
Masterarbeit

Analysis of Elastic Cloud Solutions in an
HPC Environment

vorgelegt von

Johannes Coym

Fakultät für Mathematik, Informatik und Naturwissenschaften
Fachbereich Informatik
Arbeitsbereich Wissenschaftliches Rechnen

Studiengang: M. Sc. Informatik
Matrikelnummer: 6693524

Erstgutachter: Jun.-Prof. Dr. Michael Kuhn
Zweitgutachter: Prof. Dr. Thomas Ludwig

Betreuer: Jannek Squar
Jun.-Prof. Dr. Michael Kuhn

Hamburg, 2021-10-23

Abstract
Cloud Services, like AWS, Azure, and Google Cloud, are a growing market, and all of
them also started providing their cloud services for HPC use cases in the last years.
Amazon even developed their own fabric adapter for AWS, claiming greatly improved
load distribution compared to existing solutions.

This thesis aims to evaluate the current performance and profitability of cloud services
for HPC applications. Specific focus will be on the rentability of running several specific
or even all applications in the cloud. For this cloud side, AWS, Azure and Google Cloud
will be used for profitability analysis. These cloud providers will have to compare to an
on-premise HPC cluster for different job configurations. On the side of the on-premise
HPC cluster, the cluster usage of a whole year of one cluster will be analysed to gain the
required data. Additionally, the costs of running those variants will be compared on a
typical lifespan of an HPC cluster with all of its acquisition costs and running costs.

These cost factors and node requirements will then be taken into a cost function to
assist a cluster owner’s decision when HPC cloud systems provide a better value than
running an independent cluster. The choice between an on-premise HPC system and the
cloud will also not just be looked at as an explicit or, as there is also the possibility of
owning a smaller cluster and outsourcing some parts to the cloud. The cost function
for the comparison against the cloud can then provide a way to outsource specific jobs
to the cloud, reducing the total cost of the cluster and potentially even optimising the
remaining jobs for the job scheduler.

Contents
1 Introduction 7

1.1 Motivation . 7
1.2 Thesis Goals . 8
1.3 Thesis Outline . 9

2 Background 10
2.1 HPC System . 10
2.2 Cloud Solutions . 10

2.2.1 AWS . 11
2.2.2 Azure . 11
2.2.3 Google Cloud . 12
2.2.4 Cloud Instances . 12

3 Related Work 14
3.1 Cost Comparisons Between HPC Clusters And The Cloud 14
3.2 Other Papers On HPC In The Cloud . 15

4 Cost Comparison 17
4.1 Computing . 17

4.1.1 Data Security . 21
4.2 Storage . 22

5 Mistral’s Job Data 24
5.1 Node Utilisation . 24
5.2 Node Usage Per Job . 26
5.3 Single-Node Jobs . 27
5.4 Job Wait Times . 28

5.4.1 All Jobs . 29
5.4.2 Single-Node Jobs . 32

6 Job-specific Cases 34
6.1 Single-Node Jobs . 34
6.2 Dual-Node Jobs . 35
6.3 Multi-Node Jobs . 35
6.4 Specific Nodes . 36

7 Cost Function 38
7.1 Mistral Node Costs . 38

5

7.2 Single-Node Function . 39
7.2.1 On-Demand Instances . 40
7.2.2 Spot Instances . 44

7.3 Dual-Node Function . 50

8 Summary, Conclusion And Future Work 53
8.1 Summary . 53
8.2 Conclusion . 53
8.3 Future Work . 55

Bibliography 58

Appendices 61

Abbreviations 62

List of Figures 63

List of Tables 64

6

1 Introduction
This chapter will feature a brief introduction combined with a small discussion of the
motivation and goals of this thesis. Afterwards, an outline of the upcoming chapters of
the thesis will follow this.

1.1 Motivation
High Performance Computing (HPC) has always required large data centres with staff
managing the cluster on-site. These clusters have fixed hardware for their whole life span,
often five or six years. Most of the time, the hardware is chosen explicitly to satisfy the
needs of the applications that run primarily on the cluster. These servers also require
a high-speed network connection to have the single servers work together on the same
tasks and communicate during this process.

On the other hand, cloud services have started primarily with web services and general-
purpose computing in mind. In the following years, the cloud services evolved further
and began to market themselves as an alternative to HPC data centres. While the cost
of a single computing node in the cloud is typically higher than with an on-site cluster,
the cloud services balance this issue with particular instance types with lower prices.
This aspect is already covered by some papers like one from Purdue University, which is
also discussed in chapter 3 [Smi+19].

An advantage of the cloud is the flexibility, as with an on-site cluster, nodes are
purchased for a lifespan of about five years typically. In the cloud, on the other hand,
nodes are typically rented for just the time they are used so that the user can switch the
type of hardware at any time. Additionally, on-site clusters require maintenance and
large server rooms to contain them, which leads to the idea that cloud services might be
a reasonable solution, despite the potentially higher cost.

The motivation of this thesis also is not specifically to completely substitute on-premise
clusters with cloud systems. Instead, the motivation is a potential cost reduction by
running some of the jobs in the cloud to reduce the number of nodes needed in the
HPC cluster. This cost reduction will be highly dependent on the types of jobs and the
behaviour of the users to correctly utilise the provided nodes.

7

1.2 Thesis Goals
This thesis aims to take an actual on-site cluster at the German Climate Computing
Center in Hamburg and use its data to analyse if replacing parts of the cluster, or even
the whole cluster, with a cloud solution, would provide benefits. On the cloud side,
the largest three cloud providers will be considered to compare against the cluster in
Hamburg.

First, creating a cost function for this comparison requires some data on the current
usage of the cluster. For this, the clusters job data of a whole year needs to be gathered
and analysed for several aspects, like job configuration and utilisation. Based on this
analysis, a cost function needs to be established to show how much of the cluster can be
outsourced to the cloud while still providing a better value than the on-site cluster. This
cost function should also consider all requirements for the cloud system to run these jobs
just as well as the on-site cluster.

This analysis only applies to the partial replacement of a cluster, so an additional
analysis of the cost of running the whole cluster in the cloud is needed. This analysis has
to be split up, with the first part using the regular prices of cloud computing instances
and the other part using special prices, which are available with some conditions in the
cloud. The raw computing power is not the only factor, as storage, for example, can play
a significant role in computing, with the results of the calculations needing to be stored
too.

Another aspect will be the configuration of the compute nodes, as the cloud providers
have a vast number of different node configurations, with CPU power, not the only
aspect to consider. For many applications, the memory can play a significant part,
as the application data necessary for the calculations must be stored in the system
memory. Some applications can require large amounts of memory, and this also has to
be considered in the choice of cloud nodes.

For larger jobs that use multiple nodes simultaneously, the network bandwidth can
also be a bottleneck. With the cloud providers, many of their default instances only
provide bandwidths of 10 GBit/s or less, which is much less than needed for such large
jobs. The bandwidth requirements also vary between different types and sizes of jobs, so
this should also be considered when choosing the fitting cloud instances.

8

1.3 Thesis Outline
The following chapters will start with some deeper insight into the HPC system and
the cloud systems used for the comparison in chapter 2. As a further introduction, a
quick look into some related work comes after, followed by the first cost comparison for
a complete cluster replacement in chapter 4. This cost comparison will not only feature
a look into the costs of compute instances but also these of storage.

Chapter 5 will then start with the analysis for the partial replacement of the cluster
by analysing the job data gathered from Mistral. Using this analysis, chapter 6 will first
come to a deeper look into specific cases that have to be looked at and will weigh up if
the specific case would be a good option for the cloud. The following chapter 7 will then
use these findings to create a cost function that should help in the decision on how much
of the cluster can be outsourced reasonably to the cloud. Chapter 8 then concludes this
thesis and goes into some future work.

9

2 Background
This chapter will provide some background on the HPC system, on which the comparison
is based, and the cloud providers used for the comparison. The info on the cloud providers
will also contain some general information on cloud services and their instances.

2.1 HPC System
The HPC System used to evaluate the use of Cloud Solutions for High Performance
Computing (HPC) is ’Mistral’ by the German Climate Computing Center in Hamburg.
It features about 3300 nodes for Central Processing Unit (CPU) calculations, with 1550
nodes using Intel Haswell CPUs and 1750 nodes using slightly newer Intel Broadwell
CPUs [DKRb]. Additionally, the storage system consists of about 54 PB of HDD storage
and a vast tape archive with a capacity of more than 200 PB of storage and the ability
to expand this storage further with more tapes. The storage system also contains a small
amount of SSDs, which are solely used for the file system’s cache.

Infiniband FDR with 54.54 GBit/s bandwidth connects all the nodes and helps achieve
a theoretical peak performance of 3.59 PetaFLOPS using all 3300 nodes. Using Lustre as
the file system, the HDD system provides a peak speed of more than 450 GB/s [DKRb],
which is required for the vast amounts of climate data.

As the name suggests, the German Climate Computing Center is primarily for climate
scientists for running their simulations. Due to the lack of GPU optimisations for most
climate applications, the cluster mainly consists of CPU nodes, with only a few GPU
nodes available for visualisation.

On Mistral, there are several partitions for the nodes with different purposes. The two
primary partitions are ’compute’ and ’compute2’, with ’compute’ running the Haswell
CPUs and ’compute2’ running the Broadwell CPUs. The third relevant partition is
’shared’, with 36 Haswell nodes used to run small jobs, which only need fractions of a
node instead of a full node. Additionally, Mistral also features twenty GPU nodes for
visualisation purposes.

2.2 Cloud Solutions
For the cloud solutions used for this thesis, we are looking at the three largest cloud
providers. These cloud providers consist of AWS by Amazon, Azure by Microsoft and
Google Cloud.

10

2.2.1 AWS
Amazon Web Services (AWS) is the Cloud Service from Amazon and is the largest player
in the cloud market with more than 30 per cent market share [Sta]. The most prominent
parts of AWS and the most relevant parts for this thesis are EC2 and S3, which provide
computing and storage capacities.

AWS Elastic Compute Cloud (EC2) is a service to provide cloud servers for computing
purposes [Sera]. It provides a large variety of servers using x86 CPUs, ARM CPUs, and
in some instances also additional GPUs. These servers can be allocated at any time and
have prices per hour, but there are also options to allocate servers for one or three years,
significantly reducing the costs. The ARM CPUs are 64-bit CPUs called ”Graviton2”
and are developed by Amazon themselves [Serc]. While ”Graviton2” is a fairly new
architecture, its predecessor ”Graviton” only featured 16 vCPUs, but in performance
analysis, the first generation already showed promising performance [JLZ20].

There also is a third option for pricing, called spot instances. With spot instances,
they can be allocated for a reduced price whenever there are free servers available. The
downside of these instances is that AWS can interrupt them at any time when AWS
needs these instances for on-demand customers.

AWS Simple Storage Service (S3) provides cloud storage solutions and can be connected
directly to EC2 instances [Serb]. There are four different storage tiers, with the most
expensive one consisting of SSD storage for data that has to be accessed frequently. The
cheapest tier is the deep archive tier, which is supposed for data that has to be stored
for long times and is typically not accessed or deleted for more than a year.

Another AWS feature is their Nitro cards with an optimised network protocol compared
to TCP. The protocol AWS created for this is called Elastic Fabric Adapter (EFA)
and resembles Infiniband, but Amazon claims to have eliminated some limitations of
Infiniband’s model [Sha+20]. They also provided some benchmarks against TCP, showing
a greatly improved latency.

2.2.2 Azure
Azure is Microsoft’s cloud service and is the second-largest player in the cloud market,
making up more than 50 per cent of the market together with AWS [Sta]. It provides
similar services like AWS, so the relevant ones for this thesis are virtual machines [Azub]
and Azure blob storage [Azua].

Azure’s virtual machines also provide a large variety of x86 CPUs and additional
GPUs for its instances. Compared to AWS EC2, Azure is missing the ARM CPUs
here, but Microsoft is rumoured to be working on ARM instances [ZDN]. The pricing
options are also similar for two options with regular instances with prices per hour and
significantly cheaper options with allocations over one or three years. The third option,
spot instances, is missing with Azure.

11

Azure blob storage also has many similarities with AWS, with four storage tiers to
provide different storage levels. The only significant difference is the option to reserve
storage for 1 or 3 years, just like with virtual machines, with much lower prices.

2.2.3 Google Cloud
Google Cloud is significantly smaller than AWS and Azure but still the third-largest
cloud provider. It also provides very similar options with Compute Engine [Clob] for
compute servers and Cloud Storage [Cloa] for storage solutions.

Both of these services are similar to their competitor’s options with only a few
differences. First, Compute Engine has no ARM CPUs, just like Azure. Additionally,
Compute Engine also has no spot instances, and the discounts for using nodes regularly
and not temporarily are only monthly. Googles cloud storage also does not provide
discounts for reserved disk space, unlike Azure.

2.2.4 Cloud Instances
Another critical factor for all of the three cloud providers is the different types of cloud
instances. There are typically three types of cloud instances with all of these providers:
on-demand, reserved, and spot instances.

On-demand instances are the classic cloud instances, which have fixed prices and are
available at any time. These instances are also typically paid precisely for the time they
are used, with prices provided on an hourly basis. Due to the excellent availability and
flexible pricing, these are also the most expensive cloud instances.

The reserved instances provide a price reduction if known beforehand that the nodes
will be fully utilised for a long time. These reservations are typically for one or three
years and provide up to 70% lower prices. These reserved instances are cheap compared
to the on-demand instances, but they also remove the flexibility altogether. Azure also
provides five-year reservations on some of their instances, but not as a general offer for
all instances.

Spot instances have started as a way for the cloud providers to sell their excess
capacities for lower prices, but with the option to always cancel the instance when an
on-demand user needs the node. Up until a few years ago, AWS had a system where
everybody could place their bid of much they would pay for the spot instance, but this
system at times even exceeded the on-demand pricing [Geo+19]. In 2018 AWS changed
the way spot works then, that AWS predefines the price, so it does not fluctuate that
extremely [Sere]. Additionally, with the way the AWS handles spot instances, the only
way of getting evicted is when on-demand customers allocate the nodes used for the spot
instance. While Google Cloud also uses more fixed pricing, Azure still has bids that need
to be defined before starting the job, and if the price exceeds the maximum bid, the job
gets evicted from the node.

12

Such an eviction of the job is quite normal with all cloud services in spot instances,
as the jobs typically get about 30 seconds to two minutes warning if they are about to
be evicted. AWS even has a new feature since November 2020 to provide even earlier
notifications when the risk of eviction is getting larger [Serd]. That warning can come in
handy if the running software supports checkpointing, so it can continue later where it
stopped. AWS, for example, also provides the option to name multiple different nodes
and server regions, which would be okay to start the job on, so there are more availability
options. With the scheduler picking the best option with the highest availability using
their internal heuristics, the probability that the job gets evicted is relatively low.

13

3 Related Work
This chapter will discuss some related work in the area of HPC in the cloud.

There already exist several papers on cost comparisons between on-premise HPC
clusters and the cloud. This chapter will begin with two papers that also take a look into
a cost comparison between an existing HPC cluster and cloud systems. The second part
will then go on with other papers that provide a view on different aspects of running
HPC applications in the cloud.

3.1 Cost Comparisons Between HPC Clusters And The
Cloud

In this part, the papers provide a view on a similar topic as this thesis, but with a
few differences in their cluster’s setup and their goals. The first one is a relatively old
paper, at least in the space of cloud computing, and was published in 2011 by a group of
Purdue University [CHS11]. In this paper, the authors discussed the cost of replacing
their community cluster with a cloud solution.

They used a relatively simple approach, only taking their cluster costs and using
them to calculate costs per hour to compare with AWS. In the end, they concluded
that the cloud might be a good solution for single users without access to a cluster but
can not cost-efficiently replace their cluster. They also used so-called "Cluster Compute
Instances" by AWS, which did not provide an option for spot instances, and it seems to
be discontinued. The lack of discounts like reserved or spot instances made this approach
quite simplistic as opposed to this thesis and gave the cloud systems quite a disadvantage
against their cluster.

Two of this paper’s authors made an updated version of the paper in 2019 [Smi+19],
with a new look on the same topic. In this paper, they used their new hardware of
the Purdue community cluster and also added comparisons to Azure and Google Cloud
instead of just AWS like their first paper. This time they also used one-year reserved
instances but no three-year reserved or spot instances.

14

Additionally, they also looked at the different project groups using their cluster, and
by this, they found out that some groups would actually get away cheaper with the
cloud. However, the findings looking at all groups were still that the cloud is not as
cost-effective, but while they talked about a factor 7 of savings with an own cluster, this
time they only came to a cost factor of 2.73 for using AWS for their cloud computing
needs. Azure and especially Google Cloud came away worse than AWS, but Google
Cloud also does not provide one-year reserved instances. In this renewed paper, the
authors considered more different factors, but they still focused on replacing their whole
cluster, differentiating their approach from this thesis’s goals.

3.2 Other Papers On HPC In The Cloud
There are many more papers about HPC in the cloud, but two of these stand out with
their relevance to this thesis. The first of these is a paper from 2012 discussing the
deployment, performance and also cost of several cloud providers [Rol+12]. As their
cloud providers, the authors of the Federal University of Rio Grande do Sul in Brazil
chose AWS, Azure and a smaller provider called Rackspace. The paper is also fairly old
in the space of cloud computing, so their findings do not have to translate to the current
situation, but they still might be interesting.

In the first part, the authors discuss the deployment of cloud nodes, and they found
that AWS was providing the quickest deployment, especially for a higher number of
nodes. Following this, they analysed the cloud’s performances of 8-core instances against
their cluster with 8-core nodes. In the performance analysis, the authors found that the
cloud providers were scaling better with a higher number of nodes against their cluster,
with four nodes of Azure even outperforming their cluster in most benchmarks. Azure’s
excellent multi-node performance might be caused by the network, as their cluster only
used gigabit network, but there is no information on the network Azure used. The papers
last part, the cost analysis, found that cost efficiency depends on the specific cloud
solution used. In this part, they calculated a break-even point when buying a cluster gets
more efficient than running the jobs in the cloud. Two-node jobs on Rackspace reached
the break-even point the first, after just 26 days, with four-node jobs on Azure providing
the best value with the break-even point at 620 days. While it also is a fascinating
approach to the break-even point of a cluster against the cloud, this use case is not
as well-suited for big HPC centres with regular hardware upgrades. Additionally, the
authors only used the power costs as running costs and did not look at other running
costs of a cluster.

15

The second paper is about two years newer by Rashid Hassani, Md Aiatullah and
Peter Luksch of the University of Rostock [HAL14]. In this paper, the authors analyse
the performance of a sorting algorithm on their cluster against AWS. The sorting
algorithm used is an MPI variant of Radix sort with different sizes of workload data.
The authors conclude that AWS provides good HPC performance as in the benchmarks
AWS outperformed their cluster and scaled quite well. However, they also remark that
the cloud is only suitable for specific applications, as additional optimisations might be
necessary.

One aspect that makes their comparisons to their cluster a bit different is the vastly
different hardware with their AMD Opteron CPUs against the Intel CPUs AWS used at
the time. Additionally, the authors did not mention the network they were using, which
might be relevant for the multi-node runs they did, where AWS faired even better. The
paper is also not that comparable to this thesis, as it does not go into the cost of the
cloud, only into the performance, but this is still an exciting aspect of seeing the cloud
perform well against on-site clusters.

16

4 Cost Comparison
In this chapter, the cost difference between an HPC cluster and cloud solutions will be
discussed.

The first simple way to compare the cost of an HPC system to a cloud solution would
be to try to match the whole HPC system to the price of a similar cloud system. We
will use the standard price per hour in the first comparison, with other variants coming
later. For Mistral, that would require 1550 nodes of 12-core nodes from the Haswell
generation or better and 1750 nodes of 18-core nodes from the Broadwell generation or
better [DKRb]. The storage would also require 54 Petabytes of HDD storage, combined
with 200 Petabytes of archive storage.

4.1 Computing
Some nodes only have vCPUs, instead of real cores and would need 48 or 72 vCPUs,
respectively. Of course, the cores of the instances running more modern CPU architectures
are significantly faster, so fewer vCPUs like the 60 with Google Cloud as the replacement
for 72 threads would be reasonable too. Also, for AWS, the "Europe (Frankfurt)" servers
are used for calculating, for Azure "West Europe" is used, and for Google Cloud "Europe-
west1". The following table first shows the best fitting nodes from each cloud service
to replace the Haswell nodes. 50 GBit/s network will be the minimum requirement for
actual multi-node operations.

AWS c5n.9xlarge Azure HB60rs Google c2-standard-30
36 vCPUs 60 Cores 30 vCPUs

Intel Cascade Lake AMD EPYC Naples Intel Cascade Lake
96 GiB RAM 228 GiB RAM 120 GiB RAM

50 GBit/s Network 100 GBit/s Network 50 GBit/s Network
1.86€/hour 2.50€/hour 1.44€/hour

Table 4.1: Cloud nodes for replacement of the Haswell nodes

Azure has quite a disadvantage with these nodes, as they do not provide as many
HPC instances with fewer cores. One step down would be their 16-core Haswell nodes,
which is less than the 24-cores it would need to replace, so instead, Azure provides 60
real cores with AMD EPYC CPUs. For the replacement of the Broadwell nodes, the
following nodes were selected:

17

AWS c5n.18xlarge Azure HB60rs Google c2-standard-60
72 vCPUs 60 vCPUs 60 vCPUs

Intel Cascade Lake AMD EPYC Gen1 Intel Cascade Lake
192 GiB RAM 228 GiB RAM 240 GiB RAM

100 GBit/s Network 100 GBit/s Network 100 GBit/s Network
3.82€/hour 2.50€/hour 2.89€/hour

Table 4.2: Cloud nodes for replacement of the Broadwell nodes

While especially Google Cloud profits from the relaxed node criteria, Azure, on the
other hand, has significantly better nodes than Mistral. While this inequality makes
this not an optimal comparison, these are the cheapest HPC nodes at Azure that fit
the minimum criteria, as Azure only provides access to full nodes for the newer HPC
instances. Setting up some calculations for the full costs over a runtime of 6 years, the
formulas would look as following:

1. AWS: NNodes · PriceNode · hours · days · years
= (1550 · 1.86e+ 1750 · 3.82e) · 24 · 365.25 · 6
≈ 503, 200, 000e

2. Azure: (NNodesHaswell · PriceHaswell + NNodesBroadwell · PriceBroadwell) · hours ·
days · years
= 3300 · 2.50e · 24 · 365.25 · 6
≈ 433, 900, 000e

3. Google Cloud: (NNodesHaswell · PriceHaswell + NNodesBroadwell · PriceBroadwell) ·
hours · days · years
= (1550 · 1.44e+ 1750 · 2.89e) · 24 · 365.25 · 6
≈ 383, 400, 000e

Mistral’s total cost is around 35 million euros for the cluster, about 1-1.5 million euros
for power per year, about 400,000 euros of rent for the data centre and personnel costs for
maintaining the cluster of about 250,000 euros. How these specific values were gathered
will also be discussed later in chapter 7. Looking at these costs for Mistral and the cloud,
the cloud clearly does not provide a good value. However, on the other hand, this is only
the standard pricing and better nodes than Mistral uses.

The next step would be to go with pre-reserved cloud nodes for AWS or Azure to
reduce the pricing further, as the value gets significantly better with these, especially in
AWS. The pre-reserved cloud nodes are allocated for one or three full years and provide
a much better value. Google Cloud also provides reserved instances for some instances,
but unfortunately not for the predefined compute instances used in this comparison.

18

Another factor, which Google Cloud covers as opposed to the reserved instances, is the
spot instances with low prices but also low availability. As the cloud provider can also
cancel spot instances at any time, they are very risky, but they will still be considered
for comparison. Table 4.3 shows the node pricing for reservations and spot instances.

Nodes AWS c5n.9xlarge AWS c5n.18xlarge Azure HB60rs Google c2-30 Google c2-60
1-Year Reserved 1.20€/hour 2.40€/hour 2.13€/hour Not Available Not Available
3-Year Reserved 0.82€/hour 1.64€/hour 1.75€/hour Not Available Not Available

Spot 0.58€/hour 1.03€/hour 0.53€/hour 0.36€/hour 0.71€/hour

Table 4.3: Node Cost with reserved and spot instances

As the table shows, these instances provide a vast cost reduction, cutting the cloud
systems’ costs by up to 60 per cent for the reserved instances and up to 80 per cent for
the spot instances.

The calculations for the full costs of the pre-reserved and spot instances can be seen
in the following:

1. AWS 1-year: NNodes · PriceNode · hours · days · years
= (1550 · 1.20e+ 1750 · 2.40e) · 24 · 365.25 · 6
≈ 318, 700, 000e

2. AWS 3-year: NNodes · PriceNode · hours · days · years
= (1550 · 0.82e+ 1750 · 1.64e) · 24 · 365.25 · 6
≈ 217, 800, 000e

3. AWS Spot: NNodes · PriceNode · hours · days · years
= (1550 · 0.58e+ 1750 · 1.03e) · 24 · 365.25 · 6
≈ 142, 100, 000e

4. Azure 1-year: (NNodesHaswell · PriceHaswell + NNodesBroadwell · PriceBroadwell) ·
hours · days · years
= 3300 · 2.13e · 24 · 365.25 · 6
≈ 369, 700, 000e

5. Azure 3-year: (NNodesHaswell · PriceHaswell + NNodesBroadwell · PriceBroadwell) ·
hours · days · years
= 3300 · 1.75e · 24 · 365.25 · 6
≈ 303, 700, 000e

6. Azure Spot: (NNodesHaswell · PriceHaswell + NNodesBroadwell · PriceBroadwell) ·
hours · days · years
= 3300 · 0.53e · 24 · 365.25 · 6
≈ 92, 000, 000e

19

7. Google Spot: (NNodesHaswell · PriceHaswell + NNodesBroadwell · PriceBroadwell) ·
hours · days · years
= (1550 · 0.36e+ 1750 · 0.71e) · 24 · 365.25 · 6
≈ 94, 700, 000e

While especially the spot instances show a significant cost reduction, permanently
running 3300 of these instances is not realistic. Also, if the user is running an MPI job
on multiple nodes, and one node gets evicted by the cloud provider, the whole job will
die, so running spot instances is ruled out. Realistically this instance type is made for
quicker jobs that do not make issues if they get cancelled or even better if they use
checkpointing. A complete comparison of the costs of the different instance types can be
found in table 4.4.

AWS Azure Google Cloud
Nodes 1550 c5n.9xlarge + 1750 c5n.18xlarge 3300 HB60rs 1550 c2-30 + 1750 c2-60

On-Demand 503,200,000€ 433,900,000€ 383,400,000€
1-Year Reserved 318,700,000€ 369,700,000€ Not Available
3-Year Reserved 217,800,000€ 303,700,000€ Not Available

Spot 142,100,000€ 92,000,000€ 94,700,000€

Table 4.4: Compute Cost with different pricing models

As spot instances are no realistic scenario for a total replacement, so three-year reserved
instances seem like the best solution for this case. However, while these instances would
be able to replace the cluster, the cost would still be at least four times as high as the
on-site cluster.

Nevertheless, one more aspect is not included, as it is possible to use better nodes
after a few years since cloud services have a quicker upgrade cycle than an HPC cluster.
Using the 3-year reserved nodes, i.e., the contract for these nodes would make up exactly
half of the typical lifetime of a cluster at the DKRZ. For the second 3 years, newer nodes
could be used, as the hardware market is evolving quickly in such a period. Additionally,
not only newer nodes could be used, but if the need for a different type of architecture
came in these three years, additional nodes could always be allocated. For example, this
addition of nodes could be the case if new applications run well on ARM or GPU nodes.

The last aspect to potentially save more costs is to choose a different data centre of
the cloud. While only European data centres were taken for the first comparison, there
is a vast selection of data centres with the three cloud providers. As a quick look, the
cheapest AWS data centre will be taken in table 4.5 to provide a quick view of how cheap
the nodes could get.

20

Node Prices (Frankfurt) Node Prices (Ohio) Total Cost (Ohio) Total Cost (Frankfurt)
On-Demand 1.86€/3.82€ 1.66€/3.33€ 441,800,000€ 503,200,000€

1-Year Reserved 1.20€/2.40€ 0.98€/1.96€ 260,300,000€ 318,700,000€
3-Year Reserved 0.82€/1.64€ 0.53€/1.06€ 140,800,000€ 217,800,000€

Spot 0.58€/1.03€ 0.39€/0.59€ 86,100,000€ 142,100,000€

Table 4.5: AWS Cost Comparison Frankfurt vs. Ohio

This comparison shows a significant difference between the EU and US data centres,
with about a 12-40% cost reduction against the nodes in Frankfurt.

4.1.1 Data Security
With the vast discount on the nodes in Ohio, the question arises why the cheapest data
centres were not picked directly in the first comparison. While there are cheaper data
centres, the choice of the European data centres was made on a data security basis, as
data in the US is much easier accessible to US authorities.

For data stored in the EU, the US authorities can still request stored data, but the
legislations provide much more restrictions for data in the EU. On the one hand, there is
the Clarifying Lawful Overseas Use of Data Act (CLOUD Act) which aims to provide
US authorities with ways to request data from US cloud providers if the data is lying
outside of the United States [Wik]. While the authorities have much easier access inside
the United States, they have to obey the local law and provide their reasoning for illegal
activities by the user the data is requested from using this act. If they do not provide
sufficient information, the cloud provider can also deny the request for data access.

On the other hand, speaking of the local law, the EU has the General Data Protection
Regulation (GDPR), which regulates the transfer of personal data, which is stored in the
EU, to the US. The GDPR and CLOUD Act working together is also a widely discussed
topic with several aspects between them for when data can be successfully requested in
the EU [PC]. To safely apply the GDPR on a CLOUD Act request, it would be required
that the interests of the data request outweigh the personal interests of the owner of the
data. Another possibility to combine these two acts would be ”in an emergency situation
where there is a threat to life or physical harm” [PC].

So while, with data stored at cloud providers in the EU, it would still be possible the
data can get accessed, there would have to be a very good reason to access the data,
which makes this unwanted data access very unlikely. With US servers, on the other
hand, the US authorities have it much easier to access the data, which is also why the
European servers were chosen for the earlier comparison.

21

4.2 Storage
For storage, we need large amounts to replicate the amount of storage available with
Mistral. With AWS, we will use the Simple Storage Service (S3) for infrequent access, to
use HDDs, for 0.0135$ per GB and month in the Frankfurt data centre. AWS Glacier
Deep Archive will be used to replicate the tape archive, as this data is most likely
accessed very rarely. Deep Archive costs 0.0018$ per GB and month in the Frankfurt
data centre, so it is significantly cheaper than the HDD storage.

With Azure, Storage Blobs would be the pendant to S3, and in the West Europe data
centre, the cold storage costs 0.00844€ per GB and month, while archive costs 0.00152€
per month. So after a currency conversion of about 0.85€ per dollar, we see that the
archive storage is pretty much the same price, while the HDD storage is cheaper with
Azure.

With Google Cloud, the storage solution is just called Cloud Storage, and the storage
tiers we use to compare are nearline storage for 0.01$ per GB and month and archive
storage for 0.0012$ per GB and month, both of them in the "Europe-west1" data centre.
While the HDD storage is about the same price as with Azure, in this case, the archive
storage is even cheaper. In total, these values result in the following costs for Mistral
over six years.

AWS Azure Google Cloud
54 PB Infrequent Access 54 PB Cold Storage 54 PB Nearline Storage

46,900,000€ 34,400,000€ 34,700,000€
200 PB Glacier Deep Archive 200 PB Archive Storage 200 PB Archive Storage

22,600,000€ 23,000,000€ 18,100,000€
69,500,000€ 57,400,000€ 52,800,000€

Table 4.6: Storage Cost for Cloud Systems

The complete calculations of the storage prices for six years can be seen in the following:

1. AWS: (StorageHDD · PriceHDD + StorageT ape · PriceArchive) · months · years
= ((54PB · 1024 · 1024 · 0.0115e) + (200PB · 1024 · 1024 · 0.0015e)) · 12 · 6
≈ 69, 500, 000e

2. Azure: (StorageHDD · PriceHDD + StorageT ape · PriceArchive) · months · years
= ((54PB · 1024 · 1024 · 0.00844e) + (200PB · 1024 · 1024 · 0.00152e)) · 12 · 6
≈ 57, 400, 000e

3. Google Cloud: (StorageHDD ·PriceHDD+StorageT ape ·PriceArchive)·months·years
= ((54PB · 1024 · 1024 · 0.0085e) + (200PB · 1024 · 1024 · 0.0012e)) · 12 · 6
≈ 52, 800, 000e

22

As these prices are still significantly higher than the cost of the whole cluster, in the
case of Mistral, it does not seem to be a great value to outsource the storage. However,
there is one more option to reduce the cloud storage prices, as Azure is the only provider
that also offers storage reservations for one or three years, which significantly lowers the
total cost. As the following calculations show, these reserved storage prices do bring
down the price significantly, but not below the cost of the whole Mistral cluster.

1. Azure 1-year: (StorageHDD ·PriceHDD +StorageT ape ·PriceArchive) ·months ·years
= ((54PB · 1024 · 1024 · 0.00690e) + (200PB · 1024 · 1024 · 0.00135e)) · 12 · 6
≈ 48, 500, 000e

2. Azure 3-year: (StorageHDD ·PriceHDD +StorageT ape ·PriceArchive) ·months ·years
= ((54PB · 1024 · 1024 · 0.00548e) + (200PB · 1024 · 1024 · 0.00124e)) · 12 · 6
≈ 41, 100, 000e

While these storage costs are already not competitive with the on-site cluster, accessing
the data is not free either in the cloud. The cost of data transfers can be pretty high,
but it is hard to put a number on that, unlike the storage amount, since data transfers
vary from case to case.

23

5 Mistral’s Job Data
This chapter will focus on analysing Mistral’s job data on specific behaviour usable in the
cloud.

As the complete replacement of an HPC cluster is not the best value in most cases, a
deeper look into specific situations is needed. The whole job data of 2020 was extracted
from SLURM to provide a representative amount of jobs for the analysis. This job data
consists of about 7.5 million jobs in total with multiple values provided, like the time
they ran or the point of time when the user committed them or when they started. These
jobs are anywhere in the range of 1 to 1550 nodes and have vastly different runtimes.

However, there are some restrictions in Mistral’s SLURM for the way users may run
jobs: The node count must not exceed 500 nodes, and the run time must not exceed 6
hours. There are exceptions to this; if needed, users can always start larger or longer
jobs in coordination with the systems department of the DKRZ, but without their help,
these are the hard limits.

As the jobs from the ’shared’ partition are also vastly different from those on ’compute’
and ’compute2’, the ’shared’ partition was excluded from the analysis. The jobs from
this partition would have needed very different treatment, with many jobs running on
the same node, and the cost of a job would not be as easy to calculate, as the job does
not reserve a full node.

As the data from SLURM already was in the CSV format, Pandas was an obvious
choice for the analysis, using its data frames [pan]. The other Python libraries primarily
used for the scripts were Numpy, Scipy, Pandas, and Matplotlib.

Later in this thesis, this data will then be used to generate the required data for a
cost function for the specific cases. Based on Mistral’s data, a suggestion for the use of
the cloud for Mistral can then be made, with this data being able to be substituted by
the data of any other cluster to create a suggestion for this cluster. However, Mistral’s
data first has to be analysed to gain the points of potential cost savings.

5.1 Node Utilisation
The first simple analysis of the job data consisted of looking at the node utilisation for
every day of 2020. This analysis was then extended with a look at the node distribution
per weekday and month. The analysis per day is shown in figure 5.1 with one bar
representing one day of 2020.

24

Ja
nu

ar
y

1

Fe
br

ua
ry

 1

M
ar

ch
 1

Ap
ril

 1

M
ay

 1

Ju
ne

 1

Ju
ly

 1

Au
gu

st
 1

Se
pt

em
be

r 1

Oc
to

be
r 1

No
ve

m
be

r 1

De
ce

m
be

r 1

0

20

40

60

80

100
Node Load %

Figure 5.1: Load Percentage per day in 2020

Firstly, this graphic shows a pretty similar load on the Mistral cluster for most of
the days, with a few exceptions clearly showing downtimes of the cluster. Instead of an
average, a median was used to exclude these exceptions with downtimes of the cluster.
Looking at all days, the median load on the nodes is 88.02 %, so the cluster has a pretty
high load, with very few nodes idling. The 95 per cent confidence interval for the load is
86.47 to 89.57 %, with the 99 per cent confidence interval being 85.98 to 90.06 %.

M
on

da
y

Tu
es

da
y

W
ed

ne
sd

ay

Th
ur

sd
ay

Fr
id

ay

Sa
tu

rd
ay

Su
nd

ay

Names

0

20

40

60

80
83.4

86.4
90.6 91.3 91.3

88.9
84.2

Node Load %

Ja
nu

ar
y

Fe
br

ua
ry

M
ar

ch

Ap
ril

M
ay

Ju
ne Ju
ly

Au
gu

st

Se
pt

em
be

r

Oc
to

be
r

No
ve

m
be

r

De
ce

m
be

r

Names

0

20

40

60

80

100

84.5

76.7

95.9 95.3

83.8

92.3

83.5
85.9

90.8

83.3

89.8
94.2Node Load %

Figure 5.2: Load Percentage per weekday and month in 2020

25

Figure 5.2 also shows the utilisation per weekday and month to have a deeper look
into the factors, which are steering the load of the cluster. As the first graphic, using the
weekdays, shows, there is a correlation between weekdays and cluster utilisation. On
average, the cluster only exceeds a utilisation of 90 % from Wednesday to Friday, with
Sunday and Monday the least utilised days. This change in utilisation might be caused
by users mainly starting their jobs at the end of the week to have them run during the
weekend to analyse the data when they are back in the office on Monday.

The second graphic does not seem to show a significant seasonality in the utilisation
per month. Although there are months with significantly less utilisation, they also
correlate with the downtimes witnessed in figure 5.1. Specifically, the months with very
low utilisation, February, May, July, and October, all show dips below 50 % utilisation
for at least a few days each.

5.2 Node Usage Per Job
Another aspect, which might be very interesting, is the number of nodes a single job
uses. For further analysis, all the jobs first got grouped by the number of nodes, and
then the number of jobs with this node count was taken, resulting in the following table.

Nodes 1 2 3-8 9-16 17-32 33-99 100-499 500+
Jobs 3,784,716 2,622,661 378,963 363,198 201,669 84,474 26,297 380

Percent 50.72% 35.15% 5.08% 4.87% 2.70% 1.13% 0.35% 0.01%

Table 5.1: Number of jobs for each node count

The result shows that many jobs run only on one or two nodes, while only 0.36% of all
jobs use more than 100 nodes. Of course, this does not show how much time the nodes
spend for these jobs, as a 100 node job of 1 hour uses the cluster much more than a
one-hour single-node job. So we also need to take a look at the distribution of the total
node hours, as table 5.2 shows.

Nodes 1 2 3-8 9-16 17-32 33-99 100-499 500+
Node Hours 716,480 165,220 1,491,662 2,768,859 3,753,182 6,282,016 9,320,025 380,350
Percent 2.88% 0.66% 6.00% 11.13% 15.09% 25.25% 37.46% 1.53%

Table 5.2: Node Hours per number of nodes

This table shows a different view, with the single-node jobs only making up less than
3% of the total node hours. The difference is even more significant for dual-node jobs,
which indicates that dual-node jobs often have a short runtime. The larger jobs with 33
nodes or more, on the other hand, make up nearly two-thirds of the total node hours, so
they have a significant impact on the utilisation of the cluster.

26

A deeper look into the short jobs is required for the vast difference between dual-node
jobs and node time. With user-submitted jobs, we always have jobs that fail immediately
on being started because of errors in the job script or jobs that are just very short.
Looking at the runtime of the dual-node jobs, nearly 90 per cent, or 2,341,429 of the
2,622,661 dual-node jobs, fall in the sub-60-seconds category. The amount of short jobs is
not as significant for other job sizes, but single-node jobs also have a significant number
of sub-60-seconds jobs with 1,519,953 of 3,784,716, so about 40 per cent.

5.3 Single-Node Jobs
Although the single-node jobs do not make up many of Mistral’s node hours, outsourcing
the vast amount of jobs might still lower the load on the scheduler and the cluster’s staff.
Additionally, while Mistral’s scheduler is set up to require multi-node jobs to reserve all
CPU cores, the single-node jobs may also use less than a full node. Usually, the "shared"
partition is used for such jobs, which do not require a full node, but often enough, the
exclusive "compute" partition is used for such jobs.

The following table also supports this claim, showing the distribution of single-node
jobs by the number of threads they reserve. The numbers in the table do not exactly
sum up to the number of single-node jobs due to the number of invalid jobs that tried to
use more than the maximum 72 threads.

NCPUs 1-4 5-8 9-16 17-24 25-48 49-72
Jobs 1,116,301 377,669 792,821 100,151 846,577 545,130

Percent 29.49% 9.98% 20.95% 2.65% 22.37% 14.40%

Table 5.3: Number of jobs for each thread count

With the knowledge that Mistral uses 24-core and 36-core machines, it is clear that
all jobs with 16 cores or less do not utilise the full nodes. Of course, it is not as simple
as just looking at the used cores because there surely will be some jobs with high RAM
usage under these, but many of them do not require an exclusive node.

NCPUs 1-4 5-8 9-16 17-24 25-48 49-72
Node hours 225,746 31,671 42,860 8,976 276,105 131,121
Percent 31.51% 4.42% 5.98% 1.25% 38.54% 18.30%

Table 5.4: Node Hours for each thread count

27

As before with all jobs, the number of jobs is not solely relevant, but also the number
of node hours used. The node hours are also the base for the cost analysis as this can be
used to compare the cloud systems.

While the number of jobs is partly representative of the node hours, the node hours
significantly differ from the number of jobs in some parts. For example, with the jobs
from 9 to 16 nodes, we have about 20% of all jobs, but only a bit more than 5% of the
node hours, so these jobs seem to be pretty short typically.

Another analysis of the single-node jobs showed that about 478,000 of the 716,000
single-node hours were spent for long jobs with more than one hour of runtime. With
that being about two-thirds of the single-node hours, these jobs got additional focus.
This additional focus was also due to the systems department of the cluster saying that
shorter single-node jobs can benefit the scheduler, but that will be discussed further in
the following chapter.

While these longer single-node jobs make up about two-thirds of the node hours, they
are only 106,630 jobs, so less than three per cent of the whole single-node jobs. As the
following table shows, a third of these jobs are still running on a maximum of 4 cores
and not utilising the nodes fully.

NCPUs 1-4 5-8 9-16 17-24 25-48 49-72
Jobs 33,382 3,773 9,622 1,617 36,564 21,672

Percent 31.31% 3.54% 9.02% 1.52% 34.29% 20.32%
Node Hours 129,538 10,434 20,266 7,338 212,588 97,508
Percent 27.12% 2.18% 4.24% 1.54% 44.51% 20.41%

Table 5.5: Job statistics for long single-node jobs

These numbers show that the primary focus should be on putting the jobs in the
cloud, which do not utilise all of the node’s cores, and therefore not to the full potential
of the node, but this discussion will continue in the next chapter.

5.4 Job Wait Times
Wait times are another essential aspect, which means how long each job has to wait until
it starts. Depending on the user’s workflow, these wait times can delay further work, as
further tasks might require this job’s result.

28

5.4.1 All Jobs
Looking at the average wait time of all jobs, compared to their runtime, in figure 5.3, it
shows that there is a definitive correlation between the wait time and the job’s runtime.
This metric also supports the before-mentioned claim that jobs with a low runtime
benefit the scheduler, but this will be discussed later in more detail. The provided wait
times are in minutes, with the wait times of 3-to-4-hour jobs standing out by having a
wait time of about 4 hours on average, while most of the other lengths are more in the
range of 2 to 2.5 hours.

<
5

m

5-
10

 m

10
-3

0
m

30
-6

0
m

1-
2

h

2-
3

h

3-
4

h

4-
5

h

5-
6

h

>
6

h

Job Length

0

50

100

150

200

Wait Time [m]

Figure 5.3: Average Wait Times For All Jobs

As this graph shows, up until one hour, the wait times are scaling with the runtime,
with them building a plateau at about 2 hours then, with the only exception being the
before-mentioned exception of the 3-to-4-hour jobs. This scaling also assisted in the
decision to analyse the single-node jobs with runtimes of more than one hour because it
seems that this is the point where the scheduler gets the most problems with scheduling
the jobs.

The question of what has caused the high wait times for 3-to-4-hour jobs can be solved
using the following scatter plot of all wait times. While most wait times are below 2000
minutes, so below 1.5 days, with a runtime of about 200 minutes, there are exceptionally
many jobs with high wait times of up to 18000 minutes or 12.5 days.

29

After further analysis into these specific jobs, they use most of the time about 16 to
20 nodes and are submitted in larger batches of jobs. These job batches are then often
scheduled serially by the scheduler, with each following job waiting even longer to be
started. Most of these jobs are from the same user account, so they seem to belong
together and might even need to be run consecutively.

Figure 5.4: Wait Times Scatter Plot For All Jobs

The scatter plot also shows a concentration of jobs at every full hour mark up until
the six hours or 480 minutes. This concentration of points is due to the users often using
full hours as a time limit for their jobs, which also causes many jobs with long wait times
at a similar runtime.

Figure 5.5 shows another approach of splitting the jobs into 30-minute timeframes
and creating a box plot for that. This approach takes away the extreme outliers of the
runtimes, with the boxes representing everything between the upper and lower quartile.
As this figure shows, many jobs are started with no wait time, independently from their
runtime.

While the boxes do not paint as clear of a picture, like the bars in figure 5.3, there
still are some interesting findings. One interesting point of this figure is that it again
shows the walls of high wait times at every full hour. On the other hand, Every other
30-minute timeframe, which does not end on a full hour, has relatively low wait times.

30

0-30m 30-60m 60-90m 90-120m 120-150m 150-180m 180-210m 210-240m 240-270m 270-300m 300-330m 330-360m
Elapsed

0

50

100

150

200

W
ai

t T
im

e
[m

]

Figure 5.5: Wait Times Box Graph For All Jobs

Another analysis was on the effect of the number of nodes on the wait time, but this
was not as telling due to the difference in runtimes. For example, the single-node jobs
had an average wait time of nearly 34 minutes, while the dual-node jobs only had about
2.5 minutes. This difference is probably caused by many dual-node jobs being much
shorter as their total node hours are much less than the node hours of the single-node
jobs.

The 16-node jobs are another excellent example of this, with an average wait time of
nearly four hours. Many of the earlier mentioned jobs with high wait times and runtimes
of 3-4 hours were also 16 node jobs, which helped to give the 16-node jobs such a high
average wait time. This high average is caused by the high wait times of these specific
jobs, as wait times of up to 12.5 days raise the average significantly.

NNodes 1 2 4 8 16 32
Jobs 3,784,716 2,622,661 133,911 55,755 40,829 2,948

Average Wait Time 0:34 h 0:03 h 0:14 h 0:11 h 3:53 h 0:14 h

Table 5.6: Wait times for some specific node amounts

31

To show this effect, table 5.6 shows the average wait times for the job configurations
using powers of 2, up to 32 nodes, as these numbers are pretty standard job sizes. As
the wait times show, the 16-node jobs are the only of these jobs to have a wait time of
more than an hour, with it even being close to four hours.

5.4.2 Single-Node Jobs
The same analysations were also done with only the single-node jobs, as these seem to
be an exciting job class for outsourcing to the cloud. While the bar graph in figure 5.6 is
not that dissimilar to the one using all jobs, there are some interesting differences. First,
it seems that the plateau of the 3+ hour wait times already starts after 30 minutes, not
only after 60 minutes. Secondly, the spike for the 3-to-4-hour jobs is gone in this graph,
as expected after the earlier analysis. Finally, the graph also shows some fluctuations for
the longer runtimes, but with values between 2 and 3.5 hours.

<
5

m

5-
10

 m

10
-3

0
m

30
-6

0
m

1-
2

h

2-
3

h

3-
4

h

4-
5

h

5-
6

h

>
6

h

Job Length

0

25

50

75

100

125

150

175

200
Wait Time [m]

Figure 5.6: Average Wait Times For Single-Node Jobs

On the other hand, the scatter plot in figure 5.7 looks vastly different than before,
with most of the extreme outliers gone, as they were all caused by the difficulty of
scheduling jobs with more nodes. The scatter plot also shows why the 5-to-6-hour jobs
in the previous bar graph had a lower average wait time, as there are not many jobs in
that runtime range and no more prominent outliers.

32

The number of jobs at every complete hour is also much less than with all jobs, except
for the three- and eight-hour marks, where it seems to be that more jobs were run at
these runtimes. Also, there seem to be some horizontal ”lines” at about 900 and 1500
minutes, so it seems the scheduler prefers jobs that are waiting for a longer time.

Figure 5.7: Wait Times Scatter Plot For Single-Node Jobs

33

6 Job-specific Cases
This chapter will feature a deeper dive into specific job cases using Mistral’s job data
and how it is possible to transfer them to the cloud. While not all claims will be proven
directly in this chapter, some will be shown in chapter 7 in further detail.

6.1 Single-Node Jobs
As the previous analysis of the job data in section 5.3 shows, many single-node jobs do
not utilise the full nodes. Sometimes, there is a good reason for the jobs to run on full
nodes to utilise each node’s 64 GiB of memory. However, in other times, it can also be
the missing knowledge that a four-core job is not running faster on an exclusive node
than on a shared node with four reserved cores.

This assumption was also confirmed by talking with the systems department, saying
that sometimes non-parallelised Python scripts are run on exclusive nodes. On the other
hand, the systems department also said there are single-node jobs, which benefit the
scheduler, as it can use the single-node jobs with shorter runtimes to fill gaps. Jobs often
create these gaps in the scheduling with high node counts where the scheduler keeps
some nodes free until enough nodes are reserved. For example, if more nodes will only
be available in 25 minutes, and there is a single-node job with a 20-minute time limit,
the scheduler can then run the short job on a node reserved for the large job.

Also, as the wait times showed, the longer single-node jobs have much higher wait
times. That means that the users running these jobs would also profit from outsourcing
them to the cloud, reducing the wait times. These longer single-node jobs also create
more problems for the scheduler, as the schedule rarely has gaps large enough for these
kinds of jobs.

As section 5.2 showed, these longer single-node jobs make up about two-thirds of the
total single-node hours. Therefore, these jobs are the first contenders to get outsourced
into the cloud, providing many options for these jobs. These options include various
CPU core and memory combinations, with nodes available that provide only four cores
with 64 GiB of memory. These high memory options in the cloud are not as expensive
due to the low core count, so even the jobs, which are not on the ’shared’ partition due
to memory constraints, could run more efficiently in the cloud.

Another aspect of why single-node jobs are well suited for the cloud is because they
are not as dependent on the network as multi-node jobs. While the cloud services all
provide specific compute nodes with good network connections, they provide a much
larger number of instances without the dependency on a high-speed network.

34

6.2 Dual-Node Jobs
Dual-node jobs are still similar to single-node jobs, except they need good network
bandwidth to run jobs parallel. So with about 50 GBit/s of network or better on
the cloud nodes, the cloud nodes could still provide a value for dual-node jobs. This
constraint reduces the number of different cloud nodes usable for this purpose, but the
cloud services still have a good amount of nodes with a better network.

Additionally, the jobs that run on two nodes typically also utilise full nodes and are
required by the scheduler to reserve full nodes. This kind of utilisation also means that
there will be no real option to go to smaller nodes to replace these jobs in the cloud.
Instead, the cloud nodes have to be similar to Mistral’s nodes with somewhere in the
range of about 30 cores and 64 GiB of RAM.

While the full utilisation also further reduces the number of different cloud nodes
usable, there are still several options with the cloud services. With the availability of
on-demand instances being great but expensive, the availability should be good enough,
even with spot instances. Without the spot instances, the dual-node jobs probably would
not be that profitable in the cloud compared to an on-premise cluster, but with them, it
might be an option to put them in the cloud.

While, in the case of Mistral, the node hours of dual-node hours are pretty low, for
a general analysis, these jobs still are an exciting aspect. Compared to the on-premise
system, profitability will probably not be as good as with single-node jobs because
single-node jobs can use substantial price reductions when using smaller nodes with fewer
cores.

6.3 Multi-Node Jobs
As dual-node jobs already provide fewer options than single-node ones, the more nodes a
job requires, the more challenging it gets to run these jobs cheaper than the on-premise
cluster. One aspect causing this are the high node requirements like good network
bandwidth available for the specific nodes. Like with the dual-node jobs, 50 GBit/s
network bandwidth would be required, with higher network options like 100 or 200
GBit/s being a nice addition, as offered on some larger cloud nodes.

Another problem with these jobs is the availability of instances. With on-demand
instances, the availability for such a job would be no problem, but the costs would be
a lot higher than with the on-premise cluster. The cost would be significantly lower
with reserved instances, but the lack of flexibility would require putting most of the
jobs to the cloud to ensure high node usage for the entire reservation time. Both of
these instance types were already looked at before in chapter 4, which concluded that an
on-premise cluster would be more profitable.

35

So after this, only spot instances remain, just like they were already the choice for
the earlier use cases. However, these spot instances also have a problem. To run, for
example, a 100-node job on AWS, 100 nodes of the exact specification will be needed,
and these also have to be in the same availability zone. This constraint is due to the
connection of the nodes, which is required to distribute them between several nodes. As
already mentioned, this requires a great network, and this network is only available in
the local network, so these spot instances have to be in the same availability zone.

So if for this job suddenly 100 nodes in the same availability zone and at least 32 cores
have to be found, the probability of one or more of these nodes being evicted would be
quite high. Nevertheless, to get to this point, it would not be sure that 100 nodes of one
kind would even be available at that specific time to start the job. Moreover, even if
the 100 spot instances can be found, there would be many insecurities if the job would
run successfully without single nodes being evicted. So as this makes spot instances also
not an option for these jobs, it seems that general outsourcing of large jobs to the cloud
might not be a good option.

6.4 Specific Nodes
While the general outsourcing of the larger jobs is no option, this is not necessarily
the case for every job. With an on-premise system like Mistral, the nodes which are
purchased stay in most cases the same for five years at least. In this amount of time, the
types of jobs can change, and these new jobs could utilise some other hardware better
than the current hardware in the cluster.

In the example of Mistral, the nodes are nearly exclusively using just Intel CPUs of
the Haswell and Broadwell generations. These nodes were purchased for a runtime of six
years, and if then after four years a user has a new application that is well optimised
for GPUs, the user has to run it much slower on CPUs. Also, there might be another
application that is able to utilise the AVX-512 instruction set, which is not supported by
the Haswell and Broadwell architectures.

These are just a few examples of other architectures that would be able to improve the
runtimes of specific jobs. Architectures using one or multiple GPUs, or CPUs with AVX-
512, are available with all major cloud providers, so these might be an option. Another
example might be ARM architectures, with the newest AWS compute generations also
providing ARM CPUs.

While these instances using other hardware might be much more expensive than the
nodes on the on-premise cluster, they could also provide much better runtimes, with
GPU optimised applications often running multiple times faster on GPUs than on CPUs.
If such a case would occur with an existing HPC system, in many cases, adjustments to
the hardware can only be made with the next iteration of the cluster, where the whole
cluster gets replaced.

36

With Mistral, the nodes were purchased in 2015, so as they would be replaced soon,
this would not be a big problem currently. However, suppose this new architecture
requirement of an application comes up one or two years after purchasing a cluster. In
that case, there might be the possibility that this specific application has to run on
non-optimised hardware for three or four years.

While this use case could be a valid reason to plan with at least some cloud capacity,
it is not easy to use it for a cost function. There is no specific value to put on the
architecture choice because it depends on the applications a cluster is running and how
often these applications change. Also, it is impossible to predict if the users suddenly
need such specific hardware for their applications in many cases, so it is not easy to plan
for this. Because of these difficulties, this use case will also not be a part of the cost
function. However, it remains a valid reason for a cluster owner to decide, at least with
partial cloud usage, to provide more flexibility with the hardware.

37

7 Cost Function
This chapter will establish the costs of Mistral’s nodes and formalise a cost function to
determine how the cloud can be utilised optimally for HPC systems.

7.1 Mistral Node Costs
First, it has to be established what the cost of a single node hour on Mistral is to compare
the job costs against the costs in the cloud. Mistral was built for use over six years, so
the purchase costs of about 35 million euros need to be distributed over these six years.
Additional to these purchase costs come the costs of running the cluster. The financial
statements of the German Climate Computing Center have to be public, so they can be
used to extract an approximation of the running costs. The newest financial report is
from 2019 at the ”Bundesanzeiger”, and with the following report not available until
early 2022, this will be the basis for the running costs.

The power consumption is the first and also largest aspect of the running costs, with
the energy and water costs being nearly 1.8 million euros in 2019 [Gmb21]. Of course,
the offices also cause some energy and water consumption, but it would be safe to assume
that about 1.5 million euros per year are the cluster’s energy costs. Another considerable
aspect of the running costs is the rent for the building, with Mistral taking up about
1.5 of the building’s five floors just for the cluster. With the yearly rent of 848,000
euros, about 250,000 euros can be taken as the rent just for Mistral using these floor
counts [Gmb21].

The last aspect is the personnel costs for running the cluster, with fewer people
required to maintain the hardware if the hardware is outsourced to the cloud. With
Mistral, on the other hand, their systems department only sets up infrastructure like the
scheduler, but that would be required in the cloud as well. The hardware is maintained
by staff from Bull, as Bull also built Mistral. So while this working group would be fully
required in the cloud as well in Mistral’s case, this value will remain in the function, as
in other cases where the cluster is maintained by its own staff, it could be relevant.

In total, these costs add up to a cluster cost of about 7.6 million euros per year:
serverCost/years + powerCost + rent + personnelCost
= 35, 000, 000e/6 + 1, 500, 000e+ 250, 000e+ 0e
≈ 7, 600, 000e

38

Dividing by the number of servers, days in a year, and hours of a day, the result is
the node cost per hour of a single Mistral node, ready for comparison with the cloud:
(yearlyClusterCost/(days · hours))/nodeNumber
= (7, 600, 000e/(365.25 · 24))/3, 300
≈ 0.263e

7.2 Single-Node Function
As established before, single-node jobs are the best fit for outsourcing jobs to cloud
services. These jobs will either run as an on-demand instance to guarantee the job does
not get cancelled or on spot instances to significantly reduce costs. While the on-demand
instances are relatively expensive, they can still be cost-effective, especially for jobs with
a lower core count.

To compare against the previously established cost of a Mistral node, for each cloud
service, some fitting nodes for the different number of threads/vCPUs have to be selected.
Additionally, each of these instances will also need an alternative with 64 GiB of RAM,
as some of the jobs run on full nodes to utilise more memory.

On the side of Mistral, the cost function will require not only the costs of a node hour
but also some job data. The other two relevant aspects are the number of node hours for
each core count and the percentage of jobs with high memory usage. As the typical core
counts for the cloud instances are 4, 8 and 16, the number of node hours will be split at
these core counts, with the jobs with more cores going to a node that represents a full
Mistral node. Also, only one hour or longer jobs will be considered, with jobs shorter
than one hour not considered as the scheduler can profit from these jobs.

These job statistics were already discussed before, but the job data will only be looked
at for 1-4 threads, 5-8 threads, 9-16 threads and 17+ threads. Table 7.1 shows a quick
overview of the number of jobs for each number of threads and node hours which will be
used as the values for the cost function.

NCPUs Jobs Node Hours
1-4 Cores 33,382 129,538
5-8 Cores 3,773 10,434
9-16 Cores 9,622 20,266
17+ Cores 59,853 317,434

Table 7.1: Job statistics for long single-node jobs

39

For the cost functions, the following variables are relevant:
tnode4c: Number of 1-4 core node hours
tnode8c: Number of 5-8 core node hours
tnode16c: Number of 9-16 core node hours
tnodeBig: Number of 17+ core node hours
ccluster: Cluster cost per node and hour
ccloud4c: Cloud cost per 4-core node and hour
ccloud8c: Cloud cost per 8-core node and hour
ccloud16c: Cloud cost per 16-core node and hour
ccloudBig: Cloud cost per full node and hour
pmem: Percentage of jobs using the full memory
ccloud4cMem: Cloud cost per 4-core node with 64GB RAM and hour
ccloud8cMem: Cloud cost per 8-core node with 64GB RAM and hour
ccloud16cMem: Cloud cost per 16-core node with 64GB RAM and hour

The following definition of the cost difference between the cloud and the cluster can
be created using these variables:
cdiff4c = ((1 − pmem) · tnode4c · (ccluster − ccloud4c)) + (pmem · tnode4c · (ccluster − ccloud4cMem))
cdiff8c = ((1 − pmem) · tnode8c · (ccluster − ccloud8c)) + (pmem · tnode8c · (ccluster − ccloud8cMem))
cdiff16c = ((1−pmem) ·tnode16c ·(ccluster −ccloud16c))+(pmem ·tnode16c ·(ccluster −ccloud16cMem))
cdiffBig = tnodeBig · (ccluster − ccloudBig)

The cost differences from these functions have to be > 0. Otherwise, the selected
cloud nodes are more expensive than the cluster and jobs of this size should be excluded.
The cost differences that are > 0 can then be added up to receive the total cost that
could be saved by running these specific jobs in the cloud.

Some of the values used for the functions are already set for the calculations using
Mistral’s data which will be used in the following parts:
tnode4c = 129, 538
tnode8c = 10, 434
tnode16c = 20, 266
tnodeBig = 317, 434
ccluster = 0.263e

7.2.1 On-Demand Instances
For the on-demand instances, table 7.2 shows the different nodes and their prices selected
for the different cloud providers. The prices of these nodes will again be taken from the
same data centres used for the calculations in chapter 4. Additionally, nodes for general
computing are avoided, as HPC nodes typically have the highest and best comparable
performance. The only exception to this is Azure, with them only offering HPC nodes
without hyperthreading starting at eight cores.

40

As their HPC instances would give them a huge disadvantage for the lower core counts
and with Azure also providing benchmarks for their other compute nodes, showing
comparable performance to their HPC nodes [Azuc], these nodes will be allowed too.
What also sets the Azure HPC nodes apart from their other compute nodes is the
Infiniband network, which is not needed for single-node jobs. For AWS and Google
Cloud, this exception would not make a significant difference as their HPC nodes with a
low number of vCPUs already have competitive pricing.

AWS Azure Google Cloud
4 Core c5a.xlarge(0.15€) D4 v4(0.19€) c2-standard-4(0.20€)

4 Core/High RAM r5a.2xlarge(0.47€) E8a v4(0.51€) c2 Custom(4C/64GB)(0.40€)
8 Core c5a.2xlarge(0.30€) D8 v4(0.39€) c2-standard-8(0.39€)

8 Core/High RAM r5a.2xlarge(0.47€) E8a v4(0.51€) c2 Custom(8C/64GB)(0.53€)
16 Core c5a.4xlarge(0.59€) D16 v4(0.78€) c2-standard-16(0.78€)

16 Core/High RAM r5a.4xlarge(0.93€) D16 v4(0.78€) c2-standard-16(0.78€)
Full Node c5a.16xlarge(2.38€) HB60rs(2.50€) c2-standard-60(2.94€)

Table 7.2: Cloud on-demand configurations for single-node jobs

There is an option for jobs on Google Cloud to create a custom configuration for the
”c2-standard” instances. These custom configurations were used for the 4- and 8-core
jobs using 64 GiB of RAM to create cheaper configurations with few CPU cores but
much memory.

These values can then be substituted in the previously created cost difference functions.
The only remaining value is then pmem, and for the calculations, 20% will be used as an
estimate of how many low-thread single-node jobs require the entire memory. For AWS
these substitutions result in the following functions:

cdiff4c = ((1 − 0.2) · 129, 538 · (0.263e− 0.15e)) + (0.2 · 129, 538 · (0.263e− 0.47e)
≈ 6, 350e

cdiff8c = ((1 − 0.2) · 10, 434 · (0.263e− 0.30e)) + (0.2 · 10, 434 · (0.263e− 0.47e)
≈ −740e

cdiff16c = ((1 − 0.2) · 20, 266 · (0.263e− 0.59e)) + (0.2 · 20, 266 · (0.263e− 0.93e))
≈ −8, 000e

cdiffBig = 317, 434 · (0.263e− 2.38e)
≈ −672, 000e

Although these results show a potential cost saving of more than 6,000€ with the
4-core instances, these savings can quickly be eaten up by the work needed to set up
the scheduler for the cloud system. The cost savings could also be slightly higher if the
4-core high memory jobs remained on the cluster, as these jobs are more expensive on
AWS than on Mistral. For every job larger than that, the AWS on-demand instances are
more expensive than the cluster, so this does not seem to be the best way of outsourcing.

41

Azure then shows a slightly worse image, with the cost savings for 4-core jobs being
even smaller, while the larger jobs are slightly more expensive than with AWS:

cdiff4c = ((1 − 0.2) · 129, 538 · (0.263e− 0.19e)) + (0.2 · 129, 538 · (0.263e− 0.51e)
≈ 1, 170e

cdiff8c = ((1 − 0.2) · 10, 434 · (0.263e− 0.39e)) + (0.2 · 10, 434 · (0.263e− 0.51e)
≈ −1, 580e

cdiff16c = ((1 − 0.2) · 20, 266 · (0.263e− 0.78e)) + (0.2 · 20, 266 · (0.263e− 0.78e))
≈ −10, 480e

cdiffBig = 317, 434 · (0.263e− 2.50e)
≈ −710, 100e

With Google Cloud, the image is also quite similar, with the 4-core instances being a
bit cheaper than with Azure, but not with a significant amount:

cdiff4c = ((1 − 0.2) · 129, 538 · (0.263e− 0.20e)) + (0.2 · 129, 538 · (0.263e− 0.40e)
≈ 2, 980e

cdiff8c = ((1 − 0.2) · 10, 434 · (0.263e− 0.39e)) + (0.2 · 10, 434 · (0.263e− 0.53e)
≈ −1, 620e

cdiff16c = ((1 − 0.2) · 20, 266 · (0.263e− 0.78e)) + (0.2 · 20, 266 · (0.263e− 0.78e))
≈ −10, 480e

cdiffBig = 317, 434 · (0.263e− 2.94e)
≈ −849, 770e

Of course, these calculations, like in chapter 4, assume the requirement of running
the jobs in the EU to have the data secure from the US authorities. If the location of
the nodes is not relevant, it is possible to choose the cheapest location for each cloud
provider. This location change results in the prices mentioned in table 7.3 using the
server locations Ohio for AWS, East US for Azure and Iowa for Google Cloud.

AWS Azure Google Cloud
4 Core c5a.xlarge(0.13€) D4 v4(0.16€) c2-standard-4(0.18€)

4 Core/High RAM r5a.2xlarge(0.39€) E8a v4(0.43€) c2 Custom(4C/64GB)(0.37€)
8 Core c5a.2xlarge(0.26€) D8 v4(0.32€) c2-standard-8(0.36€)

8 Core/High RAM r5a.2xlarge(0.39€) E8a v4(0.43€) c2 Custom(8C/64GB)(0.48€)
16 Core c5a.4xlarge(0.53€) D16 v4(0.65€) c2-standard-16(0.71€)

16 Core/High RAM r5a.4xlarge(0.77€) D16 v4(0.65€) c2-standard-16(0.71€)
Full Node c5a.16xlarge(2.11€) HB60rs(1.92€) c2-standard-60(2.68€)

Table 7.3: Cheapest cloud on-demand configurations for single-node jobs

42

With these values, the following calculations show how the price differences improved:
1. AWS

cdiff4c = ((1 − 0.2) · 129, 538 · (0.263e− 0.13e)) + (0.2 · 129, 538 · (0.263e− 0.39e)
≈ 10, 490e

cdiff8c = ((1 − 0.2) · 10, 434 · (0.263e− 0.26e)) + (0.2 · 10, 434 · (0.263e− 0.39e)
≈ −240e

cdiff16c = ((1 − 0.2) · 20, 266 · (0.263e− 0.53e)) + (0.2 · 20, 266 · (0.263e− 0.77e))
≈ −6, 380e

cdiffBig = 317, 434 · (0.263e− 2.11e)
≈ −586, 300e

2. Azure

cdiff4c = ((1 − 0.2) · 129, 538 · (0.263e− 0.16e)) + (0.2 · 129, 538 · (0.263e− 0.43e)
≈ 6, 350e

cdiff8c = ((1 − 0.2) · 10, 434 · (0.263e− 0.32e)) + (0.2 · 10, 434 · (0.263e− 0.43e)
≈ −820e

cdiff16c = ((1 − 0.2) · 20, 266 · (0.263e− 0.65e)) + (0.2 · 20, 266 · (0.263e− 0.65e))
≈ −7, 840e

cdiffBig = 317, 434 · (0.263e− 1.92e)
≈ −525, 990e

3. Google Cloud

cdiff4c = ((1 − 0.2) · 129, 538 · (0.263e− 0.18e)) + (0.2 · 129, 538 · (0.263e− 0.37e)
≈ 5, 830e

cdiff8c = ((1 − 0.2) · 10, 434 · (0.263e− 0.36e)) + (0.2 · 10, 434 · (0.263e− 0.48e)
≈ −1, 260e

cdiff16c = ((1 − 0.2) · 20, 266 · (0.263e− 0.71e)) + (0.2 · 20, 266 · (0.263e− 0.71e))
≈ −9, 060e

cdiffBig = 317, 434 · (0.263e− 2.68e)
≈ −767, 240e

For all of these instances, the value is significantly better than with the European
instances. However, despite these improvements, with none of the cloud providers, the
8-core instances get to a point where they are cheaper than Mistral too. While the 8-core
instances on AWS are very close to the break-even point and Azure is not far behind,
too, Mistral is still slightly cheaper.

43

7.2.2 Spot Instances
As the on-demand instances already can be more cost-effective than the cluster for
low-core configurations, this can only be improved by using spot instances. While the
risk of job eviction remains with these instances, there are several options to reduce this
risk. The first option is to outsource just the jobs that provide checkpointing and can
create a checkpoint when they receive an eviction notice from the cloud provider.

This option does limit the number of jobs that can be put on the cloud system, so it
would be even better to reduce the risk of eviction as much as possible. So this leads to
the second option, which is not to select a fixed instance at a specific location but to
provide a list of eligible instances and locations. For example, it would be possible with
AWS to select the different 8-core HPC instances on all European locations as eligible
nodes. The AWS spot scheduler would then look for the node with the best availability,
which also means it has the lowest chance of being evicted. Leaving this to the AWS
scheduler can raise the price a bit, as the cheapest spot instance does not necessarily
have the best availability, but the chance of the job being evicted would be very low.

The cheapest and the most expensive data centre for spot instances will then be taken
from all European data centres to represent the range in prices from the cloud. These
can then be used to select an average price, roughly representing the average price of the
nodes the cloud scheduler will select from the list of eligible nodes. For AWS, Stockholm
is the cheapest location, and Dublin is the most expensive location with roughly a 20 per
cent price difference. As Frankfurt is roughly in the middle of the prices of the European
locations, it will be used for the analysis.

For Azure, only West Europe has all of the selected nodes, so this will be the selected
location for the European costs. With Google Cloud, there are three European servers
with HPC spot instances. As Belgium is the cheapest location and London is the most
expensive location, the prices in the Netherlands will be taken, although they are only
marginally higher than in Belgium.

This results in the following selection of nodes for EU nodes using the servers:

AWS Azure Google Cloud
4 Core c5ad.xlarge(0.06€) D4 v4(0.04€) c2-standard-4(0.05€)

4 Core/High RAM r5n.2xlarge(0.14€) E8a v4(0.11€) c2 Custom(4C/64GB)(0.10€)
8 Core c5d.2xlarge(0.11€) D8 v4(0.08€) c2-standard-8(0.10€)

8 Core/High RAM r5n.2xlarge(0.14€) E8a v4(0.11€) c2 Custom(8C/64GB)(0.13€)
16 Core c5.4xlarge(0.23€) D16 v4(0.16€) c2-standard-16(0.19€)

16 Core/High RAM r5dn.4xlarge(0.25€) D16 v4(0.16€) c2-standard-16(0.19€)
Full Node c5a.16xlarge(0.92€) HB60rs(0.53€) c2-standard-60(0.72€)

Table 7.4: Cloud spot configurations for single-node jobs

44

These instances have a pretty significant discount compared to the on-demand instances,
so even some of the 16-core nodes are cheaper than a Mistral node. When putting these
values into the cost functions, again with 20% high memory jobs, the result looks as
follows.

1. AWS

cdiff4c = ((1 − 0.2) · 129, 538 · (0.263e− 0.06e)) + (0.2 · 129, 538 · (0.263e− 0.14e)
≈ 24, 220e

cdiff8c = ((1 − 0.2) · 10, 434 · (0.263e− 0.11e)) + (0.2 · 10, 434 · (0.263e− 0.14e)
≈ 1, 530e

cdiff16c = ((1 − 0.2) · 20, 266 · (0.263e− 0.23e)) + (0.2 · 20, 266 · (0.263e− 0.25e))
≈ 590e

cdiffBig = 317, 434 · (0.263e− 0.92e)
≈ −208, 550e

2. Azure

cdiff4c = ((1 − 0.2) · 129, 538 · (0.263e− 0.04e)) + (0.2 · 129, 538 · (0.263e− 0.11e)
≈ 27, 070e

cdiff8c = ((1 − 0.2) · 10, 434 · (0.263e− 0.08e)) + (0.2 · 10, 434 · (0.263e− 0.11e)
≈ 1, 850e

cdiff16c = ((1 − 0.2) · 20, 266 · (0.263e− 0.16e)) + (0.2 · 20, 266 · (0.263e− 0.16e))
≈ 2, 090e

cdiffBig = 317, 434 · (0.263e− 0.53e)
≈ −84, 750e

3. Google Cloud

cdiff4c = ((1 − 0.2) · 129, 538 · (0.263e− 0.05e)) + (0.2 · 129, 538 · (0.263e− 0.10e)
≈ 26, 300e

cdiff8c = ((1 − 0.2) · 10, 434 · (0.263e− 0.10e)) + (0.2 · 10, 434 · (0.263e− 0.13e)
≈ 1, 640e

cdiff16c = ((1 − 0.2) · 20, 266 · (0.263e− 0.19e)) + (0.2 · 20, 266 · (0.263e− 0.19e))
≈ 1, 480e

cdiffBig = 317, 434 · (0.263e− 0.72e)
≈ −145, 070e

45

Unlike the on-demand instances, using the spot instances, every cloud provider has
options with lower pricing than the on-site cluster. All cloud providers are also cheaper
for the 4-core instances, using spot instances, but for the 8- and 16-core instances too.
They also provide cost reductions of about 30,000€ per year using these spot instances,
which would make nearly 200,000€ for Mistral’s lifetime.

As these prices are also not the cheapest options available, these amounts of cost
reductions are pretty safe with spot instances, as there are also instances that might
be up to 10% cheaper. However, as before with the on-demand instances, there is the
option to run these instances globally and not only in Europe, which reduces the spot
prices even further. For this comparison, the cheapest spot instances which are available
will be taken to provide a best-case scenario of how large the savings can be using the
jobs of Mistral. Therefore, AWS will be represented by the Ohio data centre, Google
Cloud by the Iowa data centre, and Azure by a mix of ”West Central US” and ”East US”.
While the ”West Central US” data centre is cheaper for the D4 v4, D8 v4, D16 v4 and
E8a v4 nodes, it does not have larger nodes, so these have to be taken from ”East US”.

AWS Azure Google Cloud
4 Core c5.xlarge(0.03€) D4 v4(0.03€) c2-standard-4(0.04€)

4 Core/High RAM r5n.2xlarge(0.07€) E8a v4(0.08€) c2 Custom(4C/64GB)(0.09€)
8 Core c5d.2xlarge(0.07€) D8 v4(0.06€) c2-standard-8(0.09€)

8 Core/High RAM r5n.2xlarge(0.07€) E8a v4(0.08€) c2 Custom(8C/64GB)(0.12€)
16 Core c5.4xlarge(0.13€) D16 v4(0.12€) c2-standard-16(0.17€)

16 Core/High RAM r5a.4xlarge(0.14€) D16 v4(0.12€) c2-standard-16(0.17€)
Full Node c5a.16xlarge(0.53€) HB60rs(0.40€) c2-standard-60(0.65€)

Table 7.5: Cheapest cloud spot configurations for single-node jobs

The prices from 7.5 then result in the following calculations for the three cloud
providers:

1. AWS

cdiff4c = ((1 − 0.2) · 129, 538 · (0.263e− 0.03e)) + (0.2 · 129, 538 · (0.263e− 0.07e)
≈ 29, 150e

cdiff8c = ((1 − 0.2) · 10, 434 · (0.263e− 0.07e)) + (0.2 · 10, 434 · (0.263e− 0.07e)
≈ 2, 010e

cdiff16c = ((1 − 0.2) · 20, 266 · (0.263e− 0.13e)) + (0.2 · 20, 266 · (0.263e− 0.14e))
≈ 2, 650e

cdiffBig = 317, 434 · (0.263e− 0.53e)
≈ −84, 750e

46

2. Azure

cdiff4c = ((1 − 0.2) · 129, 538 · (0.263e− 0.03e)) + (0.2 · 129, 538 · (0.263e− 0.08e)
≈ 28, 890e

cdiff8c = ((1 − 0.2) · 10, 434 · (0.263e− 0.06e)) + (0.2 · 10, 434 · (0.263e− 0.08e)
≈ 2, 080e

cdiff16c = ((1 − 0.2) · 20, 266 · (0.263e− 0.12e)) + (0.2 · 20, 266 · (0.263e− 0.12e))
≈ 2, 900e

cdiffBig = 317, 434 · (0.263e− 0.40e)
≈ −43, 490e

3. Google Cloud

cdiff4c = ((1 − 0.2) · 129, 538 · (0.263e− 0.04e)) + (0.2 · 129, 538 · (0.263e− 0.09e)
≈ 27, 590e

cdiff8c = ((1 − 0.2) · 10, 434 · (0.263e− 0.09e)) + (0.2 · 10, 434 · (0.263e− 0.12e)
≈ 1, 740e

cdiff16c = ((1 − 0.2) · 20, 266 · (0.263e− 0.17e)) + (0.2 · 20, 266 · (0.263e− 0.17e))
≈ 1, 880e

cdiffBig = 317, 434 · (0.263e− 0.65e)
≈ −122, 850e

These calculations show a very similar amount of cost savings between AWS and
Azure, with both being about 33,000€ per year. While Google Cloud is slightly more
expensive, the about 30,000€ of cost savings would still result in nearly 200,000€ of
potential savings during Mistrals’ lifetime, with Azure and AWS saving 200,000€.

The number of nodes would have to be reduced with the purchase already to achieve
these cost savings. The total node hours of the nodes being outsourced must be divided
by the number of hours in a year to calculate how many nodes have to be purchased
less. As for all three cloud services, jobs up to 16 cores are more cost-effective in the
cloud. Therefore, the calculations do not have to be split up between the cloud providers.
Additionally, the calculations are also valid for the European servers, as the 16-core
jobs are cheaper there than on Mistral too. The results can are shown in the following
calculation:

NNodesoutsource = (tnode4c + tnode8c + tnode16c)/(days · hours)
= (129, 538 + 10, 434 + 20, 266)/(365.25 · 24)
≈ 18.3 nodes

47

So only about 18 nodes to outsource does not sound like much, but these nodes already
can make up cost savings of more than 200,000€ for the clusters lifespan. Another option
would be to keep the size of the cluster and get the cloud nodes as an addition to optimise
the clusters scheduling. This option, of course, would require the costs of the cloud nodes
not exceeding the cluster’s budget.

With Mistral only having a small number of 8- and 16-core jobs, it would be interesting
to look at a fictional job setup with more 8- and 16-core jobs. For this scenario, the
number of total single-node node hours will also be increased to provide data for a
fictional data centre that uses more single-node jobs. The calculations will be done with
200,000 4-core jobs, 100,000 8-core jobs, 100,000 16-core jobs, and 400,000 jobs using
complete nodes. The node setup will be assumed to be the same as with the Mistral
cluster, so also with costs of 0.263€ per node hour. This scenario results in the following
calculations using the cheapest cloud instances available:

1. AWS

cdiff4c = ((1 − 0.2) · 200, 000 · (0.263e− 0.03e)) + (0.2 · 200, 000 · (0.263e− 0.07e)
= 45, 000e

cdiff8c = ((1 − 0.2) · 100, 000 · (0.263e− 0.07e)) + (0.2 · 100, 000 · (0.263e− 0.07e)
= 19, 300e

cdiff16c = ((1 − 0.2) · 100, 000 · (0.263e− 0.13e)) + (0.2 · 100, 000 · (0.263e− 0.14e))
= 13, 100e

cdiffBig = 400, 000 · (0.263e− 0.53e)
= −106, 800e

2. Azure

cdiff4c = ((1 − 0.2) · 200, 000 · (0.263e− 0.03e)) + (0.2 · 200, 000 · (0.263e− 0.08e)
= 44, 600e

cdiff8c = ((1 − 0.2) · 100, 000 · (0.263e− 0.06e)) + (0.2 · 100, 000 · (0.263e− 0.08e)
= 19, 900e

cdiff16c = ((1 − 0.2) · 100, 000 · (0.263e− 0.12e)) + (0.2 · 100, 000 · (0.263e− 0.12e))
= 14, 300e

cdiffBig = 400, 000 · (0.263e− 0.40e)
= −54, 800e

48

3. Google Cloud

cdiff4c = ((1 − 0.2) · 200, 000 · (0.263e− 0.04e)) + (0.2 · 200, 000 · (0.263e− 0.09e)
= 42, 600e

cdiff8c = ((1 − 0.2) · 100, 000 · (0.263e− 0.09e)) + (0.2 · 100, 000 · (0.263e− 0.12e)
= 16, 700e

cdiff16c = ((1 − 0.2) · 100, 000 · (0.263e− 0.17e)) + (0.2 · 100, 000 · (0.263e− 0.17e))
= 9, 300e

cdiffBig = 400, 000 · (0.263e− 0.65e)
= −154, 800e

In this scenario, with cost savings between 68,000€ and 79,000€ per year, outsourcing
is quite a good option. With the cost savings upscaled to a 6-year lifespan, it would
be possible to save about 450,000€ in total with this setup of node hours. Looking at
Azure, even with outsourcing all of the longer single-node jobs, it would still be possible
to save money, despite the jobs using the full nodes being more expensive in the cloud.
When outsourcing all of these jobs on Azure, the cost savings would still be 24,000€ per
year, just slightly less than the actual job data from Mistral.

The calculation of the number of nodes that could be removed from the data centre
also changes with these new values. With the increased amount of node hours, the
following two calculations are for how many fewer nodes are required by outsourcing all
jobs up to 16-cores or just all single-node jobs.

1. Up to 16 cores:

NNodesoutsource = (tnode4c + tnode8c + tnode16c)/(days · hours)
= (200, 000 + 100, 000 + 100, 000)/(365.25 · 24)
≈ 45.6 nodes

2. All jobs:

NNodesoutsource = (tnode4c + tnode8c + tnode16c + tnodeBig)/(days · hours)
= (200, 000 + 100, 000 + 100, 000 + 400, 000)/(365.25 · 24)
≈ 91.3 nodes

With these amounts of nodes, they would make a much more significant impact on
the node setup of the cluster. By outsourcing all of these jobs, the size of Mistral could
be reduced by nearly 100 nodes, putting its total number of nodes to 3,200.

49

7.3 Dual-Node Function
For the dual-node function, the story is a bit different. With the dual-node jobs required
to allocate the full nodes, the replacement nodes also always have to replace the full
nodes. Additionally, the replacement nodes will need at least 50 GBit/s network, as the
jobs have to communicate between the two nodes.

The cost function then looks pretty similar to the cost function of the single-node
instances with full replacement nodes but with only one cost function. The variables
used, on the other hand, are much fewer and a bit different:
tdual: Number of node hours of dual-node jobs
ccluster: Cluster cost per node and hour
ccloud: Cloud cost per full node and hour

The resulting function then looks as follows:
cdiff = tdual · (ccluster − ccloud)

For the cluster costs, the 0.263€ per node hour still stand, and the node hours for
dual-node jobs were already established in table 5.2. Filling in these values, the function
looks as follows, with only the cloud costs missing:
cdiff = 165, 220 · (0.263e− ccloud)

For the cloud costs, the single-node calculations already showed that on-demand
instances are no option for full replacement nodes, as they are far more expensive than
Mistral’s nodes. While the spot instances were still more expensive, the spot pricing is
much closer to the costs of Mistral. Therefore the following instances will be taken for
spot instances in Europe and the US, using the same data centres as for the single-node
jobs:

AWS Azure Google Cloud
EU instances c5n.18xlarge(1.04€) HB60rs(0.53€) c2-standard-60(0.72€)
US instances c5n.18xlarge(0.59€) HB60rs(0.40€) c2-standard-60(0.65€)

Table 7.6: Cloud spot configurations for dual-node jobs

Except for the AWS instances, the same instances as with the single-node jobs are used.
For AWS, it was necessary to switch the nodes as the previously used ”c5a.16xlarge” nodes
only provide 20 GBit/s networking. The ”c5n” family of nodes has to be used to have
higher network bandwidths, with the ”c5n.18xlarge” nodes being the best comparable to
Mistral’s nodes.

When putting these values into the function, they result in the following cost differences.

50

1. AWS EU

cdiff = 165, 220 · (0.263e− 1.04e)
≈ −128, 400e

2. Azure EU

cdiff = 165, 220 · (0.263e− 0.53e)
≈ −44, 100e

3. Google Cloud EU

cdiff = 165, 220 · (0.263e− 0.72e)
≈ −75, 500e

4. AWS US

cdiff = 165, 220 · (0.263e− 0.59e)
≈ −54, 000e

5. Azure US

cdiff = 165, 220 · (0.263e− 0.40e)
≈ −22, 600e

6. Google Cloud US

cdiff = 165, 220 · (0.263e− 0.65e)
≈ −63, 900e

While AWS and Google Cloud are much more expensive than Mistral, at least with
the US instances of Azure, the cost difference is not as significant. Nevertheless, this
variant still is about 20,000€ more expensive per year than Mistral, which is why it
would not make sense to outsource these jobs to the cloud.

While this use case does not fit Mistral, it does not mean it has to be a bad value for
every cluster. With a cluster that has smaller or more expensive nodes, the differences
between the cloud costs and the cluster costs could quickly get much smaller. For example,
if a cluster has better nodes than Mistral with more than 100 cores per node, the cloud
costs would not be much higher, as Azure provides a cheap option. Currently, the
HB120rs v2 instance with 120 cores is only 0.47€ in ”North Central US”, and therefore
only 0.07€ more expensive than the instance used to compare to Mistral. So it is possible
to gain much performance for a slight price difference with some instances in the cloud,
while it might be possible that the cost difference of the better cluster nodes is more
than 0.07€.

51

With this specific HB120rs v2 instance, even Mistral’s dual-node jobs could be op-
timised further. As this instance has about 2-3 times the performance of the instance
used previously for the function [Azuc], it would be possible that this instance might be
able to run the dual-node jobs faster on a single node than Mistral on two nodes. The
memory would be no problem, too, as the HB120rs v2 instance has 456 GB of memory,
while Mistral’s nodes only have 64 GB.

So to use this instance for the cost function, the cost of the cloud node would have
to be divided by two to represent the requirement of one less node per job. This then
results in the following function:

cdiff = 165, 220 · (0.263e− 0.47e/2)
≈ 4, 600e

While this only brings a small cost saving of about 4,600€, it still shows the possibility
of a cost-saving even for dual-node jobs. The low number of node hours of the dual-node
jobs also makes the cost-saving pretty small. The cost-savings would be much more
significant with a higher number of node hours like with the single-node jobs.

So while the single-node jobs provide a more obvious way to optimise the costs
of Mistral, there is a way even to optimise the costs of dual-node jobs. While this
optimisation is not as simple, it might even provide some lower job complexity as only a
single node is required for the same job.

52

8 Summary, Conclusion And Future
Work

This chapter will summarise the thesis, and a conclusion of the results gained from this
thesis will be taken. Additionally, some discussion of possible future work will follow to
build upon the results of this thesis.

8.1 Summary
Cloud services are used more widely year after year and are also attempting to gain
momentum in the HPC space. This thesis used these cloud HPC offerings to analyse the
possibilities and profitability of HPC in the cloud.

As a start, the cloud services and the cluster were introduced, and some related
work was discussed. Chapter 4 then used a simple approach to compare a complete
replacement of an on-premise cluster with the cloud. While this approach showed a
direct comparison to the actual cluster, it quickly showed that this approach does not
lead to a recommendation of the cloud. Therefore, chapter 5 then moved on to look at
the type of jobs a specific cluster was running.

Using the collected data, the following chapter 6 then analysed the data further to
establish some specific job cases for a more complex cost function. As this showed that
only long single-node jobs and dual-node jobs are good use-cases for the cloud, these
job types were then taken for the cost functions. The cost functions were then finally
created and used in chapter 7 to create a better comparison to the cloud than with the
previous approach. Different cloud instances were also looked at for these cost functions,
as the cloud providers give cheaper options with some disadvantages.

8.2 Conclusion
As chapter 4 showed, replacing an entire cluster with a cloud system is far more expensive
than an own cluster. Even the storage of Mistral alone was more expensive in the cloud
for the six years lifetime than the total purchase cost of Mistral. Also, when considering
all of the running costs of Mistral, a complete replacement would still not be an option
as the only cloud instances, getting closer to the cost of Mistral, are spot instances that
are not practicable for an entire cluster.

53

The cost functions of chapter 7 then showed a vastly different image with only a
limited number of jobs considered. With these specific jobs, outsourcing to the cloud can
make much more sense, as some single- and even dual-node jobs provide a good chance
for cost-savings. For these jobs, the spot instances also make much more sense, and so
for the single-node jobs, it is possible to have significant cost reductions using the spot
instances.

What also showed with the dual-node jobs is that the outsourcing decision is also
very dependent on the cloud nodes that are selected as a replacement. While a simple
replacement of these jobs on Mistral using spot instances was more expensive than
keeping them on the cluster, it was more cost-effective to use vastly better nodes. With
nodes like on Mistral, this option might work quite well, as the 120-core cloud instances
could run even faster than the dual-node jobs on Mistral since there is no network
communication required.

All in all, outsourcing single- or dual-node jobs to the cloud can provide a good value
but is hugely dependent on the local cluster’s configuration and the requirements for the
cloud instances. With the requirement of European cloud servers, for example, the value
of the cloud is already slightly worse than with US servers being an option. So while the
cloud is not ready to replace a complete HPC cluster, it is an option for some specific
use cases, like single- and dual-node jobs, and is worth considering for those cases.

Another factor that was only mentioned briefly is the option to use the cloud for newer
or other CPU architectures, which can further improve the value of a cloud solution.
As the cloud providers constantly use new CPU generations for new instances, the jobs
could be run continuously on the newest hardware to reduce the execution times of the
applications. Also, the cloud providers have multiple different node architectures, which
could fit better for specific applications. These options can make a big difference in the
decision to use the cloud, but it is hard to put a number on that advantage as it is very
dependent on the type of jobs on the cluster.

Storage is also an essential factor with Mistral, but as chapter 4 showed, just pushing
all of the data into the cloud would not work profitably. The archive storage costs might
be lowered by using a progressively growing archive for the calculation instead of 200
PB from the start, as the archive is constantly growing. However, since the archive does
not start at 0 PB since the archive from the previous cluster does not simply get thrown
away, the cost saving of this change in the calculation would be pretty low. Additionally,
the archive only makes up the smaller amount of the costs, with the higher costs being
the HDD system. The HDD file system of Mistral has a much higher fluctuation in data
but is also pretty full most of the time, so there is not much potential for cost savings
when looking only at the used storage. So, all in all, even with these changes, cloud
storage can not compete with the storage costs of a local data centre like Mistral.

54

8.3 Future Work
With Mistral currently being replaced and the successor being available in December
2021, the same analysis should be done with the new cluster whenever enough data is
available. As this analysis was done with a whole year of data, this would mean waiting
at least until the end of 2022 to gain comparable data to Mistral. Mistral’s successor
is called ”Levante” and features much more modern hardware with two AMD EPYC
CPUs of the third generation per node [DKRa]. The nodes with standard memory also
feature four times the amount of Mistral’s nodes, with 256 GB, while nodes with 512
and 1024 GB are available too.

In total, this new cluster will feature 2,878 nodes, so slightly fewer nodes than Mistral,
but with every node featuring two 64-core AMD EPYC 7763 CPUs, these nodes have
vastly better performance. Sixty of these nodes also feature 4 NVIDIA A100 GPUs each
and 512 GB of memory, so nodes are available even for GPU-heavy and visualisation
tasks. Two thousand five hundred of the total nodes will be the standard nodes with 256
GB of memory, with 300 nodes with 512 GB and 18 nodes with 1024 GB of memory
remaining. The HDD file system and network are also being upgraded to 120 PB of
storage and 200 GBit/s, respectively.

The purchase costs of Levante are 32.5 million euros [DKRc], so using this and the
number of nodes, it is again possible to get the costs of a single node with the following
formulas using similar running costs to Mistral:

yearlyClusterCost = serverCost/years + powerCost + rent + personnelCost

= 32, 500, 000e/6 + 1, 500, 000e+ 250, 000e+ 0e
≈ 7, 200, 000e

nodeCost = (yearlyClusterCost/(days · hours))/nodeNumber

= (7, 200, 000e/(365.25 · 24))/2, 878
≈ 0.285e

With about 0.29€ per node hour, Levante is only marginally more expensive than
Mistral, with nodes that are several times faster, have four times the amount of memory,
and four times the network bandwidth. The CPUs themselves are even more than four
times faster, with Levante having a peak performance of 16 PetaFLOPS [DKRc], while
Mistral only has 3.59 PetaFLOPS featuring even more nodes. To replace these nodes
with cloud nodes, Azure provides pretty similar nodes, also using third-generation AMD
EPYC CPUs. While the Azure HBv3 nodes have the same architecture, 200 GBit/s
Infiniband, and 448 GB of memory, they only provide 120 instead of 128 cores, compared
to the Levante nodes.

While the hardware is comparable to the Levante nodes, even the cheapest spot
instances in ”East US” are four times as expensive with 1.21€ per node hour. So with
the full nodes being that much more expensive, currently, most likely, only the smaller
single-node jobs would be an option for outsourcing, but this would have to be analysed
further.

55

Another aspect of what can be further optimised in the cost function is representing the
performance of different nodes. Like already mentioned with the dual-node jobs earlier,
this could be used to have a smaller number of nodes replacing the original number of
nodes, like one faster node being used instead of two slower nodes. Also, with the same
node amount as the original job, a faster node could result in a shorter execution time,
therefore reducing the node hours and the cost. Additionally, a paper by the University
of Berkeley has proven that the cloud nodes can actually have better performance than a
cluster, depending on the application and the hardware [Gui+21]. They also concluded
that the large hardware variety and frequent upgrades to newer hardware are a significant
advantage of the cloud, so benchmarks of the specific applications would be even better
for comparison.

To represent this in the cost function, the original cluster’s nodes and all cloud nodes
would have to be benchmarked for comparison. The difference in performance would
then have to be multiplied by the number of node hours to represent the actual execution
times. The only difficulty with these benchmarks would be that every application
behaves differently with hardware differences. So while one application might perform
very similarly on the cloud node, another might perform much better. To mitigate this,
a mix of different benchmarks would have to be used, or the most used applications of
the cluster should be run as a benchmark for comparison.

Another issue with the current calculations of the cost function is that the 20% of high
memory jobs is only an estimate and was not analysed further. The current dataset used
for this thesis does not contain any information on memory usage, so an estimate had to
be chosen. So in a deeper analysis, the jobs would have to be analysed on how much
memory they are actually using to get a more accurate percentage of high memory jobs.

Storage also remains relevant, as the cloud instances also need the job data to be lying
in cloud storage to have access to them. While the storage is only needed for the job
duration, the data still has to be transferred to and from the cloud, which adds additional
costs that have to be calculated for a deeper analysis. The storage performance is also
not negligible, with Amazon S3 showing in benchmarks for HPC quite bad performance
compared to a Lustre file system [GK21]. While block storage performance in the cloud
might be better, this is another factor to be analysed further.

While the cost function for Mistral only looks at the theoretical cost savings and
not at the expenses needed to outsource the computing power, this is another essential
aspect that needs to be analysed. The job scheduler would then need to be extended
using a plugin or something similar to distribute the jobs between the cluster and the
cloud, as otherwise, the scheduler would have no way to use the cloud nodes. While this
might potentially be a one-time cost since once the scheduler is set up, it just needs to
be maintained, so in the long-term, the calculated cost savings might be more accurate.
However, to get to this point, there might be several things the staff has to learn about
the cloud systems to be able to utilise the cloud to its full potential.

56

Additionally, as only Mistral and a brief look on Levante have been done so far, the
cost function could also be used on the data of multiple different clusters to show how
the cloud would perform against many different workloads. With this thesis only using
the data of Mistral and one fictional scenario, other real scenarios might show even more
use-cases for cloud instances in HPC systems.

57

Bibliography
[Azua] Microsoft Azure. Azure Blob Storage. url: https://azure.microsoft.com/

de-de/services/storage/blobs/ (visited on 06/14/2021).
[Azub] Microsoft Azure. Azure Virtual Machines. url: https://azure.microsoft.

com/de-de/services/virtual-machines/ (visited on 06/14/2021).
[Azuc] Microsoft Azure. Compute benchmark scores for Linux VMs. url: https://

docs.microsoft.com/en-us/azure/virtual-machines/linux/compute-
benchmark-scores (visited on 10/03/2021).

[CHS11] Adam Carlyle, Stephen Harrell, and Preston Smith. “Cost-Effective HPC:
The Community or the Cloud?” In: Jan. 2011, pp. 169–176. doi: 10.1109/
CloudCom.2010.115.

[Cloa] Google Cloud. Cloud Storage. url: https://cloud.google.com/storage
(visited on 06/14/2021).

[Clob] Google Cloud. Compute Engine. url: https://cloud.google.com/compute
(visited on 06/14/2021).

[DKRa] DKRZ. Contract Signing Levante. url: https : / / doc . dkrz . de / doc /
levante/ (visited on 10/08/2021).

[DKRb] DKRZ. HLRE-3 "Mistral". url: https://www.dkrz.de/en/systems/hpc
(visited on 05/31/2021).

[DKRc] DKRZ. Introduction Levante. url: https://www.dkrz.de/pdfs/presse-
und- artikel/pm- offizielle- vertragsunterzeichnung- fur- hlre- 4
(visited on 10/08/2021).

[Geo+19] Gareth George et al. “Analyzing AWS Spot Instance Pricing”. In: 2019 IEEE
International Conference on Cloud Engineering (IC2E). 2019, pp. 222–228.
doi: 10.1109/IC2E.2019.00036.

[GK21] Frank Gadban and Julian Kunkel. “Analyzing the Performance of the S3
Object Storage API for HPC Workloads”. In: Applied Sciences 11 (Sept.
2021), p. 8540. doi: 10.3390/app11188540.

[Gmb21] Deutsches Klimarechenzentrum GmbH. “Jahresabschluss zum Geschäftsjahr
vom 01.01.2019 bis zum 31.12.2019”. In: Jan. 2021. url: https://www.
bundesanzeiger.de/.

58

https://azure.microsoft.com/de-de/services/storage/blobs/
https://azure.microsoft.com/de-de/services/storage/blobs/
https://azure.microsoft.com/de-de/services/virtual-machines/
https://azure.microsoft.com/de-de/services/virtual-machines/
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/compute-benchmark-scores
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/compute-benchmark-scores
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/compute-benchmark-scores
https://doi.org/10.1109/CloudCom.2010.115
https://doi.org/10.1109/CloudCom.2010.115
https://cloud.google.com/storage
https://cloud.google.com/compute
https://doc.dkrz.de/doc/levante/
https://doc.dkrz.de/doc/levante/
https://www.dkrz.de/en/systems/hpc
https://www.dkrz.de/pdfs/presse-und-artikel/pm-offizielle-vertragsunterzeichnung-fur-hlre-4
https://www.dkrz.de/pdfs/presse-und-artikel/pm-offizielle-vertragsunterzeichnung-fur-hlre-4
https://doi.org/10.1109/IC2E.2019.00036
https://doi.org/10.3390/app11188540
https://www.bundesanzeiger.de/
https://www.bundesanzeiger.de/

[Gui+21] Giulia Guidi et al. “10 Years Later: Cloud Computing is Closing the Perfor-
mance Gap”. In: Companion of the ACM/SPEC International Conference on
Performance Engineering. ICPE ’21. Virtual Event, France: Association for
Computing Machinery, 2021, pp. 41–48. isbn: 9781450383318. doi: 10.1145/
3447545.3451183. url: https://doi.org/10.1145/3447545.3451183.

[HAL14] Rashid Hassani, Md Aiatullah, and Peter Luksch. “Improving HPC Appli-
cation Performance in Public Cloud”. In: IERI Procedia 10 (Dec. 2014),
pp. 169–176. doi: 10.1016/j.ieri.2014.09.072.

[JLZ20] Qingye Jiang, Young Choon Lee, and Albert Y. Zomaya. “The Power of
ARM64 in Public Clouds”. In: 2020 20th IEEE/ACM International Sympo-
sium on Cluster, Cloud and Internet Computing (CCGRID). 2020, pp. 459–
468. doi: 10.1109/CCGrid49817.2020.00-47.

[pan] pandas. pandas - Python Data Analysis Library. url: https://pandas.
pydata.org/ (visited on 09/12/2021).

[PC] Caitlin Potratz Metcalf and Peter Church. U.S. CLOUD Act and GDPR –
Is the cloud still safe? url: https://www.linklaters.com/en/insights/
blogs/digilinks/2019/september/us-cloud-act-and-gdpr-is-the-
cloud-still-safe (visited on 09/24/2021).

[Rol+12] Eduardo Roloff et al. “High Performance Computing in the cloud: Deployment,
performance and cost efficiency”. In: Dec. 2012, pp. 371–378. isbn: 978-1-
4673-4511-8. doi: 10.1109/CloudCom.2012.6427549.

[Sera] Amazon Web Services. Amazon EC2. url: https://aws.amazon.com/de/
ec2/ (visited on 06/14/2021).

[Serb] Amazon Web Services. Amazon S3. url: https://aws.amazon.com/de/s3/
(visited on 06/14/2021).

[Serc] Amazon Web Services. AWS Graviton-Prozessor. url: https://aws.amazon.
com/de/ec2/graviton/ (visited on 10/04/2021).

[Serd] Amazon Web Services. EC2 spot instance rebalance recommendations. url:
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/rebalance-
recommendations.html (visited on 10/18/2021).

[Sere] Amazon Web Services. New Amazon EC2 Spot pricing model: Simplified pur-
chasing without bidding and fewer interruptions. url: https://aws.amazon.
com/de/blogs/compute/new- amazon- ec2- spot- pricing/ (visited on
09/17/2021).

[Sha+20] Leah Shalev et al. “A Cloud-Optimized Transport Protocol for Elastic and
Scalable HPC”. In: IEEE Micro 40.6 (2020), pp. 67–73. doi: 10.1109/MM.
2020.3016891.

[Smi+19] Preston Smith et al. “Community Clusters or the Cloud: Continuing cost
assessment of on-premises and cloud HPC in Higher Education”. In: July
2019, pp. 1–4. isbn: 978-1-4503-7227-5. doi: 10.1145/3332186.3333155.

59

https://doi.org/10.1145/3447545.3451183
https://doi.org/10.1145/3447545.3451183
https://doi.org/10.1145/3447545.3451183
https://doi.org/10.1016/j.ieri.2014.09.072
https://doi.org/10.1109/CCGrid49817.2020.00-47
https://pandas.pydata.org/
https://pandas.pydata.org/
https://www.linklaters.com/en/insights/blogs/digilinks/2019/september/us-cloud-act-and-gdpr-is-the-cloud-still-safe
https://www.linklaters.com/en/insights/blogs/digilinks/2019/september/us-cloud-act-and-gdpr-is-the-cloud-still-safe
https://www.linklaters.com/en/insights/blogs/digilinks/2019/september/us-cloud-act-and-gdpr-is-the-cloud-still-safe
https://doi.org/10.1109/CloudCom.2012.6427549
https://aws.amazon.com/de/ec2/
https://aws.amazon.com/de/ec2/
https://aws.amazon.com/de/s3/
https://aws.amazon.com/de/ec2/graviton/
https://aws.amazon.com/de/ec2/graviton/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/rebalance-recommendations.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/rebalance-recommendations.html
https://aws.amazon.com/de/blogs/compute/new-amazon-ec2-spot-pricing/
https://aws.amazon.com/de/blogs/compute/new-amazon-ec2-spot-pricing/
https://doi.org/10.1109/MM.2020.3016891
https://doi.org/10.1109/MM.2020.3016891
https://doi.org/10.1145/3332186.3333155

[Sta] Statista. Amazon Leads 130-Billion Cloud Market. url: https : / / www .
statista.com/chart/18819/worldwide- market- share- of- leading-
cloud-infrastructure-service-providers/ (visited on 06/14/2021).

[Wik] Wikipedia. CLOUD Act. url: https://de.wikipedia.org/wiki/CLOUD_
Act (visited on 09/24/2021).

[ZDN] ZDNet. Microsoft is designing its own Arm chips for datacenter servers: Re-
port. url: https://www.zdnet.com/article/microsoft-is-designing-
its - own - arm - chips - for - datacenter - servers - report/ (visited on
06/14/2021).

60

https://www.statista.com/chart/18819/worldwide-market-share-of-leading-cloud-infrastructure-service-providers/
https://www.statista.com/chart/18819/worldwide-market-share-of-leading-cloud-infrastructure-service-providers/
https://www.statista.com/chart/18819/worldwide-market-share-of-leading-cloud-infrastructure-service-providers/
https://de.wikipedia.org/wiki/CLOUD_Act
https://de.wikipedia.org/wiki/CLOUD_Act
https://www.zdnet.com/article/microsoft-is-designing-its-own-arm-chips-for-datacenter-servers-report/
https://www.zdnet.com/article/microsoft-is-designing-its-own-arm-chips-for-datacenter-servers-report/

Appendices

61

Abbreviations
AWS Amazon Web Services

CLOUD Act Clarifying Lawful Overseas Use of Data Act

CPU Central Processing Unit

EC2 AWS Elastic Compute Cloud

EFA Elastic Fabric Adapter

GDPR General Data Protection Regulation

HPC High Performance Computing

S3 AWS Simple Storage Service

62

List of Figures
5.1 Load Percentage per day in 2020 . 25
5.2 Load Percentage per weekday and month in 2020 25
5.3 Average Wait Times For All Jobs . 29
5.4 Wait Times Scatter Plot For All Jobs . 30
5.5 Wait Times Box Graph For All Jobs . 31
5.6 Average Wait Times For Single-Node Jobs 32
5.7 Wait Times Scatter Plot For Single-Node Jobs 33

63

List of Tables
4.1 Cloud nodes for replacement of the Haswell nodes 17
4.2 Cloud nodes for replacement of the Broadwell nodes 18
4.3 Node Cost with reserved and spot instances 19
4.4 Compute Cost with different pricing models 20
4.5 AWS Cost Comparison Frankfurt vs. Ohio 21
4.6 Storage Cost for Cloud Systems . 22

5.1 Number of jobs for each node count . 26
5.2 Node Hours per number of nodes . 26
5.3 Number of jobs for each thread count . 27
5.4 Node Hours for each thread count . 27
5.5 Job statistics for long single-node jobs 28
5.6 Wait times for some specific node amounts 31

7.1 Job statistics for long single-node jobs 39
7.2 Cloud on-demand configurations for single-node jobs 41
7.3 Cheapest cloud on-demand configurations for single-node jobs 42
7.4 Cloud spot configurations for single-node jobs 44
7.5 Cheapest cloud spot configurations for single-node jobs 46
7.6 Cloud spot configurations for dual-node jobs 50

64

Eidesstattliche Versicherung
Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit im Studiengang
Wirtschaftsinformatik selbstständig verfasst und keine anderen als die angegebenen
Hilfsmittel – insbesondere keine im Quellenverzeichnis nicht benannten Internet-Quellen –
benutzt habe. Alle Stellen, die wörtlich oder sinngemäß aus Veröffentlichungen entnommen
wurden, sind als solche kenntlich gemacht. Ich versichere weiterhin, dass ich die Arbeit
vorher nicht in einem anderen Prüfungsverfahren eingereicht habe und die eingereichte
schriftliche Fassung der auf dem elektronischen Speichermedium entspricht.

Ort, Datum Unterschrift

Veröffentlichung
Ich bin damit einverstanden, dass meine Arbeit in den Bestand der Bibliothek des
Fachbereichs Informatik eingestellt wird.

Ort, Datum Unterschrift

	Introduction
	Motivation
	Thesis Goals
	Thesis Outline

	Background
	HPC System
	Cloud Solutions
	AWS
	Azure
	Google Cloud
	Cloud Instances

	Related Work
	Cost Comparisons Between HPC Clusters And The Cloud
	Other Papers On HPC In The Cloud

	Cost Comparison
	Computing
	Data Security

	Storage

	Mistral's Job Data
	Node Utilisation
	Node Usage Per Job
	Single-Node Jobs
	Job Wait Times
	All Jobs
	Single-Node Jobs

	Job-specific Cases
	Single-Node Jobs
	Dual-Node Jobs
	Multi-Node Jobs
	Specific Nodes

	Cost Function
	Mistral Node Costs
	Single-Node Function
	On-Demand Instances
	Spot Instances

	Dual-Node Function

	Summary, Conclusion And Future Work
	Summary
	Conclusion
	Future Work

	Bibliography
	Appendices
	Abbreviations
	List of Figures
	List of Tables

