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Abstract

Python is gaining importance in High Performance Computing (HPC) due to the faster
and easier development than in more performance-oriented programming languages like
C. This makes Python very attractive for prototyping new ideas, but also in performance
aspects Python is getting better with modules like NumPy, SciPy and even optimized
versions specific for Intel CPUs. Python even has support to access libraries written in
C, to utilize the performance of C, while having the object orientation and ease-of-use of
Python.

But although Python is making progress in High Performance Computing, Python has
little direct support for High Performance /O (HPIO) systems. Since the calculation
power in HPC systems is growing much faster than the speed of 1/O devices, this is an
area which is quickly gaining importance.

The goal of this thesis is to evaluate the possibilities of HPIO in Python. Therfore
an interface to an existing HPIO system will be implemented using Python’s support
to access C libraries. The I/O system used for this implementation will be JULEA,
which provides a modular design and a object-oriented like implementation in C, which
makes the conversion to a real object-oriented language like Python easier. For this
implementation, different approaches for the interface between Python and C will be
evaluated to ensure a good maintainability and performance.
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1. Introduction

In this chapter, a brief introduction will be provided with a small discussion of the
motivation and goals of this thesis. Afterwards there will follow an outline what the
remainder of the thesis will consist of.

1.1. Motivation

In High Performance Computing (HPC) there are many programming languages used,
since there are other useful libraries for every research field or usecase of an application.
These libraries are often in different programming languages, which gives all of these
languages their place in HPC. These programming languages also all have different
advantages and disadvantages, mostly in the area of complexity, code maintainability
and performance. Python is one of these programming languages and is currently
gaining more interest since it is easy to use and has several libraries useful for scientific
applications.

Python also is currently, according to the Tiobe Index [TTO19], the fastest growing
programming language and is not only getting generally more important, since even
in HPC Python is getting used more and more. It is an mostly interpreter-based and
object-oriented language which helps for quick testing and prototyping since the code
does not have to be compiled, which can take time, especially for larger projects.

[/0O also plays an important role in HPC systems as most programs need 1/O to write
results or even checkpoints to permanent storage, which allows the programs to resume
jobs at a later time when they are halted or have crashed. Depending on the program
this data can consist of only a few bytes or kilobytes for small results, but they can also
exceed into the range of terabytes for huge simulation results or checkpoints that need
the whole RAM persisted to restore the program run. This is especially important in
HPC, since HPC programs usually compute with large amounts of data, which needs to
be persisted to access it after the program finishes.

Since there are often so huge amounts of data that have to be written and each
type of data has different requirements to be stored effectively, you need different High
Performance I/O (HPIO) storage solutions for HPC and the I/O performance is very
critical. The I/O performance gets even more important over time, since the computing
power is growing significantly faster than the I/O speed, as can be seen in figure 1.1.
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Figure 1.1.: Development of computational and storage speed over 30 years [KKL16,
p. 75]

As can be seen in this figure, the storage speed and capacity diverges quickly from the
computational speed, which causes the programs to be able to create much more data in
the same time, but in this same time frame it gets harder to store all of this data. This
can cause huge bottlenecks, which can hold back the speed of these programs, and thats
why optimized data storage solutions are needed even more in the future, but there are
very little HPIO solutions for Python.

1.2. Thesis Goals

Due to the before mentioned lack of HPIO solutions for Python, the purpose of this
thesis is to evaluate the adoption of existing HPIO solutions for usage in Python. The
system developed will access the C code of an existing HPIO solution over an Foreign
Function Interface (FFT) library. Beforehand will be evaluated which library is suited
best for this usecase.

The HPIO solution used will be JULEA [Kuh17], which is well suited for Python, with
a modular and already object-oriented like implementation. The implementation will
inlude the most important clients to cover most usecases, as well as fitting tests and
benchmarks to evaluate the performance compared to the native implementation.



1.3. Thesis QOutline

The following chapters will first give some insight to the software and libraries used in
chapter 2. Afterwards there will be some focus on the related work in chapter 3, which is
followed by chapter 4, which shows the Design of the Python library that is to be built,
as well as some insight why this specific FFI implementation was chosen.

Chapter 5 will focus on the implementation of the library, with chapter 6 providing
information on the evaluation of the library, as well as the FFIT implementations. Chapter
7 then concludes this thesis.



2. Background

In this chapter, some background will be provided on the used programming language with
the used libraries. It also gives some information on the storage framework JULEA used
for the implementation.

2.1. Python

As mentioned earlier, Python is a rapidly growing language, which is quickly gaining
importance in multiple areas, including HPC. Coding in Python is also much simpler
than for example in C, but this comes at the cost of performance, since C code can be
more than 1000 times faster than plain Python Code, depending on the test [Pugl6].

To mitigate these performance issues there are several libraries for Python, which
promise improved performance most of the time by passing the operations to better
performing C code. Some examples are NumPy, which is a part of SciPy and optimized
for scientific calculations, and Cython, which provides a superset language to Python
with access to some C functionality, that will then be compiled to increase performance.
Two other examples are ctypes and C Foreign Function Interface (CFFI), which provide
interfaces to access C code and libraries directly, but they will be in the focus in the next
parts.

Due to these performance enhancing libraries with remaining the easy implementations
in Python, it is commonly found in HPC by now, which also increases the need for well
performing high performance I1/O solutions in Python.

2.2. ctypes

Ctypes is a library included in Python, which adds support for accessing C datatypes
and function from within Python. To access the functions, ctypes can diretly load the C
libraries and is able to cast Python datatypes into C datatypes.

To access the C code, ctypes is using the library libffi, which provides an interface to
call functions from other programming language. Therfore ctypes is essentially only a
wrapper around libffi to make the access on the C code easier.
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It has two main usecases, the first of those is to accelerate your exisiting Python code,
by porting the compute expensive code to C and accessing the C funtions from Python.
The second one, which will also be used in the implementation later on, is the ability to
extend existing C code by an own Python interface for easier access.

2.3. CFFI

CFFI is another library for accessing C datatypes and functions and it is based off ctypes,
but has a different approach on several aspects of the implementation. It is also not
included with the default Python installation, but it can be easily installed from Python’s
own module management system pip.

The first of the different approaches is, that CFFI does not use ctypes’ argtypes
and restype parameters, which define the datatypes of arguments and return values.
Instead it uses a single cdef call for a whole library, which has a similar structure as a
C include file. Opposed to the argtypes and restype parameters, this cdef call
also is not optional and requires definition of any function and non-standard datatype
used within all of the functions ans structs. One restriction cdef has, is that it allows
no kind of directives, which would be very handy for directly importing the header files.

The second difference is that CFFI also brings a so called API mode, which accesses
the C code directly at API level, as this mode generates C code based off the cdef,
which has to be compiled afterwards and can then be imported to Python. CFFI’s
other mode is the ABI mode, which accesses the library at binary level, therfore it is
very similar to the default operation of ctypes, with the required cdef being the main
difference.

2.4. JULEA

JULEA is a flexible storage framework, which has the goal of simplifying storage systems
in HPC with providing client interfaces, that can be directly used within the HPC
applications. A key feature of JULEA is the flexibility as it provides several different
clients for data and metadata, as well as several backends for storing this data or metadata
on different servers. JULEA also provides interfaces for easy addition of new clients or
backends, which can directly integrate and provide new features without larger code
changes.
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This flexibility of the C implementation also makes it suitable for this test of an
inclusion of an Python interface, as JULEA currently lacks a bit of language support,
with only C and C++ supported, and provides easy access to all functions, that the
clients provide. For this implementation all included clients, with the exemption of the
HDFS5 client, as it works over the HDF5 VOL interface instead of directly over JULEA,
will get their own Python interfaces, as well as all internal JULEA functionality needed
to run these clients.

This implementation in Python will provide even more flexibility to JULEA, as
only two programming languages are supported currently with C/C++. The Python
implementation may also benefit more from the flexibility as the backends do not require
any new code and all new backends will be supported by the Python implementation
without any code changes.

Furthermore this will also provide benefits to new projects using JULEA, as new clients
for testing, which are often based on the existing basic clients like key-value (KV) and
Object, will be much easier implemented within Python, compared to the C interface.

12



3. Related Work

In this chapter, some related work in the area of HPC' in Python, as well as data storage
solutions for Python will be discussed.

3.1. HPC with Python

For High Performance Computing in Python there have already been several trainings with
one of them being from Jussi Enkovaara from the Finnish IT Center for Science [Enk13].
This slides mostly give a simple introduction into Python and NumPy, but they also
provide a performance comparison for matrix multiplication between Python, C and
NumPy, with NumPy being much faster even than C, which is caused to NumPy using
optimized math libraries. Furthermore these slides also provide a look into MPI4py,
which provides the same bindings to Python as MPI provides to C or C++-.

Another training on Python for HPC is by Monte Lunacek by the University of
Colorado Boulder [Lun|. This focuses more on parallelization and multiprocessing within
Python, comparing builtin libraries like multiprocessing to external libraries like scoop
or MPI4py.

There are also research papers for implementations of HPC, two of those will be covered
here. The first of those is about Bohrium, which is a framework to easily paralellize
NumPy code [Kri+13]. Bohrium allows to run NumPy functions without any code
changes parallel on CPUs, GPUs or clusters. As this paper shows, for some applications
they reached up to 181 times the performance when they were using a GPU or up to 13.2
times the performance when using a cluster, compared to the native NumPy execution.

The second paper is covering a parallelized Python implementation of the Lattice Boltz-
man method, which is often used to study fluid dynamics [PG19]. The implementation
is done with NumPy and MPI4py and, as the paper shows, it provides less performance
than a native C++ implementation, but when scaling with more processes, the gap
between the implementations gets smaller until they reach their peak performance. They
also highlight the simplicity of coding in Python as their whole implementation only
consists of 160 lines of Python code [PG19, p. 131].

Unfortunately they do not provide comparable code in C++ for this specific model,
but, in the GitHub repository to the paper [Pas|, they also provide a serial variant
without MPI. This variant only consists of 32 pure lines of code for the unoptimized
Python variant, compared to 98 pure lines of code for the unoptimized C++ variant.
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3.2. Data storage with Python

There are also already some data stroage systems, with one of them being H5py [Col].
Hb5py is also a wrapper around the C functionality of HDF5 and is using Cython to do
so. It only supports NumPy at the moment as the write function for datasets just takes
NumPy arrays as an input. As HDF5 is completely standardized, the created files in
Python can also be read using every other programming language with HDF5 support
and vice versa.

Another data storage system for Python is PyMongo [Mon], which gives access to
MongoDB, which is also supported as a key-value backend in JULEA. PyMongo uses a
native implementation in Python, which removes the necessity of any dependencies, but
has some performance flaws. Therfore PyMongo also has an included Python extension
module written in C, which can accelerate more compute-bound tasks like the encoding
of BSON files.

Both of these systems are a bit limited, as PyMongo only gives you access to a database
system, which is mostly usable for metadata, therefore in many cases you would need
another system for data blobs. H5py on the other hand only supports NumPy arrays
for datasets, which can still be enough in many cases, and it also lacks support for its
own VOL plugin interface. This interface is fairly new within release versions of HDF5
and since JULEA also has its own VOL plugin, it would be a nice addition, to have
support for this from Python over H5py. Since JULEA also has support for MongoDB,
the JULEA Python interface should be a good alternative for PyMongo if you only need
MongoDB to store metadata and need a storage solution for data as well.

14



4. Design

In this chapter, the design decisions of the interface implementation will be discussed.
Also this will evaluate which FFI library is best suited for this implementation.

For the implementation in Python it is important to stay close to the Python guidelines,
as Python is already providing guidelines for most style and design decisions which are the
described in Python Enhanced Proposal (PEP) [War+00] articles in Python’s developer’s
guide. One of the best known PEP articles is PEP 8 [RWCO01], which is providing a
complete code style guide for Python. This style guide for example sets restrictions on
the maximum line length with 79 characters and clarifies that indentations should be
made with 4 spaces instead of tabs. There are also tools to check existing code for PEP
8 conformity, which was also used for the implementation of this thesis.

The second important guideline for the design is PEP 328 [Aah03], which defines
how imports should be made and, more importantly, how module packages should
be designed and accessed. This is important because all the clients and also other
internal stuff shall get their own classes, which shall be in a similar structure as the C
implementation of JULEA, while the clients itself shall also be easily accessible with
import julea.object for example. Therfore the  init_ .py files, which are
always accessed, when the specific package is imported, within each subpackage will
manage all the necessary imports, that you can import all necessary classes, with just
importing the specific client. Each folder also recieves its own _ init_  .py, so each

client, the lib folder, as well as tests and benchmarks get their own subpackages within
the JULEA package.

4.1. Python interfaces
4.1.1. CFFI

The first mode, that was tested, was the API mode. In the first implementation this
mode was tested with the manual definition of all datatypes and functions, since CFFI
only supports the default datatypes of C. The issue with cdef is, that CFFI does not
allow any directives, like #include, or opaque datatypes, like GMutex from GLib. Due
to the inablity to use includes, every datatype and struct, which is used in any function
or struct, has to be defined in the cdef, which causes huge cdefs.

15
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In the following listing there is an excerpt of the cdef used for testing with the key-
value pairs from JULEA. This shows the normally opaque union GMutex as well as the
definition of JKV and j_kv_new which then required type definitions for guint32,
gint and gchar. The full code can be found in appendix B.

typedef union _GMutex GMutex;
union _GMutex

{
gpointer p;
guint i[2];
3
typedef struct JKV
{
guint32 index;
gchar* namespace;
gcharx key;
gint ref count;
} JKV;

JKV*x j_kv_new(gchar const* namespace, gchar const* key);

Listing 4.1: CFFI API Mode

This complexity of the cdef makes not only the implementation far more difficult, but
even the maintainability since every new type or struct needs to be defined. The solution
to this problem would be to directly load the full header files for the cdefs.

This was also the next variant, which was tested, but it also has the issue that,
as already mentioned, no directives are supported within the cdef. Therefore every
header file, which has #include-statements, has either to be preprocessed with the C
preprocessor or custom preprocessed within Python [Rigl2].

This is already a better variant than the first one, but it also requires to send the
code to the preprocessor after every code change in C. The code for this CFFI variant
can also be viewed in appedix B, but it would not be functional this way since the files
would need to be replaced with the preprocessed ones.

Both of the previous variants also have the issue, that they generate C Code which
needs to be compiled before it can even be used. To prevent this, there is the "ABI"
mode, which accesses the binaries directly and was the third CFFI test. Although this
mode does not require additional compilation, it also suffers from the issue of requiring
definition of all datatypes, structs and functions used.

16
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Therefore the cdef, which is also found in appedix B, but is just for the j_kv_new
function, looks the same as for the first try. The only difference is the loading with
ffi.dlopen, which is also shown in the following listing.

from cffi import FFI

ffi = FFIQ)
1lib = ffi.dlopen("libjulea-kv.so")

Listing 4.2: CFFI ABI Mode
4.1.2. ctypes

As CFFI is derived from ctypes, its ABI mode is very similar to the usage of ctypes,
therfore not much was changed for ctypes. The main difference in the code is that ctypes
does not have a cdef attribute, but instead using attributes to each C function, which
are called argtypes and restype. These arguments describe the C datatypes of the
arguments and the return value of each function, but are not necessarily required as
most datatypes get correctly recognized by ctypes.

For JULEA the description of the specific datatypes is not necessary in most cases,
but ctypes has the issue, that every time a pointer is returned, it gets automatically
converted to a Python int or long, which makes it more difficult to use this pointer as an
argument later. Since the pointer is alwas needed on an access of any object from julea,
i.,e. a JKV, there would be the issue, that this pointer would be converted to a C int,
which would break the function call. A solution would be to set the argtypes for every
single function so it would convert it correctly to a pointer, but there is an even better
solution, as it is possible to create a subclass of the ctypes datatype c¢_void_p, which
does not change the class itself but disables the automatic conversion to an integer value.

As a result a similar implementation for j_kv_new like in Listing 4.1 would be as
following with ctypes, where the pointer to the JKV would be stored in the variable kv.

import ctypes

class my_void_p(ctypes.c_void_p):
pass

JULEA KV = ctypes.CDLL('libjulea-kv.so')
JULEA _KV.j_kv_new.restype = my_void_p
kv = JULEA KV.j_kv_new("test", "test")

Listing 4.3: Ctypes JKV New Call

17




Despite the flaws ctypes has, especially with the handling of pointers, it is still
much easier to implement with the builtin datatype detection of attributes, which is
an advantage against both CFFI modes. Additionally it does not need any additional
compilation like CFFI's API mode, which also helps to maintain the code when there
are changes in the C code or especially the header files, which need to be in the cdef.
Due to the lack of header code in the Python code, ctypes code is also much easier to
expand when new functionality needs to be implemented.

As will be shown in chapter 6 ctypes also has a very similar performance to CFFI,
which is not surprising as they use a similar approach, and therfore it is better suited for
this implementation and will therfore be the approach used for the full implementation
later on.

4.2. JULEA

4.2.1. Key-Value Client

The first of the clients to implement is the key-value client, as most of the testing between
the Python libraries was also done with this client. This client is mostly meant for
metadata and therfore it currently only has several databases as possible backends.

To design this client within Python, The focus is on Python’s object-oriented part, as
JULEA already has an implementation very similar to object-oriented classes. Therefore
this client should be handled as an own class named JKV with the constructor replacing
the j_kv_new function from C. Therefore each key-value pair used, shall be an object
of the type JKV.

Since the data also needs to be handled already within Python, there is also a need
for buffers which can handle any type of data, bytestrings are very fitting, since they can
handle all types of data in binary form.

4.2.2. Object Client

The second client is the object client, which is the basic client for storing larger data.
The object side of the backends has more classic data storage backends like POSIX, but
also modern object stores, like RADOS for example.

The design of the implementation is very similar to the one of the key-value client,
with the main difference being a seperate create and write function, while the key-value
client has a put function, which serves the functionality of both.

18



4.2.3. Distributed Object Client

As the object client writes the corresponding data to the object only to a single server
within the JULEA data storage servers, there is also the distributed object client. It
distributes each data object between several data servers to utilize the combined I/0O
speed of all of them.

The design of the client itself is nearly identical to the one of the object client, but it
also requires a distribution, therfore there has to be another class for the distribution.
This class also requires an enum in C, so the enum also has to be converted to be usable
in Python.

4.2.4. Item Client

The item client is a bit more complex as it combines the distributed object client and the
key-value client. It uses the key-value pair to store metadata to the object and since it
uses an distributed object, the before mentioned class for the distribution is also needed
for this client.

While the item client also has a similar syntax to both of the object clients, it also
needs another additional class, the collection. Collections are a little similar as folders,
as each item is in a collection and a collection can contain any amount of items, which
can be sorted using the collections.

With the item implementation, there is also another difference, since there is no
directly accessible new function, you have to either directly create a new item or get an
existing item. Therfore the constructor has to differentiate between create and get for
the initialization.

4.2.5. Batches

As JULEA also has batches for all operations, that require to be executed on the hard
drive and not only in the program, these are required for the Python implementation as
well. These batches can contain an arbitrary amount of operations and the current set
of operations can be executed at any time.

The design for this is a very simple class as this is mostly a simple wrapper, but it
needs a function providing the direct C pointer to the batch, as the functions of the
other classes need this to add their operations. Also, like with the distribution, it needs
an enum of the different semantics, for example if the data has to be directly persisted
to the hard drive or if it can be cached first.

19
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5. Implementation

In this chapter, the implementation of the different clients and necessary additional classes
is explained. Additionally the implementation of the according tests and benchmarks will
also be described and an example application will be provided to compare the programming
languages.

5.1. Key-Value

The key-vlaue client gets its own class named JKV. Within the constructor only a simple
call to the function j_kv_new of the C interface is needed, where the returned pointer
is required to be stored in a variable of the class JKV. As discussed earlier in chapter 4,
to correctly store this pointer the restype of the function needs to be set to the type of
our previously created subclass my_void_p. As can be seen in the following listing,
the strings that are required as namespace and key are taken as attributes from the
constructor, but they have to be encoded into bytestrings, so they are correctly recognized
by ctypes as strings, otherwise the C interface only receives the first character.

def __init__ (self, namespace, key):
enc_namespace = namespace.encode('utf-8"')
enc_key = key.encode('utf-8"')
self .kv = JULEA_KV.j kv_new(enc_namespace, enc_key)

Listing 5.1: JKV Python Constructor

While the destructor is the simplest possible wrapper function for j_kv_unref,
which is needed to also release the memory in C, to avoid memory leaks, the delete
function also looks like a simple wrapper, as can be seen in listing 5.2, but it has one
additional function call. Since the C code asks for the pointer to the batch, the batch
can not just directly be passed, as an instance of the Python class JBatch is passed, so
the function get_pointer is needed, that returns the pointer, which is actually usable
in C.

def delete(self, batch):
JULEA KV.j_kv_delete(self.kv, batch.get_pointer ())

Listing 5.2: JKV Python Delete Function

20




T W N =

=W N

More interesting are the put and get functions, as these need C objects, which have
to be created from within Python. For the put function in the first place, as can be seen
in listing 5.3, an unsigned long has to be created, where the length of the value, that
should be written, is stored, and also add one to the length, since the bytestrings used
also need a null terminator. Afterwards a string buffer from ctypes is created and the
bytestring is passed as the raw data, so it behaves like a normal pointer to a buffer in C.

def put(self, value, batch):
length = ctypes.c_ulong(len(value))
value?2 ctypes.create_string_buffer (length.value)
value2.raw = value
JULEA KV.j_kv_put(self.kv, ctypes.byref(value2),
— length, None, batch.get_pointer())

Listing 5.3: JKV Python Put Function

The get function on the other hand only needs an empty char pointer to recieve the
bytestring, as well as an unsigned long with the default value of 0. After the function is
called, these values are also both returned as a tuple, so both can be accessed afterwards.
The important part with the returned values is, that both have still to be the ctypes
datatypes themselves and not just the values in them, since the values in them only
get changed after the batch is executed. Therefore to access the data after the batch
is executed, it is also important to access with value.value [:length.value] or
length.value to access the stored data. The length parameter is required for the
value, since the data is accessed as a char array and the data is not null terminated, so
the length of the read data is one byte longer than the length of the data itself.

def get(self, batch):
value = ctypes.c_char_p ()
length = ctypes.c_ulong(0)
JULEA KV.j_kv_get(self.kv, ctypes.byref(value),
< ctypes.byref (length), batch.get_pointer ())
return value, length

Listing 5.4: JKV Python Get Function

5.2. Object

The object client is also implemented in an own class named JObject. While the
constructor, destructor and delete function are exactly the same as for the key-value
client, there are also several new functions, that are different to the key-value client. The
first one of those functions is the create function, which is a simple wrapper function
just as the delete function.
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It gets more interesting going on to the write function. As already with the quite
similar put function from JKV, we first have to create a C variable for the length, only
this time it is an unsigned 64-bit integer, as we can work with bigger data for the object
client. The buffer created is the same as with the key-value client, but new is another
unsigned 64-bit integer, which is returned afterwards and is providing the number of
bytes written. As with the return types we had before, the number has to be accessed
after the batch is executed with bytes_written.value to get the correct value.

def write(self, value, offset, batch):
length = ctypes.c_ulonglong(len(value))
value2 = ctypes.create_string buffer (length.value)
value2.raw = value
bytes_written = ctypes.c_ulonglong(0)
JULEA_OBJECT. j_object_write(self.object,
— ctypes.byref(value2), length, offset,
— ctypes.byref (bytes_written), batch.get_pointer ())
return bytes_written

Listing 5.5: JObject Python Write Function

The read function does not differentiate itself much from the get function from
JKV, as that already had a second return value for the length, this simply gets replaced
by bytes_read, as the length to be read has to be provided in the function arguments.
The only real difference is again, as with the write function, that the C variable has to
be a 64-bit integer instead of a 32-bit one.

The last remaining function of JObject, status, is also interesting, as it only returns
two numbers, the modification time and the size of the object. Those values also require
creation of the fitting C variables beforehand, therefore the modification time needs a
signed 64-bit integer and the size needs an unsigned 64-bit integer. Both of them are
then returned directly, as like read and write, the status function also requires, that
the batch is executed first, before the values are accessed.

def status(self, batch):
modification_time = ctypes.c_longlong(0)
size = ctypes.c_ulonglong(0)
JULEA_OBJECT.j_object_status(
self .object, ctypes.byref(modification_time),
ctypes.byref(size), batch.get_pointer())
return modification_time, size

Listing 5.6: JObject Python Status Function
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5.3. Distributed Object

The distributed object client is very similar to the object client. The only bigger difference
is the addition of a distribution, which gets its own class JDistribution and needs to be
provided in the constructor as it has to be passed to the C interface to determine how
the data is distributed across the servers.

As the distribution is created using one of three options stored in an enum in C, this
enum has to be mapped to the according integer values within Python. The constructor
then only takes a single input, but, as shown in listing 5.7 checks if the input is an
integer, if it is, then it creates a new distribution from that, otherwise it assumes the
second possible way to get a distribution, which is from a BSON datatype. To get the
according BSON, which has to be a C pointer to a BSON datatype, the only way is with
the serialize function of the distribution, which is therfore also implemented and
only a wrapper for the serialize C function. The destructor is also a simple wrapper like
for the other classes and as the distribution has to be passed to the distributed object, it
also has a get_pointer function, just like the before mentioned one of JBatch.

def _ _init__(self, input):
if isinstance (input, int):
self .distribution = JULEA.j distribution_new (input)
else:
self .distribution =
< JULEA.j_distribution new_from_bson (input)

Listing 5.7: JDistribution Python Constructor
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5.4. ltem

As the item client builds directly on top of the distributed object client, its implementation
is also very similar to the distributed object, and therefore also the object client. It
differentiates itself from the before mentioned clients only in the constructor, which is
far more complex than for the other clients, and in the need for a collection, which is
exclusive to this client.

The collection is very similar to the distribution, except there is no enum and instead
of being able to generate it again from a BSON datatype, it has its own get function.
Therefore the constructor also needs more inputs as it needs a name, a batch and a
boolean variable, which defines if the constructor shall create a new collection or if it
should just get an existing collection, as shown in listing 5.8.

def __init__(self, name, batch, get):

enc_name = name.encode('utf-8')
if get:
self.collection = my_void_p

JULEA ITEM.j collection_get(ctypes.byref(
— self.collection), enc_name,
— batch.get_pointer ())
else:
self.collection =
< JULEA_ITEM.j_collection_create(enc_name,
— batch.get_pointer ())

Listing 5.8: JCollection Python Constructor

This collection is then used in the constuctor of the JItem class, which also features
a boolean variable as input, since the item client also has a get function from the
C interface which is used in the constructor as an alternative to creating a new item.
The distribution within the input variables is also special, as it has None as a default
value. This is due to the fact, that it is possible to just give the C interface NULL as a
distribution, which causes it to just use the round robin distribution. Therfore it also has
to be checked before the function call if the distribution is None, as then None
just has to be passed, which is automatically converted into NULL. Otherwise the pointer
of the distribution has to be provided to the C interface.

In the case no new item has to be created and instead an existing item shall be
retrieved, then we also do not need the distribution, but instead we first have to generate
an empty pointer as the get function has no return value because it only gives a pointer
after the batch is executed. Therfore in that case, instead of the distribution, a pointer
to the pointer where the item is stored is passed onto the get function.
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def __init__(self, collection, name, batch, get,
— distribution=None):
enc_name = name.encode('utf-8"')
if get:
self.item = my_void_p (0)
JULEA_ITEM.j_ item_get(collection.get_pointer (),
— ctypes.byref(self.item), enc_name,
— batch.get_pointer ())
else:
if distribution is None:
self.item = JULEA_ITEM.j_ item_create(
< collection.get_pointer (), enc_name,
< distribution, batch.get_pointer())
else:
self.item = JULEA_ITEM.j_item_create(
< collection.get_pointer (), enc_name,
< distribution.get_pointer (),
— batch.get_pointer ())

Listing 5.9: JItem Python Constructor

5.5. Tests

The tests for the Python interface are mostly designed to test correct executions of
the calls that are passed to the C interface. Therfore they are not designed to test as
thoroughly for all edge cases, as the C tests already do that part, although they are
designed in close relation to their C counterparts. For the formatting of the output an
extra function was created which formats the output exactly like the C tests.

The tests also are only for the clients itself, as running them already requires all other
classes, which are implemented within the Python interface. The key-value client gets
two tests with the first one just testing a put and a delete on the object and the second
one also testing a get call between the put and delete. In the get test it also asserts that
the correct value and length are returned to assure correct execution.

For both of the object clients and the item client, there are three tests each and they
are very similar between all of those clients, with the only exception being collections
and distributions. The first test for those clients is only creating and deleting an object
or item. The second one gets more advanced as it then writes to the object, reads from it
and checks that the read value and length is correct. In the last test the status function
also gets tested, that it returns a real modification time and the correct size of the written
data.
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5.6. Benchmarks

The benchmarks are also built in a very close relation to their C counterparts, as they
need to provide comparable results. Therefore all clients got most of the benchmarks
of their C counterparts, also with the different batch usages. The formatting of those
benchmarks is then again handled by an own function only responsible for formatting
the output just like the C benchmarks.

The time measurement is done using Python’s own time function, which gives us the
current time in millisecond precision, so we have the same precision as the output of
the C benchmarks. Also all batches in the benchmarks are used over with-statements,
that automatically execute the batch at the end of the statement, therefore saving an
extra execute call, but have no performance impact. Each benchmark also has a single
function for the different batch variants and the read and write benchmarks also support
different block sizes, just like the C variants. The number of iterations is also the same,
so the execution times are also comparable, not only the iterations per second.

The benchmarks then have an own function, which calls all the benchmarks in the
correct order and prints the formatted output. These functions are then imported by
the benchmark script, which is also a Python file but it lays outside of the package itself.
This script then first starts the JULEA server, executes the benchmarks afterwards and
stops the server at the end.

5.7. Example Application

Since JULEA already includes an example application, consisting of a simple write and
read to an object, this application was also implemented in Python to have a comparison
between those interfaces. As can be seen in the listings below, the first difference is
already in the import statement. With the Python interface you can directly import all
classes needed from the client, while in C the header files for JULEA and the object
client are loaded.

Another difference is the usage of batches, as we are using with-statements here as
well(e.g. line 8 in listing 5.11), to save an extra execute call. Furthermore the Python
implementation also does not need an own buffer for the read call, as the read call creates
its own buffer, which causes again the need to give the bytes written as a length opposed
to just reading 128 bytes.
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#include <julea.h>
#include <julea-object.h>

#include <stdio.h>

int
main (int argc,
{
(void)argc;
(void)argv;

char** argv)

g_autoptr (JBatch) batch =
g_autoptr (JObject) object =

NULL;
NULL;

gchar buffer [128];

gchar const* hello_world =
<~ "Hello World!";

guint64 nbytes;

batch =
<~ j_batch_new_for_template(

T W N

(@)

11
12

— J_SEMANTICS_TEMPLATE_DEFAULT) ;13

object = j_object_new( "hello",

<~ "world");
j_object_create( object, batch);
j_object_write( object,

— hello_world,

<~ strlen(hello_world), O,

<~ &nbytes, batch);
j_object_read(object, buffer,
— 128, 0, &nbytes, batch);

j_batch_execute (batch);

hs (%1lu
nbytes) ;

printf ("Object contains:
— bytes)\n", buffer,

return O;

}

Listing 5.10: JULEA C Hello World

Application [Kuh19]

14
15

16
17
18
19

27

from julea.object import JObject,
— JBatch,
— J_SEMANTICS_TEMPLATE_DEFAULT

def main():
object = JObject("hello",
— "world")
hello_world = "Hello World!"
with JBatch(
< J_SEMANTICS_TEMPLATE_DEFAULT)
<~ as batch:
object.create (batch)
bw = object.write(
< hello_world.encode('utf-8'),
< 0, batch)

with JBatch(
< J_SEMANTICS_TEMPLATE_DEFAULT)
— as batch:
out = object.read(bw.value, O,
< batch)

print ("Object contains: {buffer}
— ({length} bytes)".format (
— buffer =
< out [0].raw.decode('utf-8'),

< length = out[1].value))
if __name__ == "__main__":
main ()
Listing 5.11: Python = Hello  World
Application
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6. Evaluation

In this chapter, the performance of the Python libraries will be compared and the overhead
of the Python implementation will be compared to the C implementation. Addition-
ally some functions will be profiled to see where they lose performance against the C
implementation.

6.1. Python Libraries

To test the Python libraries a C program was created, which consists of 2 test functions
and a main function to run the code in native C. Thefore the code was also compiled in
2 variants, one as a C program and one as a shared library, so CFFI and ctypes could
access the functions. As one of the functions also uses plain function calls, the code
was also compiled without any compiler optimizations to prevent the compiler from
optimizing it away. The full code can also be seen in appendix C.

These tests were run on a personal computer with an Intel Core i5-8250U and 8 GB
DDR4 memory running on a 5.1.18 Linux Kernel with GCC 9.1.1 and Python 3.7.3. All
tests were run 10 times, except the native Python and NumPy variants, which were
only run 3 times as they had very long runtimes and are clearly at their own levels of
performance. For each library or language tested a standard deviation was calculated
additionally to the average runtime, as some runtimes are quite close together.

The first test function is calc, which is just making a basic mathematic calculation
on an integer using multiplication, addition and division in a loop. This function is then
called 10,000 times with an iterated integer passed to emulate small data transfers to
the function.

int calc(int j) {
unsigned long num = j;
for (int i = 1; i < 50000; i++) {
num *= 1 ;
num += 1;
num = num / i;
}

return nun;

Listing 6.1: calc function
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As table 6.1 shows, ctypes and the API mode of CFFI provide very comparable
performance to the C code, as they are only 1.5 and 4 hundreds of a second slower for the
10000 iterations. Interesting hereby is that ctypes has less overhead than CFFI, which
is also supported by the standard deviation, that is much smaller than the difference
between ctypes and CFFI. Additionally the implementation of the function in plain
Python is more than 10 times slower than the libraries, with NumPy even being much
slower than Python itself.

This might be surprising as NumPy should be accelerating calculations in Python,
but as shown in [Fow16], NumPy is slow for small numbers of elements, because it is
optimized for large datasets. Therfore with the number of elements growing, Python’s
performance is quickly beaten by NumPy, but this case is not considered in this test, as
we only work with single elements.

Language/Library | Average runtime | Standard deviation
C 7.0612 s 0.0065
ctypes 7.0751 s 0.0057
CFFI API Mode 7.1012 s 0.0063
Python 100.19 s 2.60
NumPy 2233.1s 45.2

Table 6.1.: Performance results using calc function

The second test function is test _call, which is a function that just returns 1 to
emulate the pure performance impact by a function call itself. To get better measurable
execution times, this function is then called 1,000,000 times and this time only in C,
ctypes and CFFI.

int test_call () {
return 1;

}

Listing 6.2: test_ call function

This test obviously provides a huge performance advantage, as it should primarily
show the overhead of plain function calls from Python. When comparing the results to
the first test function, the results in table 6.2 show a different order of ctypes and CFFI,
with CFFT this time being faster.
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Language/Library

Average runtime

Standard deviation

C
ctypes
CFFI API Mode

0.0023 s
0.2702 s
0.2389 s

0.0000172
0.0064
0.0064

Table 6.2.: Performance results using test_ call function

Therfore these tests are showing that ctypes and CFFI provide a huge performance
advantage over pure Python, depending on the function, the performance even is not
far off the performance of pure C code. Also ctypes and CFFI perform slightly different
depending on the test case, but in both cases the differences were not significant enough
to show that one of them clearly performs better, in the end it is all dependent on the

usecase.
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6.2. Key-Value

As JULEA is targeted for server usage in an HPC system, all of the client benchmarks
were run on a dual-socket server with two Intel Xeon X5650, 12GB of DDR3 memory
and a single HDD running on an 4.15.0 Kernel with Python 3.6.8. All benchmarks were
run three times and an average was taken for creation of the diagrams.

The first benchmark is the null backend of the key-value client, which was run on the
client directly, therefore it is suited well to measure the pure overhead of the Python
interface. As figure 6.1 shows, the C benchmarks all have quite similar results, while the
put benchmark has the largest overhead in the Python interface. The least overhead is
with the delete functions, while the get functions sit right betweent delete and put.

There are two things standing out with this benchmark. The first is that every batch
variant ob the benchmarks has significantly less overhead than the normal variants, since
there are far fewer function calls because the batch is only executed once. Secondly it
seems to be relevant if data is transferred between Python and C over function attributes
and in which direction they are transferred. Since the put function creates its own C
buffer which is passed to the C interface and the get function only creates a pointer
from which the data is later accessible, it seems like the data transfer from C to Python
creates less overhead.
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Figure 6.1.: Key-Value Null Client Performance
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The second key-value benchmark is using the leveldb backend in server mode, which
should replicate a more common usage mode as it also sends the data to the server and
persists the data in contrast to the null backend that just discards the data. Again
figure 6.2 shows a huge difference of the overhead between the normal and batch variants,
with the batch variants having an overhead between 7 and 17 percent, while the normal
variants have an overhead of 37 to 50 percent due to the higher amount of function calls.

Also the trend, that the overhead on the C variant is the largest for the put function
and smallest for the delete function, continues, but with only a small difference between
the put and get overhead. Due to the very good performance of the batch variants in
Python, they seem very well suited for real implementations without a big performance
hit. This also shows that implementations using this interface should also try to keep
their batch executions as low as possible since each function call to C increases the
overhead.
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Figure 6.2.: Key-Value leveldb Server Performance
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6.3. Object

For the object client the first test again is with the null backend in client mode to measure
the pure function overhead. The results in figure 6.3 show very similar results as for the
key-value client, with the functions with very little or no data transfers being considerably
faster than the read and write functions. Also just like before, all batch variants are
faster than their normal counterparts, because of the lower number of function calls.

For the C implementation the benchmarks again all ran for a very similar time, with
the batch variants of read and write being the exception, as they are a bit faster, which
isn’t as clear for the other benchmarks, as for delete the batch variant is even slower than
the normal one. The least overhead of the Python benchmarks has the batch variant of
the status benchmark with 0.42 seconds overhead, which is still nearly triple the runtime
of the C counterpart.
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Figure 6.3.: Object Null Client Performance

The next run was using the POSIX backend in client mode, which already really writes
data, but does not communicate with a server. This benchmark run showed very mixed
results for the different functions, with some going pretty well and others even getting
worse. For create, delete and status the results already look pretty good with just 14
to 35 percent overhead for their batch variants and 54 to 105 percent overhead for the
normal variants.
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When going to read and write then, the relative overhead quickly increased to up to
218 percent for the batch variant of the read variant. These show even larger absolute
performance gaps for these functions than the null backend, with only the batch variants
having a similar amount of overhead.
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Figure 6.4.: Object POSIX Client Performance

As the client mode of the POSIX backend also measures more of an overhead, as
it works directly within the C interface, the same banchmark was also run in server
mode. Because in server mode the data is sent to the server process, this reduces the
performance of all functions, while the overhead of the Python interface stays the same
and therefore the relative overhead gets reduced significantly.

While this is true for all normal variants with 8 to 32 percent overhead, the Python
variant even reduces the overhead, compared to the client mode, for all batch variants. It
also seems that the server mode of the POSIX backend really suits the Python backend,
as three of the batch variants are even faster with the server mode than with the client
mode. These small amounts of overhead of 1 to 16 percent also show again with how
little overhead this can be used, if it is well optimized.
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Figure 6.5.: Object POSIX Server Performance

6.4. Distributed Object

For the distibuted object client the same benchmarks were run as for the object client,
but, due to the different number of iterations, the results were quite different. In figure 6.6
For the null backend in client mode, there is a quite noticable peak for the batch variant
of the create function, which is caused by using 100,000 instead of 1,000 iterations just
for the batch variant.

Despite this anomaly due to the higher number of iterations, again read and write
have the highest overhead due to the data transfers, with write again taking longer than
read in Python while they perform exactly the same in C. Additionally, like before, most
of the batch variants perform better than their normal variants in Python, with the only
exception being the status function, which is not really representative considering the
very low execution time with the relatively low accuracy of only three decimal places.
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Figure 6.6.: Distributed Object Null Client Performance

The client mode for the object backend in figure 6.7 shows quite similar results as the
null backend previously with most of the absolute overheads more or less the same. The
batch variants also remained faster, except for the status benchmark, which still stays a
little bit slower, and the create benchmark, which takes longer but is in fact faster if you
divde its time by 100 to get the same number of iterations.
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Figure 6.7.: Distributed Object POSIX Client Performance
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To also provide results of a more realistic usecase, this benchmark was also run with
the POSIX backend in server mode. The results of this were very similar to the ones of
the object client, as the overhead was very little compared to the C interface, although
it got a bit unusual, as some benchmarks ran faster in Python than in C.

The performance gap was very small in the cases when the Python interface was
faster, with at most 21 ms lead for the Python interface, but it is still an unusual result.
Additionally, just like with the object client, the distributed object client also performs
the batch variant of the write benchmark faster in server mode than in client mode. All
in all, just like the other benchmarks in server mode, this shows again that with good
optimization it is possible to get similar data storage performance using Python, when
compared to C.
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Figure 6.8.: Distributed Object POSIX Server Performance
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6.5. Profiling

Profiling was done on the same machine as the Python library tests, and therfore on
an other machine than the other benchmarks, but due to the profiling overhead, these
results are not meant to be comparable to the benchmarks anyways. For profiling
the cProfile module of Python was used together with the pstats module to get
readable numbers out of it. The indentation of the function names within the tables
shows which function is called within which other function and all function calls with
execution times close to or under 1 millisecond were ignored for the tables, since they
are not really relevant for the full execution time.

The first table is table 6.3 and was created by profiling the object create benchmark
using the default settings and with one batch for each create call.

Function Calls | Total time | Percentage
bench_object.py(bench_ create) 1 9.604s 100%
- batch.py(execute) 100000 |  5.625s 58.6%
- batch.py(___exit ) 2 3.132s 32.6%
- batch.py(execute) 2 3.132s 32.6%
- object.py(_ init ) 100000 0.275s 2.86%
- ’encode’ of 'str’ 200000 0.058s 0.60%
- object.py(create) 100000 |  0.115s 1,20%
- batch.py(get_ pointer) 100000 0.012s 0.12%
- object.py(delete) 100000 0.091s 0.95%
- batch.py(get_ pointer) 100000 0.012s 0.12%

Table 6.3.: Profiling result of Object Create Benchmark

This benchmark shows that for this benchmark there is very little room for optimization,
since the batch execute calls make combined more than 91 percent of the whole call time
and these are just basic wrapper functions, that simply pass the task to the C interface.
The execute calls are seperated since two of them were called from the __exit _
function of the class JBatch, so these were the calls that cleaned up afterwards with the
actual calls from the benchmark only taking about 5.6 seconds.

Within JObject’s constructor were another 0.275 seconds spent, which were mostly by
calling the C interface, but more than 20 percent of this time were spent again while
encoding the strings that were given for the name and namespace. This encoding is
necessary for C to detect the Python strings correctly and they could be already encoded
before the constructor gets them, but since the overhead is very minimal with 0.058
seconds for 100000 objects, this is a tradeoff that makes using the interface simpler with
very little additional overhead. Also this overhead could only be reduced, when changing
this, when either the namespace or name would be the same everytime in the program,
since it would need to be encoded everytime otherwise as well.
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The next profiled benchmark is the object write benchmark in table 6.4, since it has
quite a different call structure, because only one objectis used within the benchmark and
the write call also does more work internally.

Function Calls | Total time | Percentage
bench_object.py(bench write) 1 8.737s 100%
- batch.py(execute) 200000 |  7.300s 83.6%
- object.py(write) 200000 1.189s 13.6%
- ctypes(create string buffer) | 200000 0.314s 3.59%
- ctypes(byref) 400000 0.053s 0.61%
- builtins(len) 200000 0.041s 0.47%
- batch.py(get_ pointer) 200000 0.026s 0.30%

Table 6.4.: Profiling result of Object Write Benchmark

This time the batches only give one set of execute calls, since the delete call only needs
to delete one object this time for cleanup and that call falls under the minimal measured
millisecond. Another difference is the percentage of time spent in the execute calls, since
this makes only 83.6 percent of the time for this benchmark. This is due to the more
complex write calls compared to the create calls last time, as the benchmark stays in the
write function for 13.6 percent of the time.

Most of this time is again spent with the C calls themselves as these are also more
complex than for the create calls. But with nearly 3.6 percent of the total time, a
significant time span is also spent within the create_string_buffer function from
ctypes, which is necessary to create a buffer that can be provided to the C interface as a
data input. With byref comes another necessary ctypes call next, pointers are needed
to be provided to the C interface and byref provides pointers for every ctypes element
it recieves. More time is also spent with the 1len function, which is builtin in Python.
This is like the string encodes also only provided for comfort reasons, as this prevents us
from having to provide the length of the input data by ourselves each time and with
under 0.5% it is again a tradeoff with little overhead. The last mentioned function was
also present in the table before and the function get_pointer is necessary for every
JULEA call that needs to be executed, as a C pointer for the batch is needed in this
cases and not only the Python JBatch object.

Next is a profile of the KV put benchmark in table 6.5, which is also interesting since
the key-value pairs have a very different approach than the objects.
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Function Calls | Total time | Percentage
bench kv.py(bench_ put) 1 14.629s 100%
- batch.py(execute) 200000 6.630s 45.3%
- batch.py(_ exit ) 2 5.589s 38.2%
- batch.py(execute) 2 5.589s 38.2%
- kv.py(put) 200000 0.877s 5.99%
- ctypes(create_string buffer) | 200000 0.248s 1.70%
- ctypes(byref) 400000 0.039s 0.27%
- builtins(len) 200000 0.028s 0.19%
- batch.py(get_ pointer) 200000 0.023s 0.16%
- kv.py(___init__ ) 200000 0.508s 3.47%
- ’encode’ of ’str’ 400000 0.094s 0.64%
- kv.py(delete) 200000 |  0.193s 1.32%
- batch.py(get_ pointer) 200000 0.023s 0.16%
Ckvpy(__del ) 200000 | 0.122s 0.83%

Table 6.5.: Profiling result of KV Put Benchmark

Since a put call is like a combination of a create and a write call, the results of the
profiling also look like a mix from the previous two tables. The batch executions are
split up again like in the first table, but since the function has a similar complexity as
the write, the batch executions only make about 83.5 percent of the total time again.

The remaining time is mostly split up between the put calls and the constructor
calls. The former has a very similar structure as the write call in the last table with
create_string_buffer, byref, len and get_pointer calls, while the latter
is very similar to the constructor in the first table, consisting of only string encoding and
the C call itself. Another small chunk of time is spent with the delete function and new
compared to the other profiling results is the destructor, which simply calls the unref
function from the C interface to free the memory, which takes significantly longer with
the key-value pairs compared to the objects.

The last table 6.6 provides some profiling for the item create benchmark, which is also
interesting, as it differentiates itself from the object create benchmark, since it has the
create integrated into the constructor.
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Function Calls | Total time | Percentage
bench_item.py(bench_ create) | 1 0.512s 100%
- batch.py(execute) 1000 0.378s 73,8%
- batch.py(___exit_ ) 4 0.090s 17,6%
- batch.py(execute) 4 0.090s 17.6%
- item.py(___init ) 1000 0.025s 4,88%
- ’encode’ of ’str’ 1000 0.002s 0,39%
- item.py/(delete) 1000 0.004s 0,78%
~item.py(_ del ) 1000 | 0.003s 0,59%

Table 6.6.: Profiling result of Item Create Benchmark

This benchmark is much shorter, since it only has 1000 iterations, but it shows a
very similar image as the object create benchmark in table 6.3 as the combined batch
executions also make more than 91 percent of the execution time of the item create
benchmark. The constructor in this benchmark also takes nearly 5 percent of the
execution time, which is more than the constructor and the create function of the object
create benchmark combined, which is due to the extra complexity with also having a
collection and the option to provide a distribution. The collection was also called, but
since it only needed to be called once at the start, it was not even considered, because it
took less than 1 millisecond. As with the last benchmark as well, the profiling table is
rounded off with the delete function and the destructor, which both only consume less
than one percent of the execution time.
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7. Summary, Conclusion and Future
Work

In this chapter, the thesis will be summarized and a conclusion of the results gained from
this thesis will be taken. Additionally some possible future work will be discussed to build
upon the results of this thesis.

7.1. Summary

This thesis showed an approach to bring HPC storage solutions to Python, which, as
mentioned in chapter 1, is a quickly growing progrmming language with increasing
importance in HPC. Chapter 2 then provided more information to Python, the used
storage solution JULEA and the libraries in consideration for the implementation. After
having a short excursion to the usages and current storage solutions for Python in chapter
3, chapter 4 went more into depth how this should be implemented. As the first design
decision, the above-mentioned libraries were discussed and compared to select one which
would be most suited for the implementation. The chapter also discussed the design
approaches taken for the different clients of JULEA and which parts need to featured
within the Python interface.

Chapter 5 then discussed what was needed to do in the implementation with focus
on the functions that required more work to be accessible from Python. In chapter 6
this implementation was then taken and benchmarked against the C implementation.
Additionally there were also more benchmarks done to show the differences of the Python
libraries and the implementation was also profiled to see where the overhead comes from.

7.2. Conclusion

As shown in the first part of chapter 6, Python code can be hugely accelerated by using
C code, with very little performance impact compared to the native C implementation.
This also translated to the implementation of the storage solution in Python, as using
JULEA within Python can be nearly as fast as the C implementation in some cases.
This is also hugely dependent of the usage itself, as with optimization of the batches and
how they are executed, much performance can be gained.
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Another big part is also the much simpler usability as the JULEA code has been
transformed to a completely functioning object-oriented interface in Python. As shown
with the example application in chapter 5, this also provides the chance of much shorter
code, which can be quickly implemented for use in a Python program or even testing of
new possible features for JULEA.

This also shows that Python is well suited for HPIO systems in general, which comes
on top on Python’s already well functioning support for HPC applications, with several
libraries available to enhance the performance.

7.3. Future Work

With the basic clients now implemented, any upcoming clients like the structured
metadata (SMD) client [Str19] will need their own implementation with their own class
with in Python as well. This however will only be necessary for the clients and some of
their dependencies, like e.g. the collection for the item client, not for the backends.

Another possible addition for the Python interface would be some more internal
functions, as the Python interface for example currently does not have any access to the
configuration. Also, to make the batches more configurable, a Python implementation
of the semantics would be possible, as the batches currently only support the default
semantics templates, but this would take some work as the semantics utilize many
different enums.

Additionally the usage of the Python interface in a real world application or some
application with more mixed accesses of key-value and object datatypes with different
amounts of data would also help evaluate the performance further.
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A. Abbreviations

Abbreviations

CFFI C Foreign Function Interface
CPU Central Processing Unit

FFI Foreign Function Interface
GPU Graphics Processing Unit
HPC High Performance Computing
HPIO High Performance 1/0

KV key-value

MPI Message Passing Interface
PEP Python Enhanced Proposal
POSIX Portable Operating System Interface

SMD structured metadata
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B. CFFI Code

CFFI APl Mode

from cffi import FFI
ffibuilder

FFI()

ffibuilder.set_source("_j_kv_cffi",

niunn

niunn
b

#include
#include

libraries=["'julea-kv',

"julea-kv.h"
"julea.h"

'julea'],

include dirs=["../../include"])

ffibuilder.cdef ("""

typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef

int... guint32;
tnt... gint;
tnt... guint;
int... uint32_t;
int... uint8_t;
char... gchar;
gint gboolean;

votd* gpointer;

struct bson_t bson_t;

struct JList JList;

struct JListElement JListElement;
void (*JListFreeFunc) (gpointer);
gpointer (*JBackgroundOperationFunc)
struct JSemantics JSemantics;

union _GMutex GMutex;

struct _GCond GCond;

union _GMutex

{

gpointer p;
guint i[2];

};
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struct _GCond
{
gpointer p;
guint i[2];
Fs

typedef struct JKV
{
guint32 indecx;
gchar* mnamespace;
gcharx* key;
gint ref_count;

4

} JKV;

struct bsom_t {
uint32_t flags;
uint32_t len;
uint8_t padding [120];
F;

typedef struct JBackgroundOperation
{

JBackgroundOperationFunc func;

gpointer data;

gpointer result;

gboolean completed;

GMutex mutex[1];

GCond cond[1];

gint ref_count;

} JBackgroundOperation;

typedef struct JBatch
{

JList* list;
JSemantics* semantics;
JBackgroundOperation* background_operation;
gint ref_count;
+} JBatch;

struct JList
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80 {

81 JListElement* head;

82 JListElement* tail;

83 guint length;

84 JListFreeFunc free_func;

85 gint ref_count;

86 };

87

88 struct JListElement

89 {

90 JListElement* next;

91 gpointer data;

92 };

93

94 struct JSemantics

95 {

96 gint atomicity;

97 gint comsistency;

98 gint persistency;

99 gint comcurrency;

100 gint safety;

101 gint security;

102 gint ordering;

103 gboolean immutabdble;

104 gint ref_count;

105 F;

106

107 JKV* j_kv_new(gchar const* namespace, gchar const* key);
108

109 void j_kv_put (JKV* kv, bson_t* value, JBatch* batch);
110

111 void j_kv_get (JKV* kv, bson_t* wvalue, JBatch* batch);
112

113 void j_kv_delete (JKV* kv, JBatch* batch);
114 | mmm)

115

116 |if _ _name__ == "_ _main__":

117 ffibuilder.compile(verbose=True)

20



© 00 1O U Wi

— e =
W N = O

CFFI APl Mode with C Header

from cffi import FFI
ffibuilder = FFI()

includes = open('../../include/kv/jkv.h').read()
source = open('../../1lib/kv/jkv.c').read()

ffibuilder.cdef (includes)

ffibuilder.set_source("_j_kv_cffi", source,
libraries=["'julea-kv', 'julea'l],
include dirs=["../../include"])

if _ name__ == "_ _main__":
ffibuilder.compile(verbose=True)
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CFFI ABI Mode

from cffi import FFI

gchar constx*);

ffi = FFIQ)
1lib = ffi.dlopen("libjulea-kv.so")
ffi.cdef ("""
typedef int... guint32;
typedef int... gint;
typedef char... gchar;
typedef struct JKV
{
guint32 index;
gchar* mamespace;
gchar* key;
gint ref_count;
} JKV;
JKV* j_kv_new (gchar constx,
nn II)

1lib. j_kv_new("python",

"test")
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C. Python Library Tests

C Code

#include <stdio.h>
#include <sys/types.h>
#include <time.h>

int calc(int j) {
unsigned long num = j;

for (int i = 1; i < 50000; i++) {
num *= 1i;
num += 1;
num = num / 1i;

return nun;

int test_call () {
return 1;

int main(int argc, charx argv[]) {
clock_t begin = clock();

for (int i = 0; i < 10000; i++) {
calc(i);

}
clock t end = clock();
double time_spent = (double) (end - begin) /
<s CLOCKS PER_SEC;
printf ("%1f \n", time_spent);

begin = clock () ;

for (int i = 0; i < 1000000; i++) {
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test_call();

end = clock();

time_spent = (double) (end - begin) / CLOCKS_PER_SEC;

printf ("%1f \n", time_spent);
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Python Code

import ctypes

import time

import numpy

from cffi import FFI

start = time.time ()

LIB = ctypes.CDLL("./libsimple-calc.so")

for i in range (0, 10000):
LIB.calc(i)

end = time.time ()

print (end - start)

start = time.time ()
ffi = FFI()

ffilib = ffi.dlopen("./libsimple-calc.so")

ffi.cdef ("""

int calc(int);

)

for i in range (0, 10000):
ffilib.calc (i)

end = time.time ()

print (end - start)

start = time.time ()
for _ in range (0, 10000):
num = 1
for i in range(l, 50000):
num = num * 1
num = num + 1
num = num / i
end = time.time ()
print (end - start)

start = time.time ()
for _ in range (0, 10000):
num = 1
for i in range(l, 50000):

num = numpy.multiply (num,

num = numpy.add (num,

1)
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num = numpy.divide (num, i)
end = time.time ()
print (end - start)

start = time.time ()
LIB = ctypes.CDLL("./libsimple-calc.so")
for i in range (0, 1000000):
LIB.test _call ()
end = time.time ()
print (end - start)

start = time.time ()
ffi = FFIQ)
ffilib = ffi.dlopen("./libsimple-calc.so")
ffi.cdef ("""
int test_call ();
"y
for i in range (0, 1000000):
ffilib.test _call ()
end = time.time ()
print (end - start)
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