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Abstract
Program optimization is a crucial step in the development of performance critical appli-
cations but in most cases only manually realizable due to its complexity. The substantial
structural changes to the source code reduce the readability and maintainability and
complicate the ongoing development of the applications. The objective of this thesis is to
examine the advantages and disadvantages of an AST-based solution to the conflicting
relationship between performance and structural code quality of a program. For this
purpose a prototype is developed to automate usually manual optimizations based on
instructions by the user. The thesis covers the design and implementation as well as the
evaluation of the prototype for the usage as a tool in software development. As a result
this thesis shows the categorical usability of the AST-based approach and the need for
further investigation.
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1 Introduction
Over the last few decades computers have become an ubiquitous part of the modern
world. They are widespread and used to manage and process all kinds of data in almost
every field of application such as education, administration, manufacturing, logistics and
research. The main reasons for the success of computers are the speed at which they
can do repetitive tasks compared to humans and their rapid adaptability for different
purposes via suitable software packages.

1.1 Software Quality
As programs increase in size as well as complexity and are used to control progressively
more important systems, their quality becomes increasingly more important. This leads
to the current international standard for the evaluation of software quality ISO/IEC
25010:2011 (titled Systems and software engineering – Systems and software Quality
Requirements and Evaluation (SQuaRE) – System and software quality models). It defines
eight distinct software product quality characteristics, which can be broken down into
two categories:

• Functional qualities reflect how well a program complies with a given design,
based on its specified functional requirements. They and are directly recognized by
a user. These qualities are functional suitability, reliability, performance efficiency,
usability, security and compatibility.

• Structural qualities refer to how well a program meets non-functional require-
ments. They invisible to the user but of the highest importance to a developer, like
maintainability and portability.

1.2 Motivation
When developing software the first objective typically is to achieve a certain level of
basic functional qualities such as functional suitability, usability, reliability, security and
compatibility. After achieving these, most programs have to be optimized to meet their
required execution speed and/or memory usage to be ready for use in production.

The optimizations may be done automatically by an optimizing compiler but are in
some cases required to be manually done by the developer at the source code level. This
is caused by the compiler not being able to perform every type of optimization, as they
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may require knowledge of the input data or the quirks of the target computers hardware
as well as an extensive analysis of the dependencies in the program.

But manual code optimizations also have a drawback, the changes in the source code
often reduce its structural quality (i.e. maintainability and portability) and make further
development more difficult as well as often worsen the general readability.

The double-edged sword nature of manual optimizations can be ignored as long as the
program is not developed any further, but when changes have to be made, there are two
ways of implementing them, each with its pro and cons:

• Using the optimized code as the basis for the next version spares the need to
completely reoptimize the code but is usually more complex and time consuming
due to possibly significant changes to the code structure.

• Further developing the unoptimized version is usually much easier but eventually
also takes a lot of time, as it naturally requires a reoptimization of the program
later on to achieve the same performance as the previous version.

Manual optimizations are especially important in the field of high performance compu-
ting (HPC), where programs typically work on larger problems than encountered in the
world of desktop computing and also run longer (up to several months [1]), despite being
already executed on powerful supercomputers. Optimizing the performance critical secti-
ons and tuning the program for one specific machine is beneficial regarding computation
time, hardware utilization and power usage. It ultimately reduces the operating costs of
the software and makes research both faster and cheaper. Due to this major advantage the
consequent loss of structural code quality is simply accepted, although it tremendously
increases the effort required to port the program to a different supercomputer or to
incorporate new scientific insights.

An example for software, which is typically used in HPC and continuously gets further
developed, are the computational models utilized by climate scientists to simulate the
climate development.

1.2.1 AIMES
At institutions like the Deutsches Klimarechenzentrum and the Universität Hamburg,
where currently research to solve this dilemma, primarily but not exclusively in the
domain of climate research, takes place: The Advanced Computation and I/O Methods
for Earth-System Simulations (AIMES) project “address[es] the key issues of programma-
bility, computational efficiency and I/O limitations that are common in next-generation
icosahedral earth-system models”. [aim]

To enhance the programmability, AIMES abstracts from the details of the different
dialects via the use of a domain specific language (DSL), that will enable the scientists to
“express the model operators in a natural and simple way”. [aim] This approach requires
a broad set of tools, including a source-to-source translation tool, that provides the
automatic code manipulations, necessary to convert code enriched with DSL statements
into compilable code, optimized for a given architecture.

6



Figure 1.1: AIMES’ approach to enhance programmability
[aim]

The AIMES project shares its approach, of using DSL-based abstraction and automatic
code generation to ease development, with the concept of model-driven engineering
(MDE), which temporarily has been a hype in software development. What makes
AIMES different is its realisation, which is less radical than MDE, as it aims to extend
the currently most prominent used language in the field (Fortran), instead of completely
replacing it with DSLs.

The suggested design of AIMES’ source-to-source translation tool uses an abstract
syntax tree (AST) for the internal code representation, which enables the individual
translation steps to be implemented as abstract high level tree manipulations.

1.3 Goals of this Thesis
The goal of this thesis is to explore the advantages and disadvantages of the AST-based
approach for high-level code manipulations. For this purpose a prototype is developed,
based on the requirements for an exemplary tool within the AIMES project, and used to
evaluate the feasibility and suitability of the design. Considering the great effort and
subject-specific expertise required to develop an early version of the actual translation
tool, the scope of the prototype will be limited to the automation of usually manual code
optimizations.

1.4 Outline
This thesis is divided into chapters as follows:

• Chapter 2, Background, describes the different generic concepts and methods used
throughout the bachelor thesis;
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• Chapter 3, Related Work, presents related work in the domain;

• Chapter 4, Design, illustrates the design of the prototype;

• Chapter 5, Implementation, presents its implementation and showcases the integral
parts of the code;

• Chapter 6, Evaluation, analyzes the different strengths and weaknesses of the design
approach;

• Chapter 7, Conclusion, summarizes the work and gives future perspectives.
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2 Background
This chapter briefly explains the used concepts like abstract syntax trees, parsing, optimi-
zation in general and three specific techniques (function inlining, loop fusion and loop
unswitching).

2.1 Abstract Syntax Tree
An abstract syntax tree (AST) is a tree representation of the hierarchical syntactic
structure of source code written in a programming language. Each node of the tree
denotes a syntactical construct (structure) occurring in the source code. In general
abstract syntax trees are produced by a parser and used as data structures in compilers
for the translation to three-address code. [ALSU07, p. 41]

2.2 Parsing
Parsing, also called syntax analysis, is the second step in a compiler and uses the
tokens, produced by a lexical analyzer, and a context-free grammar to create a tree-like
representation that depicts the grammatical structure of the tokens (the AST). However,
the whole process of lexical and syntactical analysis of a transforming text into a data
structure is commonly referred to as parsing, the reversed action is called unparsing.
[ALSU07, p. 8]

2.3 Optimization
Program optimization or software optimization is the process of modifying a software
system to make some aspect of it work more efficiently or to use fewer resources. [Sed84,
p. 84]

Optimization can be done on many different layers such as manually on the source
code or automatically during compilation time by an optimizing compiler, by applying
different manipulations, that are known to improve the performance of the program.
[Lat]

Another form of compiler based optimizations is profile guided optimization (PGO),
which uses additional information, gained from profiling the application, to optimize the
generated code even further.

The following optimization techniques are subject to automation in this thesis:
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2.3.1 Function Inlining
Function inlining reduces the overhead associated with calling and returning from a
function by expanding its body in place of the function call and is often used to expose
additional opportunities for optimization. [com]

Most optimizing compilers can inline functions to speed up the generated code but
when done manually, it decreases the readability and maintainability by adding duplicate
code.

2.3.2 Loop Fusion
Loop fusion combines two adjacent loops without data dependencies to reduce the
loop overhead and enable the compiler to optimize the statements in both loop bodies
together. Although loop fusion reduces loop overhead, it does not always improve run-
time performance and may even reduce it by forcing the compiler to make bad use of
the memory architecture. [com]

Most optimizing compilers are able to perform some kind of loop fusion, but not all,
as some require extensive analysis of the dependencies between the loops or are not able
to determine if fusing the loops would improve or reduce performance.

2.3.3 Loop Unswitching
Loop unswitching transforms a loop containing a loop-invariant if(-else) statement into
an if-else statement, that contains different versions of the loops with the respective body
of the old if(-else) statement in its body. [com]

Loop unswitching is a powerful optimization technique, that improves the performance
by removing unnecessary computation and branching but also reduces the readability
and maintainability as it creates different copies of the loop body.
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3 Related Work
This chapter presents OpenMP, the Groovy compiler, GCC, LLVM and ROSE as examples
for different tools to increase code quality and/or performance.

3.1 OpenMP
OpenMP (Open Multi-Processing) is an API that supports multi-platform parallel
programming in C/C++ and Fortran. It is used to parallelize programs by distributing
sequential blocks of code (mostly loops) to multiple threads, based on special compiler
directives given by the developer. [ope]

The use of OpenMP can significantly ease the development process and increase the
code quality, as it allows the developer to write a correct sequential program first and
then increase its efficiency by incrementally parallelizing it without changing much of its
code.

3.2 Groovy
The Groovy compiler allows the AST to be changed during compilation time. Special
annotations such as ‘@Immutable‘ can be used to activate the AST transformations,
which for example add all the necessary functionality to a class to set it *immutable*
and reduce the amount of architectural code, that is not directly part of the functionality,
similar to aspect oriented programming. [gro]

The elimination of otherwise necessary boilerplate code, reduces the size of the program
and speeds up development.

3.3 GCC
The GNU Compiler Collection (GCC) contains frontends for high level languages like C,
C++ and Fortran and can target a variety of different architectures. GCC can be set
to automatically optimize the program during the compilation via the use of the ‘-O‘
option. [gcc]

Using an optimizing compiler like GCC can significantly increase the efficiency of a
program, but does not fully replace the need for manual optimization as the compiler is
limited by its implementation in terms of optimization options.
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3.4 LLVM
LLVM is a compiler framework like GCC and offers similar optimization options and
capabilities. One of LLVMs frontends translates the program to the LLVM IR (immediate
representation), which then gets optimized and used to generate machine code. [Lat]

3.5 ROSE
ROSE is an open source compiler infrastructure to build source-to-source program
transformation and analysis tools for large-scale C, C++, UPC, Fortran, OpenMP, Java,
Python and PHP applications. ROSE uses an AST based immediate representation for
its translation process. [ros]
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4 Design
This chapter describes the design process of the prototype. It explains the functionality
and architecture of the prototype. Additionally it describes the scrapped first approach
and the possible uses of the suggested prototype.

As briefly mentioned in the introduction, the prototype will be used to examine the
feasibility of an AST-based approach of high level code manipulations. The prototype
itself is supposed to aid development by automatically performing otherwise manually
performed code optimizations at the source code level based on hints given by the
developer.

4.1 Requirements
The requirements for the prototype are oriented towards what would be needed from the
translation tool in a production environment to ensure the evaluation is not narrowed
down to the problem specific requirements of the prototype itself.

For this purpose the requirements of the prototype are the following:

• Functionality. While the resulting optimized code is required to be as efficient as
the manually optimized code itself, the unoptimized version has to be more read-
and maintainable.

• Integratability. To ease the use and adoption of the prototype, it should be
integrable in existing general purpose build systems (like GNU Make). This requires
controllability via the command line and does not require any other user input
except the program source code.

• Extensibility. The prototype should be light-weight as well as easily maintain-
and extensible, so that the users (e.g. the scientists) can add support for additional
programming languages and types of optimizations themselves.

4.2 Functionality
The prototype reads the file containing with DSL statements enriched source code,
transforms it and writes it to a file.

The transformation is done in the following steps:
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1. Parsing (Code –> AST). The input to the tool is program source code with DSL
statements, naming which optimizations shall be performed, which it parses to an
AST.

2. AST-Manipulation (AST –> AST). Then it optimizes the code by transforming
the AST, if the individual optimizations are viable.

3. Unparsing (AST –> Code). At last it unparses the AST and outputs the resulting
code.

4.3 Architecture
The architecture of the prototype went through one major revision, before getting
realizable.

4.3.1 Initial Approach
The first idea was based on the architecture of today’s compiler frameworks and planned
to make the AST and thus also its manipulations language independent. This architecture
would have therefore only required to write a new parser and unparser to add support
for a new language. To make the AST language independent, its nodes would have to
match the most common feature sets of (at least all supported) modern procedural
programming languages, like functions and function calls, conditional and repetitive
execution, assignments and variable access as well as expressions.

Soon this idea was scrapped, as the effort required to implement a parser and unparser
would have outmatched the scope of this thesis:

• Parsers would not only have to parse its corresponding language source code but
also may replace some syntax structures, which are not directly available in the
AST, with others.

• Unparsers would not only be required to correctly unparse the AST to code, but
should also be able to recreate their langague special elements and structures where
applicable.

• Merely the combination of these parsing and unparsing capabilities would be able
to translate every program freely between the supported languages.

4.3.2 Revised Approach
The second design approach dropped the idea of translating and manipulating the code
in the form of a AST for pseudo code. It was replaced with the less complicated option
of having a specific ASTs and manipulations for each language.

Which then lead to the prototype being split into three different components:
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Figure 4.1: revised design approach

• A library, which contains an generic implementation of an AST and offers a
language independent interface for parsing, unparsing and executing high level
AST manipulations.

• A plugin for the library, which implements one language specific parser, unparser
as well as a collection of AST manipulations.

• A tool, that wraps the capabilities of the library and its plugin into a simple
command line tool.

4.4 Possible Uses
The library could be used in more complex tools, which for example could be used to
automate the optimization process even further. For example these tools could follow
either a simple brute force approach, which tests every possible optimization at a given
time, or the more sophisticated way of using intelligent heuristics or profile-guided
optimization.
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5 Implementation
This chapter describes the implementation of the prototype. It illustrates the methodology
and architecture of the implementation as well as the implementation of the abstract
syntax tree, the parsing and unparsing processes. Additionally it describes the library
plugin used in the evaluation.

5.1 Methodology
The prototype has been developed in several stages, based on the dependencies between
the individual components. The first step was to implement the generic AST, since it
is used by every other component. The first set of language specific components were
implemented for a fictional language, named SimLang, to explore the difficulties of
parsing a proper programming language and finding a suitable implementation of the
language module. The syntax of SimLang was an appropriately chosen mixture of C and
Python and once the parser was working, the unparser got implemented as well. Since the
syntax was the only part of SimLang, which was properly specified, the implementation
of the AST manipulations for SimLang was pointless as they could not be evaluated.
Therefore, based on the experience gained from implementing the parser and unparser for
SimLang, the language module for a subset of C99 got implemented in the same order.
The parser was the first part to be implemented, the second part was the unparser based
on the AST generated by the parser and when parsing and unparsing were working, the
AST manipulations and finally the DSL processing got implemented.

The language of choice for the development of the prototype was Python (version
3.4.3), as its high-level built in data structures, dynamic semantics, interpreted and
object-oriented nature make it very attractive for rapid development of prototypes.

5.2 Architecture
Influenced by Pythons freedom of choice regarding the used programming paradigms,
the implementation is mostly written procedural, but uses object orientation where
appropriate.

The prototype consists out of two fixed, one loose and one external module, that is
not part of the standard library:

• The pydslcc module chains together the individual working steps (reading the
source file and parsing the code, calling the execution of the language specific AST
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manipulations, unparsing the AST and saving the result in a new file).

• The util module contains the object-oriented implementation of a generic abstract
syntax tree.

• Each language module (for example c99) extends the implementation of the generic
AST for its language, it also contains the specification for its languages parser as
well as the manipulations and the code, which processes the DSL statements. It
gets dynamically imported by the pydslcc module, based on an argument in the
program call.

• The external PLY module is used by the pydslcc module to generate the parser
for a language modules programming language (dialect).

5.3 Abstract Syntax Tree
The generic AST is implemented as a double linked tree with instances of the Node class
as it nodes. Each Node object in the AST holds a reference to its parent node (except
for the root node) and a list of references to each of its children (except if the node is a
leaf). In addition to the references to its neighbours, each Node object also contains the
value it represents (e.g. the identifier i) and its node type as a string (e.g. IfStatement).
The Node class defines several methods like append_child() and insert_child_rel(),
that are used during the parsing and manipulation process to create the references
between the nodes. It also offers some Python internal convenience methods that ease
the programmatic handling of individual nodes, for example the implementation of the
__getitem__() method shortens the code for accessing a specific child of a node.

The Node class is nested in the AbstractSyntaxTree class, which is a higher level
interface to access the tree as a whole instead per node. It holds a reference to the root
of the tree of Node objects and provides the generic methods to pretty print, unparse
and get a list of all nodes in the tree.

The specific AST of each language module is based on this generic implementation:
Each syntax structure is implemented as a subclass of the Node and implements the
parse() and unparse() method, which are respectively used for parsing and unparsing.

The specific AST of each language module is based on this generic implementation:
Each syntax structure is implemented as a subclass of the Node and implements the
parse() and unparse() method, which are respectively used for parsing and unparsing.

5.3.1 Types of AST Nodes
The implementation of Simlang and the C99 subset lead to the classification of the
language specific AST nodes in four abstract categories:

• Block node. A block represents a sequence of syntactical independent structures,
which in readable source code are vertically distributed on individual lines. In C
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Figure 5.1: AST implementation

this category includes for example statement blocks, which are are also surrounded
by curly brackets.

• List node. A list represents a list of syntactical independent structure, which in
readable source code are written on the same line. In C this category includes for
example argument lists, which are surrounded by parentheses and seperated by
commas.

• Value node. A value node holds a single syntax element, which can not be divided
any further. In C this category includes for example constants, strings or identifiers,
but not brackets or operators as these are no values in itself.

• Structure node. Each structure is a syntactical unique sequence of elements,
which can not be categorized otherwise. In C this category includes for example if
statements or expressions.

5.4 Parsing
Each language specific parser is not statically implemented but dynamically generated
during execution by the use of PLY, developed by David Beazley, based on the specification
in the language module.

PLY (Python Lex-Yacc) is a pure-Python implementation of the compiler construction
tools lex and yacc and consists of two separate modules. The ply.lex module is used to
break input text into a collection of tokens specified by a collection of regular expression
rules. The ply.yacc module is used to recognize language syntax that has been specified
in the form of a context free grammar. PLY uses reflection (introspection) to build its
lexers and parsers, which use the LALR(1) algorithm. [Bea]

The context free grammar as well as the instructions to build the AST are distributed
among the parse methods of the Node subclasses. When the generated parser reduces a
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term, it executes the respective method, which analyzes the term and creates and/or
modifies the necessary objects. The argument of each parse() method is a list, which
contains the references to the reduced objects, while the first element is initialy empty
and used to save the reference to the object, which is the result of the reduce step.

1 class StatementBlockNode (util. AbstractSyntaxTree .Node):
2 def parse(p):
3 ’’’ StatementBlock : Statement
4 | StatementBlock Statement ’’’
5 if len(p) == 2:
6 p[0] = StatementBlockNode ()
7 p[0]. append_child (p[1])
8 else:
9 p[0] = p[1]

10 p[0]. append_child (p[2])
11
12 # unparse method

Listing 5.1: C99 subset StatementBlockNode.parse() method

Listing 5.1 shows how a StatementBlock is either reduced from

• a single Statement, in which case the length of p is two and therefore a new
StatementBlockNode object with the reduced StatementNode object as its child
is the result.

• an existing StatementBlock and a Statement, in which case the length of p is three
and the existing StatementBlockNode object is reused and the StatementNode
object becomes its next child.

5.5 Unparsing
Each language specific AST unparses itself, which requires every Node subclass to provide
a custom unparse() method.

The unparsing process follows a bottom-up approach: Node A calls the unparse()
methods of its children and uses the returned syntactical equivalent source code to build
itself. The children recursively do the same to convert themselves into source code.

1 class StatementBlockNode (util. AbstractSyntaxTree .Node):
2 # parse method
3
4 def unparse (self , prefix =’’):
5 code = ’’
6 for child in self. childs :
7 code += prefix + child. unparse ( prefix ) + ’\n’
8 return code

Listing 5.2: C99 subset StatementBlockNode.unparse() method
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Listing 5.2shows how a StatementBlockNode unparses itself, it creates a new string,
appends each of its unparsed children, while taking care of the indentation and newline
before and after each statement, and returns the string to the caller.

The AbstractSyntaxTree class provides an unparse() method as well, it calls the
unparse() method of the root node.

5.6 C99 Subset
This section describes the language module for the subset of C99, that is used in the
evaluation.

5.6.1 Supported Language Features
The following list of language features and elements are included in the C99 subset:

• function definitions

• function calls

• global and local variable definition, e.g. int i;

• assignments, e.g. i = 4;

• combined definition and initialization in one statement, e.g. int i = 4;

• simple types, void, char, int, long, float and double

• array syntax, e.g. array[i]

• expressions with support for ...
– arithmetical infix operators (+, -, *, /, %)
– logical infix operators (&&, ||, <, <=, >, >=, ==, !=)
– bitwise infix operators («, »)
– increment and decrement postfix operators (++, –)
– prefix operators (*, &, +, -, sizeof)

• if(-else) statements

• for statements

• return statements

• comments, though inline comments will get unparsed on the next line

• preprocessor pragmas
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5.6.2 AST Manipulations
Each optimization is split into two methods, one for analyzing and one for manipulating
the AST. For example inlineable(f, fc) determines if the function f can be inlined
in place of the function call fc, while inline(f, fc) inlines the function f in place of
the function call fc.

The implementation of each optimization is limited to the set of specific cases, which
are used in the evaluation. Therefore neither the validation nor the execution of the
individual optimizations is complete.

Function Inlining

Figure 5.2: AST visualization of function inlining

The implementation requires that the function call in question calls the function to be
inlined and that the function does not recursively call itself. Further it only supports
inlining functions, which do not return a result, and ignores the arguments.

The manipulation consists of the following steps:

1. Copy the statement block of the function to inline.

2. Insert each statement in the copy before the call.

3. Remove the old function call.

Loop Fusion

The implementation requires that both for loops are on the same nesting level, that no
statement is in between them and that the value ranges of the index variable match.
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The manipulation consists of the following steps:

1. Rename the index variable of the second for loop if necessary.

2. Append the statements from the second loop to the first loop.

3. Remove the remains of the second loop.

Figure 5.3: AST visualization of loop fusion

Loop Unswitching

The implementation checks if the if statement is directly in the statement block of the
for loop.

The manipulation consists of the following steps:

1. Build the new if statement:
a) Copy condition from old if statement.
b) Build the *then* block, by copying the for loop and inserting the *then* block

of the old if statement.
c) Build the *else* block, by copying the for loop and inserting the *else* block

of the old if statement, if it existed.
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2. Insert the new if statement before the for loop.

3. Remove the old for loop.

Figure 5.4: AST visualization of loop unswitching

5.6.3 DSL
The DSL defines the following statements:

• #pragma dsl inline instructs the prototype to check, if it can inline the next
function call, that directly follows this instruction and do so if its possible

• #pragma dsl fusion instructs the prototype to check, if the next two loops, that
directly follow this instruction, can be fused and do so if its possible

• #pragma dsl unswitch instructs the prototype to check, if it can unswitch the
first if statement in the loop that directly follows this instruction and do so if its
possible

To avoid a loss in readability of the source code due to possibly long chains of
optimizations on individual lines, they can be also written on a single line, like #pragma
dsl inline fusion unswitch, to reduce the required vertical space.
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6 Evaluation
This chapter evaluates if the prototype meets the requirements and presents the insights
in regards to the AST-based approach, the design of the prototype and implementation
itself.

6.1 Requirements
6.1.1 Functionality
To be suitable for its purpose, the prototype has to optimize DSL enriched code, that is
slow but read- and maintainable, so that it is at least as fast as the manually optimized
code.

Four different versions of the same test program were used and evaluated comparing
their readability, maintainability and performance to verify the functionality of the
prototype:

• slow. The unoptimized reference implementation, which is focused on readability
and maintainability.

• slow_dsl. The DSL enriched version of slow, which gets optimized by the proto-
type.

• fast. The manually optimized version of slow, which is focused on performance.

• slow_dsl_optimized. The optimized version of slow_dsl, which is produced by
the prototype.

1 # define SIZE 400000000
2
3 # include <stdio.h>
4 # include <stdlib .h>
5
6 # include "mtime.h"
7
8 int array[SIZE ];
9 int w;

10
11 void add_one () {
12 for (int i = 0; i < SIZE; i++) {
13 array[i] = array[i] + 1;
14 }
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15 }
16
17 void add_two_or_set_zero_when_w () {
18 for (int i = 0; i < SIZE; i++) {
19 array[i] = array[i] + 2;
20 if (w) {
21 array[i] = 0;
22 }
23 }
24 }
25
26 void test () {
27 w = 0;
28 add_one ();
29 add_two_or_set_zero_when_w ();
30 w = 1;
31 add_two_or_set_zero_when_w ();
32 }
33
34 int main () {
35 repeat (test);
36 }

Listing 6.1: slow.c

1 # define SIZE 400000000
2
3 # include <stdio.h>
4 # include <stdlib .h>
5
6 # include "mtime.h"
7
8 int array[SIZE ];
9 int w;

10
11 void add_one () {
12 for (int i = 0; i < SIZE; i++) {
13 array[i] = array[i] + 1;
14 }
15 }
16
17 void add_two_or_set_zero_when_w () {
18 for (int i = 0; i < SIZE; i++) {
19 array[i] = array[i] + 2;
20 if (w) {
21 array[i] = 0;
22 }
23 }
24 }
25
26 void test () {
27 w = 0;
28 # pragma dsl inline fuse unswitch
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29 add_one ();
30 # pragma dsl inline
31 add_two_or_set_zero_when_w ();
32 w = 1;
33 # pragma dsl inline unswitch
34 add_two_or_set_zero_when_w ();
35 }
36
37 int main () {
38 repeat (test);
39 }

Listing 6.2: slow_dsl.c

1 # define SIZE 400000000
2
3 # include <stdio.h>
4 # include <stdlib .h>
5
6 # include "mtime.h"
7
8 int array[SIZE ];
9 int w;

10
11 void add_one () {
12 for (int i = 0; i < SIZE; i++) {
13 array[i] = array[i] + 1;
14 }
15 }
16
17 void add_two_or_set_zero_when_w () {
18 for (int i = 0; i < SIZE; i++) {
19 array[i] = array[i] + 2;
20 if (w) {
21 array[i] = 0;
22 }
23 }
24 }
25
26 void test () {
27 w = 0;
28 if (w) {
29 for (int i = 0; i < SIZE; i++) {
30 array[i] = array[i] + 1;
31 array[i] = array[i] + 2;
32 array[i] = 0;
33 }
34 } else {
35 for (int i = 0; i < SIZE; i++) {
36 array[i] = array[i] + 1;
37 array[i] = array[i] + 2;
38 }
39 }
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40 w = 1;
41 if (w) {
42 for (int i = 0; i < SIZE; i++) {
43 array[i] = array[i] + 2;
44 array[i] = 0;
45 }
46 } else {
47 for (int i = 0; i < SIZE; i++) {
48 array[i] = array[i] + 2;
49 }
50 }
51 }
52
53 int main () {
54 repeat (test);
55 }

Listing 6.3: fast.c

1 # define SIZE 400000000
2 # include <stdio.h>
3 # include <stdlib .h>
4 # include "mtime.h"
5 int array[SIZE ];
6 int w;
7 void add_one () {
8 for (int i = 0; i < SIZE; i++) {
9 array[i] = array[i] + 1;

10 }
11 }
12 void add_two_or_set_zero_when_w () {
13 for (int i = 0; i < SIZE; i++) {
14 array[i] = array[i] + 2;
15 if (w) {
16 array[i] = 0;
17 }
18 }
19 }
20 void test () {
21 w = 0;
22 if (w) {
23 for (int i = 0; i < SIZE; i++) {
24 array[i] = array[i] + 1;
25 array[i] = array[i] + 2;
26 array[i] = 0;
27 }
28 } else {
29 for (int i = 0; i < SIZE; i++) {
30 array[i] = array[i] + 1;
31 array[i] = array[i] + 2;
32 }
33 }
34 w = 1;
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35 if (w) {
36 for (int i = 0; i < SIZE; i++) {
37 array[i] = array[i] + 2;
38 array[i] = 0;
39 }
40 } else {
41 for (int i = 0; i < SIZE; i++) {
42 array[i] = array[i] + 2;
43 }
44 }
45 }
46 int main () {
47 repeat (test);
48 }

Listing 6.4: slow_dsl_optimized.c

The DSL statements in slow_dsl marginally reduce the readability and maintainability
of the code compared to slow about as much as OpenMP pragmas, to direct the
parallelization, do. Yet the reduction is to a significantly lesser extent than the changes
from the manual optimizations in fast, which lead to duplicated and less structured code.
Since slow_dsl_optimized is only supposed to be generated as part of the compilation,
its structural code quality is of no relevance for the developer.

Figure 6.1: code performance measurements

The comparison of the performance was done by measuring the number of executions
of the test() function for a duration of ten seconds. The programs were compiled with
four different combinations of compilers (GCC and CLANG) and optimization options
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(-O0 and -O3). The measurements were taken on a Lenovo ThinkPad X230i with a Intel
i3-3110M CPU and performed at least three times to compromise for differences in the
workload of the system.

The measured performance, shown in Figure 6.1, is the same for both unoptimized and
manually optimized versions, regardless of the chosen compiler and optimization options.
The performance difference between fast and slow_dsl_optimized, using CLANG with
-O3 enabled, arises from averaging and rounding the measured numbers and does not
imply that fast is faster than slow_dsl_optimized.

6.1.2 Extensibility
Based on its design and the dynamic nature of Python, extending the prototype in terms
of supported languages and optimizations is quite simple:

• Adding a new language requires the implementation of the corresponding new
language module. The language module is programmatically imported, by the use
of the importlib Python module and the modules name, specified as the first
argument on the command line.

• Adding new optimizations requires the implementation of the corresponding AST
manipulations and adapting the parser of the used DSL.

Since each language modules is a fully functional Python modules, it does not burden
the developer with learning an additional special language, which is exclusively used for
only this purpose, before writing the extension in itself.

6.1.3 Integrability
The call required to optimize slow_dsl was pydslcc.py c99 slow_dsl.c and did not
need any other input or arguments than the file slow_dsl.c. In principle the DSL-
instructed approach is utilizable in larger projects, but would most likely require changes
to the project structure and configuration of the build system, since the performed
optimization step is not done by the compiler and therefore switches the file the compiler
has to translate to build the application. Another possible way is to pipe the resulting
code directly to the compiler, which omits any intermediate file.

6.2 Design & Implementation
6.2.1 Performance
The execution time of the prototype should be as small as possible, as it has to be run
for each source file, which has changed. The longer the execution takes the slower is the
build process which ultimately would slow down the development.
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The performance of the prototype was measured for different code lengths of slow_dsl,
by appending it multiple times to itself. To measure the duration of the individual
working steps the prototype was executed with and without DSL-directed manipulations
enabled.

Figure 6.2: performance of the prototype

As seen in Figure 6.2, the time required for parsing and unparsing increases linear with
the length of the code or respectively the AST, as does the theoretical complexity of both
operations. The time required for parsing, unparsing and performing the manipulations
increases polynominal with the length of code, although it should not, as the effort for
each manipulation is bounded by the size of the AST subtree it modifies. This difference,
caused by the execution of the AST manipulations, suggests that their implementations
perform unnecessary work and are therefore not as efficient as possible.

This implementation specific performance problem would have to be found and resolved
for the prototype to be usable with longer source code files.

6.2.2 AST-based Approach
Using an AST as the representation for the source code works well for syntactical analysis
and manipulations, as it explicitly outlines the structure of the code and is easier to
work with than a textual representation. However ASTs do not natively support all types
of code analysis and are especially inappropriate for the ones, that are based on the
execution of the code instead of its syntactical semantic, such as the control flow and
data dependencies between individual statements.
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To be able to thoroughly test the validity of the optimization, suggested by the
developer, more specialized models of the code are needed, which on the other hand
would increase the complexity and size of the tool.
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7 Conclusion

7.1 Summary
This thesis investigated the possibilities and obstacles of automating manual code opti-
mizations by performing them as DSL-directed AST transformation. A Python based
prototype was used to show the feasibility of the AST-based approach and that DSL-
directed code transformations can be used as an additional step in the compilation
process to decouple code quality and performance and therefore reduce the effort required
to continuously develop optimized applications. The implementation of the prototype
further revealed, that modelling the optimizations as AST transformations for a real
world high-level programming language becomes increasingly more complex proportional
to the number of possible edge cases and types of dependencies, that have to be checked.

7.2 Future Work
The future steps in developing a comprehensive prototype would be to improve the
implementation of the AST manipulations by finding and extracting the generic buil-
ding blocks of the manipulations as well as improving the API of the AST and Node
implementation. In addition support for optimizations as well as the edge cases of the
currently implementend ones and more sophisticated dependency analysis should be
added to the prototype. A later step would be a profound test of the practicability of this
approach by using it in the development process of an exemplary real world application.
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