
Master Thesis

Data-Aware Compression for HPC using
Machine Learning

vorgelegt von

Julius Plehn

Fakultät für Mathematik, Informatik und Naturwissenschaften
Fachbereich Informatik
Arbeitsbereich Wissenschaftliches Rechnen

Studiengang: M. Sc. Informatik
Matrikelnummer: 6535163

Erstgutachter: Jun.-Prof. Dr. Michael Kuhn
Zweitgutachter: Prof. Dr. Thomas Ludwig
Betreuer: Jun.-Prof. Dr. Michael Kuhn, Anna Fuchs,

Dr. Jakob Luettgau
Hamburg, 09. Mai 2022

Abstract

While compression can provide significant storage and cost savings, its use within HPC
applications is often only of secondary concern. This is in part due to the inflexibility of
existing approaches where a single compression algorithm has to be used throughout the
whole application, but also because insights into the behavior of the algorithms within
the context of individual applications are missing.

Several compression algorithms are available, with each one also having a unique set
of options. These options have a direct influence on the achieved performance and
compression results. Furthermore, the algorithms and options to use for a given dataset
are highly dependent on the characteristics of said dataset.

This thesis explores how machine learning can help identify fitting compression algorithms
with corresponding options based on actual data structure encountered during I/O. To do
so, a data collection and training pipeline is introduced. Inferencing is performed during
regular application runs and shows promising results. Moreover, it provides valuable
insights into the benefits of using certain compression algorithms and options for specific
data.

Contents

1 Introduction 5
1.1 Motivation . 6
1.2 Thesis goals . 6
1.3 Outline . 6

2 Background 8
2.1 I/O in HPC . 8

2.1.1 MPI-IO . 8
2.1.2 HDF5 . 9

2.2 Compression . 10
2.2.1 Information theory . 10
2.2.2 Techniques . 12
2.2.3 LZ4 . 14
2.2.4 Zstandard . 14
2.2.5 ZLIB . 15
2.2.6 Metrics . 15

2.3 Machine learning . 16
2.3.1 Artificial neural networks . 17
2.3.2 Multi-layer perceptron . 19
2.3.3 Activation functions . 20

3 Related work 22
3.1 Data-specific compression . 22

3.1.1 Domain-specific compression . 22
3.1.2 Lossy compression . 23

3.2 Approaches using machine learning . 23
3.2.1 Autoencoders . 23
3.2.2 Training on metadata . 24

4 Architecture 26
4.1 I/O interception library . 28

4.1.1 Intercepted functions . 29
4.1.2 Compression integration . 30
4.1.3 Usage modes . 31

4.2 Machine learning process . 34
4.2.1 Framework . 34

3

4.2.2 Data preprocessing . 35
4.2.3 Neural network . 35
4.2.4 Model training . 36
4.2.5 Model usage . 38

5 Evaluation 39
5.1 Test setup . 39

5.1.1 ICON . 40
5.2 Metrics . 40

5.2.1 Compression rate . 40
5.2.2 Compression speed . 41
5.2.3 Compression rate per time . 41
5.2.4 Decompression speed . 44

5.3 Training . 46
5.3.1 Compression rate . 46
5.3.2 Compression rate per time . 46
5.3.3 Compression speed . 47
5.3.4 Decompression speed . 47

5.4 Inferencing experiments . 48
5.4.1 Extended simulation time steps 48
5.4.2 Extended simulation output . 54
5.4.3 Reduced data collection phase . 55
5.4.4 Reduced chunk size . 58

5.5 Findings . 61

6 Future work 62

7 Conclusion 64

Bibliography 65

Appendices 71

List of Figures 72

List of Listings 74

List of Tables 75

4

1 Introduction

High-performance computing (HPC) is used to distribute computing tasks that surpass
the capabilities of a single computing node across a multitude of nodes. Similar to the
considerations required for constructing a single node, those challenges are extended
across a huge number of additional components. Besides the performance implications
for an application when running in a non-distributed environment, the performance
characteristics are influenced by shared and mutually used resources like the network
and storage devices. Throughout the long history of vertical scaling architectures, many
optimizations were introduced. Nowadays, researchers and system architects strive to
develop new exascale supercomputers, aiming to solve new tasks faster and with greater
accuracy. Advancements in this area are essential as HPC contributes significantly to
scientific and industrial innovation. Among others, as noted in [1], famous use-cases
include experiments at CERN and the Intergovernmental Panel on Climate Change
(IPCC).

All those efforts have in common that HPC concepts are subject to ongoing changes and
improvements. However, those essential building blocks of dependent components like
CPUs, memory, networking, and storage are evolving at different rates. This is especially
notable in storage related technology and concerns storage capacity, input/output
operations per second and throughput. Furthermore, those components and requirements
are strongly interleaved, resulting in advancements that must be propagated throughout
the whole distributed stack to fully reach its potential. Recent examples include more
practical use of machine learning approaches, which in many cases rely on random data
access patterns and impose unique constraints on the storage architecture.

Besides these aspects, storage capacity is of importance. According to [2], only a small
percentage of generated data is stored for post-processing. This is partly due to storage
capacity but also influenced by the cost associated with capacity. To mitigate those issues,
the amount of data that physically needs to be stored has to be reduced. Promising
concepts include in-situ processing like evaluated in [3]. With this approach, the data is
evaluated and processed as the computation occurs. Therefore only the final data of the
simulation needs to be stored, and intermediate data is discarded. However, this requires
thorough application changes and might not be applicable to all use-cases.

An alternative is to use data compression techniques. This approach reduces the data by
exploiting redundancy to store a shorter representation of the initial file. As discussed in
[4], this not only reduces the required provisioned storage capacity but can also result in
higher throughput, lower latencies, and increased memory capacity.

5

1.1 Motivation
As indicated previously, the potential benefits of using compression in HPC are significant.
However, a vast amount of compression algorithms are available, each comprising a
multitude of options. Furthermore, depending on the use case, different characteristics
of the available compression algorithms are important. The correct choice also depends
on the requirements imposed by the application and the researcher. As argued in [5],
this choice is a technical decision, and a compressor selected specifically for one dataset
might not achieve appropriate results for a different dataset.

This manifests in the lack of use of compression at all or results in the integration of
static compression variants which do not unleash the full possible potential. To advance
the use of compression in general and to enable users to make well-informed decisions for
proper usage, further developments are necessary. Ideally, this should be an automated
process where the ideal compression algorithm and options are selected without further
intervention by the user, depending on the user’s imposed requirements. This motivates
the contributions of this thesis, where a system is proposed which predicts the ideal
compression algorithm and options in a data-aware manner.

1.2 Thesis goals
Motivated by the introduction above, the thesis goals are outlined in the following. First,
further insights into the behavior of compression algorithms and options when applied
to application data are needed. Depending on user-defined metrics like compression
rate and throughput, the benefits and characteristics of compression techniques need
to be highlighted and visualized. This is the basis and the fundamental building block
of providing capabilities of identifying ideal compression variants for data encountered
during I/O of HPC applications. These insights can then be used to automatically
provide training data for a machine learning approach where the association between
the data and ideal compression techniques are automatically explored without user
intervention. The final goal is to use the learned characteristics of compressible data to
predict the ideal compressor during runtime for the data encountered during I/O.

1.3 Outline
The remainder of the thesis is organized as follows:

• In the Background chapter, essential information about compression algorithms
and machine learning is given. Furthermore, details regarding I/O in HPC and
how applications interact with file systems are presented.

• The Related Work chapter provides insights into existing approaches that aim
to optimize compression usage by either exploiting domain knowledge or relying on

6

strategies that use application-specific constraints. Additionally, further machine
learning related techniques are introduced.

• In the Architecture chapter, the development-related contributions of the thesis
are highlighted. This includes a library that intercepts I/O calls and can predict
compressors for the intercepted data and tools that allow for the training of machine
learning models.

• In the Evaluation chapter, an HPC application is used to train multiple neural
networks. Those networks are then evaluated by testing them in several experiments.

• Afterward, ideas to improve the given architecture and prospects for Future Work
are given.

• In the end, the overall achievements are highlighted in the Conclusion.

7

2 Background

In this chapter, background information on the involved components of this thesis is
given. First of all, I/O in the context of HPC is introduced. This includes filesystems,
I/O libraries, and layers which data is passed through. An introduction of compression
algorithms follows this, and several implementations are shown in detail. Important
distinctions are outlined as these are of importance for further data-awareness in the
remainder. Finally, relevant topics regarding machine learning are presented.

2.1 I/O in HPC
The performance of I/O has a significant impact on the overall performance of HPC
applications. Similar to the techniques implemented in applications, parallelization is
a big concern. This requirement is reflected throughout all components involved and
comes with its challenges. This is partly due to technical constraints of the underlying
architecture but also includes the complexity associated with the implementation of
parallel applications and their interaction with each other. The influence this has is
shown in [6], where application runs were analyzed. The authors observed that the
majority of jobs did not perform efficient I/O, and a significant time of the total run
time was spent doing I/O. In the following, background about the involved components
is given. Furthermore, libraries that are commonly used as an abstraction for I/O are
introduced.

2.1.1 MPI-IO
MPI-IO is part of the Message Passing Interface (MPI) and relates to the possibility of
extending the existing process communication interface to be able to perform I/O in
parallel. Advanced interfaces are required for this use case as the Portable Operating
System Interface (POSIX) imposes severe restrictions like files that are created as a
contiguous stream of bytes. Instead, MPI-IO enables file access using natively provided
MPI data types and derived types. Additionally, several consistency constraints are
relaxed. Besides those aspects, parallelization techniques known from MPI are used.
This includes non-blocking and blocking access, as well as collective operations.

While MPI-IO allows for low-level and individual interaction with files, a common
approach is to create a logical view for each MPI rank. A view is created by assigning a
data type, a file type, and a displacement. The data type can either represent a single

8

MPI type or be constructed from others. Furthermore, the file type represents the actual
access pattern which is used afterward to interact with the physical view. For example,
a continuous pattern can be chosen to write data according to the order of the MPI
ranks.

The implementation of MPI-IO is in many cases provided by ROMIO1. Furthermore, an
additional abstraction layer called ADIO is responsible for providing parallel I/O access
to the individual file systems. More information can be found in [7], where the initial
concept is proposed. Furthermore, thorough details about the Lustre2 ADIO driver can
be found in [8].

MPI-IO provides several possibilities to enable parallel I/O and uses an API familiar
to MPI users. Furthermore, commonly used file systems are supported, and due to the
popularity of MPI, this approach is used in various other libraries.

2.1.2 HDF5
HDF53 is the acronym of the Hierarchical Data Format in the fifth version. It is a file
format that is widely used within scientific applications. Files created according to this
format can be handled independently of the compute environment it was initially created
in, as endianness and data types are handled accordingly. Another benefit of the use of
this standardized file format is the support provided by external applications.

HDF5 provides an API that is used to set up the file structure according to the appli-
cation’s requirements and to perform I/O. Therefore, this API provides an abstraction
to more complex interfaces like MPI-IO, which come with their own challenges. If
the application implementing HDF5 already uses MPI for process communication, the
adaption of parallel I/O is therefore straightforward.

Since version four of NetCDF (Network Common Data Form)4, it is possible to use HDF5
as the underlying data format. Comparable to HDF5, NetCDF provides a self-describing
data format and an API for various programming languages. It is maintained by the
University Corporation for Atmospheric Research (UCAR), and it is mainly intended to
be used for earth-related science. In order to promote a standard for this research field,
NetCDF is endorsed by research groups like the NASA Earth Science Data Systems
(ESDS) group [9]. Furthermore, the CF metadata conventions5 have been created to
provide a unique description for metadata across climate and forecast research.

1https://wordpress.cels.anl.gov/romio
2https://www.lustre.org
3https://www.hdfgroup.org/solutions/hdf5
4https://www.unidata.ucar.edu/software/netcdf
5http://cfconventions.org

9

https://wordpress.cels.anl.gov/romio
https://www.lustre.org
https://www.hdfgroup.org/solutions/hdf5
https://www.unidata.ucar.edu/software/netcdf
http://cfconventions.org

2.2 Compression
This section gives an introduction to compression in general. In order to do so, some
related concepts of information theory are provided. This is followed by several commonly
used techniques and compression algorithms used in conjunction with more complex ones.
Afterward, the main compression algorithms, which are used throughout this thesis, are
introduced. Finally, metrics that are used to compare the performance of compression
are defined.

2.2.1 Information theory
Information theory is a combination of statistics and probability studies with the purpose
of providing a formal approach to information transmission. Important research subjects
include the definition of what qualifies as information in the context of transmitting said
content. Further topics include error correction and data compression. Those theories
are the basic building blocks of compression algorithms used today, and in the following,
entropy and entropy coding are introduced.

Entropy

Entropy denotes the weighted average amount of information content of a given variable
and was introduced by Claude Shannon in [10]. The information content is defined
as

I(x) = logb(
1

P(x)) = logb(1)− logb(P(x)) = − logb(P(x)) (2.1)

where the logarithmic base b is the size of the alphabet and P(x) is the probability of x.
In case of the use of bits, a single variable can carry the information about two states
and therefore b = 2. Because of the logarithm, the information content is high when the
probability of a variable is low. On the contrary, the information content is low when the
probability is high. This follows the intuition that when the occurrence of information
is very unlikely, it is more relevant than information that occurs regularly. Another
property of this is that this specifies the minimal number of bits that are required to
encode this information. This aspect can be seen in Figure 2.1. The highlighted point
indicates a probability of 0.25 for a specific state. Therefore, 2 bits are required to
transport this information.

The entropy is defined as:

H(X) =
n∑

i=1
P(xi)I(xi) = −

n∑
i=1

P(xi) logb P(xi) (2.2)

The highest entropy is therefore achieved when the probability of every state is the same.
This indicates the maximal number of bits required to transport this information. For
example when PA, PB, PC = 0.3 then H = −(3 · (0.3 · log2(0.3)) = 1.58. However, when

10

0 0.25 0.5 0.75 10
1
2
3
4
5
6
7
8
9

10

I(x) = − log2(P(x))

I(x) = − log4(P(x))

P(x)

I
(x

)

Figure 2.1: Comparison of the information content when using two different logarithmic
bases.

the probability is unbalanced e.g. PA = 0.8, PB, PC = 0.1 then H = −(0.8 · log2(0.8) +
2 · (0.1 · log2(0.1))) = 0.92.

Entropy coding

Entropy coding encodes symbols that occur with high probability, with a shorter bit
representation than rare symbols. Therefore this is a form of data compression. In
addition, the entropy determines the theoretical optimal encoding of a symbol. As shown
previously, there are cases where less than 1 bit is required for encoding according to
the entropy. Depending on the use case, encoders are used to encode the representation
according to the nearest bit, or they rely on approaches capable of achieving a denser
representation. Common approaches include the use of Huffman coding and arithmetic
coding, respectively. Those are introduced in the following.

Huffman coding The concept of Huffman coding was first described by David A.
Huffman in 1952 in [11]. This coding variant closely follows the interpretation of entropy
coding, and prominent symbols are encoded using a short representation. Ideally, the
short representation follows the information content defined previously.

Huffman coding works by generating a binary tree. As initial input, the symbols to
encode and their probabilities are required. They are all added as leaf nodes. The
algorithm then takes the two symbols with the smallest probability, combines them by
creating a new parent node, and assigns this new node their combined probability. This
process is then repeated, and the nodes with the lowest probabilities are combined. To

11

retrieve the actual encoding, the tree can be traversed. Beginning with the root node,
nodes to the left can be labeled as zero, and nodes to the right can be labeled as one.
This results in a prefix-free code, in which no decoded symbol is the prefix of any other
decoded symbol.

Arithmetic coding As previously described, arithmetic coding achieves compression
rates closer to the limits imposed by entropy than the Huffman coding variant. The
concept has first been outlined by Jorma Rissanen in [12]. This approach is using a
rational number to represent information according to a specific interval. This number q
is often chosen in an interval within 0.0 ≤ q < 1.0. Furthermore, a dedicated encoder and
decoder function is used, and both have to use the same interval. Given this interval and
input of symbols and probabilities, the compression and decompression process works as
shown in the following.

The encoder uses the given interval and divides it into subintervals. Each subinterval
belongs to a single type of symbol, and the size is chosen according to the known
probability. Further subintervals are created for each symbol in the input sequence, and
layers of those intervals are created in each step. It is important to note that the start
and end of a new interval depend on the probabilities of the previous symbols. The
final step is to store a single and short as possible real number from within the last
subinterval.

The decoder then uses this number, and provided that the initial interval is the same, no
additional data has to be transmitted. Another prerequisite is that knowledge about
the available symbols and their probabilities has to be provided for both components.
Decoding behaves very similarly to the initial encoding. Once again, subintervals are
created. In each layer, the same transmitted real number is used to identify the subinterval
it belongs to. The initial data is decoded as each subinterval stands for a specific symbol.
This technique is repeated, and the identified subinterval is the starting point for the
following subdivision. In [13] and [14], the authors provide much more detail and a
reference implementation in C.

Comparison Huffman coding and arithmetic coding each have specific advantages and
disadvantages. According to [15], arithmetic coding achieves greater compression rates
at the cost of longer runtime, which is expected.

2.2.2 Techniques
In the following, two significant compression techniques are introduced. Both are
thoroughly used within the compression algorithms evaluated later on.

12

Dictionary Look a-head Output
1 2 3 4 5 6 1 2 3 4

A B A B (0, 0, A)
A B A B C (0, 0, B)

A B A B C D (5, 2, C)
A B A B C D (0, 0, D)

A B A B C D

Table 2.1: LZ77 example showing the interaction with the sliding window when applying
the message ABABCD. Based on [17]

LZ77

LZ77 has been created by Abraham Lempel and Jacob Ziv in 1977 [16]. In this approach,
repetitive combinations of multiple symbols are compressed, and this algorithm is
therefore not limited to the reduction of single symbols, as shown earlier. LZ77 maintains
a so-called sliding window containing a dictionary of already processed data and a
look-ahead buffer of data that still has to be compressed. In the beginning, the dictionary
is empty, and no prior knowledge can be exploited to find redundancy in the first symbol.
Then, as the dictionary fills with data from the look-ahead buffer, the biggest redundancy
of data found in both of them is searched. After each iteration, the sliding window is
shifted so that new data enters the look-ahead buffer. Additionally, the same amount of
data leaves the dictionary. Each of those iterations results in a new triple. This contains
the beginning of the match within the dictionary, the length of the match, and the first
symbol which did not match from the look-ahead buffer.

An example is given in Table 2.1, where the message ABABCD is applied to LZ77. The
dictionary size is set to six, and the size of the look-ahead buffer is set to four. In the
first two iterations, no information from the dictionary contributed to compression. In
the third iteration, however, the content within the dictionary is found in the first two
symbols of the look look-ahead buffer. Therefore, the start index within the dictionary
and the length of the match are stored. Additionally, C is noted as the symbol that
follows. This symbol is therefore additionally added to the dictionary. Based on those
triples, decompression works accordingly as they include all necessary information for
reconstruction.

When relying on LZ77 as a component for data compression, several things have to be
considered. For example, the sliding window is limited in size, influencing the compression
performance and runtime. Furthermore, in the example given before, no prior dictionary
was available. This has a noticeable impact on the efficiency of compressing small
data.

13

Deflate

The deflate compression algorithm was designed by Phil Katz and was formally specified
in 1996 [18]. Internally it first uses LZ77 and then Huffman coding. The triples that LZ77
produces still contain redundant data. It is also noteworthy that multiple symbols have
to be stored for a single symbol in the previous example. In those cases, the compressed
data can even increase in size. However, such data is well-suited for Huffman coding,
where symbols that occur many times are stored using less data.

2.2.3 LZ4
LZ46 is a compression algorithm created by Yann Collet. It is geared towards high
compression and decompression speeds. There are two possible usage modes. First, a
specific compression API provides the user with a high compression version, aiming to
provide a good compression rate at the cost of higher CPU usage and runtime. The
alternative is to use a variant that accelerates the compression speed at the cost of a lesser
compression rate. The former provides 22 compression levels, where lower values indicate
lesser required runtime. This is contrary to the second variant where, theoretically, up
to 65 537 factors can be used. Internally, LZ4 relies on LZ77, which has been introduced
previously.

The compressed data is stored in a fixed format, comprising of frames, which contain
the actual data in so-called blocks. Both formats are documented in great detail in [19]
and [20], respectively. This enables any developer to provide compatibility beyond the
reference implementation written in C. Furthermore, LZ4 support is included within
the Linux kernel, and in [21], it has been shown that the boot time can be decreased
by compressing the kernel image using LZ4. For this use case, the faster loading of the
image into the memory outweighs the overhead of decompressing the kernel on boot
time.

2.2.4 Zstandard
Zstandard (ZSTD)7 has also been developed by Yann Collet at Facebook. Contrary to
the design goals of LZ4, high compression rates while maintaining reasonable speeds
were important. Unlike LZ4, ZSTD combines an LZ77 algorithm with Huffman coding
and Finite State Entropy (FSE). FSE is another entropy coding approach based on a
CPU-efficient variant of asymmetric numeral systems (ANS). They try to combine the
performance of Huffman coding with the compression rate of arithmetic coding and are
introduced in [22]. Additionally, ZSTD is available in the Linux kernel, and similar to
LZ4, it can be used natively in filesystems like ZFS [23].

6https://github.com/lz4/lz4
7https://github.com/facebook/zstd

14

https://github.com/lz4/lz4
https://github.com/facebook/zstd

2.2.5 ZLIB
ZLIB8 was created by Jean-loup Gailly and Mark Adler in 1995. It is thereby the
oldest compressor evaluated in this thesis. Both authors are well known for their
effort in developing gzip, and Mark Adler is also the creator of the Adler-32 checksum
algorithm.

Data compression is achieved by relying on the deflate algorithm. Therefore, as introduced
earlier, this is a combination of LZ77 and Huffman coding. Great effort is put into
ensuring that compression of incompressible blocks does not result in data expansion.
If no considerable compression can be achieved, the uncompressed blocks are stored.
As discussed in the technical details, this “overhead approaches the limiting value of
0.03%.” [24] Again, this characteristic is similar to the other evaluated compression
algorithms, and the overhead consists of mandatory header data.

ZLIB is also available in the Linux kernel and is used in many applications, including
filesystems, the PNG image format, and Git.

Reasons for this compression algorithm selection

As introduced previously, three compression algorithms are currently selected for further
evaluation. This includes LZ4, ZSTD, and ZLIB. While many alternatives are available,
this selection represents compressors that use similar techniques and differentiate only
by some details and design goals. In general, they are not explicitly created for a limited
use case, and it is expected that they achieve good results for HPC applications.

Another relevant aspect of this selection is their availability in the Linux kernel. For
example, in the future, it might be helpful for similar approaches to use the prediction of
an arbitrary decision component and to use compression within the kernel space.

2.2.6 Metrics
Each compression algorithm has its use case and surpasses the performance of another
one in specific applications. The ability to compress some data with outstanding
characteristics might not translate to any other data input and often comes at a cost.
Therefore, it is essential to compare and evaluate compression algorithms by some type
of measurement. This is done by relying on metrics, which capture the requirements
imposed by users and applications accordingly. In the remainder of this thesis, the
following metrics are used.

8https://zlib.net

15

https://zlib.net

Compression rate

The compression rate captures the relation of the compressed input to the input data.
It is defined as CR = original size

compressed size . This metric is relevant when the total data size is
important. For example, use cases might include data that is very unlikely to be reread
or only on rare occasions.

Compression rate per time

This metric uses the time it takes for the compressor to run and relates it to the
achieved compression rate. It attempts to highlight compressors that achieve exceptional
compression rates while still maintaining a fast runtime.

Compression speed

This metric represents the throughput achieved by the compressor per time. This use case
is ideal in scenarios where the application’s runtime is of most importance. Using modern
compressors like LZ4, it is still possible to achieve significant compression rates.

Decompression speed

Similar to the previous metric but for decompression. All introduced compression
algorithms only provide configuration options for compression purposes. The compressed
data is then decompressed by a deterministic algorithm which previously used options like
compression levels should not influence. Nevertheless, as an experiment, the data that
has been compressed using various configurations while measuring one of the previous
metrics is decompressed for this purpose. The intention is to see how the structure of the
compressed data, which depends on said options, influences decompression speeds.

2.3 Machine learning
Machine learning is a general term for algorithms that gain knowledge to fulfill some
task by learning from experience. This generic description applies to an increasing
number of use cases and conceptionally applies to many different approaches. A common
approach for distinguishing techniques of machine learning is to categorize them into
three categories:

• Supervised learning: In this category, pairs of input data and known labels are
provided. The subject of this approach is to learn a function that is able to
predict accurate labels for new input data. This category is commonly subdivided
into other types like classification and regression. While classification algorithms
assign a specific category to an input, regression algorithms estimate a numerical
relationship between independent and dependent variables. Depending on the task,

16

various modeling approaches are used, including decision trees, linear regression,
and neural networks.

• Unsupervised learning: Contrary to the input required when using supervised
learning in this category, no labels are given. Instead, the primary goal is to find
structure and discover the data’s properties. A widely used technique is cluster
analysis, with one of the most prominent algorithms being the k-means clustering
algorithm.

• Reinforcement learning: In this category, an agent acts in an environment and is
rewarded depending on the outcome of his actions. Unlike supervised learning, no
exact labeled outcome for every input has to be given. Often, there is merely a
limited set of actions. It is up to the agent to balance the amount of exploration
and exploitation to achieve a goal imposed by an environment.

In this thesis, supervised learning is applied. Therefore this implies the requirement for
an architecture capable of collecting training data and training a classifier based on that.
To achieve this, neural networks are used. More detail on how they operate is given in
the following.

2.3.1 Artificial neural networks
Artificial neural networks, in the literature often called neural networks, attempt to mimic
the behavior of neurons in the brain. This is done by connecting nodes, representing
neurons, with each other. Each node can receive input from other connected nodes
and send output depending on a function f . This function is individually modeled by
dependent parameters, commonly referred to as weights. This represents their capability
to “modify their internal structure in relation to a function objective.” [25]

Research began in 1943 where McCulloch and Pitts in [26] presented models of biology
inspired neurons which are capable of evaluating logical expressions. Further milestones
include the development of the perceptron algorithm and the relation to neurons in
the brain in [27] and [28]. This allows for binary classification, whereas more complex
relations can be trained, requiring the use of backpropagation and multi-layer networks
as proposed in [29].

In the following, the focus lies on feedforward neural networks. This is a type of network
where the input is passed throughout to the output in a single direction, resembling a
directed acyclic graph (DAG) [30]. The most basic network type consists of a single
layer of so-called perceptrons. More complex networks with greater capabilities consist
of several layers, requiring more complex techniques to enable training. Those concepts
are shown in the following.

17

Perceptrons

In its most basic variant, when using a single-layer network, a perceptron is a type of
network capable of performing binary classification. Therefore it is possible to decide
between two states for a given input. This mechanism is only applicable to linearly
separable data, as otherwise, the algorithm would not converge [31]. A perceptron
classifies inputs by applying them to a basic threshold function to generate an output.
In the following, the perceptron algorithm is shown:

f(x) =

1,
m∑

i=1
wijxi + b > 0

0, otherwise
(2.3)

Each perceptron i uses its inputs xi and its learnable weights wij, as well as a bias,
to perform classification. Due to the weights associated with the inputs, a trained
perceptron and a neural network in general can classify deviating inputs to a certain
degree.

In Figure 2.2a, a perceptron that implements the logical OR operation is shown. This
is possible as this classification task is linearly separable, as shown in Figure 2.2b.
The learning algorithm updates the weights according to whether the correct output
is predicted. As discussed in more detail in [31, p.84-85], the weights are initialized
randomly. Afterward, a random input vector is chosen, and the perceptron is evaluated.
If the output is correct, no changes to the weights are performed. Otherwise, the
weights increase or decrease depending on the outcome, respectively. This represents the
perceptron learning rule, which is shown in the following. For the weight of a connection
between neuron i and j the updated weight is defined as:

wij = wijold + α · (tj − oj) · xi (2.4)

In this equation, α represents a learning rate that influences the training speed. Further-
more, tj denotes the intended output, whereas oj represent the perceptron’s output. If
the data is linearly separable, this algorithm converges after several iterations.

Delta rule

The perceptron described previously can only classify input data that is linearly separable.
To overcome this shortcoming, the delta rule can be used. It describes the single-layer
version of an algorithm fundamental to every neural network optimization, namely the
gradient descent. Instead of relying on a basic rule, a measurement of the error of the
output is used. This algorithm then attempts to minimize the overall error of the network.
The error is defined as shown in the following:

E =
∑

j

1
2(tj − yj)2 (2.5)

18

x

y

1

1

1
x ∨ y

(a) Perceptron (b) Linear separability of x ∨ y

Figure 2.2: A perceptron which is capable of classifying the logical OR operation.

This incorporates the deviation of j observed outputs from the correct outputs tj.
The partial derivative of this error with respect to a weight results in the following
derivative

∂E

∂wji

(2.6)

, which then can be transformed to the gradient descent update rule:

∆wji = α(tj − yj)g′(hj)xi (2.7)

Detailed insights regarding the derivation are available in various resources, e.g., in [32,
33]. This equations provides several valuable properties, as it contains the exchangeable
activation function g(hj) and again the learning rate α. This allows the network to
optimize towards a local minimum by following the steepest descent. The learning rate
influences the significance of applied change and ideally results in faster model training.
However, the gradient descent can overshoot the minimum if chosen too large, resulting
in poor overall network accuracy.

2.3.2 Multi-layer perceptron
The multi-layer perceptron consists of multiple layers connected to each other. Similar
to the single-layer perceptron, the output of the overall network is observed for a given
input. The intermediate layers are known as hidden layers and, in many cases, do not
represent a relation to a comprehensible meaning as the input and output layers do. This
also requires a variant of the gradient descent used in the single-layer perceptron, which
is capable of updating the weights of the hidden layers. The objective is the same as
previously, and the error, as shown in Equation (2.5), is minimized.

Backpropagation

As the name indicates, given the current input, the error of the network is propagated
back throughout the network. This avoids recomputation of intermediate values as each

19

weight depends on the part it contributes to the error of the neurons it is connected
to. This is done by applying a generalized variant of the delta rule, which includes a
distinction depending on whether the updated weight belongs to an output neuron or a
hidden neuron.

2.3.3 Activation functions
Activation functions are used in neural networks to map the weighted input of the neuron
to a new valuable value, which allows for meaningful decision-making throughout the
network. As mentioned, nonlinear and differentiable activation functions are preferred
instead of a threshold function like when introducing the perceptron. In Figure 2.3, a
selection of current and historical functions is shown.

Sigmoid:

The sigmoid activation function is defined as f(x) = 1
1+e−x . However, this function is not

commonly used, as it is prone to the vanishing gradient problem, as first explored in [34].
As the derivative is close to zero and due to the chain rule used during backpropagation,
the updated gradient decreases as the propagation progresses. Depending on the number
of hidden layers, no notable update of the weights at the beginning of the network might
be noticeable.

Rectified Linear Unit (ReLU):

ReLU is defined as f(x) = max (0, x), where only the positive input of x is used. It is
very popular as the derivative can be used efficiently, and it is not prone to the vanishing
gradient problem. The network shown in Section 4.2.3 and evaluated in Chapter 5 uses
this type of activation function.

Heaviside:

This is the activation function used in the single-layer perceptron. It can therefore be
used for binary classification. However, it is not usable for backpropagation, as it is not
differentiable. It is defined as:

f(x) =
1, x > 0

0, x ≤ 0

20

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

0

0.25

0.5

0.75

1

x

f
(x

)

Sigmoid
Sigmoid′

Heaviside
ReLU

Figure 2.3: Visualization of multiple activation functions

21

3 Related work

This chapter gives an overview of existing approaches that achieve a similar goal of
applying data compression in a data-aware manner. This can be because they rely on
specific domain knowledge or by using machine learning approaches.

3.1 Data-specific compression
As the performance of compression algorithms varies with the data that is being com-
pressed and, on some occasions, cannot be efficiently compressed at all, multiple alterna-
tives have been proposed. For example, domain-specific compression algorithms exist,
which exploit and implement the knowledge that is only relevant in this specific field.
Additionally, on many occasions, not all of the provided data is required. Common
examples include the use of compression mechanisms in visual and auditory applications.
Both variants are relevant to this thesis as they highlight the importance of selecting the
correct compression approach.

3.1.1 Domain-specific compression
A common example of domain-specific compression is the use within DNA related research.
As discussed in [35], the amount of genomic data that is produced is ever increasing and
the number of generated bases “doubles approximately every 18 months”[35, 36]. As
DNA sequences only contain four symbols they can be encoded using 2 bit. However,
existing algorithms fail to compress this data and even increase the size, as discussed
in [37]. It is also noted that standard compression algorithms rely on local redundancy
within a file. While this holds true for many text-related tasks, this does not apply to
genomic data. What is proposed instead is the use of a combination of two compressors.
For long and repetitive data, the LZ77 algorithm is used and short repeats are compressed
using a Context Tree Weighting(CTW) method. This allows for sequences encoding to
less than two bits per symbol.

The approach presented in [38] and further discussed in [39] exploits a law of how bases
are distributed in bacterial DNA. Furthermore, in [40] the authors propose a dictionary,
which is generated artificially.

22

3.1.2 Lossy compression
When using lossy compression, data is reduced by discarding and approximating data
according to predefined error bounds. This compression variant is used throughout many
applications, including image, video and audio compression. The approach here is to
reduce the file size according to data quality, e.g., by discarding frequencies that the
human does not perceive [41]. Another benefit of the use case of lossy compression in
those specific fields is that, generally, an uncompressed or lossless variant is kept. This is
useful for further processing and distributing updated versions.

In the context of HPC, further challenges arise. Lossy compression might be implemented
directly when producing simulation data. Therefore, no additional data might be available
afterwards. This imposes scientific requirements, which are discussed in [42]. First of
all, lossy compression should not result in data that might create visual artifacts or
influence the outcome of the evaluation of scientific experiments. Furthermore, this data
might also be used as input for other models and therefore imposes significant accuracy
constraints for the long run.

This compression technique provides great potential for future usage scenarios. Currently,
there are several areas where research is conducted. First of all, researchers try to
increase the performance of related compression algorithms, especially by keeping parallel
processing and HPC in mind[43]. Additionally, an effort is put into providing scientists
with thorough insights into the effects of lossy compression. In [44], the authors show
the influence of the chosen compressors and data features on achieved compression
performance. Furthermore, a system is shown which can help “domain scientists to make
more informed data reduction decisions.”

Implication
Both concepts show the significant impact of choosing compression algorithms according
to their intended use case. Further domain knowledge is required in certain circumstances,
and thorough considerations must be made to select the correct compression mechanism.
This thesis intends to provide an automated machine learning approach to make that
decision.

3.2 Approaches using machine learning
3.2.1 Autoencoders
Autoencoders consists of two parts. First, as shown in Figure 3.1, they use an encoder
to reduce an input into a dense network representation. A decoder then uses this repre-
sentation to attempt to recreate the initial input. Therefore, the goal of this architecture
is to minimize the amount of information loss from the input to the output.

23

This artificially introduced bottleneck requires the input information to be compressed,
and insignificant information might be lost. In terms of compression algorithms, au-
toencoders are a type of lossy compression. If the intermediate layer has at least the
same size as the input layer, the network “could potentially just learn the identity
function.” [45]

The use-cases for such a network are manifold. Among others, autoencoders have been
used for dimensionality reduction, anomaly detection, and image processing. In the latter,
they show competitive results for lossy image compression compared to JPEG-2000 [46].
Furthermore, there are several scenarios for usage in HPC. In [47], autoencoders are
proposed for data compression and anomaly detection purposes in the ATLAS experiment
at CERN. Furthermore, in [48], the authors conduct a study which explores the use of
autoencoders for compression of scientific data. This is done in comparison with lossy
compression alternatives like SZ1 and ZFP2. They conclude that autoencoders, when
tuned correctly, can achieve superior compression rates. They also provide guidance for
users to determine if their dataset is compressible using this network.

Figure 3.1: Autoencoder architecture [49]

3.2.2 Training on metadata
This thesis uses the application’s actual data to train a neural network. The objective is
to derive the ideal compressor from the encountered data during I/O. In earlier work, an
attempt was made to use the available metadata within an HDF5 filter to make such
a decision [50]. In this work, the goal was to recommend energy-efficient compression
algorithms. Besides minimizing storage requirements also energy consumption is of
importance for HPC sites. An additional design goal was to comprehend the predictions
made by the decision component. For this, using a decision tree was ideal, and it is
transparent to the user which compressor is chosen based on which metadata imposed
rules.

1https://szcompressor.org
2https://computing.llnl.gov/projects/zfp

24

https://szcompressor.org
https://computing.llnl.gov/projects/zfp

Implication
Those mentioned concepts already show the usability of machine learning approaches
for data compression. It has also been shown that those techniques can be used for
compression itself. However, this is currently limited to lossy data reduction. The
approach of predicting a compression algorithm according to encountered metadata is
similar to the concept discussed in this thesis. An advantage of the proposed approach in
this work is the general availability of the data during I/O. The availability of metadata
depends much more on the I/O path. However, a combination of both concepts could be
worthwhile.

25

4 Architecture

In this chapter, the overall architecture is introduced. The outlined goals demand two
main components developed specifically for this thesis. In the first part, a shared library
is introduced. This library fulfills the need for intercepting I/O-related application calls
and performing inferencing to predict compression algorithms for encountered data. The
second component is used to train machine learning models, which the library then uses
later.

The research purpose of this thesis imposes several requirements which have to be fulfilled
by the underlying architecture. Those architecture-related requirements are outlined in
the following:

• Predict the ideal compression algorithm during runtime based on I/O

• Perform predictions according to exchangeable metrics

• Gain insights into how compression algorithms, levels and metrics influence each
other

• Integrate interchangeable machine learning models

• Easily usable within a multitude of scientific applications

This results in an architecture that helps to automate three of the core challenges
associated with implementing an adaptive data-dependent choice of compression algo-
rithms:

1. Sampling Phase: Allowing for an automated sampling of input-target pairs for
training without requiring application changes.

2. Training Phase: Leveraging state-of-the-art machine learning frameworks such as
PyTorch1 for training and hyperparameter search.

3. Inferencing Phase: Integration of in-band machine learning based decision compo-
nents efficiently without the overhead of python runtime components by using the
portable ONNX format and runtimes.

In Figure 4.1, a top view of the architecture is given. In order to intercept I/O easily from
various applications, the MPI-IO layer is well-suited. As can be seen, this approach is
based on preloading a custom library (using the LD_PRELOAD environment variable) and

1https://pytorch.org

26

https://pytorch.org

intercepting the MPI-IO calls. For each I/O operation, certain metadata (size, datatype,
etc.) is logged and the data buffer is compressed using a wide range of compression
algorithms and settings. All metadata and resulting metrics, such as compression speed
and compression rate, are stored in an HDF5 file for later analysis. This information is
used as part of the training phase.

I/O

Application

NetCDF

HDF5

BufferLD_PRELOAD

MPI-IO

POSIX

Parallel File System

Training Phase

ONNX Model

Export

Compressor

Inferencing Phase

Buffer

(a) HPC I/O Stack (b) Sampling, training, and inferencing architecture
for optimization of compressor selection.

Figure 4.1: Architecture overview showing a typical I/O path and points of instrumen-
tation in relation to the training phase as well the inferencing phase. The
training phase exports a machine learning model which is then used in an
inferencing phase to predict a compressor based on data that is written by
an application.

27

Training Phase

Testing

Test Compressors and Levels

Measure Metrics

Compressors

LZ4 ZSTD ZLIB

Metrics

Compression Rate

Compression Rate per Time

Compression Speed

Decompression Speed

Training Data

Buffer Measurements HDF5

Export

Machine Learning

Analyse Measurements

Label Buffers with Compressors

Train Model using PyTorch

Specific Metric

Figure 4.2: Training architecture

4.1 I/O interception library
The application that intercepts I/O related calls is implemented as a shared library.
The order by which the Linux dynamic linker determines the required libraries can be
influenced by using the LD_PRELOAD environment variable. Any library specified by this
variable is loaded first. This makes it possible to create wrappers that encapsulate the
original functionality of any other shared library.

Another benefit of this approach is that this is possible without changes to the users’
application or recompilation. The only requirement is that the functionality that should
be intercepted is available within a shared library and is not embedded via a static
library. By being the library that is loaded first by the linker, it is possible to provide
declarations that should be intercepted. During runtime, those are then used instead of
the original ones.

As shown in Figure 4.1a, the functions which are of interest for this library are imple-
mented by MPI. To intercept those, there exist two possibilities. The first approach
is provided by the profiling interface defined by the MPI standard. This standard
provides for every MPI_ function a PMPI_ equivalent. A regular application uses the MPI_
variant. Internally, this function then uses its equivalent PMPI_ to provide the required
functionality. By following this practice, the new library implements the declarations
of all MPI-IO write operations. Within those functions, the added functionality can be

28

1 int MPI_File_open(MPI_Comm comm, const char *filename, int amode, MPI_Info info,
2 MPI_File *fh) {
3 int ret;
4 ret = PMPI_File_open(comm, filename, amode, info, fh);
5 if (tracing_stopped()) {
6 return ret;
7 }
8 if (!g_hash_table_contains(trackingDB_fh, fh)) {
9 IO_Object *object = g_new(IO_Object, 1);

10 object->fh = (void *)*fh;
11 object->filename = filename;
12 g_debug("filename: %s | handler: %p", filename, object->fh);
13 g_hash_table_insert(trackingDB_fh, object->fh, object);
14 }
15 return ret;
16 }

Listing 4.1: Example usage of the MPI profiling interface

provided. Finally, the equivalent PMPI_ function is returned. This is shown in Listing 4.1,
where MPI_File_open is extended by adding the functionality of storing attributes of the
used file handler throughout the application run in a hash table. As highlighted in line 4
the associated PMPI_File_open function is used to provide the requested functionality.
After the custom implementation is completed, the original return value is returned
to the application. Further details can be found in MPI: A Message-Passing Interface
Standard [51, p. 594].

The second approach is to use the corresponding functions by rewriting them directly.
This is shown in Listing 4.2. In this example, the imminent PMPI_Finalize is changed
by calling an additional function which handles the final metadata storage. Afterward,
in line 9, the dynamic linker interface is used to find the address of the next occurrence
of the respective symbol. This is then used to provide the intended functionality to the
application.

While the first approach is preferred, both variants are used within the library. This is
required when intercepting applications that use Fortran bindings of OpenMPI 2, as
those perform calls to PMPI directly. However, this is only required for MPI-related
functions which are used by the analyzed applications. Further down the I/O path,
HDF5 uses MPI-IO methods according to the proposed standard.

4.1.1 Intercepted functions
All MPI-IO-related write operations are intercepted. Depending on whether collective
or independent I/O is chosen, only two operations are relevant for HDF5. Additionally,

29

1 int PMPI_Finalize() {
2 int (*__real_PMPI_Finalize)(void) = NULL;
3 int ret;
4 if (!tracing_stopped() &&
5 (opt_test_compression || opt_tracing || opt_inferencing)) {
6 stop_tracing = TRUE;
7 write_dataset();
8 }
9 __real_PMPI_Finalize = dlsym(RTLD_NEXT, "PMPI_Finalize");

10 ret = __real_PMPI_Finalize();
11 return ret;
12 }

Listing 4.2: Intercepting a call by reusing the declaration and loading the original symbol
on demand.

as discussed above, the opening of files and the termination of the MPI processes are
intercepted. The latter is used as a reliable trigger that stores all measurements in a state
where the application can generate no additional metadata. All considered operations
are listed below:

• MPI_File_write

• MPI_File_write_all

• MPI_File_write_at: Used by HDF5

• MPI_File_write_at_all: Used by HDF5

• MPI_File_iwrite

• MPI_File_iwrite_all

• MPI_File_iwrite_at

• MPI_File_iwrite_at_all

• MPI_File_open

• MPI_Finalize

4.1.2 Compression integration
An important aspect of the implementation of the various compression algorithms is the
simplicity of adding new variants in the future. This is solved by defining a struct, which
provides required definitions that have to be implemented by every compressor.

30

1 typedef struct {
2 size_t (*bound)(size_t length);
3 size_t (*compress)(void *dst, size_t dstCapacity, const void *src,
4 size_t srcSize, int compressionLevel);
5 size_t (*decompress)(const char *src, char *dst, size_t compressedSize,
6 size_t dstCapacity);
7 int *levels;
8 int levels_count;
9 const char *name;

10 CompressionAlgorithmID compression_id;
11 } CompressionAlgorithm;

Listing 4.3: Structure implemented by every compression algorithm

This interface is shown in Listing 4.3. A feature shared by all evaluated compression
algorithms is the use of a function that determines the upper bound of the required size
of the buffer which holds the compressed data. This is especially useful as the handling
of associated buffers for compression and decompression is left to the caller. This is
followed by the compression and decompression functions, which are similar, with the
exception that the compression function also requires a compatible compression level.
Further on, a selection of appropriate compression levels that are evaluated for this
specific compressor is provided. Finally, a name and a unique identifier are chosen. Any
compressor that is compatible with this structure can be easily integrated for further
evaluation.

4.1.3 Usage modes
As shown previously in figure two, this library is used in either of two modes. Those are
described in more detail in the following. Each mode also produces metadata that is
used to either train or evaluate the performance of the machine learning models. This
is done by writing to independent HDF5 datasets that are easily processed by other
languages like Python. Incorporating those insights into machine learning frameworks
like PyTorch is therefore eased.

Sampling mode

In this mode, all available compression algorithms and selected compression levels are
applied to the data that is being written. For each of those combinations, measure-
ments for the defined metrics are made. The corresponding HDF5 dataset is shown in
Table 4.1.

31

Field Comment
Operation name e.g. MPI_File_write_at
Timestamp Unix timestamp
Chunk Name Used as input for training the machine learning model
Duration [µs] Duration of compression in microseconds
MPI Datatype Used to determine the size, e.g. MPI_BYTE
MPI Offset Can be used to identify consecutive I/O
MPI Rank
Variable Count Number of written MPI Datatypes
Size Variable Count ∗ sizeof(MPI Datatype)
Compressor Name e.g ZSTD
Compressor Level e.g. 22
Metric Name e.g. Compression Rate
Metric Measurement

Table 4.1: HDF5 dataset of the sampling mode

Inferencing mode

This mode is used to apply the trained models to incoming data and to evaluate the
performance. This is done in three steps, which are highlighted below.

1. Predict the compressor : In this step, the intercepted data is applied to the machine
learning model.

2. Evaluate prediction: The predicted compression algorithm and level are used to
compress the data. Then, according to the metric, which is associated with the
model, measurements are made.

3. Determine ideal compressor : Similar to the previous sampling mode, all available
compression variants are tested for the current metric. For performance reasons,
the predicted compressor is skipped, as those measurements were already made in
step two.

The third step is only required for evaluation purposes. Those measurements would
result in a significant slowdown of the overall application in a production environment.
Furthermore, the metrics measurements in the second step might not be worthwhile
during production runs. However, they might serve as an ongoing indication of the
machine learning model’s performance. In case a decline in prediction accuracy is
detected, further adjustments could be made. For example, certain data blocks could be
stored for further analysis or used for ongoing model adjustments.

32

Field Comment
Timestamp Unix timestamp
MPI Rank
Size Size of written data
Metric Name e.g. Compression Rate
Predicted Compressor e.g ZSTD
Predicted Level e.g. 22
Predicted Compressor: Metric Measurement
Predicted Compressor: Size Compressed size
Ideal Compressor e.g. ZLIB
Ideal Level e.g. 9
Ideal Compressor: Metric Measurement
Ideal Compressor: Size

Table 4.2: HDF5 dataset of the inferencing mode

Configuration

The library is configured by setting the IOA_OPTIONS environment variable. Depending
on the mode, several options can be selected. Those are shown in Table 4.3. Independent
of the mode, a path for the HDF5 metadata has to be specified. Depending on the
requirements, a minimal size of the analyzed write operations can be selected. Addition-
ally, repeated measurements minimize possible inaccuracies due to other activities on
the host system. In this case, the average of those measurements is stored.

33

Option Description Mode
Sampling Inferencing

-m, --min-size=9 Min size of chunks to analyze in bytes X X
-r, --repeat=3 Number of times to repeat measurements X
-p, --meta-path=/tmp/meta.h5 Path for metadata storage X X
-t, --tracing Activates tracing of MPI-Calls X
-s, --store-chunks Activates chunk storage X
-c, --chunk-path=/tmp/chunks/ Storage path of chunks for later analysis X
-e, --test-compression Activates compression tests according to metrics X
-x, --model-path Path to exported ONNX model X
-o, --settings-path Path to exported ONNX settings X
-i, --inferencing Run inferencing X
-d, --decompression Measure decompression X

Table 4.3: Application options of the shared library

4.2 Machine learning process
In this component, the measurements in Table 4.1 are used to train the machine learning
models. Common tasks like data preprocessing, model selection, hyperparameter tuning,
and the final export of said model are described. The implementation is written using the
Python programming language. This guarantees straightforward interoperability between
the data generated in the previous step and common machine learning frameworks.
Another benefit is the compatibility and ease of access to the sampling data provided by
HDF5 and associated Python libraries like h5py.

4.2.1 Framework
For the training task, two major machine learning frameworks have been explored. At
first, Tensorflow2 was used. However, due to features related to the integration of the
training data, PyTorch was eventually preferred. It is noteworthy that the selection
of the framework is more due to personal preference. The data gathered during the
sampling runs imposes no further restrictions on the machine learning components.

PyTorch is a machine learning framework developed by Facebook’s AI Research lab. One
of the initial significant differences in comparison to other popular frameworks is the use
of an imperative approach to model creation. From the beginning, the developers’ goal
was to create a framework centered around the mechanics of Python and integrate it with
existing developer tools. Those design goals and how to achieve them are highlighted
in [52].

2https://www.tensorflow.org

34

https://www.tensorflow.org

4.2.2 Data preprocessing
The first step is to preprocess the data gathered during the sampling mode. Each
measurement is associated with a unique chunk identifier. According to a selected metric,
it is now possible to find the ideal combination of a compression algorithm and an
associated level. This represents a label to data association, which is the input for all
other machine learning-related tasks.

Internally, this is handled by implementing the torch.utils.data.Dataset class. The
most important aspect here is to provide a function that returns the label and the chunk
within a tuple. Additionally, the chunk is transformed into a Tensor, representing a
multidimensional matrix. This matrix supports several data types, including single-
precision floats with 32 bit, which are used throughout this model. Another property of
this data type is the built-in support for CPUs and GPUs.

The data stored during the sampling phase contains the binary buffer received by the
respective MPI-IO function. To be able to represent this data as a matrix with a
continuous value, further preprocessing steps are required. Furthermore, depending on
the architecture, a consistent matrix size has to be maintained when applying the data
to the model. However, as writing patterns of scientific applications vary, this property
is not a given. Therefore an input length is defined, and depending on whether the data
is too long or too short, the matrix is resized to this specification.

Another aspect is that depending on the bit-wise representation of the data, a matrix
element might be interpreted as a “Not a Number” (NaN) value. For example, this is
the case when every bit is set to one. The consequence is that those values have to be
filtered and replaced, e.g., by zero. This step is required when training the initial model
and during the inferencing phase in the library.

4.2.3 Neural network
Independent of the used framework, some common and recurring machine learning-related
task have to be handled. In most cases, this includes the creation of a neural network
based on preexisting standard components as well as the integration of forward and
backpropagation.

Neural networks are implemented by creating a subclass of the torch.nn.Module class
provided by PyTorch. Within this base class only the forward propagation has to be
implemented. Due to a mechanism named “autograd” a directed acyclic graph (DAG) of
the neural network is created automatically during forward propagation. This DAG is
executed in reverse order during backpropagation to update the model by determining
the gradients using the chain rule.

The network defined in Listing 4.4 is used throughout the evaluation in the next chapter.
The constructor in line two is used to parameterize the network. This eases experiments
using different configurations later on. Additionally, the modules provided by PyTorch

35

1 class NeuralNetwork(nn.Module):
2 def __init__(self, num_classes, l_features_in=4096, l_features=512):
3 super(NeuralNetwork, self).__init__()
4 self.l_features_in = l_features_in
5 self.flatten = nn.Flatten()
6 self.linear_relu_stack = nn.Sequential(
7 nn.Linear(1 * l_features_in, l_features),
8 nn.ReLU(),
9 nn.Linear(l_features, l_features),

10 nn.ReLU(),
11 nn.Linear(l_features, num_classes),
12)
13

14 def forward(self, x):
15 x = F.normalize(x)
16 x = self.flatten(x)
17 pad = nn.ZeroPad2d((0, self.l_features_in - x.size()[1], 0, 0))
18 x = pad(x)
19 logits = self.linear_relu_stack(x)
20 return logits

Listing 4.4: Example of using the base class provided by PyTorch to implement custom
neural networks

are initialized. This includes reducing the dimensions by flattening the input tensor and
a sequential stack of modules that are used to provide the actual network. The final layer
of the stack has as many output features as classes available according to the analysis of
the gathered sampling data for a specific metric.

In line 14 the forward step is defined. The parameter x is a tensor containing data
intercepted and collected previously. Besides normalizing the input, the tensor is padded
so that each tensor has the same size. Finally, the result of the forward propagation
is returned, which at this stage is a prediction. This is now evaluated in the following
step.

4.2.4 Model training
The model is trained in this supervised learning task by providing the network with a
dataset and a ground truth of associated labels. As noted previously, the parameters of
the network are then updated according to the loss of the model encountered during the
forward propagation. This process is repeated several times, and the ongoing performance
of the model is tracked throughout the training.

At no point in time all the available data is used for training. Some data is kept out

36

of the training process and is used to evaluate the performance on data that is entirely
new to the model. This validation data helps to train a model which also generalizes to
unknown data, which is more realistic for real-world scenarios. In this case, 20% of the
data is only used for this purpose.

Additionally, the model training is influenced by two core challenges, namely the imbalance
of the gathered training data and the search for the ideal model parameters.

Imbalanced data

Currently, the training data only contains compression algorithms that achieve the best
performance according to a specific metric. This results in imbalanced data as, in some
cases, a compressor might perform exceptionally well due to edge cases. However, those
are especially interesting for evaluation and should not be ignored during training.

This is countered by assigning weights to the available compression algorithm or the
used classes during training, respectively. To do so PyTorch provides this functionality
in the nn.CrossEntropyLoss criterion. In this case, more emphasis is put on classes
that are not encountered regularly. Therefore, the misclassification of those compression
algorithms results in a greater loss. As this loss is minimized during training, the model
should adapt and classify those rare classes as well.

Model parameters

As shown in Listing 4.4, the model itself has several parameters. Additionally, the actual
training process and the gradient descent can also be configured. This results in several
parameters that have a significant influence on the performance of the model, and this
should be accounted for. This process is known as hyperparameter tuning. To avoid
having to find those parameters manually by trial and error, automation is helpful.

In this case Ray Tune3 is used. Using this library, it is possible to automatically try
different parameters, which can also be tested in a distributed environment. This
is done by providing a configuration that contains search spaces that are evaluated.
Configurations that do not achieve promising results after a few epochs are automatically
canceled, and only parameters that improve the model are further observed.

The following parameters are tested for every model:

• Output features of linear transformation: 64, 128, 256, 512, 1024, 2048

• Learning rate: Sampling uniformly in logarithmic scale between 1× 10−4 and
1× 10−1

• Momentum: Sampling uniformly between 0.0 and 0.9

• Batch size: 16, 32, 64, 128
3https://www.ray.io/ray-tune

37

https://www.ray.io/ray-tune

The learning rate relates to the α introduced in Equation (2.7). However, the other
parameters are more relevant to the implementation details of typically used machine
learning frameworks. The momentum relates to a variant of the gradient descent, namely
the stochastic gradient descent. This variant uses a random subset of the available data
within batches, which can accelerate training. By changing the momentum, the previous
gradients are considered for the next update and amplify the previous direction. This
can prevent being stuck in a local minimum. Furthermore, the batch size specifies how
much data is used for training in each iteration. In [53], it has been shown that very large
batches can result in poor generalization. However, small batches might not find the
optimal global solution. Finally, the number of output features of the linear transformer
has a significant influence on the number of trainable parameters and the total model
size.

4.2.5 Model usage
After the model has been trained, it has to be made available to the library for inferencing.
This also results in a change of the programming language from Python to C. PyTorch
has inbuilt support for the Open Neural Network eXchange (ONNX)4 format. Therefore,
the model can be serialized into a vendor-neutral format which is supported by several
runtimes. The runtime used within the library is provided by Microsoft and is called
the ONNX Runtime5. It is designed to provide hardware acceleration automatically for
various targets. Among other programming languages like Java, C# and Julia also C is
supported.

The model itself is exported by creating a dummy input which is then traced throughout
the model. All used operations are recorded and used to serialize to a ONNX compatible
format. However, as shown in Section 4.2.2, the data during inferencing can have dynamic
input sizes. The dummy input can not exactly represent the data encountered during
inferencing. This is enabled by using dynamic axes. It is required to manually specify
the possible input size to be unknown during export.

4https://onnx.ai
5https://onnxruntime.ai

38

https://onnx.ai
https://onnxruntime.ai

5 Evaluation

In this chapter, insights into the application-specific compression behavior and the perfor-
mance of the machine learning models are evaluated. This is done by introducing an HPC
application and conducting experiments that test specific capabilities of the introduced
architecture.

5.1 Test setup
The following benchmarks were executed on the Mistral supercomputer1, provided by
the German Climate Computing Center. All measurements were run on 10 nodes, each
equipped with two 18-core Intel Xeon E5-2695 v42 processors and 64 GB of memory. The
data is compressed in memory. Therefore, networking and storage do not influence the
measurements.

In Table 5.1, the evaluated compression levels/factors can be seen. In general, a broad
mix of options was tested. When using the LZ4-fast API, instead of relating to levels,
factors are used. According to the documentation, each increment results in a speedup
of about 3%. However, this comes at the cost of a lower compression rate. Therefore,
compression factors of 7 and 17 should result in increased compression throughput of
~21% and ~51%, respectively.

Levels/Factors
Compression Algorithm Available Tested
ZSTD 1-22 1, 3, 10, 22
ZLIB 1-9 1, 3, 6, 9
LZ4 1-12 1, 3, 6, 9, 12
LZ4-Fast 1-65537 1, 7, 17

Table 5.1: Evaluated compression configurations

1https://www.dkrz.de/en/systems/hpc/hlre-3-mistral
2https://ark.intel.com/content/www/de/de/ark/products/91316/

intel-xeon-processor-e52695-v4-45m-cache-2-10-ghz.html

39

https://www.dkrz.de/en/systems/hpc/hlre-3-mistral
https://ark.intel.com/content/www/de/de/ark/products/91316/intel-xeon-processor-e52695-v4-45m-cache-2-10-ghz.html
https://ark.intel.com/content/www/de/de/ark/products/91316/intel-xeon-processor-e52695-v4-45m-cache-2-10-ghz.html

5.1.1 ICON
In this section, measurements are done using the ICON modeling framework 3, which
is a project between the German Weather Service and the Max Planck Institute for
Meteorology. ICON is used for weather prediction as well as climate modeling. The
application itself is written in Fortran. However, NetCDF is used for I/O, which relies
on HDF5, which then uses MPI-IO to read and write the data. Another feature of ICON
is the possibility of using dedicated I/O processes. Those gather the data and write the
results asynchronous to the file system. Such an architecture is expected to allow for
valuable compression usage, as the CPU is not involved with the actual simulation.

As shown in Figure 4.1, the shared library is therefore capable of intercepting I/O-related
calls without any changes to the application itself. Another aspect, which makes ICON
ideal for evaluation, is that the amount of written data is configurable by choosing
appropriate options for the simulation environment. This is done by either selecting
certain variables of interest or by limiting or extending the time frame which should be
simulated. For evaluation purposes, metrics have been measured during a four-month
simulation period. The machine learning model is then evaluated for an additional eight
months, which results in an observed period of twelve months.

5.2 Metrics
For each chunk of I/O that has been intercepted, all compressors and a selection of levels
were tested. Therefore, when searching for the best fit for a specific metric, one specific
compressor per chunk of I/O is selected for analysis. These perfect fits also serve as
a label for the associated chunk when training the machine learning model further on.
If the metric relies on exact time measurements, the measurements are repeated three
times, and an average is stored.

Throughout a four-month simulation period within ICON, 7548 MPI-IO calls were traced,
and 7064 were evaluated below. Some calls occasionally write 8 B of data that are not
compressible and skipped during inferencing further on.

The following plots include the used compressors on one axis and the evaluated metric
on the other. Additionally, the total and relative amount of associated compressors for
the specific metric is shown at the top. The cumulative distribution along the respective
metric can be seen on the right-hand side.

5.2.1 Compression rate
For visualization purposes, the range of shown compression rates in Figure 5.1 is limited
on one occasion to below 3 and the other one to below 2000. This limits the number

3https://code.mpimet.mpg.de/projects/iconpublic

40

https://code.mpimet.mpg.de/projects/iconpublic

of shown measurements to 4838 and 6811, respectively. Those excluded measurements
achieved exceptional rates because of the uniformity of the included data.

As can be seen in Figure 5.1a on the right, the majority of the measurements achieved a
compression rate of below 1.5. However, there are notable exceptions, which reached a
much greater rate. When comparing those to the measurements in Figure 5.1b, it can be
seen that ZSTD-22 led to a vast range of compression rates. While the total number of
those high rates seems neglectable compared to the total number of compression events,
the implied potential storage savings are significant.

As expected and following the design goals outlined in Section 2.2, ZSTD achieves a
much higher compression rate than LZ4. Another consistent choice is the use of ZLIB-6.
While ZLIB-9 achieves in some cases a higher rate, it is important to note that for
evaluation purposes, the compressor with the expected lowest overhead is used when
both compressors achieve the same performance. Therefore, it is possible that certain
compressor options, which conceptionally should result in a higher compression rate, do
not necessarily achieve that performance in practice. These counterintuitive behaviors
and the measurements of plateaus, meaning no observable changes during measurements
with increased compression levels, are noticeable in other metrics as well.

5.2.2 Compression speed
As shown in Figure 5.2, this metric is dominated by the fast compression mode of LZ4,
and no other observed compressor matches this performance. Following the design
goals of LZ4-fast, in 85.3% of all cases, the compression level 17 achieves the highest
compression speed. However, in 14.7% of all measurements, a lower compression level
reaches faster speeds. There are multiple possible explanations for this behavior. First
of all, all metrics, except the compression rate, do depend on time measurements. Even
with repeated measurements, as done in this evaluation, fluctuations can not be ruled
out. Furthermore, when using LZ4-fast, data compressed using a smaller factor results
in smaller files at the cost of taking more time during compression. As discussed in [54],
compressed data can help with memory utilization, depending on the architecture. More
efficiency in that regard could explain the behavior observed in these measurements.

5.2.3 Compression rate per time
This metric represents a relationship between the compression rate shown previously
and the time it takes for the compressor to run. As shown in Figure 5.3, the results of
the measurements are very imbalanced. In Section 5.2.1, it was shown that LZ4-fast
achieves no significant compression rate in comparison to the other compression options.
Nevertheless, its compression speed and consequently the time it takes for the compressor
to run outweigh those shortcomings.

41

LZ
4-1

LZ
4-3

LZ
4-6

LZ
4-9

LZ
4-1

2

LZ
4-f

ast
-1

LZ
4-f

ast
-7

LZ
4-f

ast
-17

ZLIB
-1
ZLIB

-3
ZLIB

-6
ZLIB

-9

ZST
D-1

ZST
D-3

ZST
D-10

ZST
D-22

Compressor

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00
CR

0
800

1600
2400

0.
2%

0.
1%

31
.0

%
3.

8%
0.

6% 10
.6

%
0.

2%
53

.5
%

0.0 0.5 1.0

(a) Excerpt showing compression rate below 3

LZ
4-1

LZ
4-3

LZ
4-6

LZ
4-9

LZ
4-1

2

LZ
4-f

ast
-1

LZ
4-f

ast
-7

LZ
4-f

ast
-17

ZLIB
-1
ZLIB

-3
ZLIB

-6
ZLIB

-9

ZST
D-1

ZST
D-3

ZST
D-10

ZST
D-22

Compressor

0

200

400

600

800

1000

CR

0
1000
2000
3000

0.
1%

0.
0% 22

.1
%

2.
8%

0.
9% 8.
7% 15

.6
% 49

.8
%

0.0 0.5 1.0

(b) Excerpt showing compression rate below 2000

Figure 5.1: Measurements showing compressors that were ideal for the compression rate
metric.

42

LZ
4-1

LZ
4-3

LZ
4-6

LZ
4-9

LZ
4-1

2

LZ
4-f

ast
-1

LZ
4-f

ast
-7

LZ
4-f

ast
-17

ZLIB
-1
ZLIB

-3
ZLIB

-6
ZLIB

-9

ZST
D-1

ZST
D-3

ZST
D-10

ZST
D-22

Compressor

0

2000

4000

6000

8000

10000
Co

m
pr

es
sio

n
Sp

ee
d

[M
iB

/s
]

0
2000
4000
6000

3.
9% 10
.8

%
85

.3
%

0.0 0.5 1.0

Figure 5.2: Compression speed metric

LZ
4-1

LZ
4-3

LZ
4-6

LZ
4-9

LZ
4-1

2

LZ
4-f

ast
-1

LZ
4-f

ast
-7

LZ
4-f

ast
-17

ZLIB
-1
ZLIB

-3
ZLIB

-6
ZLIB

-9

ZST
D-1

ZST
D-3

ZST
D-10

ZST
D-22

Compressor

0

20

40

60

80

CR
 p

er
 T

im
e

0
1500
3000
4500

7.
6% 23

.3
% 63

.0
%

5.
5%

0.
5%

0.0 0.5 1.0

Figure 5.3: Compression rate per time metric

43

5.2.4 Decompression speed
As shown in Figure 5.4, in most cases, an LZ4 related compressor is chosen. As the
decompressor works independent of the initial compressor, the intent for this metric and
the use of different compression levels when compressing the data was to explore if the
serialization of the underlying compression format impacts the decompression speed.
There is a strong tendency to use LZ4 with compression level 1 when this metric is
important. Until the strongest compression level of LZ4 is reached, the preference for
using LZ4 in comparison to LZ4-1 is declining. However, LZ4-12 is capable of achieving
the best decompression speed in 12.4% of all cases.

Similar to the observation of LZ4 achieving high decompression speeds with low compres-
sion levels, LZ4-fast is doing the same with higher levels, as in this case, the compression
speed is accelerated.

In an attempt to further assess those measurements, the relation between the observed
decompression speed and the associated compression rate is shown in Figure 5.5. Similar
to the measurements discussed before, the ideal decompressor is shown for every inter-
cepted write request. Additionally, the associated compression rate of this compressor
is marked. For visualization purposes, only compression rates greater than three and
smaller than a hundred are shown. However, unlike previously, there are specific clusters
visible. For example, LZ4-fast-17 is mainly shown in the top-right corner, while LZ4-12
is mainly in the center. Similarly, LZ-9 occurs for the most part in a compression rate of
80 to 100 while maintaining a decompression speed of around 10 000 MiB. This shows
the expected correlation between high decompression speeds and high compression rates
for the LZ4 compressors. In this case, the amount of highly compressed data outweighs
negative implications of serialized dense data.

44

LZ
4-1

LZ
4-3

LZ
4-6

LZ
4-9

LZ
4-1

2

LZ
4-f

ast
-1

LZ
4-f

ast
-7

LZ
4-f

ast
-17

ZLIB
-1
ZLIB

-3
ZLIB

-6
ZLIB

-9

ZST
D-1

ZST
D-3

ZST
D-10

ZST
D-22

Compressor

2500

5000

7500

10000

12500

15000

17500

20000

De
co

m
pr

es
sio

n
Sp

ee
d

[M
iB

/s
]

0
600

1200
1800

28
.7

%
8.

7%
4.

6%
3.

2% 12
.4

%
8.

6% 15
.6

%
14

.3
%

0.
2%

0.
0% 3.
1%

0.
6%

0.
1%

0.0 0.5 1.0

Figure 5.4: Decompression speed metric

0 20 40 60 80 100
CR

2000

4000

6000

8000

10000

12000

14000

De
co

m
pr

es
sio

n
Sp

ee
d

(M
iB

/s
)

LZ4-fast:1
LZ4-fast:7
LZ4-fast:17
LZ4:1
LZ4:3
LZ4:6
LZ4:9
LZ4:12
ZSTD:1

Figure 5.5: Relation between decompression metric and achieved compression rate. (In-
cludes compression rates between three and a hundred)

45

5.3 Training
Based on the measurements shown previously, the machine learning models have been
trained. As described previously, this supervised machine learning approach requires
input data labeled accordingly. In this case, the data captured during I/O is used for
this intent, and the ideal compressor variant serves as the label. The purpose of the
neural network is to find features that help predict the ideal compression variant when
presented with new data during application runs in the future.

The training data itself has various sizes. This depends on the defined data layout within
NetCDF, which is then handled by HDF5 and finally written using MPI-IO. In this
architecture, the data is transformed to a consistent size of 4096. The intent is to give
the network a wide range of possibilities to adapt to the data. Further restrictions are
enforced in Section 5.4.4, where the input size is intentionally limited.

In an attempt to optimize those models, hyperparameter tuning was applied. The
parameters shown in Table 5.2 have been selected and are used to create the final models.
A single model is trained for each metric, and the associated training and validation
losses are shown in Figure 5.6. For better comparability, they share the same axes.

5.3.1 Compression rate
Figure 5.6a shows the training and validation loss of the compression rate metric. In
total, 300 epochs were used. In the beginning, both loss metrics decline rapidly. However,
while the training loss reduces further, the validation loss increases slightly and stabilizes
after a while. An explanation for this is that the training data is imbalanced, and certain
classes occur with a much higher probability. To counter that, the weights of sparse
classes are weighted higher. This challenge exists with all introduced metrics, and further
details are provided in Section 4.2.4.

5.3.2 Compression rate per time
The overall characteristics are similar when comparing the losses in Figure 5.6b with
the previous measurements. However, the gap between the validation and training loss
is closer to each other. Furthermore, some spikes in the validation losses are visible.

Metric Output size Learning rate Momentum Batch size
Compression Rate 64 0.0015078369731868298 0.7524708871836397 16
Compression Rate per Time 1024 0.00600528820268309 0.7598391737229157 128
Compression Speed 256 0.00019578516489309736 0.8856380172277318 64
Decompression Speed 1024 0.0014436667144263023 0.8123386279764642 64

Table 5.2: Parameters selected by hyperparameter tuning

46

The reasons for this are manifold. One explanation for this is that the data is batched
in different sizes, and the data within those batches differentiates. So, naturally, there
might be outliers within those batches that do not conform to the model learned so far
and result in more significant losses.

5.3.3 Compression speed
The losses shown in Figure 5.6c represent barely any learning progress. The training loss
is not declining much further after ~150 epochs, and the validation loss increases slowly.
This can also be attributed to the metric measurements shown in Figure 5.2. LZ4-fast
with compression factor 17 is ideal in the overwhelming majority of measurements.
Additionally, in the previous discussion in Section 5.2.1, the observation of plateaus was
highlighted. Therefore, a lower factor might still be beneficial for some performance
metrics. However, those relatively rare cases seemingly do not provide sufficient learnable
data for this machine learning approach.

5.3.4 Decompression speed
In Figure 5.6d, the losses of the decompression speed metric are shown. A model that
is capable of learning this metric has to be capable of differentiating the most labels
compared to the metrics evaluated previously. The plot is similar to the behavior seen
when training the compression rate model. However, this metric imposes the highest
losses overall. This might correlate to the challenge of learning to predict a large number
of compression algorithms and variants. Additionally, as discussed, the imbalance of the
training data continues to be challenging for all approaches.

47

0 50 100 150 200 250 300
Epoch

0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4

Lo
ss

Loss Training
Loss Validation

(a) Compression rate

0 50 100 150 200 250 300
Epoch

0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4

Lo
ss

Loss Training
Loss Validation

(b) Compression rate per time

0 50 100 150 200 250 300
Epoch

0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4

Lo
ss

Loss Training
Loss Validation

(c) Compression speed

0 50 100 150 200 250 300
Epoch

0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4

Lo
ss

Loss Training
Loss Validation

(d) Decompression speed

Figure 5.6: Training and validation loss when creating the models according to specific
metrics

5.4 Inferencing experiments
The trained model for the respective metric can now be evaluated by applying it to
previously unseen ICON runs. This helps to evaluate how well the model generalizes to
diverse write operations.

5.4.1 Extended simulation time steps
In this first test, the simulated time frame of ICON has been extended to twelve months.
As shown in more detail in Section 5.2, the model was initially trained with four months
of simulation data from ICON. For better insights into the model’s performance with
respect to the ideal case, confusion matrices are being used throughout the evaluation.
They provide a good understanding of the performance on a per-class level.

Compression rate

In Figure 5.7, a selection of encountered compression rates in the range of two to eight is
shown. These measurements are visualized as they change over the simulated time frame,
respectively the analyzed I/O steps. Additionally, the data used during the training
phase is highlighted. Finally, the correctness of the prediction performed by the machine
learning model is shown as well.

48

The first thing to note is that the individual MPI ranks write data, which differentiates
by the compression rates achieved. While ranks two and three behave similarly over
time, the compression rate of rank one declines. A possible explanation for this behavior
could be that data is refined as the simulation progresses, and an initial consistent state
is updated. Another noteworthy observation is that overall, the accuracy of MPI rank
two and especially rank three declines with new and unseen data. However, contrary to
that, the performance of rank one and the performance of rank two in the compression
rate rage of around four continues to be steady.

0 200 400 600 800 1000 1200 1400 1600
I/O Step

2

3

4

5

6

7

8

Co
m

pr
es

sio
n

Ra
te

Tr
ai

ni
ng

Rank
MPI Rank: 0
MPI Rank: 1
MPI Rank: 2
MPI Rank: 3
Correct
False
True

Figure 5.7: Classifications on an extended simulation time period using the compression
rate model

Figure 5.8 shows a confusion matrix for the compression rate model. In most cases, ZSTD-
22 is predicted correctly. ZLIB-6 and ZSTD-10 are also confidently chosen. However, in
2238 cases, ZSTD-22 is predicted instead of ZLIB-9. This shows once again the issue
with underrepresented compression variants during the training phase. Furthermore,
this also indicates changes of ideal compression algorithms as the ICON simulation
progresses. For example, previously, in 2.9% of all cases, ZLIB-9 was the ideal choice
for the compression rate metric. However, within this extended simulation run, this
increased to 14.24% of all cases. This also indicates that the dynamics of the correct
choice and a static selection are not sufficient for the long run.

49

LZ
4-

12

ZL
IB

-6

ZL
IB

-9

ZS
TD

-1

ZS
TD

-3

ZS
TD

-1
0

ZS
TD

-2
2

Predicted Compressor

LZ4-12

ZLIB-6

ZLIB-9

ZSTD-1

ZSTD-3

ZSTD-10

ZSTD-22

Tr
ue

 C
om

pr
es

so
r

0 0 0 0 0 16 0

0 2287 0 0 0 0 81

0 75 185 26 314 184 2238

0 18 0 16 6 102 15

0 309 34 26 863 636 58

0 124 26 13 0 2460 117

0 135 133 0 1 222 10496
0

2000

4000

6000

8000

10000

Figure 5.8: Confusion matrix when using the compression rate model

50

Compression speed

As discussed in Section 5.2.2 and Section 5.3.3, the challenges imposed by this metric are
immediately noticeable in the confusion matrix shown in Figure 5.9. While this model
shows some capability of predicting LZ4-fast with factor 17 correctly, it fails to achieve
sufficient performance for any other compression algorithm. The current approach is not
sufficient for this metric, at least not with the current data written by ICON.

LZ4-fast-1 LZ4-fast-7 LZ4-fast-17 ZSTD-1
Predicted Compressor

LZ
4-

fa
st

-1
LZ

4-
fa

st
-7

LZ
4-

fa
st

-1
7

ZS
TD

-1
Tr

ue
 C

om
pr

es
so

r

70 816 4014 0

4149 47 2709 0

3951 3221 2238 0

1 0 0 0

0

500

1000

1500

2000

2500

3000

3500

4000

Figure 5.9: Confusion matrix when using the compression speed model

Compression rate per time

In the majority of all cases, LZ4-fast related compression algorithms are ideal for this
metric. This is also reflected in Figure 5.10, where this also holds true for this extended
simulation run. Somewhat surprisingly, the performance of the LZ4-fast compressor
with factor 17 is not performing as well as the distribution among the initial metric
measurements might suggest. For this variant, sufficient training data should be available
for the model to adapt to. However, the current performance might also be due to the
lack of learnable features within the data in relation to this compressor class. Similar to
the behavior observed with the compression rate metric, changes in the use of compressors

51

over the long run are noticeable. For example, in this case, LZ4-fast with factor one is
used in greater quantity than before.

LZ4-fast-1 LZ4-fast-7LZ4-fast-17 ZSTD-1 ZSTD-3
Predicted Compressor

LZ4-fast-1

LZ4-fast-7

LZ4-fast-17

ZSTD-1

ZSTD-3

Tr
ue

 C
om

pr
es

so
r

7 1228 3639 258 0

4198 269 668 2463 0

4007 22 1303 1704 0

4 1 0 1286 0

0 0 0 159 0

0

500

1000

1500

2000

2500

3000

3500

4000

Figure 5.10: Confusion matrix when using the compression rate per time model

Decompression speed

As shown earlier, the decompression speed metric relies on the most compression algo-
rithms compared to the other metrics. This is also shown in the confusion matrix in
Figure 5.11. There are several things to note here. First of all, the prediction of LZ4-
fast-1 related compression algorithms works very well. For this specific class, barely any
misclassification occur. However, many other classes are wrongly classified as this class,
especially other LZ4 variants. The bias towards this specific class is rather surprising
as the use of LZ4-fast-1 is not that dominant when comparing these results with the
measurements in Figure 5.4.

Besides the influence imposed by this class, LZ4-1 and LZ4-3 are performing well.
This is expected especially for the first case, as this class has the most training data
available.

52

LZ
4-

1

LZ
4-

3

LZ
4-

6

LZ
4-

9

LZ
4-

12

LZ
4-

fa
st

-1

LZ
4-

fa
st

-7

LZ
4-

fa
st

-1
7

ZS
TD

-1

ZS
TD

-1
0

ZS
TD

-2
2

Predicted Compressor

LZ4-1

LZ4-3

LZ4-6

LZ4-9

LZ4-12

LZ4-fast-1

LZ4-fast-7

LZ4-fast-17

ZSTD-1

ZSTD-10

ZSTD-22

Tr
ue

 C
om

pr
es

so
r

1120 63 78 7 15 1747 0 14 95 0 0

172 960 138 8 15 392 0 29 122 0 0

184 94 352 15 25 466 0 29 526 0 0

255 91 479 115 40 486 0 62 1462 0 0

285 171 608 19 422 593 0 356 209 0 0

0 0 0 0 0 1321 0 0 3 0 0

0 0 0 0 0 1578 0 3 3 0 0

16 24 71 7 282 1486 0 477 72 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0
0

200

400

600

800

1000

1200

1400

1600

Figure 5.11: Confusion matrix when using the decompression speed model

53

5.4.2 Extended simulation output
The ICON application can be configured to only write specific variables to the HDF5
dataset. In the previous experiment, the physical output in the 3D environment is not
passed to the I/O layers. Therefore this data has never been intercepted and analyzed by
the architecture implemented in this thesis. Previously, the data that, till this point, is
unknown to the neural network does stem from known variables but only changes due to
progress in the simulation. In this new case, the data might be entirely out of context for
the network, which can give more significant insights into how well the current approach
generalizes to new scenarios. In the following, the compression rate metric is once again
evaluated. Previously, this metric gave promising results, and measurements of this type
are very accurate as they are not influenced by time measurements or any other side
effects.

This influence can be seen in Figure 5.12. The increase in write operations is apparent
when comparing this representation with the previous one in Figure 5.7. The additional
data results in greater overall activity within the compression rate range between two
and eight. Furthermore, increased activity is also related to specific MPI ranks. For
further analysis, rank 3 is highlighted. Similarly, as before, the compression algorithms
in the range of up to three are correctly predicted. However, the additional output in
this specific range is not correctly predicted with acceptable accuracy. This suggests
that the current approach is sensitive to unseen variables.

0 500 1000 1500 2000 2500 3000
I/O Step

2

3

4

5

6

7

8

Co
m

pr
es

sio
n

Ra
te

Rank
MPI Rank: 0
MPI Rank: 1
MPI Rank: 2
MPI Rank: 3
Correct
False
True

Figure 5.12: Classifications on an extended simulation output

54

Figure 5.13 shows the confusion matrix of all predictions during this experiment. For the
most part, these measurements are similar to the ones done in Figure 5.8. The accuracy
of predicting ZLIB-6, ZSTD-10 and ZSTD-22 is promising. In this case, the identification
of ZLIB-9 compatible data is improved. However, data that ideally should be compressed
using ZSTD-22 is wrongfully compressed using ZLIB-6 in 1220 cases.

LZ
4-

12

ZL
IB

-6

ZL
IB

-9

ZS
TD

-1

ZS
TD

-3

ZS
TD

-1
0

ZS
TD

-2
2

Predicted Compressor

LZ4-12

ZLIB-6

ZLIB-9

ZSTD-1

ZSTD-3

ZSTD-10

ZSTD-22

Tr
ue

 C
om

pr
es

so
r

0 0 0 0 0 17 0

0 4012 0 0 0 0 171

0 3 782 73 523 617 1690

0 30 5 16 10 50 102

0 960 149 47 973 559 165

0 621 86 40 68 3124 170

0 1220 387 20 142 737 7213
0

1000

2000

3000

4000

5000

6000

7000

Figure 5.13: Confusion matrix when using the compression rate model on extended
output

5.4.3 Reduced data collection phase
In this experiment, the initial data collection phase of ICON is shortened. This serves as
a test on how much data is required to train a neural network with sufficient accuracy.
The benefits of a shortened collection phase are significant:

• Reduced computation time of the application, which might only serve the purpose
of training the initial neural network

• Faster network training

• Overall less cumbersome to use in HPC applications

55

Metric Output size Learning rate Momentum Batch size
Compression Rate 64 0.01884238882532786 0.2880154357402211 16

Table 5.3: Parameters selected by hyperparameter tuning when reducing the data collec-
tion phase

For this purpose, the compression rate metric is once again evaluated. However, only
seven days are used instead of using the data collected over a four-month simulation
period. During this period 40 000 write operations are collected, resulting in 625 samples
for the training phase. In Table 5.3, the parameters found by hyperparameter tuning are
shown. The training and validation losses seen in Figure 5.14 were achieved using these
parameters. The most significant training progress is made up to ~75 epochs. Beyond
that, a slight tendency to overfit can be observed.

0 25 50 75 100 125 150 175 200
Epoch

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Lo
ss

Loss Training
Loss Validation

Figure 5.14: Training and validation loss when creating the model according to the
compression rate metric. In this case only seven days of simulation data are
used.

In Figure 5.15, once again, the amount of training data in relation to the overall
inferencing phase is shown. It is important to remember that only an excerpt of the
data within an observed compression rate between two and eight is shown. Of those
625 samples for the training phase, 50 samples achieve a compression rate within this
range. This is of interest when comparing those measurements with the evaluation
made earlier. In that case, four months of simulation data were used within the training
phase. Previously, a total of 7548 samples were used for training. 534 samples were
within this highlighted compression rate range. The overall accuracy is very different
in comparison and highlights the challenges associated with training a sufficiently good
performing neural network. Within this highlighted range, the accuracy of the model that
has been trained with limited data is ~86.09%. This is significantly higher than when
training the network with more input data as done before. Previously, the accuracy was

56

~79.3%. However, the overall accuracy of this limited model is only ~47.1%, compared
to 77.1% measured before. One of the reasons for this observation could be that 8% of
the training data during this reduced data collection phase is within this limited range.
Previously, only 7.07% of the training data was within this range, which could limit the
model’s capabilities to achieve similar results. However, the model’s overall performance
is significantly increased when using more training data, which is preferable.

0 200 400 600 800 1000 1200 1400 1600
I/O Step

2

3

4

5

6

7

8

Co
m

pr
es

sio
n

Ra
te

Tr
ai

ni
ng

Rank
MPI Rank: 0
MPI Rank: 1
MPI Rank: 2
MPI Rank: 3
Correct
False
True

Figure 5.15: Classifications on a twelve month simulation period using only seven days
of simulation as input.

Those differences also translate to the model’s accuracy for specific compression algo-
rithms. As shown in Figure 5.16, the accuracy of determining ZSTD-22 correctly declines.
This algorithm is misclassified for ZLIB-9 in 6404 cases. Interestingly, the contrary also
holds true, and ZLIB-9 is correctly predicted in an increased number of cases compared
to the model trained with more input data.

57

LZ
4-

12

ZL
IB

-6

ZL
IB

-9

ZS
TD

-1

ZS
TD

-3

ZS
TD

-1
0

ZS
TD

-2
2

Predicted Compressor

LZ4-12

ZLIB-6

ZLIB-9

ZSTD-1

ZSTD-3

ZSTD-10

ZSTD-22

Tr
ue

 C
om

pr
es

so
r

0 0 0 0 0 16 0

0 1319 66 0 0 0 15

0 74 1860 273 101 499 1183

0 13 0 7 2 123 10

0 456 15 183 112 710 204

0 191 8 102 0 2490 197

0 117 6404 0 0 259 4207
0

1000

2000

3000

4000

5000

6000

Figure 5.16: Confusion matrix when using the compression rate model with limited
training data.

5.4.4 Reduced chunk size
In this experiment, further neural network architectures have been evaluated, which rely
on fewer data as the input for the first layer of the network. For this purpose, input
sizes of 8, 16, 32, and 64 have been tested. For each size, hyperparameter tuning was
performed. The results are shown in Table 5.4. For further analysis, the highlighted
input size is chosen. While the performance of all tested sizes is inferior to the previous
experiment, an input size of 32 B performed the best. However, the performance did not
change by a large margin. In comparison, even the performance of only using an input
size of 8 B is surprisingly good. In part, this can be attributed to the used output size of
the linear layer of the network. Theoretically, a single chunk could be stored within such
a layer, as it is bigger than the input size. Those challenges are also related to the use of
auto encoders, discussed in Section 3.2.1.

As shown in Figure 5.17, the performance by no means compares to the model using
4096 B of input. This is not limited to data which is completely new to the model but
also includes the data that has been trained on. This is also obvious when evaluating the

58

Input size Output size Learning rate Momentum Batch size Accuracy
8 16 0.002546558192892439 0.8790849793713035 128 0.55
16 16 0.001272695825250678 0.8614396430577418 128 0.56
32 32 0.00600528820268309 0.7598391737229157 128 0.6
64 64 0.0024588173734937996 0.24986583566525872 32 0.59

Table 5.4: Parameters selected by hyperparameter tuning for limited inputs

confusion matrix shown in Figure 5.18. Especially the accuracy of identifying ZSTD-22
has changed. In comparison with the measurements in Section 5.4.1, ZLIB-9 is predicted
correctly in many cases. However, in 9825 cases, ZLIB-9 is predicted instead of ZSTD-22.
This suggests that crucial data is missing from the input and the neural network is not
capable of learning features that are relevant for separating those specific classes.

0 200 400 600 800 1000 1200 1400 1600
I/O Step

2

3

4

5

6

7

8

Co
m

pr
es

sio
n

Ra
te

Tr
ai

ni
ng

Rank
MPI Rank: 0
MPI Rank: 1
MPI Rank: 2
MPI Rank: 3
Correct
False
True

Figure 5.17: Classifications on an extended simulation time period using the compression
rate model and using only 32 B of input data. The shown compression rate
range is limited to two to eight.

59

LZ
4-

12

ZL
IB

-1

ZL
IB

-6

ZL
IB

-9

ZS
TD

-1

ZS
TD

-3

ZS
TD

-1
0

ZS
TD

-2
2

Predicted Compressor

LZ4-12

ZLIB-1

ZLIB-6

ZLIB-9

ZSTD-1

ZSTD-3

ZSTD-10

ZSTD-22

Tr
ue

 C
om

pr
es

so
r

0 0 0 0 0 0 16 0

0 2 0 0 0 0 0 0

0 0 462 81 0 0 0 0

0 2 0 3366 127 1308 32 8

0 0 2 11 21 22 101 0

0 1 138 116 39 1072 626 5

0 0 90 64 45 24 2418 27

0 4 180 9825 43 135 216 581
0

2000

4000

6000

8000

Figure 5.18: Confusion matrix of the model trained on limited input data

60

5.5 Findings
In this chapter, two main components of the suggested approach of predicting compression
algorithms according to encountered data were evaluated. The first component includes
the data collection and measuring architecture. In addition, the second component
consists of the training of the machine learning model and the inferencing during runs of
the ICON application.

As discussed, the essential information on which further insights are based on depends
on the measured compression metrics. This includes the compression rate, compression
rate per time, compression speed, and decompression speed. Those measurements were
performed for the compressors LZ4, ZSTD, and ZLIB. Furthermore, a representative
collection of compression levels/factors was chosen. Altogether this results in the following
most significant findings:

• Depending on the data, significant fluctuations in the measurements are observed.
This is especially noticeable for the compression rate metric.

• Not every metric needs to be evaluated dynamically. For example, the LZ4-fast-17
compressor outperforms any other compressor in the compression speed discipline.

• The compression rate metric can be predicted with the most accuracy in these
experiments. Furthermore, certain distinctions within the encountered data and
the great accuracy of the underlying measurements make this metric ideal for
machine learning approaches.

• The number of observed simulation iterations and the length of the data used for
training and inferencing greatly influence the overall prediction accuracy.

It is also important to note that those results relate to the application tested during
evaluation. As discussed, the application’s actual data significantly influences the
ideal compression algorithm, and the gained insights do not necessarily apply to other
applications.

61

6 Future work

In this chapter, details on how to improve the introduced architecture is given. This
includes the data collection and inferencing library, as well as the currently used neural
network techniques. Furthermore, ideas and concepts for further and continuous usage
are reflected.

Integrating additional compression algorithms
The architecture introduced in Chapter 4 has been shown to provide a flexible and
easy-to-use interface for integrating additional compression algorithms. The current
interface did not limit the usage of any algorithms and new variants should be integrated.
Currently, the available algorithms include LZ4, ZSTD and ZLIB, which are also available
in the Linux kernel. This is geared towards a possible use of a decision component within
parallel file systems like Lustre. Further benefits of such an approach are highlighted
in [4], where performance implications are shown depending on whether the compression
is applied on the client or on the storage node. For this potential use case, the current
selection provides valuable insights into the behavior of data-aware compression.

Additional compression algorithms might include:

• Brotli1: Based on LZ77 and provides a dictionary of common web-related texts.
While probably being too specific for HPC-related applications, the optimization
for low-resource devices might be promising for busy HPC environments. At least
the fundamental concepts should be evaluated.

• Zopfli2: Preferably used for data that is compressed only once and read multiple
times. Achieves a higher compression rate than ZLIB, but at the expense of a
longer runtime.

• Blosc3: Designed to be faster than memcpy() and to perform well on binary data.
Uses a blocking technique which divides the input into blocks that fit into the
cache.

This is not an exclusive list. Any compression algorithm that might be of interest should

1https://github.com/google/brotli
2https://github.com/google/zopfli
3https://www.blosc.org

62

https://github.com/google/brotli
https://github.com/google/zopfli
https://www.blosc.org

be straightforward to evaluate. The lzbench4 benchmark provides a promising basis for
further compressors that might be worth analyzing. Furthermore, algorithms that were
created for a specific task could be added. This has proven to be beneficial for specific
use cases, as shown in Section 3.1.1.

Evaluate additional applications
The current approach is only evaluated by performing experiments on a single application.
Among others, a promising observation has been to see the change of a written variable
over time. Those behaviors should be examined with other applications, too. Furthermore,
additional intercepted I/O could help to train a more balanced network that generalizes
to a more application-independent model.

Integrate decision component into I/O
The current architecture is limited to evaluating the concept of training a neural network
based on data encountered during I/O and making predictions based on this data.
Intercepting MPI-IO-related calls is not feasible for real-world usage as when the data
is compressed at this stage, the exact alignment during all further data usage has to
be maintained. To mitigate this, the current architecture could be implemented within
an I/O library like HDF5. Furthermore, the prediction of which compression algorithm
should be used could be passed to the file system where compression could take place on
a block level, independent of the access pattern.

Test additional machine learning techniques
While PyTorch is used to train a neural network in the current architecture, this is not a
requirement for further training, as the model is imported for inferencing using the vendor-
neutral ONNX format. Therefore, it is possible to use arbitrary components, either by
continuing using PyTorch or by using any other library supporting this format.

Currently, a neural network is used. However, machine learning provides a vast number
of alternative approaches. While also more complex networks can be evaluated, even
simpler methods might also be worthwhile. For example, as discussed in [55], random
forests are “not sensitive to over-fitting”.

4https://github.com/inikep/lzbench

63

https://github.com/inikep/lzbench

7 Conclusion

In this chapter, the achievements of the thesis are recapped and evaluated against the
initial goals outlined in the beginning.

This thesis aimed to provide an approach to data-aware compression for HPC using
machine learning. The main contribution to this goal was to develop an architecture
capable of relating the overall content of the data written during HPC application runs
with a fitting compression algorithm. In addition, it was outlined that further insights
into the behavior of the chosen compression algorithms are needed. These insights were
also required to train a supervised machine learning model. Using this model, it was
possible to predict ideal compression algorithms and associated levels using only the data
available during I/O. The accuracy of said approach varies depending on the intended
performance characteristics required. The current approach works especially well when
the compression rate is of concern. Furthermore, a significant challenge was to collect
appropriate training data due to imbalances encountered during the training phase.

Nevertheless, the introduced architecture has been flexible enough to accommodate
various compression algorithms easily. Furthermore, the machine learning pipeline can
be easily adapted to alternative machine learning approaches. The current abstraction
between the training in modern and widely used data science frameworks and the
integration into the shared library during inferencing is capable of executing a variety of
alternative model architectures. The source code, as well as the entire training data, is
available at [56]. This is intended to encourage further experiments and to improve the
given architecture.

Finally, an earlier version of these contributions was already published as part of the
CHEOPS’22 workshop [57]. This shows how relevant research in compression-related
disciplines is, and new approaches are welcomed.

64

Bibliography
[1] ETP4HPC. Strategic Research Agenda 3 for High Performance Computing in

Europe. en. 2017. url: https://www.etp4hpc.eu/pujades/files/SRA%203.pdf
(visited on 04/30/2022).

[2] Michael Malms, Marcin Ostasz, Maike Gilliot, Pascale Bernier-Bruna, Laurent
Cargemel, Estela Suarez, Herbert Cornelius, Marc Duranton, Benny Koren, Pascale
Rosse-Laurent, María S. Pérez-Hernández, Manolis Marazakis, Guy Lonsdale,
Paul Carpenter, Gabriel Antoniu, Sai Narasimhamurthy, André Brinkman, Dirk
Pleiter, Adrian Tate, Jens Krueger, Hans-Christian Hoppe, Erwin Laure, and
Andreas Wierse. ETP4HPC’s Strategic Research Agenda for High- Performance
Computing in Europe 4. Mar. 2020. doi: 10.5281/zenodo.4605344. url: https:
//doi.org/10.5281/zenodo.4605344.

[3] Janine C. Bennett, Hasan Abbasi, Peer-Timo Bremer, Ray Grout, Attila Gyu-
lassy, Tong Jin, Scott Klasky, Hemanth Kolla, Manish Parashar, Valerio Pascucci,
Philippe Pebay, David Thompson, Hongfeng Yu, Fan Zhang, and Jacqueline Chen.
“Combining in-situ and in-transit processing to enable extreme-scale scientific anal-
ysis”. In: SC ’12: Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis. ISSN: 2167-4337. Nov. 2012, pp. 1–9.
doi: 10.1109/SC.2012.31.

[4] Michael Kuhn, Julian Kunkel, and Thomas Ludwig. “Data Compression for Climate
Data”. In: Supercomputing Frontiers and Innovations. Volume 3, Number 1 (June
2016). Ed. by Jack Dongarra and Vladimir Voevodin, pp. 75–94. doi: https:
//doi.org/10.14529/jsfi160105. url: http://superfri.org/superfri/
article/view/101.

[5] Yevhen Alforov, Thomas Ludwig, Anastasiia Novikova, Michael Kuhn, and Julian
Kunkel. “Towards Green Scientific Data Compression Through High-Level I/O
Interfaces”. en. In: 2018 30th International Symposium on Computer Architecture
and High Performance Computing (SBAC-PAD). Lyon, France: IEEE, Sept. 2018,
pp. 209–216. isbn: 978-1-5386-7769-8. doi: 10.1109/CAHPC.2018.8645921. url:
https://ieeexplore.ieee.org/document/8645921/ (visited on 04/30/2022).

[6] Arnab K. Paul, Olaf Faaland, Adam Moody, Elsa Gonsiorowski, Kathryn Mohror,
and Ali R. Butt. “Understanding HPC Application I/O Behavior Using System
Level Statistics”. In: 2020 IEEE 27th International Conference on High Per-
formance Computing, Data, and Analytics (HiPC). ISSN: 2640-0316. Dec. 2020,
pp. 202–211. doi: 10.1109/HiPC50609.2020.00034.

65

https://www.etp4hpc.eu/pujades/files/SRA%203.pdf
https://doi.org/10.5281/zenodo.4605344
https://doi.org/10.5281/zenodo.4605344
https://doi.org/10.5281/zenodo.4605344
https://doi.org/10.1109/SC.2012.31
https://doi.org/https://doi.org/10.14529/jsfi160105
https://doi.org/https://doi.org/10.14529/jsfi160105
http://superfri.org/superfri/article/view/101
http://superfri.org/superfri/article/view/101
https://doi.org/10.1109/CAHPC.2018.8645921
https://ieeexplore.ieee.org/document/8645921/
https://doi.org/10.1109/HiPC50609.2020.00034

[7] R. Thakur, W. Gropp, and E. Lusk. “An abstract-device interface for implementing
portable parallel-I/O interfaces”. In: Proceedings of 6th Symposium on the Frontiers
of Massively Parallel Computation (Frontiers ’96). ISSN: 1088-4955. Oct. 1996,
pp. 180–187. doi: 10.1109/FMPC.1996.558080.

[8] LiuYing. “Lustre Technical White Paper - Lustre ADIO collective write driver”.
en. In: (2008), p. 16. url: https://wiki.lustre.org/images/6/65/Lustre_
ADIO_Driver_Whitepaper_0926.pdf.

[9] NetCDF Classic and 64-bit Offset File Formats | Earthdata. en. url: https:
//earthdata.nasa.gov/esdis/esco/standards- and- references/netcdf-
classic/ (visited on 05/06/2022).

[10] C. E. Shannon. “A mathematical theory of communication”. In: The Bell System
Technical Journal 27.3 (July 1948), pp. 379–423. issn: 0005-8580. doi: 10.1002/j.
1538-7305.1948.tb01338.x.

[11] David A. Huffman. “A Method for the Construction of Minimum-Redundancy
Codes”. In: Proceedings of the IRE 40.9 (Sept. 1952). Conference Name: Proceedings
of the IRE, pp. 1098–1101. issn: 2162-6634. doi: 10.1109/JRPROC.1952.273898.

[12] J. J. Rissanen. “Generalized Kraft Inequality and Arithmetic Coding”. In: IBM
Journal of Research and Development 20.3 (May 1976). Conference Name: IBM
Journal of Research and Development, pp. 198–203. issn: 0018-8646. doi: 10.
1147/rd.203.0198.

[13] Paul G. Howard and Jeffrey Scott Vitter. “Practical Implementations of Arithmetic
Coding”. en. In: Image and Text Compression. Ed. by James A. Storer. Vol. 176.
Series Title: The Kluwer International Series in Engineering and Computer Science.
Boston, MA: Springer US, 1992, pp. 85–112. isbn: 978-1-4613-6598-3 978-1-4615-
3596-6. doi: 10.1007/978-1-4615-3596-6_4. url: http://link.springer.
com/10.1007/978-1-4615-3596-6_4 (visited on 05/03/2022).

[14] Ian H Witten, Radford M Neal, and John G Cleary. “ARITHMETIC CODING
FOR DATA COMPRESSION”. en. In: Communications of the ACM 30.6 (1987),
p. 21. url: https://web.stanford.edu/class/ee398a/handouts/papers/
WittenACM87ArithmCoding.pdf (visited on 05/03/2022).

[15] Asadollah Shahbahrami, Ramin Bahrampour, Mobin Sabbaghi Rostami, and
Mostafa Ayoubi Mobarhan. “Evaluation of Huffman and Arithmetic Algorithms
for Multimedia Compression Standards”. In: arXiv:1109.0216 [cs, math] (Aug.
2011). arXiv: 1109.0216. url: http://arxiv.org/abs/1109.0216 (visited on
05/03/2022).

[16] J. Ziv and A. Lempel. “A universal algorithm for sequential data compression”. In:
IEEE Transactions on Information Theory 23.3 (May 1977). Conference Name:
IEEE Transactions on Information Theory, pp. 337–343. issn: 1557-9654. doi:
10.1109/TIT.1977.1055714.

[17] Heiko Schwarz. “Dictionary-based Coding”. en. In: (), p. 37. url: http://iphome.
hhi.de/schwarz/assets/dc/07-DictionaryCoding.pdf.

66

https://doi.org/10.1109/FMPC.1996.558080
https://wiki.lustre.org/images/6/65/Lustre_ADIO_Driver_Whitepaper_0926.pdf
https://wiki.lustre.org/images/6/65/Lustre_ADIO_Driver_Whitepaper_0926.pdf
https://earthdata.nasa.gov/esdis/esco/standards-and-references/netcdf-classic/
https://earthdata.nasa.gov/esdis/esco/standards-and-references/netcdf-classic/
https://earthdata.nasa.gov/esdis/esco/standards-and-references/netcdf-classic/
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1109/JRPROC.1952.273898
https://doi.org/10.1147/rd.203.0198
https://doi.org/10.1147/rd.203.0198
https://doi.org/10.1007/978-1-4615-3596-6_4
http://link.springer.com/10.1007/978-1-4615-3596-6_4
http://link.springer.com/10.1007/978-1-4615-3596-6_4
https://web.stanford.edu/class/ee398a/handouts/papers/WittenACM87ArithmCoding.pdf
https://web.stanford.edu/class/ee398a/handouts/papers/WittenACM87ArithmCoding.pdf
http://arxiv.org/abs/1109.0216
https://doi.org/10.1109/TIT.1977.1055714
http://iphome.hhi.de/schwarz/assets/dc/07-DictionaryCoding.pdf
http://iphome.hhi.de/schwarz/assets/dc/07-DictionaryCoding.pdf

[18] P. Deutsch. RFC1951: DEFLATE Compressed Data Format Specification Version
1.3. USA, 1996.

[19] Yann Collet. LZ4 - Frame format. original-date: 2014-03-25T15:52:21Z. May 2022.
url: https://github.com/lz4/lz4/blob/ce8ee024b240befac4ca8ab12c6cd812f4a7e38b/
doc/lz4_Frame_format.md (visited on 05/02/2022).

[20] Yann Collet. LZ4 - Block format. original-date: 2014-03-25T15:52:21Z. May 2022.
url: https://github.com/lz4/lz4/blob/ce8ee024b240befac4ca8ab12c6cd812f4a7e38b/
doc/lz4_Block_format.md (visited on 05/02/2022).

[21] Kyungsik Lee and LG Electronics. LZ4 Compression and Improving Boot Time.
en. url: https://events.static.linuxfound.org/sites/events/files/
lcjpcojp13_klee.pdf (visited on 05/02/2022).

[22] Jarek Duda. “Asymmetric numeral systems: entropy coding combining speed of
Huffman coding with compression rate of arithmetic coding”. In: arXiv:1311.2540
[cs, math] (Jan. 2014). arXiv: 1311.2540. url: http://arxiv.org/abs/1311.2540
(visited on 05/06/2022).

[23] Allan Jude. “Zstandard Compression in OpenZFS”. en. In: (), p. 6. url: https://
freebsdfoundation.org/wp-content/uploads/2021/05/Zstandard-Compression-
in-OpenZFS.pdf.

[24] Jean-loup Gailly and Mark Adler. zlib Technical Details. url: https://zlib.net/
zlib_tech.html (visited on 05/03/2022).

[25] Enzo Grossi and Massimo Buscema. “Introduction to artificial neural networks”.
In: European journal of gastroenterology & hepatology 19 (Jan. 2008), pp. 1046–54.
doi: 10.1097/MEG.0b013e3282f198a0.

[26] Warren S. McCulloch and Walter Pitts. “A logical calculus of the ideas immanent
in nervous activity”. en. In: The bulletin of mathematical biophysics 5.4 (Dec.
1943), pp. 115–133. issn: 1522-9602. doi: 10.1007/BF02478259. url: https:
//doi.org/10.1007/BF02478259 (visited on 03/30/2022).

[27] Frank Rosenblatt. “The perceptron: a probabilistic model for information storage
and organization in the brain.” In: Psychological review 65 6 (1958), pp. 386–408.

[28] F. Rosenblatt. The perceptron - A perceiving and recognizing automaton. Tech. rep.
85-460-1. Ithaca, New York: Cornell Aeronautical Laboratory, Jan. 1957.

[29] Paul Werbos and Paul John. “Beyond regression : new tools for prediction and
analysis in the behavioral sciences /”. In: (Jan. 1974).

[30] Carter Chiu and Justin Zhan. “An Evolutionary Approach to Compact DAG
Neural Network Optimization”. In: IEEE Access 7 (2019), pp. 178331–178341. issn:
2169-3536. doi: 10.1109/ACCESS.2019.2954795.

[31] Raúl Rojas. “Perceptron Learning”. In: Neural Networks: A Systematic Introduction.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1996, pp. 77–98. isbn: 978-3-642-
61068-4. doi: 10.1007/978-3-642-61068-4_4. url: https://doi.org/10.
1007/978-3-642-61068-4_4.

67

https://github.com/lz4/lz4/blob/ce8ee024b240befac4ca8ab12c6cd812f4a7e38b/doc/lz4_Frame_format.md
https://github.com/lz4/lz4/blob/ce8ee024b240befac4ca8ab12c6cd812f4a7e38b/doc/lz4_Frame_format.md
https://github.com/lz4/lz4/blob/ce8ee024b240befac4ca8ab12c6cd812f4a7e38b/doc/lz4_Block_format.md
https://github.com/lz4/lz4/blob/ce8ee024b240befac4ca8ab12c6cd812f4a7e38b/doc/lz4_Block_format.md
https://events.static.linuxfound.org/sites/events/files/lcjpcojp13_klee.pdf
https://events.static.linuxfound.org/sites/events/files/lcjpcojp13_klee.pdf
http://arxiv.org/abs/1311.2540
https://freebsdfoundation.org/wp-content/uploads/2021/05/Zstandard-Compression-in-OpenZFS.pdf
https://freebsdfoundation.org/wp-content/uploads/2021/05/Zstandard-Compression-in-OpenZFS.pdf
https://freebsdfoundation.org/wp-content/uploads/2021/05/Zstandard-Compression-in-OpenZFS.pdf
https://zlib.net/zlib_tech.html
https://zlib.net/zlib_tech.html
https://doi.org/10.1097/MEG.0b013e3282f198a0
https://doi.org/10.1007/BF02478259
https://doi.org/10.1007/BF02478259
https://doi.org/10.1007/BF02478259
https://doi.org/10.1109/ACCESS.2019.2954795
https://doi.org/10.1007/978-3-642-61068-4_4
https://doi.org/10.1007/978-3-642-61068-4_4
https://doi.org/10.1007/978-3-642-61068-4_4

[32] MARIAN P. Kazmierkowski. “CHAPTER 10 - Neural Networks and Fuzzy Logic
Control in Power Electronics”. en. In: Control in Power Electronics. Ed. by MAR-
IAN P. Kazmierkowski, R. Krishnan, and FREDE Blaabjerg. Academic Press
Series in Engineering. Burlington: Academic Press, Jan. 2002, pp. 351–418. isbn:
978-0-12-402772-5. doi: 10.1016/B978- 012402772- 5/50011- 9. url: https:
//www.sciencedirect.com/science/article/pii/B9780124027725500119
(visited on 05/07/2022).

[33] D. Veit. “2 - Neural networks and their application to textile technology”. en. In:
Simulation in Textile Technology. Ed. by D. Veit. Woodhead Publishing Series in
Textiles. Woodhead Publishing, Jan. 2012, pp. 9–71. isbn: 978-0-85709-029-4. doi:
10.1533/9780857097088.9. url: https://www.sciencedirect.com/science/
article/pii/B978085709029450002X (visited on 05/07/2022).

[34] Sepp Hochreiter. “The Vanishing Gradient Problem During Learning Recurrent
Neural Nets and Problem Solutions”. In: International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems 6 (Apr. 1998), pp. 107–116. doi: 10.1142/
S0218488598000094.

[35] Deloula Mansouri, Xiaohui Yuan, and Abdeldjalil Saidani. “A New Lossless DNA
Compression Algorithm Based on A Single-Block Encoding Scheme”. In: Algorithms
13.4 (2020). issn: 1999-4893. doi: 10.3390/a13040099. url: https://www.mdpi.
com/1999-4893/13/4/99.

[36] GenBank and WGS Statistics. url: https://www.ncbi.nlm.nih.gov/genbank/
statistics/ (visited on 04/11/2022).

[37] T Matsumoto, K Sadakane, and H Imai. “Biological sequence compression algo-
rithms”. en. In: Genome Inform Ser Workshop Genome Inform 11 (2000), pp. 43–
52.

[38] Nour S. Bakr and Amr A. Sharawi. “Improve the compression of bacterial DNA se-
quence”. In: 2017 13th International Computer Engineering Conference (ICENCO).
2017, pp. 286–290. doi: 10.1109/ICENCO.2017.8289802.

[39] Shengwang Du, Junyi Li, and Naizheng Bian. “A compression method for DNA”.
In: PLOS ONE 15.11 (Nov. 2020), pp. 1–8. doi: 10.1371/journal.pone.0238220.
url: https://doi.org/10.1371/journal.pone.0238220.

[40] Shanika Kuruppu, Simon J. Puglisi, and Justin Zobel. “Reference Sequence Con-
struction for Relative Compression of Genomes”. In: String Processing and In-
formation Retrieval. Ed. by Roberto Grossi, Fabrizio Sebastiani, and Fabrizio
Silvestri. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 420–425. isbn:
978-3-642-24583-1.

[41] Nguyen Anh, Hoang Dung, and Nguyen Nhung. “Adaptive Cross-Correlation
Compression Method in Lossless Audio Streaming Compression”. In: International
Journal of Engineering and Applied Sciences (IJEAS) 6 (Mar. 2019). doi: 10.
31873/IJEAS/6.3.2019.30.

68

https://doi.org/10.1016/B978-012402772-5/50011-9
https://www.sciencedirect.com/science/article/pii/B9780124027725500119
https://www.sciencedirect.com/science/article/pii/B9780124027725500119
https://doi.org/10.1533/9780857097088.9
https://www.sciencedirect.com/science/article/pii/B978085709029450002X
https://www.sciencedirect.com/science/article/pii/B978085709029450002X
https://doi.org/10.1142/S0218488598000094
https://doi.org/10.1142/S0218488598000094
https://doi.org/10.3390/a13040099
https://www.mdpi.com/1999-4893/13/4/99
https://www.mdpi.com/1999-4893/13/4/99
https://www.ncbi.nlm.nih.gov/genbank/statistics/
https://www.ncbi.nlm.nih.gov/genbank/statistics/
https://doi.org/10.1109/ICENCO.2017.8289802
https://doi.org/10.1371/journal.pone.0238220
https://doi.org/10.1371/journal.pone.0238220
https://doi.org/10.31873/IJEAS/6.3.2019.30
https://doi.org/10.31873/IJEAS/6.3.2019.30

[42] Nathanael Hübbe, Al Wegener, Julian Martin Kunkel, Yi Ling, and Thomas
Ludwig. “Evaluating Lossy Compression on Climate Data”. In: Supercomputing.
Ed. by Julian Martin Kunkel, Thomas Ludwig, and Hans Werner Meuer. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2013, pp. 343–356. isbn: 978-3-642-38750-0.

[43] Xiangyu Zou, Tao Lu, Sheng Di, Dingwen Tao, Wen Xia, Xuan Wang, Weizhe
Zhang, and Qing Liao. “Accelerating Lossy Compression on HPC Datasets via
Partitioning Computation for Parallel Processing”. In: 2019 IEEE 21st International
Conference on High Performance Computing and Communications; IEEE 17th
International Conference on Smart City; IEEE 5th International Conference on
Data Science and Systems (HPCC/SmartCity/DSS). 2019, pp. 1791–1797. doi:
10.1109/HPCC/SmartCity/DSS.2019.00246.

[44] Tao Lu, Qing Liu, Xubin He, Huizhang Luo, Eric Suchyta, Jong Choi, Norbert
Podhorszki, Scott Klasky, Mathew Wolf, Tong Liu, and Zhenbo Qiao. “Under-
standing and Modeling Lossy Compression Schemes on HPC Scientific Data”. In:
2018 IEEE International Parallel and Distributed Processing Symposium (IPDPS).
2018, pp. 348–357. doi: 10.1109/IPDPS.2018.00044.

[45] Yoshua Bengio. “Learning Deep Architectures for AI”. In: Foundations and Trends®
in Machine Learning 2.1 (2009), pp. 1–127. issn: 1935-8237. doi: 10 . 1561 /
2200000006. url: http://dx.doi.org/10.1561/2200000006.

[46] Lucas Theis, Wenzhe Shi, Andrew Cunningham, and Ferenc Huszár. “Lossy Image
Compression with Compressive Autoencoders”. In: arXiv:1703.00395 [cs, stat]
(Mar. 2017). arXiv: 1703.00395. url: http://arxiv.org/abs/1703.00395
(visited on 04/20/2022).

[47] Deep autoencoders for ATLAS data compression. url: https://hepsoftwarefoundation.
org/gsoc/2020/proposal_ATLASMLcompression.html (visited on 04/20/2022).

[48] Tong Liu, Jinzhen Wang, Qing Liu, Shakeel Alibhai, Tao Lu, and Xubin He. “High-
Ratio Lossy Compression: Exploring the Autoencoder to Compress Scientific Data”.
In: IEEE Transactions on Big Data (2021), pp. 1–1. doi: 10.1109/TBDATA.2021.
3066151.

[49] Michela Massi. Autoencoder schema. 2019. url: https://commons.wikimedia.
org/wiki/File:Autoencoder_schema.png (visited on 04/20/2022).

[50] Michael Kuhn, Julius Plehn, Yevhen Alforov, and Thomas Ludwig. “Improving En-
ergy Efficiency of Scientific Data Compression with Decision Trees”. In: ENERGY
2020: The Tenth International Conference on Smart Grids, Green Communications
and IT Energy-aware Technologies. Lisbon, Portugal: IARIA XPS Press, Sept.
2020, pp. 17–23. isbn: 978-1-61208-788-7. url: https://www.thinkmind.org/
index.php?view=article&articleid=energy_2020_1_40_30038.

[51] MPI: A Message-Passing Interface Standard. en. June 2015. url: https://www.
mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf.

69

https://doi.org/10.1109/HPCC/SmartCity/DSS.2019.00246
https://doi.org/10.1109/IPDPS.2018.00044
https://doi.org/10.1561/2200000006
https://doi.org/10.1561/2200000006
http://dx.doi.org/10.1561/2200000006
http://arxiv.org/abs/1703.00395
https://hepsoftwarefoundation.org/gsoc/2020/proposal_ATLASMLcompression.html
https://hepsoftwarefoundation.org/gsoc/2020/proposal_ATLASMLcompression.html
https://doi.org/10.1109/TBDATA.2021.3066151
https://doi.org/10.1109/TBDATA.2021.3066151
https://commons.wikimedia.org/wiki/File:Autoencoder_schema.png
https://commons.wikimedia.org/wiki/File:Autoencoder_schema.png
https://www.thinkmind.org/index.php?view=article&articleid=energy_2020_1_40_30038
https://www.thinkmind.org/index.php?view=article&articleid=energy_2020_1_40_30038
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf

[52] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban
Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. “PyTorch: An Imperative Style, High-Performance Deep Learning Li-
brary”. In: Advances in Neural Information Processing Systems 32. Ed. by H.
Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett.
Curran Associates, Inc., 2019, pp. 8024–8035. url: http://papers.neurips.
cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-
learning-library.pdf.

[53] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy,
and Ping Tak Peter Tang. “On Large-Batch Training for Deep Learning: Generaliza-
tion Gap and Sharp Minima”. In: arXiv:1609.04836 [cs, math] (Feb. 2017). arXiv:
1609.04836. url: http://arxiv.org/abs/1609.04836 (visited on 05/08/2022).

[54] Francesc Alted. Breaking Down Memory Walls. en. url: https://www.blosc.
org/docs/Breaking-Down-Memory-Walls.pdf (visited on 04/29/2022).

[55] Ned Horning. “Random Forests : An algorithm for image classification and genera-
tion of continuous fields data sets”. In: 2010.

[56] Julius Plehn. Data-Aware Compression for HPC using Machine Learning - Training
data and tools. Version 1.0.0. May 2022. doi: 10.5281/zenodo.6506394. url:
https://doi.org/10.5281/zenodo.6506394.

[57] Julius Plehn, Anna Fuchs, Michael Kuhn, Jakob Lüttgau, and Thomas Ludwig.
“Data-Aware Compression for HPC Using Machine Learning”. In: Proceedings of
the Workshop on Challenges and Opportunities of Efficient and Performant Storage
Systems. CHEOPS ’22. Rennes, France: Association for Computing Machinery,
2022, pp. 8–15. isbn: 9781450392099. doi: 10.1145/3503646.3524294. url:
https://doi.org/10.1145/3503646.3524294.

70

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://arxiv.org/abs/1609.04836
https://www.blosc.org/docs/Breaking-Down-Memory-Walls.pdf
https://www.blosc.org/docs/Breaking-Down-Memory-Walls.pdf
https://doi.org/10.5281/zenodo.6506394
https://doi.org/10.5281/zenodo.6506394
https://doi.org/10.1145/3503646.3524294
https://doi.org/10.1145/3503646.3524294

Appendices

71

List of Figures

2.1 Comparison of the information content when using two different logarith-
mic bases. 11

2.2 A perceptron which is capable of classifying the logical OR operation. . . 19
a Perceptron . 19
b Linear separability of x ∨ y . 19

2.3 Visualization of multiple activation functions 21

3.1 Autoencoder architecture [49] . 24

4.1 Architecture overview showing a typical I/O path and points of instru-
mentation in relation to the training phase as well the inferencing phase.
The training phase exports a machine learning model which is then used
in an inferencing phase to predict a compressor based on data that is
written by an application. 27
a HPC I/O Stack . 27
b Sampling, training, and inferencing architecture for optimization

of compressor selection. 27
4.2 Training architecture . 28

5.1 Measurements showing compressors that were ideal for the compression
rate metric. 42
a Excerpt showing compression rate below 3 42
b Excerpt showing compression rate below 2000 42

5.2 Compression speed metric . 43
5.3 Compression rate per time metric . 43
5.4 Decompression speed metric . 45
5.5 Relation between decompression metric and achieved compression rate.

(Includes compression rates between three and a hundred) 45
5.6 Training and validation loss when creating the models according to specific

metrics . 48
a Compression rate . 48
b Compression rate per time . 48
c Compression speed . 48
d Decompression speed . 48

5.7 Classifications on an extended simulation time period using the compres-
sion rate model . 49

5.8 Confusion matrix when using the compression rate model 50

72

5.9 Confusion matrix when using the compression speed model 51
5.10 Confusion matrix when using the compression rate per time model 52
5.11 Confusion matrix when using the decompression speed model 53
5.12 Classifications on an extended simulation output 54
5.13 Confusion matrix when using the compression rate model on extended

output . 55
5.14 Training and validation loss when creating the model according to the

compression rate metric. In this case only seven days of simulation data
are used. 56

5.15 Classifications on a twelve month simulation period using only seven days
of simulation as input. 57

5.16 Confusion matrix when using the compression rate model with limited
training data. 58

5.17 Classifications on an extended simulation time period using the compres-
sion rate model and using only 32 B of input data. The shown compression
rate range is limited to two to eight. 59

5.18 Confusion matrix of the model trained on limited input data 60

73

List of Listings

4.1 Example usage of the MPI profiling interface 29
4.2 Intercepting a call by reusing the declaration and loading the original

symbol on demand. 30
4.3 Structure implemented by every compression algorithm 31
4.4 Example of using the base class provided by PyTorch to implement custom

neural networks . 36

74

List of Tables

2.1 LZ77 example showing the interaction with the sliding window when
applying the message ABABCD. Based on [17] 13

4.1 HDF5 dataset of the sampling mode . 32
4.2 HDF5 dataset of the inferencing mode 33
4.3 Application options of the shared library 34

5.1 Evaluated compression configurations . 39
5.2 Parameters selected by hyperparameter tuning 46
5.3 Parameters selected by hyperparameter tuning when reducing the data

collection phase . 56
5.4 Parameters selected by hyperparameter tuning for limited inputs 59

75

Eidesstattliche Versicherung
Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit im Studiengang
M. Sc. Informatik selbstständig verfasst und keine anderen als die angegebenen Hilfs-
mittel – insbesondere keine im Quellenverzeichnis nicht benannten Internet-Quellen
– benutzt habe. Alle Stellen, die wörtlich oder sinngemäß aus Veröffentlichungen ent-
nommen wurden, sind als solche kenntlich gemacht. Ich versichere weiterhin, dass ich
die Arbeit vorher nicht in einem anderen Prüfungsverfahren eingereicht habe und die
eingereichte schriftliche Fassung der auf dem elektronischen Speichermedium entspricht.

Ort, Datum Unterschrift

Veröffentlichung
Ich bin damit einverstanden, dass meine Arbeit in den Bestand der Bibliothek des
Fachbereichs Informatik eingestellt wird.

Ort, Datum Unterschrift

	Introduction
	Motivation
	Thesis goals
	Outline

	Background
	I/O in HPC
	MPI-IO
	HDF5

	Compression
	Information theory
	Techniques
	LZ4
	Zstandard
	ZLIB
	Metrics

	Machine learning
	Artificial neural networks
	Multi-layer perceptron
	Activation functions

	Related work
	Data-specific compression
	Domain-specific compression
	Lossy compression

	Approaches using machine learning
	Autoencoders
	Training on metadata

	Architecture
	I/O interception library
	Intercepted functions
	Compression integration
	Usage modes

	Machine learning process
	Framework
	Data preprocessing
	Neural network
	Model training
	Model usage

	Evaluation
	Test setup
	ICON

	Metrics
	Compression rate
	Compression speed
	Compression rate per time
	Decompression speed

	Training
	Compression rate
	Compression rate per time
	Compression speed
	Decompression speed

	Inferencing experiments
	Extended simulation time steps
	Extended simulation output
	Reduced data collection phase
	Reduced chunk size

	Findings

	Future work
	Conclusion
	Bibliography
	Appendices
	List of Figures
	List of Listings
	List of Tables

