
details are provided.

4.1. CLI

The CLI is the server-side tool developed during this thesis. Its purpose is to gather
the Lustre configuration and to perform IOR benchmarks. The data collected during
these actions is pushed to a master server. This tool was developed with two use cases
in mind. First of all, it is possible to use the CLI on a single regular Lustre client. The
functionality includes gathering the current Lustre configuration and the possibility to
perform IOR benchmarks - either by passing an IOR command directly to the CLI or
by providing a JSON file, which automatically applies Lustre settings and performs
benchmarks. For most scenarios the second approach is recommended, as Lustre compo-
nents are highly distributed. In order to be able to measure a whole parallel file system,
the same configuration has to be applied to several components. For this use case a
batch scheduling system, e.g. SLURM, is recommended. The CLI options are shown in
Listing 4.1.

1 $./ lustrehelper_run --help
2 --help this help message
3 --loadParams [= arg (= all)] load parameters (osc|llite)
4 --config arg (=../ config.json) configuration file
5 --benchmark [= arg (= ior -w -r -o filename)] benchmark command
6 --automation [= arg (=../ automation .json)] automatic

↪→ benchmarking

Listing 4.1: CLI options

22

4.1.1. Automation JSON

To test different Lustre configurations and benchmarks in a single run a JSON file has been
modeled. These automation files contain actions, which get configured independently.
Each action contains an array of Lustre options and IOR benchmarks to run. This model
provides a convenient way to configure complex Lustre configurations and benchmark
setups. For example, a setup with three different Lustre configurations and two different
IOR benchmarks would require three manual configuration changes within the Lustre
clients and six manual runs of the IOR benchmark. The goal of these automation files is
to simplify this time consuming process. In the configuration shown in Listing 4.2 one
action is defined. It contains five sets of options which are evaluated by the benchmark
specified in the array in lines 36-40. In line 42, the revert option ensures that the initial
configuration is restored.

1 {
2 " actions ": [
3 {
4 " options " : [
5 {
6 "osc": {
7 " max_rpcs_in_flight ": 8,
8 " max_dirty_mb ": 32
9 }
10 },
11 {
12 "osc": {
13 " max_rpcs_in_flight ": 32,
14 " max_dirty_mb ": 128
15 }
16 },
17 {
18 "osc": {
19 " max_rpcs_in_flight ": 64,
20 " max_dirty_mb ": 256
21 }
22 },
23 {
24 "osc": {
25 " max_rpcs_in_flight ": 128,
26 " max_dirty_mb ": 512
27 }
28 },
29 {
30 "osc": {

23

31 " max_rpcs_in_flight ": 512,
32 " max_dirty_mb ": 1024
33 }
34 }
35],
36 " benchmarks ": [
37 {
38 "cmd": "ior -r -w -o /mnt/lustre/plehn/ testfile

↪→ -a POSIX -t 1m -b 1m -s 10000 -i 3 -F -C"
39 }
40],
41 "post": {
42 "revert": true
43 }
44 }
45]
46 }

Listing 4.2: Automation Configuration example

4.2. Web Interface

The web interface provides a convenient way to gather insights into the Lustre deployment.
It is possible to compare the Lustre configurations with each other and to visualize the
benchmarks. Furthermore, based on the benchmark results, recommendations for Lustre
configurations are made.

4.2.1. Diff

Whenever the CLI is executed with the --loadParams or --automation option, every
participating Lustre client sends their OSC and llite configuration to a central database.
In order to be able to compare and evaluate Lustre client configurations and performance
metrics, a diff algorithm is used. If the content of a line has changed it is highlighted in
a light red/green color. The specific context of the change is highlighted with a darker
color. For example in Figure 4.1 two different OSCs have been compared. The OSC
identificators are highlighted with a dark color and therefore it is obvious that those
OSCs belong to different Lustre clients. Performance metrics (like MB_per_sec) that
differ from each other are highlighted as well.

In Figure 4.2 a Lustre client is shown at two different times. The only part that has
changed is the value of max_read_ahead_mb.

24

Figure 4.1.: Diff algorithm applied to two different OSCs

@@ -23,7 +23,7 @@
unused_mb: 1000
reclaim_count: 0
llite.lustre-ffff88007a997000.max_easize=128

- llite.lustre-ffff88007a997000.max_read_ahead_mb=62.5
llite.lustre-ffff88007a997000.max_read_ahead_per_file_mb=62.5
llite.lustre-ffff88007a997000.max_read_ahead_whole_mb=16
llite.lustre-ffff88007a997000.nosquash_nids=NONE

unused_mb: 1000
reclaim_count: 0
llite.lustre-ffff88007a997000.max_easize=128

+ llite.lustre-ffff88007a997000.max_read_ahead_mb=128
llite.lustre-ffff88007a997000.max_read_ahead_per_file_mb=62.5
llite.lustre-ffff88007a997000.max_read_ahead_whole_mb=16
llite.lustre-ffff88007a997000.nosquash_nids=NONE

23
24
25
26
27
28
29

23
24
25
26
27
28
29

Figure 4.2.: Diff algorithm shows that the value for max_read_ahead_mb has been in-
creased to 128 MB

4.2.2. Benchmark Visualization

The possibility to visualize IOR benchmarks is the main component of the web inter-
face. After the specification of the IOR benchmark, the nodes that participated in the
benchmark and an optional limitation on the time period, the visualization button is
enabled. Additionally, a drop down menu is filled with Lustre configurations that have
been tested with the criteria specified before. Upon visualization two charts are generated.

The purpose of the first one is to visualize the I/O performance and the standard
deviation. The read and write values are mean values provided by the IOR JSON output
shown in Listing 2.4. For easier comparison, the mean value of these read and write
values is calculated. Therefore a single value can indicate whether the I/O performance
increases or decreases. Additionally, each data point visualizes the current Lustre client
configuration. Configuration changes that were made specific for this benchmark run
are highlighted separately. An example is given in Figure 4.3 where several values for
max_read_ahead_per_file_mb are benchmarked.

The purpose of the second chart is to compare the I/O performance of an individual Lustre
configuration with a benchmark run performed on an unchanged configuration. This so
called baseline is an indicator whether the tested configuration increases or decreases
the file systems performance. An example is given in Figure 4.4 where compared to the
current default configuration the performance decreases.

25

Figure 4.3.: Chart highlighting the effect of an increased value for
max_read_ahead_per_file_mb

4.2.3. Recommendations

While it is relatively easy to spot client configurations that promise a performance
improvement, an approach to automate this process has been made. The following steps
are performed.

1. The mean value of all selected benchmark results is calculated

2. For every client configuration the biggest mean value is calculated

3. If the individual mean value is at least as big as the mean value of all benchmark
results, a recommendation is made

In the end, a new automation JSON is generated, hopefully containing promising client
configurations.

4.2.4. MongoDB

MongoDB is used as the database engine to store the Lustre configurations and the IOR
benchmark results. MongoDB is a NoSQL database and the most used engine of its
kind in 2017 [11]. The main difference between a NoSQL and a relative database engine
like MySQL is the support for schema free data. MongoDB stores data in JSON-like
documents and is therefore well suited for archiving and analyzing the automation JSON
files shown in subsection 4.1.1 and the IOR results shown in Listing 2.4

26

Figure 4.4.: Chart highlighting the effect of an increased value for
max_read_ahead_per_file_mb

4.2.5. Docker

Docker is a tool to containerize applications. This allows those applications to run in a
virtual environment with its own dependencies. It is recommended to use one Docker
container for one purpose. Therefore a multi-container environment is provided. To
simplify the start-up, networking and scaling of those independent containers, Docker
Compose is used. A Docker Compose environment is specified in a YAML file. To install
the web interface developed in this thesis a demo is given in Appendix B.

27

5. Evaluation

In this chapter, the possibilities to configure a Lustre client are shown. Furthermore,
IOR is used to benchmark configuration changes and the results are put in perspective by
visualizing them in the web interface.

5.1. Test setup

The following evaluation was performed on hardware provided by the workgroup of
Scientific Computing at Universität Hamburg. Each server is equipped with 12 GB
of memory, an Intel Xeon X5650 CPU and two 1 Gbit/s Ethernet interfaces. Ubuntu
16.04.4 LTS is used as the operating system and Lustre version 2.10.1 is installed. In the
following tests 10 nodes are participating. As only one Ethernet interface per server is
used for interconnection, the aggregated bandwidth is limited to 10 ∗ 1 Gbit/s resulting
in an theoretical maximum bandwidth of 1280 MiB/s. When evaluating the bandwidth,
one needs to consider the overhead introduced by other running services and protocol
overheads. If not stated otherwise the stripe count is set to −1, which means that the
file is striped across all available OSTs.

5.2. Automation configuration

In section 2.1.3, important Lustre client configurations were highlighted. In the following
evaluation specific ranges of values are tested for each configuration option. Additionally,
some configurations were tested at the same time as they influence each other. In Table 5.1
all tested client configurations are shown. The second column represents the current
client configuration. Altogether nine different Lustre settings with 37 configuration
changes in total are tested. Therefore to benchmark the effects of these changes in
combination with just one IOR benchmark results in 37 independent runs.

As some configurations have direct influence on each other, groups have been tested. In
Table 5.2 three groups are shown. This adds additional 16 benchmark runs for a single
IOR configuration.

28

Configuration Present value Tested values
max_rpcs_in_flight (osc) 8 8, 32, 64, 128, 256
max_dirty_mb (osc) 32 32, 128, 256, 512, 1024
max_pages_per_rpc (osc) 1024 256, 1024
checksums (osc) 1 0, 1
checksum_type (osc) crc32c crc32, crc32c, adler
max_cached_mb (llite) 6002 3000, 6000, 9000
max_read_ahead_mb (llite) 64 0, 40, 64, 128, 512, 1024
max_read_ahead_whole_mb (llite) 2 2, 4, 8, 16, 32
max_read_ahead_per_file_mb (llite) 64 2, 4, 8, 16, 32, 64

Table 5.1.: Tested Lustre client configurations

Configurations Tested values
Group 1

max_rpcs_in_flight (osc) 8 32 64 128 256
max_dirty_mb (osc) 32 128 256 512 1024

Group 2
max_read_ahead_whole_mb (llite) 2 4 8 16 32
max_read_ahead_per_file_mb (llite) 4 8 16 32 64
max_read_ahead_mb (llite) 40 64 128 512 1024

Group 3
max_rpcs_in_flight (osc) 8 32 64 128 256 256
max_dirty_mb (osc) 32 128 256 512 1024 2047
max_pages_per_rpc (osc) 256 256 512 1024 1024 1024

Table 5.2.: Tested Lustre client configuration groups

5.3. Standard tests

The Lustre configurations shown in Table 5.1 and Table 5.2 have been benchmarked
with the following three different IOR configurations. In all three cases the present,
unchanged configuration was tested beforehand.

5.3.1. IOR benchmark with files-per-process and reordered read
back configuration

IOR -r -w -o /mnt/lustre/ testfile -a POSIX -e -t 1m -b 1m
↪→ -s 14000 -i 3 -F -C

Listing 5.1: IOR benchmark with files-per-process and reordered read back configuration

29

This benchmark reads and writes 14000 times to a block with the size of 1 MiB. As the
transferSize is set to 1 MiB the total number of read/write operations is 14000. One
thing all benchmarks used have in common is that the file size per process is set to 14000
MiB. This exceeds the available memory on the clients with the intention of eliminating
any unwanted cache effects. By using the POSIX interface in combination with the -e
option fsync is triggered for every write close. Additionally the -C option is used to make
sure that the processes do not read back their own files.

In Figure 5.1 this IOR configuration achieved a read and write performance of 1012 MiB
and 1087 MiB respectively. Especially the low value of the standard deviation indicates
a steady file system performance.

Figure 5.1.: IOR benchmark no. 1 without changes to the Lustre client

Configuration testing

RPCs

In Figure 5.2 three benchmarks are highlighted. The chart shown visualizes the perfor-
mance difference between the current Lustre configuration and the tested configuration.
The first highlighted data point is the only one that increases the performance slightly.
However, as previously stated, fluctuation of 1-2% is expected in benchmarking. The
second and third highlighted data points are of greater interest. Both data points share
nearly identical performance metrics. In both cases the value for max_dirty_mb was
enforced to 32 MiB. However, when tuning the values for max_rpcs_in_flight and

30

max_pages_per_rpc one has to keep in mind, that the RPCs are filled by the mem-
ory assigned to max_dirty_mb. In both cases these configurations are limited by the
same configuration. Since Lustre 2.6 a mechanism is implemented that automatically
increases the value for max_dirty_mb [22]. A potential issue could be that the current
implementation never decreases the value for max_dirty_mb [see line 1293 21].

Figure 5.2.: Impact of max_rpcs_in_flight, max_dirty_mb and max_pages_per_rpc
on each other

Checksums

In Figure 5.3 the impact of activated and deactivated checksums is shown. While the
I/O performance basically stays the same, the value of the standard deviation changes.
In theory, the reason for a doubled write standard deviation could be that data chunks
are corrupted. However, it is more likely that the missing checksum header reduces the
size of the RPCs requests. Therefore the RPCs are handled faster which could have an
affect on the dirty pages.

31

Figure 5.3.: Impact of activated and deactivated checksums

5.3.2. IOR benchmark with files-per-process, reordered read back
configuration and continuous block size

IOR -r -w -o /mnt/lustre/ testfile -a POSIX -e -t 1m -b
↪→ 14000m -s 1 -i 3 -F -C

Listing 5.2: IOR benchmark with files-per-process, reordered read back configuration
and continuous block size

This benchmark is similar to the previous one. However, this time the block size is set
to 14000 MiB within a single segment.

As shown in Figure 5.4 this IOR benchmark achieved nearly identical I/O performance
as the previous one. The main difference is, that the standard deviation for the read and
write performance is very low in both cases. When comparing the further course of the
line chart one assumption is, that the I/O performance is steadier than in the previous
benchmark.

32

Figure 5.4.: IOR benchmark no. 2 without changes to the Lustre client

Configuration testing

Checksums

In Figure 5.5 the same effect is seen as in Figure 5.3. In this case, the impact of disabled
checksums is even more obvious. The standard deviation rises from 22.10 to 33.78. As the
same behavior is observable for a second time it is unlikely that this is a coincidence.

33

Figure 5.5.: Impact of activated and deactivated checksums

Read ahead
Figure 5.6 acts as a good example for poorly tuned parameters. It shows how essen-
tial the read ahead mechanism is for good file system performance. If the value for
max_read_ahead_per_file_mb is cut in half, the performance drops by over 10%. On
the other hand, it was not possible to increase the Lustre client performance. As shown
in the second highlighted data point, increasing the value for max_read_ahead_mb to
1024 MiB is not helping either. One could assume that because every Lustre client is
reading and writing 14000 MiB in a continuous block the increased read ahead cache
should improve the performance.

34

Figure 5.6.: Word case scenario for read ahead tuning

5.3.3. IOR benchmark with random access configuration

IOR -r -w -o /mnt/lustre/ testfile -a POSIX -e -t 1m -b 1m
↪→ -s 14000 -i 3 -z

Listing 5.3: IOR benchmark with random access configuration

This benchmark is using 14000 segments and 1 MiB for the the transferSize like the
first IOR benchmark does. However, file access is set to random due to the random offset
option (-z).

The benchmark results shown in Figure 5.7 are very different to the ones achieved before.
Compared to the mean value of Figure 5.4 the I/O performance was reduced by nearly
60%. At the same time the read performance has overtaken the write performance.

35

Figure 5.7.: IOR benchmark no. 3 without changes to the Lustre client

Configuration testing

Read ahead

As shown in Figure 5.8, when the read ahead cache is deactivated by setting max_read_ahead_mb
to 0, the read performance drops to 44.89 MiB/s. This is interesting as the read access
is set to random. The read ahead cache is only used if two sequential requests can not
be fulfilled by the cache. One assumption is that even when reading random parts of
a file, two sequential requests are made frequently. However, if this would be the case,
the read performance should improve as the value for max_read_ahead_mb is increased.
Thereby, a more realistic assumption is that Lustre fills the read ahead cache with data,
even if no sequential requests have been made.

36

Figure 5.8.: Read ahead with random access

RPCs

In Figure 5.9 an interesting discovery has been made. Whenever max_pages_per_rpc is
set to 256 the read performance overtakes the write performance. In those cases, the
overall file system performance is improved by 30%. This behavior is repetitive and the
performance improvements are constant.

Figure 5.9.: Pages per RPC with random access

37

5.4. Stripe size tests

5.4.1. IOR benchmark with 4 MiB transfer size

IOR -r -w -o /mnt/lustre/ testfile -a POSIX -e -t 4m -b 40m
↪→ -s 350 -i 3 -F

Listing 5.4: IOR benchmark with 4 MiB transfer size and 40 MiB block size

This benchmark uses an increased transfer size of 4 MiB. The default Lustre stripe size is
1 MiB. Therefore a single chunk needs to get written to four OSTs. This adds a massive
overhead as for every transfer four RPCs are required.

In Figure 5.10 the impact of this access pattern is shown. While the write performance is
unchanged, the read performance drops to 244, 18 MiB/s. The second data point clarifies
the importance of the RPC configuration. As soon as the value of max_rpcs_in_flight
is set to at least 64 the read performance increases. In the third highlighted data point
the I/O performance increases by more than 9%.

Figure 5.10.: Impact of additional RPCs

38

5.4.2. IOR benchmark with 4 MiB transfer size and 4 MiB stripe
size

IOR -r -w -o /mnt/lustre/ testfile -a POSIX -e -t 4m -b 40m
↪→ -s 350 -i 3 -F -O lustreStripeSize =4m

Listing 5.5: IOR benchmark with 4 MiB transfer size, 40 MiB block size and 4 MiB
stripe size

This benchmark is similar to the previous one, but this time the stripe size matches the
transfer size. Thereby the client has to send ten RPCs to transmit a single continuous
block.

The observed behavior in Figure 5.11 matches the previous one. As soon as max_rpcs_in_flight
is set to 64 or higher, the read performance increases. This time, however, less RPCs are
necessary to transmit a single block. The overall file system performance increases by
17.88%.

Figure 5.11.: Impact of additional RPCs

39

6. Conclusion

In this chapter, the overall experience using the decision support tool is summarized and
evaluated.

The goal of this thesis was to develop a decision support system that helps the user to
gain a better understanding of the behavior of the Lustre file system. This goal has been
fulfilled, as the tools developed in this thesis provided several interesting insights. The
automation files greatly improved the process of handling complex configuration changes.
Once an automation file is prepared, the testing of different IOR benchmarks is a straight
forward process. During evaluation 188 benchmarks have been run. Not every client
configuration tested is meaningful in regards to performance optimization. However, this
shows how convenient it is to be able to quickly experiment with configuration changes
and benchmarks.

The approach shown in Section 4.2.3, where based on mean values another automation
JSON is generated, has been quickly dismissed. In most cases the benchmark results
were not meaningful enough to just use the mean value for a recommendation. However,
different algorithms which pay attention to the standard deviation might have more
success.

Altogether it was not possible to improve the I/O performance. That being said, many
interesting trends were observed. Especially the usage for educational purposes seems
promising.

40

7. Future Work

In this chapter an outlook for future work is given. The proposed features address ideas
to configure and benchmark additional Lustre layers and components. Furthermore,
integration into other HPC systems and existing interfaces is desired.

Integration of additional layers
Currently the llite and OSC layers are integrated into the decision support system.
However, as shown in Figure 2.2, the Metadata Client (MDC) layer is missing in the
current implementation. The MDC is responsible for the communication with the MDSs.
It is the counterpart to the LOV layer as the MDC provides a single namespace for meta
data like the LOV layer does for data. To benchmark the meta data performance, a
benchmark like MDS-Survey [15] can be used and integrated into the decision support
system.

Integration of additional Lustre components
The current implementation is only capable of configuring the Lustre clients. However,
as this is a distributed system, many components depend on each other. For example,
to fully benefit from an increased RPC size, the OSTs and OSCs should use the same
configuration. Therefore, in the future, the decision support tool should be aware of all
involved Lustre components.

Integration into existing management applications
As seen in Chapter 3, the Intel Manager For Lustre is able to manage production-grade
Lustre installations. Due to an open source license, an integration in an already powerful
management system is possible.

Data mining
The usage of the data gathered in the database is not limited to a simple recommendations
mechanism as shown earlier. This data might also be suitable for data mining and further
analyzes.

41

Bibliography
[1] Adler, Mark ; Gailly, Jean loup: ZLIB DATA COMPRESSION LIBRARY.

(2017). – URL https://github.com/madler/zlib/blob/master/README#L87

[2] Chris Horn, Cray Inc.: LNet and LND Tuning Explained. (2015). – URL https:
//www.eofs.eu/_media/events/lad15/15_chris_horn_lad_2015_lnet.pdf

[3] Community, Lustre: Example: IOR Read/Write Test, Multiple Files per Process,
Multiple Clients. (2018). – URL http://wiki.lustre.org/IOR#Example:_IOR_
Read.2FWrite_Test.2C_Multiple_Files_per_Process.2C_Multiple_Clients

[4] Coweb, Malcolm: An introduction to Lustre architecture. (2015),
8. – URL https://nci.org.au/wp-content/uploads/2015/08/
01-Introduction-to-Lustre-Architecture.pdf

[5] Intel: Intel Manager For Lustre. (2018). – URL https://github.com/
intel-hpdd/intel-manager-for-lustre

[6] Intel: Intel Manager For Lustre License. (2018). – URL https://github.com/
intel-hpdd/intel-manager-for-lustre/blob/master/LICENSE

[7] Intel: Intel® Solid-State Drive Data Center Family for PCIe. (2018).
– URL https://www.intel.de/content/www/de/de/solid-state-drives/
intel-ssd-dc-family-for-pcie.html

[8] Intel: Introducing Intel® Manager for Lustre* software. (2018). – URL https:
//intel-hpdd.github.io/Online-Help/docs/Introduction_1_0.html

[9] Intel, Oracle: Lustre* Software Release 2.x - Operations Manual. (2018). – URL
http://doc.lustre.org/lustre_manual.pdf

[10] Intel, Oracle: OBD Code. (2018). – URL https://git.hpdd.intel.
com/?p=fs/lustre-release.git;a=blob;f=lustre/include/obd.h;h=
8098418bc237be48f83adf4560333db690f519b4;hb=HEAD#l1246

[11] IT gmbh solid: DB-Engines Ranking of Document Stores. (2018). – URL
https://db-engines.com/en/ranking/document+store

[12] Kogge, Peter ; Bergman, Keren ; Borkar, Shekhar ; Campbell, Dan u. a.:
ExaScale Computing Study: Technology Challenges in Achieving Exascale Sys-
tems. (2008), 9. – URL http://staff.kfupm.edu.sa/ics/ahkhan/Resources/
Articles/ExaScale%20Computing/TR-2008-13.pdf

42

https://github.com/madler/zlib/blob/master/README#L87
https://www.eofs.eu/_media/events/lad15/15_chris_horn_lad_2015_lnet.pdf
https://www.eofs.eu/_media/events/lad15/15_chris_horn_lad_2015_lnet.pdf
http://wiki.lustre.org/IOR#Example:_IOR_Read.2FWrite_Test.2C_Multiple_Files_per_Process.2C_Multiple_Clients
http://wiki.lustre.org/IOR#Example:_IOR_Read.2FWrite_Test.2C_Multiple_Files_per_Process.2C_Multiple_Clients
https://nci.org.au/wp-content/uploads/2015/08/01-Introduction-to-Lustre-Architecture.pdf
https://nci.org.au/wp-content/uploads/2015/08/01-Introduction-to-Lustre-Architecture.pdf
https://github.com/intel-hpdd/intel-manager-for-lustre
https://github.com/intel-hpdd/intel-manager-for-lustre
https://github.com/intel-hpdd/intel-manager-for-lustre/blob/master/LICENSE
https://github.com/intel-hpdd/intel-manager-for-lustre/blob/master/LICENSE
https://www.intel.de/content/www/de/de/solid-state-drives/intel-ssd-dc-family-for-pcie.html
https://www.intel.de/content/www/de/de/solid-state-drives/intel-ssd-dc-family-for-pcie.html
https://intel-hpdd.github.io/Online-Help/docs/Introduction_1_0.html
https://intel-hpdd.github.io/Online-Help/docs/Introduction_1_0.html
http://doc.lustre.org/lustre_manual.pdf
https://git.hpdd.intel.com/?p=fs/lustre-release.git;a=blob;f=lustre/include/obd.h;h=8098418bc237be48f83adf4560333db690f519b4;hb=HEAD#l1246
https://git.hpdd.intel.com/?p=fs/lustre-release.git;a=blob;f=lustre/include/obd.h;h=8098418bc237be48f83adf4560333db690f519b4;hb=HEAD#l1246
https://git.hpdd.intel.com/?p=fs/lustre-release.git;a=blob;f=lustre/include/obd.h;h=8098418bc237be48f83adf4560333db690f519b4;hb=HEAD#l1246
https://db-engines.com/en/ranking/document+store
http://staff.kfupm.edu.sa/ics/ahkhan/Resources/Articles/ExaScale%20Computing/TR-2008-13.pdf
http://staff.kfupm.edu.sa/ics/ahkhan/Resources/Articles/ExaScale%20Computing/TR-2008-13.pdf

[13] Kuhn, Michael ; Kunkel, Julian ; Ludwig, Thomas: Data Compression for
Climate Data. In: Supercomputing Frontiers and Innovations (2016), 06, S. 75–94. –
URL http://superfri.org/superfri/article/view/101

[14] Lockwood, Glenn K.: Basics of I/O Benchmarking. (2016). – URL https:
//glennklockwood.blogspot.de/2016/07/basics-of-io-benchmarking.html

[15] Lustre: MDS-Survey Readme. . – URL https://git.hpdd.intel.
com/?p=fs/lustre-release.git;a=blob;f=lustre-iokit/mds-survey/
README.mds-survey;h=9f59ce25d53cc75085c7b10328378731650c5f42;hb=
bdc5bb52c55470cf8020933f80e327c397810603

[16] Lustre: An introduction to Lustre architecture. (2017), 10. – URL http:
//wiki.lustre.org/images/6/64/LustreArchitecture-v4.pdf

[17] OpenSFS: Lustre® File System, Version 2.4 Released. (2013), 7. – URL http://
opensfs.org/press-releases/lustre-file-system-version-2-4-released/

[18] Petersen, Torben K. ; Xyratex: Optimizing Performance of HPC Storage Sys-
tems. (2013). – URL https://chpcconf.co.za/files/2013/AFRICA/5%20Dec%
202013/torben-OptimizingStorage.pptx

[19] Rutman, Nathan: Improvements in Lustre Data Integrity. (2012),
4. – URL http://cdn.opensfs.org/wp-content/uploads/2011/11/
Improvements-in-Lustre-Data-Integrity.pdf

[20] Wang, Feiyi ; Oral, Sarp ; Shipman, Galen u. a.: Understanding Lustre Filesys-
tem Internals. (2009), 4. – URL http://wiki.old.lustre.org/images/d/da/
Understanding_Lustre_Filesystem_Internals.pdf

[21] Zhang, Hongchao ; Drokin, Oleg u. a.: LU-4933 changelog. (2014), 5. – URL
https://review.whamcloud.com/#/c/10446/7/lustre/include/obd.h

[22] Zhang, Hongchao ; Xi, Li: Automatically tune the max_dirty_mb. (2014), 7. –
URL https://jira.hpdd.intel.com/browse/LU-4933

[23] Zickler, Enno: Option to output results in a json file. 2018. – URL https:
//github.com/hpc/ior/pull/33

43

http://superfri.org/superfri/article/view/101
https://glennklockwood.blogspot.de/2016/07/basics-of-io-benchmarking.html
https://glennklockwood.blogspot.de/2016/07/basics-of-io-benchmarking.html
https://git.hpdd.intel.com/?p=fs/lustre-release.git;a=blob;f=lustre-iokit/mds-survey/README.mds-survey;h=9f59ce25d53cc75085c7b10328378731650c5f42;hb=bdc5bb52c55470cf8020933f80e327c397810603
https://git.hpdd.intel.com/?p=fs/lustre-release.git;a=blob;f=lustre-iokit/mds-survey/README.mds-survey;h=9f59ce25d53cc75085c7b10328378731650c5f42;hb=bdc5bb52c55470cf8020933f80e327c397810603
https://git.hpdd.intel.com/?p=fs/lustre-release.git;a=blob;f=lustre-iokit/mds-survey/README.mds-survey;h=9f59ce25d53cc75085c7b10328378731650c5f42;hb=bdc5bb52c55470cf8020933f80e327c397810603
https://git.hpdd.intel.com/?p=fs/lustre-release.git;a=blob;f=lustre-iokit/mds-survey/README.mds-survey;h=9f59ce25d53cc75085c7b10328378731650c5f42;hb=bdc5bb52c55470cf8020933f80e327c397810603
http://wiki.lustre.org/images/6/64/LustreArchitecture-v4.pdf
http://wiki.lustre.org/images/6/64/LustreArchitecture-v4.pdf
http://opensfs.org/press-releases/lustre-file-system-version-2-4-released/
http://opensfs.org/press-releases/lustre-file-system-version-2-4-released/
https://chpcconf.co.za/files/2013/AFRICA/5%20Dec%202013/torben-OptimizingStorage.pptx
https://chpcconf.co.za/files/2013/AFRICA/5%20Dec%202013/torben-OptimizingStorage.pptx
http://cdn.opensfs.org/wp-content/uploads/2011/11/Improvements-in-Lustre-Data-Integrity.pdf
http://cdn.opensfs.org/wp-content/uploads/2011/11/Improvements-in-Lustre-Data-Integrity.pdf
http://wiki.old.lustre.org/images/d/da/Understanding_Lustre_Filesystem_Internals.pdf
http://wiki.old.lustre.org/images/d/da/Understanding_Lustre_Filesystem_Internals.pdf
https://review.whamcloud.com/#/c/10446/7/lustre/include/obd.h
https://jira.hpdd.intel.com/browse/LU-4933
https://github.com/hpc/ior/pull/33
https://github.com/hpc/ior/pull/33

Appendices

44

A. Abbreviations

Abbreviations

HPC high-performance computing
MGT Management Target . 8
MGS Management Server . 8
MDS Metadata Server . 8
MDT Metadata Target. .9
MDC Metadata Client . 41
OSS Object Storage Server. .9
OST Object Storage Target . 9
OSC Object Storage Client. .10
VFS Virtual File System. 10
RPC Remote Procedure Call . 10
CLI Command Line Interface .2
GUI Graphical User Interface . 20
HA high-availability . 20
FLOPS Floating Point Operations Per Second . 5
MPI Message Passing Interface. .5
LNet Lustre Network . 13
CRC cyclic redundancy check . 13
ECC error-correcting code. .13
DNE Distributed Namespace Environment. .9
LOV logical object volume . 11

45

B. Demo

Web interface demo

This section gives an introduction on how to install the web interface. By default
this installation contains the Lustre client configurations and benchmark results that
were used in the evaluation. More details, especially regarding the installation and
usage of the CLI, can be found on this website: https://git.wr.informatik.uni-
hamburg.de/julius.plehn/LustreWeb

git clone
↪→ https://git.wr.informatik.uni -hamburg.de/julius.plehn/LustreWeb.git

cd LustreWeb && docker - compose up

Listing B.1: Demo installation

After the installation has been completed successfully, the web interface is available:
http://localhost:1026/

46

List of Figures

1.1. Development of computational speed, storage capacity and storage speed
[based on 13, p. 75] . 6

2.1. Lustre file system overview [4, p. 2] . 10
2.2. Lustre client layers [20, p.11] . 12
2.3. Bulk Checksum Speeds, MB/s [19] . 16
2.4. IOR file access [inspired by 14] . 19

4.1. Diff algorithm applied to two different OSCs 25
4.2. Diff algorithm shows that the value for max_read_ahead_mb has been

increased to 128 MB . 25
4.3. Chart highlighting the effect of an increased value for max_read_ahead_per_file_mb 26
4.4. Chart highlighting the effect of an increased value for max_read_ahead_per_file_mb 27

5.1. IOR benchmark no. 1 without changes to the Lustre client 30
5.2. Impact of max_rpcs_in_flight, max_dirty_mb and max_pages_per_rpc

on each other . 31
5.3. Impact of activated and deactivated checksums 32
5.4. IOR benchmark no. 2 without changes to the Lustre client 33
5.5. Impact of activated and deactivated checksums 34
5.6. Word case scenario for read ahead tuning 35
5.7. IOR benchmark no. 3 without changes to the Lustre client 36
5.8. Read ahead with random access . 37
5.9. Pages per RPC with random access . 37
5.10. Impact of additional RPCs . 38
5.11. Impact of additional RPCs . 39

47

List of Listings
2.1. Lustre Mounting . 9
2.2. lctl get_param and set_param . 12
2.3. CRC example . 15
2.4. Truncated JSON output . 18

4.1. CLI options . 22
4.2. Automation Configuration example . 23

5.1. IOR benchmark with files-per-process and reordered read back configuration 29
5.2. IOR benchmark with files-per-process, reordered read back configuration

and continuous block size . 32
5.3. IOR benchmark with random access configuration 35
5.4. IOR benchmark with 4 MiB transfer size and 40 MiB block size 38
5.5. IOR benchmark with 4 MiB transfer size, 40 MiB block size and 4 MiB

stripe size . 39

B.1. Demo installation . 46

48

List of Tables

2.1. LNet Credits [2, p. 14] . 13
2.2. Adler-32 example . 14
2.3. Important IOR Settings . 17

5.1. Tested Lustre client configurations . 29
5.2. Tested Lustre client configuration groups 29

49

Eidesstattliche Versicherung

Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit im Studiengang
Software-System-Entwicklung selbstständig verfasst und keine anderen als die angege-
benen Hilfsmittel – insbesondere keine im Quellenverzeichnis nicht benannten Internet-
Quellen – benutzt habe. Alle Stellen, die wörtlich oder sinngemäß aus Veröffentlichungen
entnommen wurden, sind als solche kenntlich gemacht. Ich versichere weiterhin, dass ich
die Arbeit vorher nicht in einem anderen Prüfungsverfahren eingereicht habe und die
eingereichte schriftliche Fassung der auf dem elektronischen Speichermedium entspricht.

Ort, Datum Unterschrift

Veröffentlichung

Ich bin damit einverstanden, dass meine Arbeit in den Bestand der Bibliothek des
Fachbereichs Informatik eingestellt wird.

Ort, Datum Unterschrift

	Introduction
	Motivation
	Thesis Goals
	Outline

	Background
	Lustre
	Architecture
	Layers
	Client Configuration

	IOR

	Related Work
	Manual Benchmarking
	Intel Manager For Lustre
	Automatic Configuration within Lustre

	Design and Implementation
	CLI
	Automation JSON

	Web Interface
	Diff
	Benchmark Visualization
	Recommendations
	MongoDB
	Docker

	Evaluation
	Test setup
	Automation configuration
	Standard tests
	IOR benchmark with files-per-process and reordered read back configuration
	IOR benchmark with files-per-process, reordered read back configuration and continuous block size
	IOR benchmark with random access configuration

	Stripe size tests
	IOR benchmark with 4 MiB transfer size
	IOR benchmark with 4 MiB transfer size and 4 MiB stripe size

	Conclusion
	Future Work
	Bibliography
	Appendices
	Abbreviations
	Demo
	List of Figures
	List of Listings
	List of Tables

