
Master Thesis

Modeling and Simulation of Tape
Libraries for Hierarchical Storage

Management Systems

Jakob Lüttgau
Matr-No: 6146922

supervised by
Dr. Julian Kunkel

Workgroup Scientific Computing
Department of Informatics

April 9, 2016

Abstract

The wide variety of storage technologies (SRAM, NVRAM, NAND, Disk,
Tape, etc.) results in deep storage hierarchies to be the only feasible choice
to meet performance and cost requirements when dealing with vast amounts of
data. In particular long term storage systems employed by scientific users are
mainly reliant on tape storage, as they are still the most cost-efficient option
even 40 years after their invention in the mid-seventies. Current archival sys-
tems are often loosely integrated into the remaining HPC storage infrastructure.
However, data analysis tasks require the integration into the scratch storage sys-
tems. With the rise of exascale systems and in situ analysis also burst buffers
are likely to require integration with the archive. Unfortunately, exploring new
strategies and developing open software for tape archive systems is a hurdle due
to the lack of affordable storage silos, the resulting lack of availability outside
of large organizations and due to increased wariness requirements when dealing
with ultra durable data. Eliminating some of these problems by providing vir-
tual storage silos should enable community-driven innovation, and enable site
operators to add features where they see fit while being able to verify strategies
before deploying on test or production systems. The thesis asseses moderns
tape systems and also puts their development over time into perspective. Sub-
sequently, different models for the individual components in tape systems are
developed. The models are then implemented in a prototype simulation using
discrete event simulation. It is shown that the simulation can be used to approx-
imate the behavior of tape systems deployed in the real world and to conduct
experiments without requiring a physical tape system.

Acknowledgements

I would like to thank my advisor Dr. Julian Kunkel and Wolfgang Stahl for
their time and the expierience they shared with me discussing the long-term
storage architecture of DKRZ.

Contents

1 Introduction 3
1.1 Motivation . 3
1.2 The Relevance of Tape in the Future 6
1.3 Simulating Tiered Storage Systems 9
1.4 Goals . 10
1.5 Thesis Outline . 11

2 Background 12
2.1 Magnetic Tape Storage . 12

2.1.1 Tape Data Layouts . 13
2.1.2 Resilience of Tape Storage 13
2.1.3 History . 14
2.1.4 Magnetic Tape Formats 15
2.1.5 Linear Tape Open (LTO) 15

2.2 Features of Modern Tape/Storage Systems 17
2.2.1 Write once read many (WORM) 17
2.2.2 Archive and Backup . 17
2.2.3 Self-describing tape formats 17
2.2.4 Data Reduction and Compression 17
2.2.5 Encryption . 17

2.3 Automated Library Complexes 18
2.4 Linear Tape File System (LTFS) 21
2.5 Hierarchical Storage Systems . 22

2.5.1 Virtual Tape Libraries (VTL) 22
2.5.2 High Performance Storage Systems (HPSS) 23

2.6 DKRZ Storage Archive . 24

3 Related Work 26
3.1 Physical and Hardware Improvements 26
3.2 Algorithmic Improvements . 26

3.2.1 Scheduling and Load-Balancing Algorithms 27
3.3 Improving Hierachical Storage Systems 28
3.4 Simulation and Modeling . 29
3.5 Performance Evaluation . 30

4 Modeling Hierarchical Storage Systems 32
4.1 Model Objectives . 32
4.2 Model Overview . 33

4.2.1 Data Path . 33
4.2.2 Key Components . 34

4.3 Request Types . 34
4.3.1 Reading . 35
4.3.2 Writing . 36

4.4 Hardware Components . 37

1

0.0 CONTENTS

4.4.1 Fault-Tolerance . 37
4.4.2 Tape and Tape Drives . 37
4.4.3 Tape-Seek- and Drive-Busy-Time Models 39

4.5 Modelling Library Topologies . 40
4.5.1 Robots . 41
4.5.2 Generic Library Models 41
4.5.3 StorageTek SL8500 . 44

4.6 Network Topology . 48
4.6.1 Communication . 48
4.6.2 Flow-based Model . 49
4.6.3 Packet-based Model . 50

4.7 Modelling Software Components 51
4.7.1 Stack . 51
4.7.2 File, Tape and Cache Management 52
4.7.3 Concurrency and Request Bundling 53

4.8 Drive Allocation and Robot Scheduling 54
4.9 Summary of the Model . 56

5 Implementation 58
5.1 Programming Language . 58
5.2 Architecture . 58

5.2.1 Classes for the Key Components 59
5.3 Discrete Event Simulator . 61
5.4 Workload Generation . 62
5.5 Configuration of a Simulation . 63

5.5.1 Experiments . 63
5.5.2 Graph based Network Topology from XML 63
5.5.3 Command-line Options 63

5.6 Reporting and Debugging . 65

6 Evalution 66
6.1 A month of PFTP activity . 66
6.2 Model Verification . 68

6.2.1 Comparison to DKRZ Monitoring 68
6.2.2 Virtual Setup . 71

6.3 Experiments . 72
6.3.1 Experiment Candidates 72
6.3.2 Experiment: Varying the Number of Tape Drives 72
6.3.3 Optimizing for Quality of Service 75

6.4 Performance of the Simulation 76

7 Conclusion 77
7.1 Summary . 77
7.2 Future Work . 79

2

Chapter 1

Introduction

This chapter gives an overview over the broader supercomputing landscape fol-
lowed by a more in-depth look into storage technologies and the demands by its
users. Section 1.1 also covers prospected usage scenarios in the near future.
In particular, it is focused on long-term storage technologies where tape storage
systems are todays dominant technology. Afterwards, a short discourse in Sec-
tion 1.2 rejects claims suggesting magnetic tape may be about to become obsolete
in the near future. Finally, the need for comprehensive models and tools to sim-
ulate hierarchical storage systems and tape libraries is motivated in Section 1.3.
Section 1.4 presents the goals of the thesis.

1.1 Motivation

High-performance computing (HPC) as we know it today mostly consists of clus-
ter computers (Top500, 2016). For the last couple of decades CPU performance
increased roughly every 18 months, this phenomena is commonly referred to as
Moore’s Law. Though while Moore’s Law is slowing considerably, dependent on
how we look at it, other areas such as network and storage technologies simply
did not enjoy comparable technological progress.

In fact, especially scientific workloads, which tend to be very data intensive,
have hit what is called the memory wall. While CPU speeds and disk capacity
both grew their fair share at about factor of 500 (Kunkel et al., 2014), CPUs
outperform memory technologies in terms of speed, thus making memory the
main bottleneck. Applications that are dominated by reading and writing a lot
of data from disks or transmitting a lot of data through a network are considered
I/O bound. Many scientific applications are I/O bound. To still provide long-
term storage technologies with adequate performance modern systems combine
the best properties of different storage technologies to meet quality of service
(QoS) requirements. Furthermore, new storage hierarchies are constantly added
such as Intel’s XPoint, a class of non-volatile random access memory (NVRAM),
resulting in ever more complexity. Storage demands for supercomputers grow
geometrically (Inman et al., 2014) with a growth rate of roughly three times the
clusters main memory per month. With capacities between 0.2 to 1.5 PB for
the leading 20 supercomputers, it won’t be long before the first exascale storage
systems are needed.

Most scientific projects operate on tight budgets and have to find a cost
efficient system. Multiple factors have to be considered, and while the hardware
for a supercomputer alone costs easily tens of million of Euros, operators usually
look at the total cost of ownership (TCO). TCO includes not only acquiring the
hardware but also accounts for energy, wear parts and sometimes staff required
to run the system. Notably, energy has become a relevant factor, as big data

3

1.1 1.1. MOTIVATION

centers approach limits imposed by the energy infrastructure.
The need to find a compromise of balancing cost and performance usually

results in considerably more complicated systems. Many different technologies
are mixed, which sometimes leads to unforeseen side effects. And complex
systems require more effort to optimize for better system exploitation. In fact,
often it is hard to decide what can be considered a good level of exploitation.
In general, we acknowledge the lack of experts in the field. While the systems
are expensive on their own, what is actually valuable is the insight we extract
from data generated on these systems. While sometimes such insight may be
very compact (a parameter, a formula) in many cases it is not and we want to
preserve the data for later use because calculations consumed time and money.
Incentives for long-term storage are manifold, but often relate to to one of the
following:

• Preservation of human knowledge

• Preservation of cultural goods (arts, literature, music, movies, etc.)

• Archival of organizational data (e.g., raw movie footage)

• Preservation of personal documents and photos

• Compliances with legal requirements

In science, preservation is especially important for scenario’s involving a lot
of uncertainty. A good example is the case of climate research where revisiting
the data in five, ten, twenty or fifty years is necessary, to evaluate how accurate
predictions have been. Data describing the state of the earth, thus earth system
data, intuitively will require to store a lot information. Predictions in earth
sciences become more accurate as we increase the resolution, but doubling the
resolution increases the amount of data by a factor of four (2D) to eight (3D).
Only recently resolutions for regional models of about 100m became feasible
(DKRZ, 2015c). In addition for a prediction of future climate, it is necessary
to average over many different scenarios, e.g., accounting for natural disasters
such as the eruption of a volcano or more importantly providing prognosis on the
enactment or failure to enact certain policies. The German Climate Computing
Center (DKRZ) estimates to add 75PB per year over the course of the next five
years to the long-term storage archive (DKRZ, 2015a).

Similarly, microscopic research enjoys no practical limit for storage require-
ments, especially as a sheer infinite number of combinations is possible for ex-
perimental setups. CERN conserves data collected during the experiments, but
already a single second accounts for 10 million proton collisions registered by the
detector, of which only a tenth are considered for further processing and finally
only about 2000 of these observations (or 250GB/h) will be made persistent.
CERN estimates to produce 20PB worth of data per year, which is archived
and replicated around the world.

The broadcast and movie industries has become a large user of tape archives
to store raw footage. Increasingly on demand streaming services are discovering
tape as a cost-effective solution for data storage which becomes hot for a while
but is only rarely requested later. Streaming content such as movies or music
are requested a lot when released, but as time proceeds they are requested only
every once in a while, with spurious bursts sparked by increased media coverage,

4

1.1 1.1. MOTIVATION

Figure 1.1: The data life cycle as described by the DKRZ (DKRZ, 2015b).

e.g., due to the death of an artist. A similar problem is observed at Facebook
and other social media websites where users upload billions of photos and videos,
with interest cooling down shortly after being posted. Only a few of these posts
remain hot for longer because they went viral.

The Department of Energy (DOE) requirements maybe somewhat different
as there is a lot of confidential calculations performed. The procedure is to
lock a complete system for a while and clean it again after usage. Therefore,
requiring the systems to move vast amounts of data before and after running a
simulation to ensure classified information does not leak. Doing so required a
tight integration of tape storage archives into the storage hierarchy. In a recent
report (Ornl et al., 2015), the DOE further acknowledges an increasing demand
of allowing in situ data analysis even for large scale applications, sometimes
consulting data stored in the archive, thus requiring a tighter integration with
the scratch storage system. The DKRZ describes a data life cycle commonly
observed when working with earth system data (compare with Figure 1.1): A
cycle starts with the generation of data, e.g., using a simulation. The results
are then evaluated and valuable results are archived and distributed for further
research. Iteratively this cycle allows to improve the underlying simulation
models. Ideally any technical concerns of long-term storage become transparent
to the users resulting in a more ”distraction-free” virtual research environment.

Storage technologies experienced an eventful past (Amouroux, 2014). For
a while, CDs attracted a lot interest as a media for long-term archival, until
problems due to micro oxidation started to surface. Hard disks featured large
capacities but the mechanical design make vulnerable to a range of threats,
for instance dust or physical impact in the worst case, leading to head crashes
which might render the hard disk useless or at least making recovery extremely
difficult.

Besides new technologies (NAND, XPoint, etc.), cloud architectures are be-
coming very popular lately. But for large-scale systems cost comparisons find
outrages prices, e.g., using a service such as Amazon Glacier. However, insti-
tutions and companies need to carefully deliberate if moving trade secrets into
the cloud is really a good idea, as it opens new opportunities for industrial espi-
onage. Distributed approaches to long-term storage give rise to problems that
have been more or less negligible in centralized approaches before. One such
problem is the accumulation of errors as data is replicated. Though the use of
additional parity information provides protection against data corruption to a
certain extent.

5

1.2 1.2. THE RELEVANCE OF TAPE IN THE FUTURE

The limited life-time of data is a problem generally acknowledged. For some
applications we seek data resilience not satisfied by any of the current sys-
tems. To have a glimpse at the future, two approaches appear especially notable
though their relevance from a data center perspective remains somewhat spec-
ulative. Focusing on ultra durable data storage using fused silica glass, Hitachi
and Kiyataka (2014) were able to read and write digital recordings that sup-
posedly may last for hundreds of millions of years and under extremely rough
conditions withstanding water and fire. While no information on expected trans-
fer rates ware published the recording density is announced to match those of
Blu-ray discs at 1.5 GB/inch2.

In another approach, Goldman et al. (2013) encoded digital information
using Deoxyribonucleic acid (DNA). This comes with a number of advantages,
for one DNA is fairly resilient, and on the other hand DNA features extremely
high data densities (2 bits per 0.34nm) when compared to other technologies
that are currently in use. For example it is estimated that it maybe possible
to fit all the knowledge of humanity into two cubic meters of space, supposedly
not accounting for strategies to efficiently access this information. The biggest
problem right now is to synthesize DNA which is rather expensive. Reading
and reproducing DNA on the other hand is relatively easy. Interestingly copying
data does not require to digitally interpret it. Simply by performing Polymerase
Chain Reaction (PCR) or by embedding information into a living organism
virtually infinite amount of copies can be produced. An interesting choice for
an organism to store data might be Deinococcus radiodurans, which is frequently
found in radioactive waste and in nuclear facilities, and is known to be extremely
radiation-resistant. Of courser, as of today, no practical systems using such
technology are commercially available.

Despite all progress being made on different fronts, some are astonished to
find that even today most large scale setups for long-term storage are realized by
employing tape in automated robot libraries. This is also interesting as magnetic
tape and variants such as floppy discs and diskettes have a long history in
computer science. None the less, in the wake of new technologies and increasing
demands to the storage infrastructure to be expected in the coming years it
appears adequate to questions the current regime of tape archives.

1.2 The Relevance of Tape in the Future

Tape has many drawbacks for being a linear storage technology resulting in un-
bearable penalties when dealing with random-access data. Modern tape drives,
however, are quick for sequential reads and tapes outperform other commonly
used media by several orders of magnitude when it comes to costs per gigabyte.
Tape is further reusable, energy efficient, and has proven to be very durable
easily providing for 30 years of reliable conservation of data.

For many years, prices for hard drives and NAND decreased, but according
to an analysis by researchers at IBM (Fontana et al., 2013), this trend is stagnat-
ing as higher density technologies require investments into the manufacturing
process. It is notable that tape has a small user base in comparison to NAND
or disk, yet it is competitive without benefiting from the economics of scale to
an extend comparable to those of disk and NAND.

Fontana et al. (2013) revealed some useful insight considering the cost per

6

1.2 1.2. THE RELEVANCE OF TAPE IN THE FUTURE

0.01

0.1

1

10

2007 2008 2009 2010 2011 2012 2013

YEAR

M
E

M
O

R
Y

 C
O

S
T

 (
$

/G
B

)

LTO TAPE

HDD

NAND

(a) Cost

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

2007 2008 2009 2010 2011 2012 2013

YEAR

N
O

R
M

A
L

IZ
E

D
 P

B
 S

H
IP

M
E

N
T

S LTO TAPE

HDD

NAND

(b) PB shipped

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

2007 2008 2009 2010 2011 2012 2013

YEAR

N
O

R
M

A
L

IZ
E

D
 M

S
I

S
H

IP
M

E
N

T
S LTO TAPE

HDD

NAND

(c) MSI shipped

0.00

0.50

1.00

1.50

2.00

2.50

3.00

2007 2008 2009 2010 2011 2012 2013

YEAR

N
O

R
M

A
L

IZ
E

D
 A

R
E

A
L

 D
E

N
S

IT

LTO TAPE

HDD

NAND

YE2012 LTO TAPE

(d) Density

Figure 1.2: Comparison of Tape, Disk and NAND storage (Fontana et al., 2013).

7

1.2 1.2. THE RELEVANCE OF TAPE IN THE FUTURE

GB, petabytes and million of square inches (MSI) 1 shipped or the areal den-
sity used in the technology, see Figure 1.2 for more details. The graphs also
confirm the effects of some interesting events such as reduced manufacturing
requirements for tape in 2010 due to higher capacity cartridges, or the impact
of natural disaster 2011 in Thailand on the HDD supply. Finally, it is inter-
esting to see that the areal density stagnated as well, comparing HDDs to next
generation LTO tapes HDD might even loose the density advantage. Sony and
Fujifilm separately announced in 2014 to bring cartridges with 185 TB and 154
TB respectively to market by the end of 2015. As of this writing though no such
“super” tape is commercially available though the technology was demoed in
lab conditions and on conferences. Nonetheless at 0.01 EUR/GB tape is quite
competitive with all the major storage technologies. Also for many application
fair amounts of compression can be assumed, though other technologies benefit
from this as well. Assuming retail prices as of February 2016 costs for LTO-6
and LTO-7 are as follows:

• LTO-6: 0.011 USD/GB native, 0.005 USD/GB compressed, (2.5 to 6 TB)

• LTO-7: 0.028 USD/GB native, 0.012 USD/GB compressed, (6 to 15 TB)

Of course, this price per gigabyte figure is not to be mistaken with TOC, but
also in this regard tape is attractive, as in comparison to spinning disks or NAND
tape does not require energy making it one of the greenest solutions (Eleftheriou
et al., 2010). This can also be observed in terms of carbon emissions. SATA
RAID systems are the worst offenders at about 450.000 lbs of CO2 per year.
Automated tape systems are closer to 30.000 lbs of CO2 per year. One might
argue it is possible to power down other persistent media as well. After all the
actual robot library system could be ignorant about which type of storage media
it delivers. But any removable media comes with hefty penalties at read time,
which at some point do not justify the higher cost, especially as for sequential
reads modern tape drives are quite competitive at 400MB/s. One example for
different media types is Massive Array of Idle discs (MAID)2, where Facebook
made headlines (O’Toole, 2016) in 2014. Blu-ray discs maybe easier to access
than tape, they allow for random access, but with Blu-ray fading as a medium
to distribute movies, the future of such approaches remains somewhat open.

Various types of tape systems have been commercially available since around
1950. Given the years of experience with tape, the expected lifetime for tapes
is considered to be thirty years (A.M.P.A.S, 2007), provided a functioning tape
drive is kept. Compare this to HDD lifespans which are about five to seven years
(Backblaze, 2016). For NAND some manufacturers (Niset and Kuhn, 2005)
propose data retention times of up to 100 years, more conservative estimates
for viable products range anywhere from two to ten years. This limit is mostly
established because flash storage technologies allow only for a limited amount
of write cycles which may be a factor for storage systems in general. Archival
is an appreciated exception because data usually needs to be written only once
and is mostly read ever after.

Cloud storage was mentioned earlier and, indeed, this can be an interesting
option for mid-term on demand requirements; but for large systems that touch

1A measure commonly used in the semiconductor industry.
2Emissions for MAID systems are at about 100.000 lbs of CO2 (Eleftheriou et al., 2010)

8

1.3 1.3. SIMULATING TIERED STORAGE SYSTEMS

and move a lot of data owning and operating the system usually will be cheaper.
Current cloud storage costs are advertised (Amazon, 2016) at 0,007 USD per
GB and month, 5% of average monthly storage can be accessed free of charge.
Additional access is charged at 0.01 USD / GB. Further keeping data for less
than 90 days also results in additional charges. To give an example, assuming
the DKRZ will constantly add 6.25 PB/month for the next five years to the
existing 50 PB of storage. It seems reasonable to assume read access will not
imply additional cost, as even in the beginning 5% of average monthly storage
allow for free transfer of 2.5 PB/month which leaves a generous margin to about
0.5 PB/m observed reads requests. Let’s further allow very optimistic price
drops of 0.002 cents every 12 months. The cost over 5 years still adds up to
about 47 million USD. LTO-6 and the recently released LTO-7 cartridges can be
obtained in retail for 30 to 150 USD respectively, not accounting for discounts
for large quantities. Buying 450 PB in LTO-7 on the spot will cost about 12
million USD (6 million, LTO-6), leaving at least 35 million USD for hardware,
facilities, operation, staff, and energy.

In addition, many institutions are already invested in tape storage so that
transitioning to more modern storage technologies would be a gradual process.
But instead of replacing tape and considering it merely a legacy, it appears much
more likely that users will increasingly turn to hybrid approaches, thus taking
the best properties of all worlds. As a result, operators can design their systems
to efficiently meet their purpose. For example findings by LeeAhnKim suggest
huge potential for cost savings for broadcasting and streaming services of up to
50% only by introducing clever usage of different storage classes by including
tape. With tape to stay part of the storage hierarchy, until the cost advantage is
no longer present data centers will have to make choices on how to integrate and
operate tape archives. In addition, as long as no single best technology surfaces,
storage will maintain different hierarchies to provide a certain quality of service
at the lowest cost in terms of TOC. Much of the insight and abstractions required
to model tape remains applicable even with tape replaced.

1.3 Simulating Tiered Storage Systems

Many areas in computer science have largely profited from contributions driven
by the user community. Linux, once an underdog, mocked by professionals in
the field and by big cooperations, is today the de-facto standard providing most
of the infrastructure we enjoy everyday and call the internet. In addition, until
today the majority of super computers are using Linux or a variant of Unix.
Increasingly, consumer electronics are relying on open software, in fact, the two
dominant operating systems for smartphones accounting for more than 90% of
the market are based on Linux or BSD.

For tape libraries, the situation is radically different. Access to enterprise
class systems is quite prohibitive for a number of reasons. On the one hand
these systems tend to be very expensive, and only large institutions employ
them. On the other, the very reason to buy such a system is to ensure data
security, thus any experiments bearing the risk of inducing downtimes or data
loss are generally met with healthy reluctance by operators.

With LTO, there now exists a common industry standard that enables com-
petition between different vendors which can be reassuring for customers as it

9

1.5 1.4. GOALS

should keep prices fair and provides for better planning security. None the less,
given the scale of these systems, technical improvements of the hardware are
mostly in the hand of these vendors. This is not necessarily a problem but levers
for customers are few because the active vendors are mostly industry giants fol-
lowing a release schedule optimized for profits. With a comparable small user
base providing limited financial incentives and only a handful of experts there
is no foundation for rapid innovation.

A cheap way to enable innovation and train new talent has always been sim-
ulation. Before letting people work with delicate systems, e.g., pilots learn to
fly in a simulator. In robotics simulators provided a cheap playground for young
people, and, for some tasks, also allowed to test and evolve systems much more
rapidly than would have been possible with physical systems. Similar concerns
hold true for archival system where mistakes or flawed strategies may render
the stored data useless or require costly restoration. For example accidentally
deleting the tape libraries global file index can be performed almost instanta-
neous. Luckily, for newer tape systems, that are self-describing, it is possible to
rebuild the registry. However, with ten thousands of tapes it will mean consid-
erable downtime of operations. A comprehensive model then also maybe used
to suggest recovery times, and elaborate on different restoration strategies.

1.4 Goals

The goals of the thesis are to allow for more informed decisions for the deploy-
ment of tape systems and hierarchical storage systems. From a methodological
point of view this can be divided into multiple individual tasks:

1. Development of models to describe key aspects of tape systems

2. Simulation of tape systems using discrete event simulation

3. Collection of key metrics during simulation and generation of reports to
gain new insight and to allow for more educated decisions.

4. Reporting and data analysis workflows for hierarchical storage types

5. Tooling to gain insight on the benefits of different configurations for HSM

Some questions that should be easier to answer with such models and tools
to simulate should include:

• How to deploy a cost-efficient system from a data center perspective?

• What are the minimal requirements to meet a specification or QoS?

• Which features do we need for the next generation of systems?

In a long-term perspective, the hope is that the general architecture to model
and simulate can, at some point, be used to operate an actual tape library.
The basic idea being that, e.g., algorithms and scheduling policies – once imple-
mented with the simulator will directly work with a production system. The goal
for the implementation consequently also strives to be modular and reusable.

10

1.5 1.5. THESIS OUTLINE

1.5 Thesis Outline

Chapter 1 motivated the topic of the thesis and provided an overview of current
challenges to storage systems and tape archives in particular. In Chapter 2
the necessary technical background and terminology is established. It follows
related work in Chapter 3 to encompass the state of the art. Armed with the
information from the previous chapters, in Chapter 4 different design decisions
are discussed and a model for simulation is proposed. Implementation details
are covered in Chapter 5 on simulation. It follows the evaluation in Chapter 6
where the simulation is fed with real world workloads and limitations of the
implementation are discussed. The thesis concludes with Chapter 7 where the
results are summarized followed by an outlook on future work.

Summary

Many different storage technologies exists but limited budgets and different re-
quirements across data centers result in hierarchical storage systems to be de-
ployed. Especially scientific users, who make extensive use of supercomputers,
rely on efficient large scale long-term storage systems. Exascale class storage
systems will be required by many organisations in the near future. Tape is very
affordable in comparison to other storage technologies and it appears like the
cost-advantage for tape will remain for years to come. Yet innovation in the
field could be quicker, and current tape systems leave a lot to be desired. The
problem is that mainly vendors are improving tape systems, but on profit ori-
ented release strategies. To make experiments and research with tape systems
easier models and tools for simulation should be developed.

11

Chapter 2

Background

Tape libraries and, therefore, hierarchical storage architectures are complex sys-
tems, which are constantly evolving to account for updated requirements and new
technologies. Section 2.1 covers the necessary backgrounds for tape technology,
including a brief history of tape systems. Section 2.2 is dedicated to the most
important features commonly supported by systems. Section 2.3 takes a look at
automation and commercially available solutions. Section 2.4 briefly explains
how LTFS works and changed the semantics of how tape is used today funda-
mentally. As pure tape systems are rarely seen today, hierarchical storage man-
agement systems are introduced in Section 2.5. Section 2.6 provides an overview
of the German Climate Computing Centers (DKRZ) storage infrastructure.

2.1 Magnetic Tape Storage

In 1928, Fritz Pfleumer for the first time used magnetic oxides (ferric oxide to
be specific) to record information. Since then magnetic based and magnetic
tape based storage have come a long way from compact cassettes, to floppy
discs, and video cassettes. All of these storage media share a common working
principle. A thin magnetic coating is applied to a polyester base, together only
a few microns thick. As polyester is fairly robust and has a high tensile strength,
it does not impose practical limits to the length of such a film which makes it
ideal to to be stored on a reel. Over time different enclosures where added to
better protect the tape from external conditions. Figure 2.1 shows a typical
cartridge as it is used in modern tape systems, mostly for its small form factor.
But over the course of time many different principles have been tried; in the
past dual reel cartridges were quite common. To read and write data, a special
device is required, often called a tape drive.

L203_455

1

23

4

5

Figure 2.1: LTO tape cartridge. (1) Tape access door, (2) Finger grips, (3)
VOLID Label, (4) Media ID Label, (5) Write-Protect Switch Not depicted in
the illustration is the actual tape and, in particular, the lead pin that is used to
pull the tape out of the cartridge. Illustration: Sun (2006)

12

2.1 2.1. MAGNETIC TAPE STORAGE

(a) linear (b) serpentine (c) helical-scan

Figure 2.2: The most common on tape data layouts.

2.1.1 Tape Data Layouts

Multiple competing data layouts existed over time, but commercially available
products mostly use one of the following layouts. Today linear technologies
are favored for being less complex and because they allow multi-channel/track
reading and writing.

Linear: data layouts on tape are not very common anymore, but are the
simplest layout. The drawback with strictly unidirectional tracks are the need
to rewind when reaching the end of the tape.

Linear-serpentine: data layouts are today the predominant way to layout
data on magnetic tape. The benefit for sequential data is that there is no need
to rewind the tape. Bidirectional read/write heads had to be developed first.

Helical-scan: layouts are not really relevant for storing digital data anymore,
though some systems are using the technique. Helical-scan tape layouts are of
advantage when dealing with high frequency data such as analog video.

2.1.2 Resilience of Tape Storage

While tapes are reliable and suitable to preserve data for long periods, there
are some means that may lead to data loss, including biochemical reactions,
disaster and smaller accidents that occur in day to day handling. When tape sits
unused for longer periods the so called Sticky-shed syndrome occurs which may
render tapes unusable due to moisture. With enclosed cartridges the moisture
is generally less of a problem but can still occur. Luckily, in many cases, it
is possible to “bake” the tape which makes it readable again for a while. In
order to protect electronic components, most automated tape libraries specify
operation temperatures which are in the range of 15 to 35°C. Tape is flammable
and fire prevention advice is to operate in oxygen reduced environments.

Tapes are fairly forgiving to physical mishandling in comparison to hard
drives or CDs. Still, especially for single rail cartridges a common problem is
that parts of the cartridge holding the tapes lead-pin in place may break when
accidentally dropped. Such a cartridge needs to be fixed before it can be used
again in a tape drive. The main problem here is that for many formats on-site
repair is not possible or feasible considering the risk of damaging the drives.
Different vendors have therefore service centers with special equipment, which
are available as part of a service agreement. A broken cartridge has to be sent
in and the data will be restored, however service centers are often in other
countries. This sometimes has implication when dealing with classified data,
sending a cartridge to another country for service may not be an option.

13

2.1 2.1. MAGNETIC TAPE STORAGE

2.1.3 History

Magnetic tape has a long history. Table 2.1 lists important events that made
tape possible as it is used today.

1890s Valdemar Poulsen invents Magnetic Wire Recording. Only lim-
ited use through the 1920s and 1930s, but popular from 1946 to 1954.
One hour of audio recording required about 2200m of thin wire (0.10
to 0.15 mm).

1928 Fritz Pfleumer uses ferric oxide (Fe2O3) as a recording medium. The
approach is improved by AEG and reel-to-reel tape recorder for tapes
produced by BASF is released. The method was kept secret during
World War II.

1947 John Bardeen, Walter Brattain and William Schockley invent the
Transistor

1950 Reel-to-Reel recording and playback devices become affordable en-
abled by transistors.

1951 Data storage UNIVAC I (UNIVersal Automatic Computer I) 128
chars per inch, written on 8 tracks

1952 IBM introduces the first magnetic data storage devices often referred
to as 7 Track.

1962 Phillips invents Compact Cassete for audio recordings, though it
was also sometimes used for data storage.

(1956) Quadruplex for video tapes.
Focus on tape from here on, as other media such as floppies and
diskettes are beyond the scope of the section.

1959 Toshiba introduces helical scan as tape draw speed determines the
maximum recordable frequency. The signal may not get imprinted
which was a problem for video recording. Sony later pushes this
technology forward.

1980s Introduction of automated robotic tape libraries by Sun with the
Brand StorageTek. Tape suddenly accessible within a minute instead
of hours or days. The term nearline storage was created.

1990s Linear Tape Open (LTO) Consortium is founded. LTO today is the
most wide-spread tape format.

Table 2.1: A brief history of early magnetic tape storage including relevant
historic breakthroughs paving the way to modern computing and storage.

14

2.1 2.1. MAGNETIC TAPE STORAGE

2.1.4 Magnetic Tape Formats

Given the long history of tape storage technologies, it is no surprise a wide
variety of formats was invented throughout time. The following collection limits
itself to the most notable technologies with Linear Tape Open (LTO) being the
most important standard today. Some standards were updated, denoted by the
”Super” prefix, as is the case for DLT and AIT. Even though the are phased
out they are still relevant for legacy reasons.

LTO: Linear Tape Open is the most important standard today and features
capacities of up to 6 TB at 300 MB/s for LTO-7 generation tapes employing
serpentine linear tape. Refer to Section 2.1.5 which is dedicated to a more
detailed description of LTO.

Txxxxx: StorageTek tape format, with T10000D being the most recent vari-
ant, which features 8.5 TB native capacity at up to 252 MB/s. Older cartridges
(until T9840D) had dual reels but the layout changed to a single reel rectangular
variant as they proved useful in automatic libraries.

(S)DLT: (Super) Digital Linear Tape has been around since 1984 and features
capacities of up to 800GB and transfer rates of 60 MB/s using serpentine tape
layout. The last generation was released in 2007 by Quantum.

(S)AIT: (Super) Advanced Intelligent Tape has been around since 1996 and
is based on DAT. The most recent variant SAIT-2 from 2006 featured transfer
rates of up to 45 MB/s and capacities of up 800GB, using helical scan layout.
The format was popular for being backward and forward compatible for many
generations. In March 2010 Sony announced (S)AIT to be discontinued.

DAT/DDS: Around since 1989, last generation (DAT-320) of DAT/DDS
tapes was released in 2009, but is not competitive anymore. Using helical scan
and dual reel cartridges transfer rates up to 12 MB/s and capacities up 160 GB
(native) were supported. The format is discontinued with the last press release
documented from 2010, but the website is no longer active.

VXA: Started in 1999, VXA is a helical scan based tape format, similar to
the common video cassete recorders (VCR). The last released format from 2005,
VXA-3, featured speeds 12 MB/s and capacities up to 160 GB. As of November
2006 the format is not being further developed and supported.

Other: A large number of form factors is no longer relevant, including ADR
(until 2003), SLR (until 2003), Travan (until 2002), Mammoth (until 1999).

2.1.5 Linear Tape Open (LTO)

Linear Tape Open (LTO) is a storage technology for magnetic tape, governed by
the LTO Consortium controlled by Hewlett-Packard, IBM, and Quantum. Ini-
tially, Seagate was member of the consortium, but the tape devision was spun
off and, ultimately, acquired by Quantum taking the seat. Branded as LTO

15

2.2 2.1. MAGNETIC TAPE STORAGE

Figure 2.3: LTO Roadmap (Spectralogic, 2016a).

Gen Thickness (µm) Length (m) Tracks Bit Density EEPROM

1 8.9 609 384 4880 4 kb
2 8.9 609 512 7398 4 kb
3 8.0 680 704 9638 4 kb
4 6.6 820 896 13250 8 kb
5 6.4 846 1280 15142 8 kb
6 6.1 846 2176 15143 16 kb
7 5.6 960 3584 NA 16 kb

Table 2.2: Ultrium Tape Cartridge Specifications. It is noteable that capacity
gains are mostly achieved increasing the number of tracks and by reducing the
thickness, which in turn allows to increase the length of the tape.

Ultrium, the only realized of two planned form factors, LTO is the best-selling
super tape format used by many organizations in their computer systems. LTO
is a specification for tape cartridges, as depicted in Figure 2.1. As of October
2015 the newest generation Ultrium 7 (LTO-7) hardware and tapes are commer-
cially available featuring capacities of 6 TB (15 TB compressed) and transfer
rates of up to 300 MB/s. LTO follows an interesting strategy for introducing
technological improvements, which is attractive for customers when planning
their system. A new generation is being introduced every 2-3 years, roughly
doubling capacity and bandwidth every generation. Drives and tapes are de-
signed to ensure backwards compatibility for writes with the prior generation
and read-compatibility for the prior two generations. Thus, protecting invest-
ments of customers for about a decade, see Figure 2.3 for more details. A more
detailed specifications are collected for the cartridges (Table 2.2).

16

2.2 2.2. FEATURES OF MODERN TAPE/STORAGE SYSTEMS

2.2 Features of Modern Tape/Storage Systems

2.2.1 Write once read many (WORM)

Storage devices, for which information cannot be modified after writing are
often termed Write-Once-Read-Many (WORM). It is mentioned here, as for
many applications (e.g., backup) and also for optimizations, the guarantee for
data not being modified can be very beneficial. As of 2005, LTO provides
WORM as an option. Prior to tape, optical media types such as the Compact
Disk (CD), Digital Versatile/Video Disk (DVD), and BluRay were commonly
used as a WORM media.

2.2.2 Archive and Backup

Often tape library systems are employed for backup archival or to comply with
regulation. As such, the systems have to care about best practices in archival
and backup and allow replication for disaster recovery when handling very valu-
able data. Most tape library systems offer, therefore, convenience features such
as special management software, that can perform these tasks automatically.

2.2.3 Self-describing tape formats

A common limitation of older tape systems was the lack of portability for data
cartridges. The file structure and metadata information were managed by the
library. Simply inserting a tape would leave the user with a blob of data. Today,
self describing cartridges often use LTFS (see Section 2.4). But also before LTFS
tar, short for tape archive, was used to allow for a file structure on tape.

2.2.4 Data Reduction and Compression

A lot of data in its operational form is quite unoptimized and repetitive, which
is why data is often compressed before it is stored. Depending on the data,
savings of 50 percent or more are not unreasonable. Some systems perform this
transparently (that is the user is not even realizing the data is compressed).
Another approach, where copies of files or parts of files are very common, de-
duplication is automatically performed by the file systems. Until changes are
made the same data on disk is referenced just under different filenames.

2.2.5 Encryption

Some of the users of large scale storage system require their data to be encrypted.
In particular, the movie industry, government, and military organizations are
pushing for this. But as data breaches and information leakage are increasing
and more and more of personal and sensitive data being stored in such systems,
demand for such measures is rising.

17

2.3 2.3. AUTOMATED LIBRARY COMPLEXES

2.3 Automated Library Complexes

Most tape systems today are automated tape libraries. Using a shelving system
with slots for the tape and robots to receive the tape to mount them in a tape
drive for I/O. Usually each library unit has a dedicated area where tape drives
can be installed. The drives are standardized to some extend so LTO compliant
libraries usually have no problems with drives from other vendors. In the past,
also circular tape silos were common, but all the commercial highly scalable
systems are tending towards rectangular libraries.

Most systems arrange the tapes in vertical shelves thus in two dimensions,
so that robots can easily pick and place the tapes. But this is not the most
space efficient way to store the tapes, which is why some vendors offer special
high-density libraries. Spectralogic, for example, chose to store tapes in a kind
of drawers to achieve a small high capacity footprint. High tape densities also
can be quite attractive for gradual transition strategies, because sticking with
2-3 tapes of older tape media can be cheaper then always using the most recent
tape generation. Most enterprise tape systems are scalable, by adding addi-
tional racks/frames or library units. Each vendor is using a slightly different
vocabulary, but a combination of multiple units into a larger structure is gen-
erally considered a library complex. Surprisingly, while most systems should in
theory be extendible without limits, all vendors have artificial limits for size the
library can handle. It is also notable that each vendor has at least one unique
selling point.

IBM TS3500 Series While IBM markets a higher density variant with the
TS4500, the TS3500 is older and scales much better supporting up to 2.25
exabyte of storage. IBM counts in frames that can be connected to form a
library. Special high density frames can accommodate up to 3592 cartridges.
Up to 16 of such frames can be combined into a library supporting up to 192
drives. Using overhead pass-through lanes, it is possible to connect up to 15
libraries to a library complex. Allowing for a maximum if 2880 tape drives.
IBM uses robot hands that can fetch up to two tapes, thus allowing to reduce
robot movement. Refer to Figure 2.4 for a photo of an TS3500 library complex.

Figure 2.4: IBM TS3500 Library Complex (IBM, 2011b)

18

2.3 2.3. AUTOMATED LIBRARY COMPLEXES

Oracle StorakeTek SL8500 Using a so called “centerline” layout for the
drive bays the SL8500 has the most exotic extension schema. Positioning the
drives in the center is advertised to guarantee short travel times for the robots
averaging at below 11 seconds per robot, regardless of the size of the library
complex. Each library can be extended with up to 5 so called Storage Extension
Modules (SEM) allowing for up to 10.088 slots handled by up to 8 robots per
library. Using pass-through-ports, it is then possible to connect up to 32 libraries
to form a library complex containing over 320.000 cartridges and up to 2048
drives. Refer to Figure 4.7 for a photo of an SL8500 library complex.

Figure 2.5: Oracle StorageTek SL8500 Library Complex (Oracle, 2015)

Spectralogic TFinity With space for 400.800 LTO cartridges, the TFinity
can handle by far the most tapes in a single library complex and is maintaining
the smallest footprint while being able to provide up to 7.6 EB of storage. It
does so by organizing tapes in little drawers called TeraPacks. On the other
hand, the number of supported drives is comparable moderate with 920 drives
per complex. The TFinity consists of frames which can be extended in two
directions. Using am over head pass-through mechanism multiple, such racklines
can be connected. Refer to Figure 2.6 for an illustration of an TFinity library
complex.

Figure 2.6: Spectralogic TFinity Library Complex (Spectralogic, 2016b)

19

2.3 2.3. AUTOMATED LIBRARY COMPLEXES

Quantum Scalar i6000 Turning to standard 19” racks the libraries by Quan-
tum are among the smallest but also the least scalable systems by a major ven-
dor. The i6000 can be extended into two directions to a total of 16 modules
and supports up to 96 drives (2011) and dual robots for tape-retrieval. Special
high density library modules are also advertised. At only up 12,016 cartridges
it is possible to manage up to 192 PB (using LTO-7). Refer to Figure 2.7 for a
photo of an i6000 library complex.

Figure 2.7: Quantum Scalar i6000 Library Complex (Quantum, 2015)

HP StoreEver Tape ESL G3 HP also relies on 19” racks for it’s library
complexes. The performance and features are very similar to the ones given
for Quantums i6000. HP’s StoreEver Tape ESL G3 can be extended to form
library complexes with up to 16 library frames and support 180 GB on up to
12,006 cartridges. Every frame can host up to 24 tape drives accounting for a
maximumg of 192 drives per library complex. Refer to Figure 2.8 for a photo
of a StoreEver TapeESL G3 library complex.

Figure 2.8: HP StoreEver Tape ESL G3 Library Complex (?)

20

2.5 2.4. LINEAR TAPE FILE SYSTEM (LTFS)

Figure 2.9: How LTFS allows tape media to appear like a regular file system
that can be mounted to the VFS (Pease et al., 2010).

2.4 Linear Tape File System (LTFS)

The Linear Tape File System (LTFS) provides a standard to access files on tape
that is similar to traditional storage media, e.g., USB thumb drives. On older
tape systems no metadata was stored on the tape, and tapes itself were not self-
describing. Therefore, often external databases were used to keep track of files in
tape systems, which is of course bad for interoperability when moving between
systems. In 2009, IBM released an early prototype (NAB 2009), followed by
the first official release 2010 with support by LTO Consortium. LTFS is often
used to refer to both the standard as well as to implementations. LTFS offers
a number of features the most notable being the following:

• Self-describing cartridges using XML to describe file-system

• Hierarchical directory structures and metadata that is compatible to other
file systems

• Custom attributes definable by users and organizations

• High interoperability supported by the LTO Consortium

• Support for small data files close to the beginning of the tape

• Support for sparse file types 1

In Figure 2.9, it is illustrated how LTFS interacts with the operating system
and the tape systems to provide similar properties to removable mass media.
When mounting a LTO tape cartridge, LTFS loads the file system information
and provides a POSIX-like file system to the Virtual File System (VFS) via
FUSE. Applications and users that issue I/O operations can act on the data
like they are used to with other filesystems by using standard I/O calls.

1Sparse files, while often large in filesize, have continuous regions that carry no valuable
information. This can be exploited to reduce I/O by omitting to write these regions. Sparse
files are common for many simulations, e.g., vegetation is unlikely to be found on the oceans.

21

2.5 2.5. HIERARCHICAL STORAGE SYSTEMS

Figure 2.10: The computer memory hierarchy (Quibik, 2010).

2.5 Hierarchical Storage Systems

Different technologies that serve a similar purpose come with different quali-
ties and storage technologies are no exception. Often it is possible to combine
multiple different technologies to achieve certain desired performance properties
that would be impossible or much more expensive than when using only one.
And, in fact, computers and storage systems in general employ a wide range of
different technologies. This derives a sort of storage hierarchy. For example, the
fastest technologies that are easy enough to produce, only work when some sort
of power supply is present. To this fact, we can attribute at large the existence
of storage such as volatile random access memory (RAM) and persistent hard
drives.

A common pattern is to used caches, which improve access times for recent
or regular accessed data considerably. The basic idea for hierarchical storage
management is is consequently to stage data at a higher level, in the hierarchy
whenever faster access to the data is desired. E.g., data might be processed in
a certain order, but seeking data for the next work package can be performed
in parallel to another useful computation that does not require to use I/O.

2.5.1 Virtual Tape Libraries (VTL)

For a while replacing tape archives with spinning disk was quite popular. Mul-
tiple efforts (Lingfang Zeng, 2005; QUADStor, 2015) include the emulation of
tape systems commonly referred to as Virtual Tape Library (VTL). The goal of
emulation, of course, is not to gain insight on how to best use the system but to
maintain compatibility with otherwise deprecated or incompatible technology.
Often this is done when a technology already enjoyed wide spread adoption and
is due to be replaced by a newer technology. As legacy in terms of hardware

22

2.6 2.5. HIERARCHICAL STORAGE SYSTEMS

Figure 2.11: A schematic of the basic building blocks forming HPSS as described
by IBM (IBM, 2011a).

and software is associated with any organization that’s not newly founded, it is
often more cost efficient to choose emulation for some time though it may come
with other drawbacks. Emulation, therefore, usually follows pragmatic consid-
erations and is, in the context of tape is not used to gain insight on system
exploitation.

2.5.2 High Performance Storage Systems (HPSS)

A hierarchical tape storage solution that integrates transparently into a data
centers storage system marketed by IBM is High Performance Storage System
(HPSS) (IBM, 2011a). It is a joint effort by five national laboratories, the
Department of Energy (DOE), and IBM. A schematic overview of the system is
illustrated in Figure 2.11. Data is staged by so called “Movers”, where data is
basically cached on a disk based filesystem to be served by I/O servers and tape
drives. Metadata is stored in IBM’s DB2. HPSS is advertised as being capable
of handling archives with many hundred million files and tenths of petabytes.
Furthermore, the HPSS tape archives can be partitioned into namespaces which
maybe used to provide different service levels etc. A HPSS file system can
interface with Linux VFS and even provide read/write POSIX semantics. As
an alternative special kernel modules can be used to interact with the ”Movers”
directly. HPSS is not limited to work with IBM hardware but supports the
Oracle StorageTek SL8500 Libraries.

23

2.6 2.6. DKRZ STORAGE ARCHIVE

2.6 DKRZ Storage Archive

The German Climate Computing Center (DKRZ) is a national facility and pro-
vides various services related to climate research including (DKRZ, 2016):

• Providing the compute power and architecture necessary to run climate
simulations (HLRE-3/Mistral).

• Providing storage infrastructure to archive simulation results for decades.

• Offering expertise to scientists to maximize system utilization and opti-
mize scientific workflows.

• Allowing visualisation of the simulation including accurate 3D rendering
for in-situ analysis and post-processing.

• Carrying out complex simulations which are often part of international
research projects.

• Informing the public on high-performance computing and climate research
in guided tours.

Hosting the storage archive is only one of many responsibilities. Because data
management is a vital part of any research effort and the thesis is interested in
tape archives, a brief analysis the storage system currently deployed including
the main objectives (DKRZ, 2016) should be performed. The DKRZ documents
the research data with the World Data Center Climate (WDCC). The long-term
archive of climate data again serves as documentation, but also as a resource
for data mining for external users. In an on-going effor the accessibility should
be improved through standardized metadata and datamodels. The data shall
be safe also in case of disaster.

To achieve this the DKRZ is using IMBs HPSS introduced earlier in Sec-
tion 2.5.2 in combination with eight Oracle/StorageTek SL8500 (covered in more
detail in Section 2.3 and Section 4.5.3). The archive is partitioned to optimize
for different file-sizes and to increase data safety. For reasons of fire security
and control the facility is segmented into two areas separated by fire protection
doors. The current setup has six storage silos in the first area and one silo in
the other. In addition one silo is off-site for disaster recovery.

• 8 automated StorageTek SL8500 Tape Libraries

– a combined 75.000 slots for tape cartidges

– 65 tape drives of different generations (LTO-4/5/6 and T10000B)

– 8 robot arms per library to mount tapes

• 5 Petabyte disk cache for HPSS

• 15 Gigabyte/s sustained bidirectional bandwidth (18 GB/s peak)

24

2.6 2.6. DKRZ STORAGE ARCHIVE

Summary

Magnetic tape has a long standing history in computer science. With LTO,
there is an industry standard that provides operators with some level flexibility
and planning stability. Modern tape libraries come with a variety of features
including WORM, data compression, and encryption, as well as convenience
functions for easy archival and library management. Multiple competing archive
systems are available. Interestingly, each system has unique advantages making
a recommendation dependent on the requirements of an organization. LTFS
radically changed how users and libraries interact with tape, making tape access
comparable to USB flash drives. Sometimes tape can be replaced transparently,
e.g., with disks by the use of VTL. Finally, pure tape systems are ceasing in
relevance but tape is increasingly integrated into a hierarchical storage model.
However, the operation of such systems usually depends on proprietary hardware
and software maintained by the vendors, sometimes in cooperation with some
national research institutes.

25

Chapter 3

Related Work

This chapter presents the state of the art and related work in the field. For a
more structured presentation, innovations and publications are grouped by their
respective research area. Section 3.1 covers mostly physical and hardware im-
provements to tape systems. Section 3.2 where research focusing on algorithmic
improvements with a dedicated subsection to insights on scheduling and load
balancing strategies. Section 3.3 focuses on the improvements of hierarchical
storage systems. Section 3.4 compares different frameworks for simulation and
modeling methodology. Performance evaluation of tape drives and libraries with
related key metrics are covered in Section 3.5

3.1 Physical and Hardware Improvements

Efforts to improve tape storage system can focus on advancing the technology
that is used to read and write tape. This is mostly in the domain of vendors and
not much of the research conducted is published to protect a business advantage.
Multiple efforts focus on improving the data placement on tape (Dashti and
Shahabi, 2000) or the magnetic representation (Dee, 2008). Such efforts can
be, to some extent, also considered algorithmic improvements, but tape drives
and hardware generally does not provide fine grained control to the users. In
addition, certain data layouts become only possible when physical means of
manipulation are discovered. Fir example, magnetic fields while limited in their
range, still can effect neighboring areas putting limits on how dense data can
be stored on tape. Pantazi et al. (2015) covers a list of challenges faced by tape
storage technologies. A good example is the necessity to develop bi-directional
read/write heads that enabled serpentine tape in the first place. Pease et al.
(2010) acknowledges the challenges that are introduced by shingled writing that
prevent making changes after imprinted on tape without rewriting other parts
of the tape as well. This is also the reason why tape is in many cases considered
an append-only storage medium.

3.2 Algorithmic Improvements

Following breakthroughs to physical challenges, great potential is to be found in
the ways we exploit the available technology. In fact, undesirable properties of a
possible manipulation can be turned into features when used in another context.
Section 3.1 already touched data placement strategies to some extend. (Dashti
and Shahabi, 2000; Pease et al., 2010; Pantazi et al., 2015) all explore possible
ways to layout the actual data on the tape, though with varying objectives.
For example, it is possible to trade seek time for space, or reduce the number of

26

3.2 3.2. ALGORITHMIC IMPROVEMENTS

passes to find data on the tape. Another example, that is dependant on the way
data is accessed suggest to remap data structures (Jenkins et al., 2014) before
writing them. While not specifically developed for tape, strategies that work for
other media types often are applicable. Zhang et al. (2006) explored different
object placement strategies with in tape libraries to optimize tape switch, data
seek and transfer times using a simulation. Other improvements are enabled by
changing the dynamics, for example WORM media allow for radically different
strategies then traditional I/O. Other approaches include using application-
specific compression (Hübbe and Kunkel, 2012) or encryption.

Further approaches strive to improve the reliability of tape by introducing
redundancy. Berlekamp (1975) looked at algebraic codes for more reliability
of tape data by allowing for error correction. Many strategies that work with
disk or other storage media of course also apply to tape. One notable example
which was researched but has not yet found their way into many production
system is RAIT (Hughes et al., 2009) or TapeRAID though combinations of
traditional RAID and Tape have been explored (Lingfang Zeng, 2005). To
allow higher levels (including users) to better utilize the technologies, MPScan*
provides a model to estimate access times for serpentine tape drives (Sandsta
and Midtstraum, 1999), obviously there is value here to improve the scheduling
however it remains open if the algorithm is still valid for todays technologies.

3.2.1 Scheduling and Load-Balancing Algorithms

Scheduling problems are among the oldest in computer science and a number
of general purpose schedulers exists. But over time specialized schedulers for
different tasks where developed. E.g. many different sophisticated I/O sched-
ulers are built into the Linux kernel. Getting into too much detail is beyond
the scope of this thesis but to asses which approaches may be promising a num-
ber of relevant approaches is collection in this section. For tape and hierarchical
storage management scheduling and balancing algorithms occur in at least three
different contexts:

Load Balancing (Bandwidth and Workload) When work is distributed
across multiple workers, a common problem is that work is not evenly split
between all workers because some workers are working on harder problems than
others. A load balancer assigns work to prevent some workers from idling while
others working hard.

I/O Scheduling Processing I/O in the order it arrives often leads to an under-
utilization of of the hardware. By reordering and postponing some activity the
hardware can be used more efficiently.

Robot Scheduling Similar to I/O schedulers the goal is to get more work
done by performing a number of tasks in a more efficient order.

Xu and Lau (1996) covers different load balancing approaches for parallel
systems extensively. A helpful overview to load balancing algorithms can be
obtained by grouping the different types of approaches in a hierarchy Figure 3.1.
Similarly different classes of more or less universal scheduling strategies exists.

27

3.3 3.3. IMPROVING HIERACHICAL STORAGE SYSTEMS

Figure 3.1: Taxonomy of load balancing algorithms by Xu and Lau (1996).

Often the name of a scheduling algorithm already suggest how basic strategy
works. Some examples for common scheduling approaches are:

First In, First Out (FIFO): The first task that arrives, is also the first to
be served. In many situations the order in which data is process matters, as
such it is commonly used by buffers.

Last In, First Out (LIFO): The last task to arrive, is the first to be pro-
cessed. It is commonly used when one operation performs another and has to
wait for the result before itself can proceed.

Random Scheduling: From a list of available tasks, one is taken randomly.
This strategy is useful when fairness is a requirement.

Shortest Seek First aka Shortest Seek / Service Time First (SSTF):
A I/O related strategy employed in disk drives. The disks read/write head is
always piloting towards the position of the closest seek request.

3.3 Improving Hierachical Storage Systems

The department of Energy (DOE) is investing considerable efforts and bases
decisions on research conducted using super computers, making it one of the
largest civilian operators of large scale data centers. On a regular basis, a re-
port assessing the state in the field of scalable Input/Output is published to
identify where research efforts should be concentrated. For tape, the report ac-
knowledges its relevance for long term storage, but finds that most tape systems
are operating relatively independently of the rest of the storage architecture. As
in situ data analysis is anticipated to increase (Ornl et al., 2015), which will also
involve access to archived data, a better integration into of tape into the storage
architecture is demanded.

28

3.4 3.4. SIMULATION AND MODELING

Pure tape systems cease in relevance and hybrid and hierarchical storage
systems promise to provide cost efficient solutions with the best properties of
all technologies, this section collects research made to improve HSM. Dee (2008)
stresses the opportunities of automation, which enabled scalable solutions that
seamlessly integrate into storage hierarchy at large. For example, Koltsidas et al.
(2015) focuses especially on the integration of disk and tape. In addition, for
such efforts to become feasible advancements in network technologies have been
necessary. Other approaches try to integrate tape into the existing architectures,
most notable are HPSS (IBM, 2011a) and LTFS which were discussed already
in Chapter 2 in more detail. LTFS blends the boundaries between tape and
disk based storage systems by transparently providing a POSIX like file system.
LTFS was first introduced by Pease et al. (2010), but other research extends on
the idea. For example, Real et al. (2015) propose an advanced I/O scheduler
for dual-partitioned tapes to further improve LTFS. A lot of information in this
area appear to be influenced by marketing, some sources suggest that LTFS
currently does not live up to hopes that where placed into it.

3.4 Simulation and Modeling

Discrete-event simulation (DES) is a simple and effective way to model and
simulate a wide variety of problems. Activity is represented as a discrete se-
quence of events, where a each event marks a state where the system changes.
The advantage of DES in comparison to, e.g., a continuous simulation is that
it is possible to “hop” from event to event without requiring any computations
even if a long time has passed between events. Theory is established around
the topic, in particular a formalism termed Discrete Event System Specification
(DEVS) enjoys broad acceptance. Various frameworks or simulation kernels are
available that aim to make setting up simulations easier by abstracting the most
general concepts. Many of them are open source, though also commercial ap-
plications are available. Unfortunately, many are not longer actively developed
or come with a small user community.

adevs (Nutaro, 2016) Written in C++ and released under the BSD License
adevs implements DES based on the principles on parallel and dynamic DEVS.
Adevs uses so called atomic models to govern the behavior of individual actors
these then can be connected using a network model. The suite further supports
continuous models as they are common especially in systems involving physical
components. Care was taken to support multi-core computers.

DESMO-J (Page, 2016) Written in Java and published under the Apache
2.0 License, DESMO-J aims for an object oriented approach to discrete event
simulation. Developed since 1999 at the University of Hamburg DESMO-J is
referenced in no less than 200 publications and appears to be under active
development as the last release is from November 2015. DESMO-J follows a
philosophy of strict separation of model and experiment.

SIM.JS (Varshney, 2016) Written in JavaScript and licensed under the LGPL,
SIM.JS is an interesting framework for being able to run in a browser thus
making it accessible through a browser. Examples featuring a GUI for drag and

29

3.5 3.5. PERFORMANCE EVALUATION

drop model building are included. Being HTML and CSS it allows for a lot of
visualization opportunities thanks to the large community and the number of
JavaScript frameworks for virtually any kind of problem. While the last commit
is from 2012, the author seems still very responsive.

SimPy (SimPy, 2016) Written in Python and licensed under the MIT License
SimPy follows a process-based approach to event simulation. Using Python
generators, it is possible to model active components. SimPy also provides
support for real-time simulations. Unfortunately, the simulation time is kept as
a single integer value.

3.5 Performance Evaluation

It seems reasonable that most of the tools and the performance metrics used to
asses and benchmark I/O systems in general are also applicable to tape systems.
But the workloads that are well suited for tape system differ a lot due to the
unusual performance characteristics of tape. Johnson and Miller (1998) looked
at performance measurements of tertiary storage devices and came up with
several metrics wich mostly appear valid also for todays systems:

• Robotic arm access time

• Mount/Unmount time

• Seek time / Spool time

• Transfer and compression rates

An interesting pitfall that once again stresses how little information value
individual peek performance metrics can have is that many of the drives tested
by Johnson and Miller (1998) had large discrepancies in startup time ranging
between 7% and 40% of the tape seek time. As a result, for drives with high
startup costs other strategies such as file placement may become negligible while
they make a lot of sense on another device.

Summary

Physical breakthroughs are what enable technology to work in the first place. For
magnetic tape storage, the main principles have not changed much in decades.
Improvements to the properties of tape and increasing the capacity of tape car-
tridges is mostly in the hands of vendors. The same holds to true for the
hardware such as the automated tape libraries. Often algorithms and physical
boundaries are intimately related. For example, the desire to use certain access
strategies such as those possible with serpentine tape required the development
of bidirectional read-heads first. A lot potential to improve the performance also
can be found in the data itself so approaches that remap and compress data
are also relevant for tape archives. Similarly, adapting proven algorithms from
long standing fields such as scheduling or load balancing are becoming more rel-
evant, especially as automated systems are integrated into the storage hierarchy.
RAIT has potential to substantially boost tape performance yet drive costs maybe

30

3.5 3.5. PERFORMANCE EVALUATION

prohibitive to some extent. The transition to hybrid systems creates new oppor-
tunities for research, that is very complex to asses as the interaction between
many competing and dependent feedback mechanisms are involved. Experiments
with physical systems is not always feasible to explore more exotic approaches
making simulation an indispensable tool for insight.

31

Chapter 4

Modeling Hierarchical
Storage Systems

This chapter describes the requirements for a comprehensive model to simulate
tape systems in hierarchical storage systems based on considerations introduced
in the previous chapters. Section 4.1 recalls the requirements and objectives
the model should satisfy. Section 4.2 collects the key components involved in
tape library systems. Section 4.3 starts with the workloads that occur in the
system and describes how they are processed. Section 4.4 covers relatively small
models related to the workings of physical components such as drives and tapes.
Section 4.5 covers what is necessary to abstract a tape library. This is biased
to some extend by what is necessary to describe StorageTek SL8500 complexes.
Section 4.6 takes a look at different ways to model how data moves through the
network. Section 4.7 lists the types of software components involved to run tape
systems in hierarchical storage systems.

4.1 Model Objectives

The models to be employed need to reflect what kind of insight we would like to
gain from simulating a complete tape system, which was covered more in-dept
in Section 1.4. Ultimately, the goal is to improve the quality of service (QoS)
of tape systems from a user a user perspective and cost-efficiency from a data
center perspective. Using the results of simulations for different setups, we then
would like to make more educated decisions and possibly infer rules of thumb
about the setups which suit a specific requirement best. To do so we have
to keep track of a number of performance metrics which need to be collected
during simulation. Based on these metrics, it is then possible to benchmark
and compare different setups. Key metrics for I/O systems and tape systems in
particular include:

• Cost for: acquisition, energy, wear parts

• Transfer rates and indication of limiting components

• Wait and access times for robots, mount, seek/spool

Identifying the relationships of these metrics in later analysis has to allow
the generation of reports on the TOC/ROA and the QoS of a chosen configu-
ration. Ultimately, it would be nice if these would be in a form that allows us
to treat most questions as an optimization problem. Thus, we can fix certain

32

4.2 4.2. MODEL OVERVIEW

parameters and others can be varied, e.g., using the Monte-Carlo method. Ob-
vious candidates may be varying the number of tape drives and tape generation
to find the highest throughput.

4.2 Model Overview

In order to model tape systems in hierarchical storage systems, it is not suf-
ficient to limit efforts to the tape libraries alone. Instead, it is necessary to
consider the complete path data takes from the clients all the way to the tape
and the other way around respectively. In Chapter 2, we looked at different
components that are commonly found in modern tape systems. Here we want
to find an abstraction that captures the necessary detail without introducing to
much complexity. By following a request through the system and anticipating
how it is handled on the way, we identify the key components and can describe
a typical data path that is common to most HSM systems.

4.2.1 Data Path

While in actual tape systems more components are involved and a lot of com-
plexity stems from utilizing all the components to realize a scalable solution, it
appears sensible to start with minimal approach and iteratively add complex-
ity later on. As far as a single request is concerned Figure 4.1 illustrates the
different components that data has to pass very well:

1. Multiple clients which may issue requests to read of write

2. An I/O Server to receive and handle the requests

3. Different cache levels, to speed up access for recently touched files

4. An automated tape silos and tape drives to access the archive

All components are connected through a network. Modeling networks is a
well researched field, nonetheless a network model needs to be implemented to
work with the system specific components. It is important to identify the main
bottlenecks for tape systems. A comprehensive approach appears to follow the
path data takes in the system to find out which are the limiting factors. As
with other I/O systems seek times times and data transfer rates are among the
determining factors.

Client Group

Client
Tape Drive

Tape Silo

Cache

Switch

I/O

Server

Shared Cache

Switch

Figure 4.1: The path data takes when read or written to from/to a tape archive
in a hierarchical storage system.

33

4.3 4.3. REQUEST TYPES

4.2.2 Key Components

Clients: A client issues requests to read or write files stored in the tape system.
Sometimes clients work coordinated and form client groups. For example a
parallel job that is started on multiple nodes.

Switches: To connect components in the network, switches are used. Switches
and any network component are limited in their bandwidth. Switches simplify
modeling the networks because a switch represents a connection between all
attached components.

I/O Server: The I/O Servers handle incoming requests. They are used to
delegate and move data between the clients, a global disk cache and the tape
system. As huge quantities of data are moved on modern systems serving thou-
sands of clients it is common to have multiple I/O servers. Sometimes I/O
servers are exclusively moving files between the disk cache and the tape archive.

Caches: Most modern I/O systems utilize caches to speed up operations on
recently used data by keeping copies on faster, but usually more expensive,
storage technologies. Two types of caches are relatively unique to tape systems:
A large shared cache cache usually with disks, and local caches for I/O servers.

Tape Drives and Tape: To read and write data on tape special drives are
required. A variety of different technological approaches exists. At the moment,
innovation with the most impact and performance improvements is directly
related to the capabilities of the tape drives itself.

Tape libraries/silos with robots: Tape is accessed automatically by using
tape libraries. A critical part to the performance of tape libraries are the robots
and the way the tape cartridges and tape drives are organized in the library.

Software: The interaction between the different components is governed by
various algorithms and software components. There is load balancing for tapes,
drives and I/O servers. Resource and file management to allocate and access
data. And scheduling of drives, robots and requests to optimize throughput.

4.3 Request Types

Different request types occur on tape systems, a number of these requests are re-
lated to implementation details and they will not be modeled. Most requests are
generated by clients but sometimes migrations or other service related workloads
are issued which can have impact on the overall system performance. Access to
libraries is provided either through a POSIX-like interface or via FTP usually
to copy from or to a POSIX-like system. Typical calls are:

• POSIX like

– open, read, write, seek, unlink, stat etc.

• FTP/HPSS

– reads: PST Cmd, STOR Cmd

– writes: PRTR Cmd, RETR Cmd

34

4.3 4.3. REQUEST TYPES

Client Group

Client

Shared Cache

Switch
CacheI/O

Server

Tape Drive

(a) cached

Shared Cache

(b) uncached

(c) UML Sequence Diagram

Figure 4.2: Schematics for handling a) cached and b) uncached read requests.

4.3.1 Reading

Read requests can be handled in two ways dependent on whether they need
to be read from tape or if they can be served directly from cache. Figure 4.2
illustrates the ways the data flows. In the case where the requested file is not
cached (b), the tape needs to be mounted in a tape drive and data is send to
the I/O servers. The I/O server then reads the file and sends it to the client.
A copy of the data kept in the cache. For requests to files which were staged
earlier (a) the I/O servers can read directly from the shared cache which can be
considerably faster. The process is also depicted as a UML sequence diagram
(c) which captures the responsibility of components.

35

4.4 4.3. REQUEST TYPES

WRITE (Phase 2)

Client Group

Client

Switch
CacheI/O

Server

WRITE (Phase 1)

Tape Drive

delay

Shared Cache

Shared Cache

(a) Data flows in the two phases of processing a write request.

(b) UML Sequence Diagram

Figure 4.3: Schematics for handling write requests.

4.3.2 Writing

Writes are handled in two phases. Analog to the illustrations for read-requests,
Figure 4.3 shows how data is flowing from clients to the cache and ultimately
to the library. The UML sequence diagram describes the control flow and the
responsibility of the different components. The phases are performed as follows:

1. In the first phase, the I/O Servers receive the request and direct data to
a shared disk cache.

2. In phase two, independently of the original request, the data is copied to
tape.

36

4.4 4.4. HARDWARE COMPONENTS

4.4 Hardware Components

Section 4.2 briefly introduced the most important components. This section will
focus on the hardware components in more detail. As a lot of hardware has it’s
own software, the boundaries between software and hardware components are
often blurred, especially when APIs to control hardware behavior are exposed.

Many hardware components are, to some extent, exclusive. For example
with only one drive we can only read one tape at a time. Other resources are
available in certain quantities. Usually computer hardware can be considered as
not consumable, thus, after using a resource it can be used again. Though also
consumables exists in tape systems, for example special service and cleaning
cartridges are required to clean the tape drives reading heads, which can be
used only for a limited number of times.

4.4.1 Fault-Tolerance

Another factor to consider is that hardware sometimes fails. A drive or a tape
may break, or a robot might get stuck. Failure behavior and characteristics are
well formalized and many vendors have to publish failure rates as part of their
specifications. In particular four tape library related measures are commonly
encountered:

Mean Time Between Failures (MTBF): gives the average time that passes
between two downtimes of the system. To model a complex system, we are in-
terested in the MTBF for the individual components. Usually a failure that
does not halt the system operation, but may degrade performance considerably,
is not accounted for in MTBF.

Mean Time to Recover (MTTR): describes the average time it takes to
repair a component before it becomes operational again.

Mean Swap Between Failure (MSBF): is a measure sometimes seen for
tape systems. It borrows from the principle of MTBF but replaces the measure
of time with the number of tape can be exchanged before a failure occurs.
Sometimes this is also called Mean Exchanges Between Failure (MEBF).

Mean Time To Failure (MTTF): As the name implies MTTF measures
the average time until a component or system fails in ways it can not be re-
paired. It is thus usually not appropriate for computer systems that are actively
maintained, though it is for individual components which need to be replaced.

4.4.2 Tape and Tape Drives

Tape and drives to access them are intimately related and they can not be
modeled reasonably when ignoring one of the two. The relation thus introduces
a variety of compatibility issues which are averted mostly by standardization
efforts. For example, LTO warrants for backwards compatibility for up to two
generations when reading from LTO tapes. While this slows innovation to some
extend, it also protects investments. Another consequence is that vendors can

37

4.4 4.4. HARDWARE COMPONENTS

innovate mostly by improving their tape drives which is why the tape model
remains fairly simple.

Tapes

Tapes are differentiated by the cartridge form factor, the tape technology
features (e.g., data, WORM, cleaning, diagnosis) and by their length. Car-
tridge and function can be expressed as simple identifying text strings. The
length depends mostly on the thickness of the tape, thus the length may be
implicitly limited by the specifications of a standard. The capacity of a tape is
not controlled solely by the tape, but also depends on the drive. In addition,
tapes are usually labeled with barcodes, so that if we want to model a diversion
from the intended use, this should be reflected in the label so that a library does
not serve tapes to incompatible drives. Furthermore, a drive might detect and
eject a tempered tape. Special tape formats may have additional features such
as write-protection or an EEPROM to store some information about the tape.
As such, a tape may hold information on it’s fill level. Usually most of these
information are also handled by a library management software as otherwise
sensible scheduling is not possible.

Tape Drives

Tape drives are somewhat harder to abstract; a wide variety of different drives
exists. A tape drive is usually compatible to a very limited amount of cartridge
form factors and maybe limited to the most recent generations of this cartridge
type. Dependent on the mounted tape cartridge, the drive can have different
performance characteristics. Thus, the performance for individual cartridges
depends mostly on the drive, and to a limited extend on the tape itself. Each
tape drive needs to maintain a list of compatible cartridges and specify how it
performs with these cartridges for a given mode of operation. The important
factors, most of which are based on the tape, are:

• Compatibility

– Read-Compatibility

– Write-Compatibility

• Read and write performance/transfer rates based on the tape

• Capacity based on the tape

• Spool/wind speeds based on the tape

• Time on mount/unmount based on the tape

• Multi-Channel support or the number of Read/Write heads

The model does not account for the case of under-utilization: If the tape
drive does not receive data fast enough, the drive needs to reposition the head,
which dramatically degrades the tape drives performance. Using the listed infor-
mation, it is then possible to compute an approximate performance for handling
a request and how long the drive remains unavailable (see Section 4.4.3).

38

4.5 4.4. HARDWARE COMPONENTS

Figure 4.4: Serpentine Tape Model

4.4.3 Tape-Seek- and Drive-Busy-Time Models

Section 2.1.1 introduced three layouts for writing data on tape (linear, linear-
serpentine and helical-scan). We will consider only linear-serpentine tape as
it appears to be the most relevant on modern systems. Figure 4.4 takes the
perspective of the tape drive and illustrates how data is actually read or written
on tape. An array of read/write heads can be positioned relative to the tape
in two dimensions and imprint or read a magnetic signature as the tape passes
underneath. When spooling to a specific position it is possible to move the
tape quite fast, when reading or writing lower speeds yield the best results. By
measuring or estimating the following characteristics, it should become possible
to approximate the time it takes to serve a request and how long a drive remains
busy:

• pos := (x, t): a tuple describing horizontal x and vertical (track) t dis-
placements relative to the tape. posBOT , posEOT are used to reference
the Begin-of-tape and End-of-tape. A single reel cartridge is mounted and
unmounted with posBOT .

• Tmount and Tunmount: the time it takes to mount and unmount a tape

• vspool, vhead: the speeds to reposition the tape and read-heads

• vread, vwrite: the speed in, e.g., bytes/second to read and write

The time to transition from a current position posi to target position posj
is calculated as follows:

Tseek(posj , posi) = max

(
|posix − posjx|

vspool
,
|posit − posjt|

vhead

)
The time Tread/write to read or write from tape is calculated as follows:

Tread/write(bytes) =
bytes

vread/write

The time a tape drive remains busy Tbusy would account for possibly multiple
seek and reading phases, before it ejects the tape and becomes available again.

Tbusy = Tmount+

BOT,...,BOT∑
posi,posi+1

Tseek(posi, posj) + Tread/write(bytesi)

+Tunmount

These formulas do not consider the time it takes a robot to receive a tape
Treceive yet, as this requires to look at modeling the library topology first.

39

4.5 4.5. MODELLING LIBRARY TOPOLOGIES

4.5 Modelling Library Topologies

When we looked at commercially available tape libraries in Section 2.3, the
focus was to obtain an idea of the kind of systems which are available and what
quantities of data they could manage. This section tries to abstract different
aspects that are relevant for the performance of a library. What sets different
library systems apart is the way tapes and drives are organized and how tapes
can be moved from one position to another, thus the topological characteristics
of the library. Besides the spatial distribution of the different components, it is
sometimes possible to partition a physical library into multiple logical libraries.
Partitions can change dynamics within a library dramatically. Modern libraries
employ modular designs with the basic building blocks being as follows:

Enclosures/Shelving Units: Every vendor uses different names, but to re-
alize scalable storage libraries multiple smaller units are designed in a way so
they can be combined to form what is often called a library complex. Usually
adding a shelf extends the library by a number of a few thousand slots for tapes
and tens of drive bays. Some systems separate drives and tapes by offering
shelves exclusively for tapes or drives.

Slots: A slot typically can hold one tape cartridge and usually they are ar-
ranged in grids or columns of slots. Some libraries use drawers to condense the
required space to store tapes at the cost of an additional step before they can
pick up the tape. Many libraries have reserved slots that are used for internal
service operations or optimization.

Drive Bays: Drive bays accommodate tape drives. Usually a number of mul-
tiple drive bays are located close together as the drives need special power
supplies and are connected to the network. The placement and the number of
the drives within a library also has an impact on the performance.

Railing System: To allow robots to bring tapes from one point to another
usually a rail is provided. This helps to keep robots simple and also to allow for
robots to move quickly. A rail often spans multiple shelving units; thus the rails
usually are more important to determine the logical library structure than the
shelves are. The rails also supply the robots with power. Usually it is relatively
easy to remove a robot from a rail.

Robots: A number of different robots are employed in the libraries. Older
tape system even where using industrial robot arms to handle tapes, but nowa-
days these systems are usually outperformed by more specialized approaches.
Most robots can move only in a linear fashion on a rail, and the robots that
pick and place tapes are often referred to as robot hands.

Partitions: Logical constructions that allow to treat a single physical library
as multiple virtual libraries. Usually moving tapes between two partitions is for-
bidden. Sometimes tape drives are exclusively reserved for use within a partition
thus allowing to define QoS in the partitions.

40

4.5 4.5. MODELLING LIBRARY TOPOLOGIES

4.5.1 Robots

The robots with the railing system are an integral part, which enables the other
components within a library to fulfill their function. Robots come in variety of
different shapes, but can carry only a few tapes at a time.

Robot Hands: The robot hands are usually mounted to the main railing
systems. As such they can pick up tapes from a slot and serve them to a tape
drive. The robot hands are also commonly equipped with a barcode scanner
and sometimes proximity sensors to identify tapes and sense empty slots. Most
robot hands can carry only one tape at a time. IBM also has system that can
pick or place two tapes in rapid succession. Spectralogic can potentially move
up to ten tapes at a time.

Elevators: For systems that have multiple vertically aligned levels of rails,
elevators are available to move tapes from one level to another. The capacity of
an elevator is limited, for example the SL8500 can move up to 4 tapes between
level at a time.

Pass-Through-Ports: Pass-Through-Ports1 are a mechanism to connect li-
brary complexes and move a limited amount of tapes from complex to complex.
They are attractive to have because they allow for loading and unloading tapes
through a single port and automatic rebalancing of tapes within a library.

Rotary High-Capacity Modules: Some libraries feature high capacity mod-
ules. A common schema is to have large drums with tapes vertically aligned
that allows to access only a single column of tapes at a time. A motor can
rotate the drum and change the front-facing column.

4.5.2 Generic Library Models

Ideally, it would be possible to find an abstraction that would generalize for the
different types of library extension schemes that are available. But when con-
sidering past systems and current system trends it becomes clear that a generic
approach will always introduce inaccuracies. It is hard to evaluate how severe
the error is, without a direct comparison by experiment. Three models are pro-
posed, each has a number of advantages but also comes with a number of pitfalls.
We will start by discussing a simple approach which only uses graph theory and
then turn to more accurate approaches, which use 2D and 3D representations.
As software components such as the robot scheduler and path finding will rely
on the topology, the idea is that the graph model is exposed to the software,
but the underlying behavior and time calculation can be overwritten by more
complex models when it appears appropriate. A similar mechanism is required
for stateful components, e.g., for some of the high-capacity modules the tape
access time is not fixed. From a user perspective, configuring a virtual library
in all detail can become a tedious task.. So besides the abstract models, an
additional layer is required that provides presets for the most common library
systems and a GUI for configuration.

1The vocabulary is somewhat flexible and depends on the vendor.

41

4.5 4.5. MODELLING LIBRARY TOPOLOGIES

Graph-based Model

In this modelling approach a graph can be used that represents the railing
network or the paths tapes and robots can traverse. A vertex in the graph
consequently is used for components and edges can be used to store distance
or travel times from component to component. In principle, the approach is
very flexible and arbitrary accurate depending on the level of detail. For highly
detailed models, the approach can be tedious to configure and will be more
expensive to compute. For lower levels of detail, errors may quickly accumu-
late. Figure 4.5 illustrates the concept, and in this case mixes distances and
times; this is just one of many ways to interpret edges and nodes in a graph
based topology. Usually an implementation will receive times and distances by
invoking a method to allowing more detailed models to hide behind an edge or
vertex. In most systems, a robot can not pass another robot, the exact rule-
book however should be handled in a separate component that prevents illegal
actions.

This model is attractive as we can utilize algorithms that are familiar from
graph theory. The task of serving a tape that sits in Slots-2 to Drive-1

becomes the problem of finding the shortest path which is easily achieved using,
e.g., Dijkstra’s Shortest Path in O(|E| + |V |log|V |) or more generally the A*-
Algorithm. Only positive weights are assumed. For large topologies with static
distances, it may pay off to look into the all-pairs shortest path problem to avoid
needlessly recomputing the same paths over and over again. For two vertexes vi
and vj and edges evi,vj the time TG to get from vi to vj calculates in principle
as follows. vrobot is used to denote the maximum robot velocity:

get time(evi,vj or v) :=

t if evi,vj or v have time t set

get distance(vi,vj)
vrobot

if e but no time is set

0 otherwise

TG(vi, vj) =

shortest path(v0,v1)∑
vi,vj

get time(vi) + get time(evi,vj
)

Shelf 1
50cm

Shelf -1

4 sec

Elevator, 10 sec

Elevator, 10 sec

Robot

5m/s

Drive 1

Drive 2

...

Shelf 2
20cm

...
get_distance()

Shelf -2
3 sec

...
get_time()

Figure 4.5: An example for a graph-based topology. The user can decide for
every edge and vertex to provide either a time or a distance. Usually, similar
components will consistently provide either the one or the other. The robot is
currently positioned near the drive bays but may move from vertex to vertex.

42

4.5 4.5. MODELLING LIBRARY TOPOLOGIES

1

2

3

4

5

6

8

9

10

11

7

1 2 3 5 6 7 8

20cm

(0,0)

Slot 6,9

x=57.5 y=28.25

1
Drive 2

(111,10.5)

3

5 6

4

Figure 4.6: An example for a 2D topology model with a component mapping
(in centimeter) coordinates and forbidden regions.

2D Topology Model

Sometimes projecting complete robot libraries into a two dimensional represen-
tation yields very good approximations. For the SL8500, this seems to be an
efficient approach (see Section 4.5.3). The reasoning is that many significant
movements that can be performed by the robots or the library are at most two
dimensional anyways. Finding a path within a 2D model then becomes calculat-
ing the Euclidean-distance between a number of points and a check if the robot
is crossing a forbidden area or an obstacle, in which case additional measures
have to be taken. Movements usually are decomposed of multiple linear move-
ments, thus care must be taken when calculating distances and travel times.
Figure 4.6 illustrates one way to representing a library in just two dimensional
space. Logical components are resolved to coordinates by providing a mapping
function for, e.g., slots and drives. Mounting a tape placed in Slot-6,9 to
Drive 2 requires visiting multiple coordinates. May T2D(path) be the time it
takes to traverse a path ∈ {(p1, ..., pn) | pi ∈ (x, y);x, y ∈ R}. Assuming differ-
ent robot velocities vx and vy for each axis, the total travel time may be defined
by the sum of the time traversing between two points T2D(pi, pj) and possibly
occurring work and wait times Twait/work:

T2D(pj , pi) = max

(
|pix − pjx|

vx
,
|piy − pjy|

vy

)

T2D(path) =

path∑
pi,pj

T2D(pi, pj) + Twait/work

An easing function e(|pid−pjd|, vmax) can to be used before taking the max-
imum should gradual robot acceleration be taken into account. The exact times
also depend on other robots, which reinforce the need for a component that
guards the behavior of robot as was discussed for graph-based topologies. 2D
topologies can greatly reduce the burden to model, even on first sight, complex
systems as such as a single SL8500. 2D models are limited when library com-
plexes are connected or more exotic parts (e.g., a high-density rotary drum) is
used in the system. In such cases, hybrid approaches that mix graph-based and
2D models are promising to achieve good approximations at reasonable effort.

43

4.5 4.5. MODELLING LIBRARY TOPOLOGIES

Figure 4.7: Oracle StorageTek SL8500 (Sun, 2006)

3D Topology Models

Full flexibility to cover all kinds of library systems are promised by turning to
three dimensional models. Yet, for most library systems today, 3D models do
not make a lot of sense when considering feasibility. When inspecting robots in
detail, it is possible to find 4 or more degrees of freedom, but in many cases,
the robots spend most of their time moving only a single dimension (rails/linear
guides). For small actions, such as pulling the tape out of a slot it is easier
to measure the time or simply estimate a time penalty on another basis. Yet,
tapes are moved in three dimensional space and some rails follow curvatures,
which may not always be trivial to map to a 2D representation. A 3D topology
will result in a 3D model of a library with the special objects and paths added
that are used to declare rails or forbidden areas or bounding boxes.

Path finding in 3D also is more expensive to compute. For example, finding
the Euclidean-shortest-path when considering a set of obstacles in three dimen-
sions is NP-Hard for the general case, though efficient algorithms that approxi-
mate the shortest path exist. As long as there are no systems with freely moving
robots or levitating tapes it is probably not worth the effort. Though it may be
attractive for visualizations and in combination with the other models.

4.5.3 StorageTek SL8500

The evaluation in Chapter 6 uses workloads provided by the DKRZ, which
where collected from a system using multiple StorageTek SL8500s. For this
reasons this section takes a closer look on modeling the SL8500 libraries to
estimate access times and the library internal dynamics that will later influence
the implementation. The SL8500 was already briefly introduced and compared
to other commercially available libraries in Section 2.3.

The SL8500 is organized in container-like units called libraries which than
can be combined to form library complexes. Figure 4.7 is an illustration of
the SL8500’s the internal structure in a slightly simplified manner. While the
management software allows to combination of up to 32 library complexes, each

44

4.5 4.5. MODELLING LIBRARY TOPOLOGIES

individual library complex can manage no more than 2.1 exabyte of storage
with the current generation cartridges. A single library may hold up to 10.880
tape cartridges which are organized on 4 levels (1 - top, to 4 - bottom) each
with a dedicated rail. Each each library consists of multiple modules, and the
customer can decide on the number of Storage Expansion Modules to increase
the number of slots. The four types of modules with relevant subcomponents
in an SL8500 are:

• Customer Interface Module (CIM) (front)

– Elevators (2 per CIM) (can move up to four cartridges)

• Up to five Storage Expansion Modules (SEM) (1728 Cartridges each)

• Robotics Interface Module (RIM)

– Pass-thru Ports (PTP) (allows to move up to 2 cartridges at a time)

• Drive and Electronics Module (DEM)

Addressing Slots and Drive Bays

When discussing the generic library topologies, the desire for a user friendly
way to configure (virtual) systems was discussed. Following this perspective, a
user would favor the granularity that is provided by the vendor’s catalogue. In
addition, a schema to map from slots to coordinates may be required for path
planning. A similar mapping may be also required to manage which cartridge
resides in which slot, as most library management software uses some kind of
visualization. Tape cartridges are usually identified and addressed by an unique
ID which encoded as a barcode which is stuck on the tape. Usually, this barcode
also includes tape generation, e.g., LTO-7.

For slots the situation becomes more complicated as, HPSS for example,
does not honor the way the SL8500 is enumerating tape slots and drive bays
and uses a different mapping. Figure 4.8 was created to illustrate the different
information that could be used for addressing slots in the SL8500 across multiple
library complexes. In practice, not all these information need to be included. In
most cases, an enumeration schema is restricted to the configuration and needs
to be updated when the library is extended. This is indeed necessary also for the
SL8500, though extensions into some directions do not require a reconfiguration.
Figure 4.9 shows an official slot mapping onto a 2D representation of a complete
SL8500 library module taken in the user manual. As can be seen slots are
addressed by (Complex, Library, Rail, Wall, Column, Row). In addition,
the drive bays are addressed using the same column schema as the tape slots,
while maintaining a separate row schema. This schema is attractive as it keeps
calculating robot actions and tape receive times organized.

StorageTek SL8500 Robot Speed The average time to serve a tape is
specified to take below 11 seconds on average. Due to the SL8500’s centerline
design, this value can be maintained regardless of the number of libraries that
form a library complex. When modeling the SL8500 it is therefore assumed that
traveling half a rail will also take 11 seconds. At a depth of about 6.5 meters
with 5 expansions, this results in robot velocities of 0.6m/s not accounting for
any easing. Easing would improve accuracy, as robots accelerate gradually.

45

4.5 4.5. MODELLING LIBRARY TOPOLOGIES

Figure 4.8: Library structure and possible divisions for a schema to address Stor-
ageTek SL8500 slots. From a costumers perspective a library and the number
of expansion modules (SEMs) are considered. In contrast, from an operational
perspective, SEMs do not exists: only the slot in terms of rows and columns for
a given rail, wall and library are relevant.

46

4.5 4.5. MODELLING LIBRARY TOPOLOGIES

Figure 4.9: Internal representation of a StorageTek SL8500 (Sun, 2006).

47

4.6 4.6. NETWORK TOPOLOGY

4.6 Network Topology

Once a tape is mounted for reading in a tape drive, the data is transferred
through the network to a I/O server . For simplicity and to allow to selectively
increase the level of detail, a broad definition of what qualifies as a network
is applied. In particular any bus within a computer as well as also any inter-
connection between computers that carries data, can be modeled as part of the
network as long as it is reasonable to describe the performance in terms of bits
or bytes that can be handled within a certain time frame. The components
that are relevant for network topology in the context of tape systems have been
already introduced in Section 4.2.2, though software components and the ac-
tual tape library will be usually excluded, which leaves: clients, switches, I/O
servers, caches, and tape drives. The physical network topology is represented
using a directed graph with vertexes for components and edges for the connec-
tions between the components. Two approaches to model and simulate network
activity are discussed,

Flow-Based Model: Transmissions between hosts are realized by determin-
ing the maximum-flow from the sending to the receiving party. The approach
may be lacking accuracy in some contexts and is optimistic. For the prototype
implementation only the Flow-Based Model is implemented (see Chapter 5).

Packet-based Model: Simulating packets will be more accurate as it is closer
to how data is transmitted in reality. The model is usually more expensive to
compute, because every package has to be considered by the simulation.

4.6.1 Communication

Before the transmission models are discussed in more detail, we to investigate
potential bottlenecks within the network that is deployed in support of a tape
system. Both approaches can get very detailed, though especially for low-level
communication, a flow-based model is not really appropriate anymore. For
HSM in general, it could be interesting to even consider circuitry within a chip.
Figure 4.10 illustrates transfer rates as they can be expected between different
components within a tape system. While data has to pass RAM, it seems fair
to model using only the three most limiting factors, thus ignoring the effect that
may emerge from further up in the cache hierarchy. The limiting bandwidths
are observed when performing tape or disk I/O.

I/O Node RAM

280 MB/s (LTO5)

400 MB/s (LTO6) 1-10 GB/s

 50-120 MB/s (HDD)

200-500 MB/s (SSD) Network

Tape Drive

HDD/SSD

Cache

Figure 4.10: Typical transfer rates (uncompressed) between different compo-
nents within a tape system.

48

4.6 4.6. NETWORK TOPOLOGY

4.6.2 Flow-based Model

A straight forward approach to model network bottlenecks between multiple
hosts in a network makes use of Maximum-Flow/Minimal-Cut Algorithms. Hosts
are represented by vertexes and bandwidths by weighted edges. Algorithms for
directed and undirected graphs are well researched. The configuration is simpler
with undirected graphs as less edges need to be created. Directed graphs allow
to better differentiate between upstream and downstream connections. In both
cases, we can account for multiple network adapters by adding multiple edges
between two nodes. The limiting network connections are bidirectional and full-
duplex by nature, meaning communication is possible in both directions and at
the same time respectively. For this reason, a directed graph representation
seems favorable. This representation can be exploited to account for unequal
read and write performance of storage technologies. The downside to this ap-
proach is that it cannot represent the true dynamics within computer networks.
In general it can be assumed to be overly optimistic.

In a flow-based model the communication between to hosts can be realized
by calculating the maximum-flow between the sending and the receiving party.
If a flow exists, the networks capacity is reduced for the time of transmission. As
additional capacity becomes available in the network the maximum-flow is be
recalculated. The concept is also illustrated in Figure 4.11. It does not matter
which algorithm is used, but the Push-Relabel Algorithm with time complexity
of O(V 3) appears to produce solutions that include fewer edges.

Client

Cache

Shared Cache

Tape Drive

Switch

I/O

Server

Tape Drive

RAM

Switch

(a) Network topology with the edge width encoding for current capacity.

Client

Cache

Shared Cache

Tape Drive

Switch

I/O

Server

Tape Drive

RAM

Switch

(b) A combined flow as it may occur for a read request limited by a tape drives
upstream. A first flow may be obtained for data flowing from tape drive to clients. A
second flow originates from the I/O server to write a copy to the shared cache.

Figure 4.11: Illustration of topology and network activity for a flow-based model.

49

4.6 4.6. NETWORK TOPOLOGY

Figure 4.12: ISO/OSI model for data communication and protocol examples.

4.6.3 Packet-based Model

As real systems transfer data in streams of packets, a more accurate way to
model traffic that captures the dynamics of computer networks is based on
packages. When allowing packages to be the size of a single bit, using this
representation any digital communication can be modeled. In principle a packet-
based network model acts according to the Open Systems Interconnection (OSI)
(Day and Zimmermann, 1983) model, a seven layer model that characterizes
communications independently of the underlying technologies (see Figure 4.12).
It is not strictly necessary to implement all involved layers if errors that can
occur during in lower level communication are acceptable to be ignored. In terms
of the OSI model with respect to tape systems, it appears sufficient to focus on
the network layer. How a package, or more abstract a protocol data unit (PDU),
arrives at the target destination depends on the protocol. Multiple protocols
and transmission types can be mixed. PDUs are stored in special buffers that are
maintained for every protocol. Usually no paths need to be explicitly calculated,
instead for example when handling the network layer, gateways are used to pass
packets until they reach their destination or are dropped on their way. A packet-
transmission model is more expensive to compute, because every PDU has to
be considered by the simulation. Figure 4.13 illustrates how the network might
look like for a tape system. Note how for example switches will only have buffers
for the protocols that are relevant for routing, e.g., IP traffic.

Figure 4.13: The network communication schema for a tape system, with dif-
ferent protocols depending on the desired simulation accuracy.

50

4.7 4.7. MODELLING SOFTWARE COMPONENTS

4.7 Modelling Software Components

In this section we thrive to collect abstractions of relevant software components
that would also be found in real deployments. As such there are mostly algo-
rithms for load balancing, scheduling for resource management as well as for
file- and tape system management. Quality of service is sometimes artificially
limited by quota systems or provide multiple service levels. In addition, some
requests may enjoy priority status and should be handled privileged. Finally,
the robots in the libraries need to be orchestrated, so that they provide tape
drives with tapes as fast as possible. Software components that are essential for
a tape system are the following:

Filesystem: Modern tape systems are exposed to users transparently and ap-
pear to be just like any other filesystem. Therefore, special purpose filesystems
that support mapping files to tapes and implement special cache coherency
mechanisms are deployed. The implementation uses a sparse file management
component to provide the most important functionality.

Tape and Slot Management: Somehow a system has to keep track of the
tapes in the library and which slots are still available to place a tape. In addition
routines that rearrange tapes in a predictive way and collaborative use of tape
drives (RAIT) for higher data security and faster access can be considered.

I/O Scheduling / Drive Scheduling: Among the most critical components
are I/O and drive scheduling algorithms. Only naive approaches are considered
in this context as this is a research field of its own.

Robot Scheduling: Before a drive can read a tape, a robot has to mount
the tape. Controlling the robots and prevent them from blocking each other is
taken care of by robot scheduling and path finding (also refer to Section 4.5).

4.7.1 Stack

As software architectures are often hard to overlook, it is helpful to visualize how
the different software components are related to each other. Figure 4.14 arranges
common software as it may be found in a tape system as a stack. Decoupling
components in such a way can give away optimization opportunities. On the
other, hand monolithic solutions are extremely hard to maintain.

Network

I/
O

 S
c
h

e
d

u
le

r

Tape Manager

File

Manager

Direct RAIT

Cache

Robot

Sched.

Abstr ct Models

LoD Not Feasible
2D

Model

Figure 4.14: A stacked overview of software components for tape system. The
dashed components may be feasible only when analyzing of higher-level HSM.

51

4.7 4.7. MODELLING SOFTWARE COMPONENTS

File

file1

file2

file3

file4

file5

Size

3134

6483

39485

38474

345

Position Tape

012345L1

LTO834L5

274344L4

274344L4

LTO834L5

Tape

012345L1

LTO834L5

274344L4

267753L4

264653L4

CLN004CU

CLN031CU

Slot

1,1,1,18, 9

3,1,3, 7, 5

1,4,2,-6,12

2,2,4, 3, 5

1,3,3, 7, 1

2,3,1,-7, 8

1,2,1, 2, 3

resolve(1,2,1,2,3)

Complex 1, Library 2, Rail 1
x=54.5cm y=84.3cm

Library Topologypos,track

 45,447

1623,187

2245,184

3749, 47

Figure 4.15: File and tape registries with metadata hidden for simplicity.

4.7.2 File, Tape and Cache Management

The software components managing the filesystem and the tapes within the
library are critical to a tape system, yet they are fairly straight forward from
a modeling perspective. Keeping track of a few hundred thousand tapes and
map them to slots in a library is relatively easy for modern systems and most
database management system are capable to do so. Challenges emerge for the
large quantities of files and associated metadata. These concerns , however, are
not relevant for many scenarios that the simulation is intended for. Figure 4.15
illustrates two tables including the only the very basic information required
for tape management, regular metadata is omitted in the illustration but is of
course part of the schema as well. Slots addresses can be resolved by the library
topology as will be required by the robot scheduling. In addition, it can be
useful to store the files position on the tape in the registry as it allows for more
intelligent strategies when scheduling tape I/O.

Cache Coherence and Policy Algorithms: Modern tape systems heav-
ily rely on caches to speed up operations. Software components implementing
cache coherence protocols and cache policy algorithms are therefore required.
They should also be easy to exchange by another implementation to make ex-
periments easier. For tape systems, caches are usually acting on files which may
have some unique dynamics but many caching algorithms are universal. It is
notable that there is in theory an optimal caching algorithm sometimes called
Baledy’s Algorithm (Belady, 1966): The most efficient strategy is to discard the
information that will not be needed for the longest time in the future. Unfor-
tunately, the practical value to this insight is fairly limited as workloads are
generally considerd unpredictable. But it becomes very clear that the heart of
any cache algorithm is a replacement strategy. Cache performance is commonly
evaluated by considering two performance characteristics:

• Lifetime – How long a item resides in cache.

• Hit rate – How often a desired item is actually found in cache.

Countless replacement strategies for caches exist, adequate for the require-
ments of the simulation prototype are: Least Recently Used (LRU), Most Re-
cently Used (MRU), Random Replacement (RR), Least-Frequently Used (LFU).
In addition, there are combined approaches such as the Adaptive Replacement
Cache (ARC), which mixes LRU and LFU. IBM holds a patent on ARC.

52

4.7 4.7. MODELLING SOFTWARE COMPONENTS

4.7.3 Concurrency and Request Bundling

Tape libraries can serve many requests concurrently when multiple tape drives
are installed. Because requests to tape systems usually take some time, it is
advisable to bundle requests to the same objects. Figure 4.16 illustrates how a
sequence of outstanding writes can be made more efficient by bundling multiple
request by tape and by reordering the requests to match the order they appear on
tape. Some limitations apply when tracks are written shingled on tape layout, as
in this case it may not be possible to overwrite a existing file without rewriting
other parts of the tape as well. Another problem can occur when multiple
clients are concurrently reading and writing the same file. POSIX semantics
for example require individual reads and writes to be atomic. For non-local
filesystems especially when dealing with large reads and writes, these guarantees
are hard meet as multiple copies of different versions may need to be kept until
overlapping requests are completed. In general more relaxed semantics allow for
more optimization opportunities. The problem is usually formalized as weak
versus strong ordering. Strong ordering guarantees that changes get visible
in the order that they occur. Weak ordering architectures use more relaxed
semantics and may reorder operations to archieve better system utilization.
If strong ordering is a requirement, theory also used in database design and
optimization can be applied. A good trade-off in cost and usage is given for the
class of conflict serializeable transactions. Classes with broader guarantees often
become NP-Hard to decide. Operations Oi, Oj ∈ {read,write} are considered
to be in conflict if and only if there exists some data D accessed by both Oi and
Oj , and at least one of these operations was a write access. Four cases need to
be considered:

1. Oi = read(D), Oj = read(D). Maybe handled concurrently.

2. Oi = read(D), Oj = write(D). Can not be handled concurrently.

3. Oi = write(D), Oj = read(D). Can not be handled concurrently.

4. Oi = write(D), Oj = write(D). Can not be handled concurrently.

The consequence of a conflict is always that, operations that conflict need
to be handled in the order they arrived. There exists a temporal order. For
non conflicting types interchanging the order will yield the same result. For the
simulation of tape archives it is expected that relaxed semantics will be sufficient
and strong ordering is not considered in the simulation. For higher level HSM
simulation they may become relevant.

Figure 4.16: Multiple requests are bundled and reordered to optimize tape I/O.

53

4.8 4.8. DRIVE ALLOCATION AND ROBOT SCHEDULING

4.8 Drive Allocation and Robot Scheduling

Drive allocation and robot scheduling are intimately related because a tape can
only be read or written when it was mounted first by a robot. Thus, schedul-
ing the two independently leaves unused optimization potential. But finding
a scheduling strategy that optimizes for drive utilization and robot utilization
is complex. Ultimately, the situation is worsened as scheduling strategies that
work well for one type of library system can perform miserably on another.
Factors contributing to the complexity of deciding for a allocation include:

• Configuration of library complexes

• Internal library structure and partitions

• Distribution of tapes and drives

• Number of robots and their carrying capacity

• Heterogeneity of the system

• Redundant Arrays of Inexpensive Tapes (RAIT)

In this section we will only briefly look at a procedure that allows to reason-
ably approximate the behavior within a SL8500 library. The simplest approach
is to rely on the specification of average tape receive time, and apply a 11 sec-
onds penalty to any request. As we thrive for a more accurate model that allows
to evaluate tape placement strategies a more sophisticated approach is needed.
Figure 4.17 shows a configuration with 8 robots and the two elevators. It illus-
trates further the locality of the inner and outer walls as they appear from a
robot perspective. Robots that are accommodated by the same rail can not pass
each other. Though in case of failures, the system is designed so that one robot
can push away another robot into a maintenance area to continue operation.

Rr,i

Figure 4.17: Most significant degrees of freedom for robots in a SL8500 library
module and how these relate to the spatial distribution of tapes and drives.

54

4.9 4.8. DRIVE ALLOCATION AND ROBOT SCHEDULING

Drive

Drive

Drive
R1,1Rr,i

R1,1Rr,i

Disk I/O Dirty

Queue

Tape I/O

IN

OUT

Robots

uncached reads

cached read

& writes

serve

writeserve

move tape

service

Figure 4.18: A network of queues to process requests to a tape library.

First In First Out (FIFO)

A straight forward strategy to handle incoming requests is to process them in
the order they arrive. For tape systems this is somewhat unsatisfying as it passes
up a chance of optimization. Strictly applying FIFO may disdain many of the
benefits introduced through the use of caches. In particular caches allow us to
prioritize read requests when scheduling tape I/O because by using sufficiently
large caches we can delay writing on tape until the system becomes idle.

Chained Request Queues

To make the different resources in a tape system more manageable is by keeping
multiple request queues. Each request queue is allowed to implement a prior-
itization schema as appears appropriate for the type of resource. Figure 4.18
illustrates the concept of multiple queues: Incoming requests are analysed and
distributed depending on their type and if the requested files already resides on
disk. Writes and cached reads can be served immediately but uncached reads
will require to perform higher latency tape I/O. Items in a cache that are not
made coherent yet are commonly referred to as dirty. As dirty files accumulate,
writing tape I/O has to be enqueued to keep the cache operational. The tape
I/O queue may prioritize reads and requests tapes to be served. An approach
similar to this one is used by the simulation.

Sliding-Window Optimization

Picking the best schedule according some criteria is possible by comparing all
possible schedules and pick the one that completes all tasks within, e.g., the
shortest time. For systems with high degrees of freedom, such as robot li-
braries, this approach quickly becomes unfeasible as the system is overwhelmed
by an exploding number of combinations to compare. Yet as tape systems are
operating on relatively large latencies in the range of tens of seconds a heuristic
or a reduced problem can potentially increase the general library throughput.
Assuming a number of tasks that need to be completed, we can reduce the
problem by only considering a limited number of requests e.g., a sliding window
that compares different schedules for the next 10 outstanding requests. Another
approach to reduce the problem is to limit the amount of time the system is al-
lowed to look for optimized schedules, and stick with the best that was found in
this time. In both case heuristics become important that, e.g., allow to discard
combinations that are unlikely to yield good results.

55

4.9 4.9. SUMMARY OF THE MODEL

Client GroupClient

Tape Silo

Shared Cache

Switch

I/O

Servers
...

Cache

Switch

Drive

Drive

Drive Drive

Drive Drive

Drive

Drive

N
e
tw

o
r
k

I/
O

 S
c
h

e
d

u
li
n

g

Tape Manager

File Manager

Direct RAIT

Cache Policies

Robot

Sched.

Library Topologies

Workload

Generation

Load Balancing

Figure 4.19: Model overview for the operation of a tape library simulation.
Colorful components represent software. The dashed lines are used to hide the
complexity of the network where appropriate.

4.9 Summary of the Model

A complete overview Figure 4.19 combines the most important hardware and
software components that are necessary for the operation of a simulated tape
library system. From top to bottom: There is clients which stress the system
by sending requests through a network. They are represented using workload
generators which are covered in more detail in Section 5.4. Requests are then
handled by the I/O servers and constantly interact with various filesystem re-
lated components such as the caches but also the tape management. Writing
to disk and tape requires special I/O scheduling strategies. But before it is
possible to write on or read from a tape it must be mounted to a tape drive,
which requires to look up where the tape is and then send a robot to get it. To
do so we need to have a model of the library topoloy which allows us to plan
a path and also how long this takes. As the systems is used for a while, files
will accumulate in the cache which requires to enforce cache policies to decide
which files should be replaced.

In many occasions the models take shortcuts as the scope of the thesis is
limited and mainly aims to capture the fundamental characteristics required to

56

4.9 4.9. SUMMARY OF THE MODEL

explore the performance and conduct experiments on automated tape library
systems. This section is dedicated to have an overview of the limitations of the
model. It also serves as a starting point for improvements and future work. In
most cases reasoning to model in one way or another is provided in the respective
section which covers the “sub-model” in detail. Noteable simplefications are as
follows:

• Hardware – many smaller components (e.g., power supply, cleaning car-
tridges) are not explicitly modeled

• Workloads and Requests – Countless protocols with different operations
interact with tape systems an many different levels, but only read and
write are modeled

• Network – The Flow-based model assumes optimal bandwidth exploitation

• Library – Service interruptions, e.g., cleaning cycles are covered only
briefly

• Software – For the beginning only very simple algorithms are used, which
may diverge considerately from the state of the art

• Global View – Gathering system state information in most situations
comes for free, but obtaining a global view is very hard on distributed
systems

Summary

Modeling a tape library in a hierarchical storage system is a complicated process
that touches many topics which are research fields by their own right. The objec-
tive of the model to serve as a foundation for I/O experiments for tape systems
and hierarchical storage system is curse and blessing at the same time. On the
one hand, it allows to ignore many facets that can be considered implementation
details, on the other hand, it requires the invention of models for behavior which
otherwise simply emerges from a physical system. Workload on the system can be
expressed almost exclusively by looking at reads and writes. Hardware compo-
nents can fail but establishing a authoritative models require to collect reliability
statistics. It turns out finding a generic abstraction to describe the dynamics of
tape library complexes is surprisingly hard as the many details that may make a
difference accumulate for all the library systems. Besides describing the topology
of the tape library we also have to use a topological description of the network
to model communication between the different hardware components. Finally
all physical systems are governed by software, which should be to some extend
modular to allow replacement with a experimental alternative.

57

Chapter 5

Implementation

This chapter covers the technical aspects and the implementation of the tape
simulation. Section 5.1 motivates the choice of the programming language. Sec-
tion 5.2 presents the general architecture including a class hierarchy. Section 5.3
gives brief introduction to discrete event simulation and implementation specific
cues. Section 5.4 discusses how to automatically run workloads on the virtual
tape library. Section 5.5 presents features to make experiments more convie-
nient.

5.1 Programming Language

At the beginning of any software project, one of the first decisions is the choice of
programming language. Given the requirements and the nature of the problems
as discussed in Chapter 4, an object oriented language seems to provide the
most intuitive concepts, allowing to wrap physical and logical components into
separated classes. Which will ultimately be easier to maintain. From a wealth of
object oriented languages, Python was chosen for a number of reasons. Python
is a relatively high level language and allows for convenient inspection of the
system state as it is an interpreted language and offers reflection. Secondly it
features a extensive standard library and makes many third party libraries easily
available, e.g., Numpy, Scipy (?). It is popular for rapid prototyping situations
and reduces the areas where we might get entangled in low level problems as
they are mostly hidden. That is not to say there are legitimate concerns with
Python, on the one hand it is comparably slow. Secondly, the idea is that
at some point software components used for scheduling and actuate the tape
archive maybe used to drive an actual tape library and not just a simulation.
Also support for multi threading could be better. But as there exist python
bindings allowing to use C/C++, this concerns can be neglected, as moving
over is possible when performance becomes a problem. Generally it appears,
maintainable code is more important during prototyping than efficiency.

5.2 Architecture

The tape/HSM simulator was build with modularity in mind. Besides the soft-
ware development benefits such maintenance and reuseability, this also provides
a more intuitive access to the simulation of a complex system. While it was
originally planned to use a framework for discrete event simulation, it turned
out that the available frameworks were lacking in the way times could be rep-
resented, which is why a simple simulation kernel that was compatible with
Python’s datetime to represent times was developed instead.

58

5.2 5.2. ARCHITECTURE

5.2.1 Classes for the Key Components

Analog to the requirements determined in Chapter 4 hardware and logical com-
ponents are modeled and would inherit from a generalised component that would
provide the basic interface that is used by the simulation kernel. For common
component types abstractions have been created. Also refer to Figure 5.4 for a
UML class diagram to see how the different components are related.

Simulation Kernel A relatively simple kernel that implements a discrete
event simulation. As real world systems are simulated and most events in prac-
tical systems are timestamped instead of an abstract model time.

Components Per convention every component that should be considered by
the simulation needs to register with a simulation and implement the next action()

method.

Network Topology The network is represented by a directed graph where
a weight of an edge represents the capacity of the network interconnect. As
requests are processed, parts of the network are allocated and freed again when
the transfer is over.

Network Components When registered to a Network Topology, these com-
ponents are considered when sending data from one host to another.

Library Topology The idea is to generalize the library topology so that it
would be easy for generic scheduling algorithms to find and calculate the best
schedule to receive a sequence of tapes. The network topology describes the
paths a tape can travel.

Library Components When registered to a Library Topology, the compo-
nent will be considered when calculating the path to reposition or mount a tape
in the library.

Software Components The abstraction is not strictly necessary at this point
but is made to separate hardware emulation and managing software as good as
possible. Hopefully this allows to easier port components that have proven
useful to a production system.

Convenience and Reporting To simplify the collection of data and to allow
to potentially resume a simulation run a centralized mechanism to store data
that is related to one simulation is available with the PersistencyManager. As
a second mechanism it is possible for components to register CSV reports, and
append rows and data points as the simulation progresses. The CSV files are
then stored together with the other files related to the simulation run. Besides
data collection, routines to visualize the network utilization and device states
are available for easier inspection and debugging.

59

5.2 5.2. ARCHITECTURE

F
ig

u
re

5
.1

:
U

M
L

C
la

ss
D

ia
g
ra

m

60

5.3 5.3. DISCRETE EVENT SIMULATOR

Step 0

t

Step 1

Step 2

Step 3

Events

Figure 5.2: Discrete Event Simulation

5.3 Discrete Event Simulator

To model complex systems a common tool is discrete event simulation (DES)
already introduced in Section 3.4. Figure 5.2 illustrates how DES was imple-
mented in the simulation prototype for this thesis. Events are ordered by their
time of occurrence, and always the first event becomes the model time. When
a event is processed it may submit new events to the simulation which are then
considered when determining the next model time. It is possible for events to
occur at the exact time in which case the sorting algorithm dictates the order
in which they are processed. Python by default uses a stable sorting algorithm,
which makes the simulation honor the order in which requests are submitted.
The simulation uses Python datetime and timedelta objects to represent time,
which allow microsecond precession. For the simulation with tape systems it ap-
pears that rounding to second precision yields good approximations at a fraction
of the runtime, also see Section 6.4.

The simulation terminates when no more events are in the event queue. Some
other termination conditions have proven useful during conducting experiments
and for testing and development:

• on system stall (default)

• after number of iterations

• after passing a specific model time.

61

5.4 5.4. WORKLOAD GENERATION

5.4 Workload Generation

To stress the virtual tape library, a request object can be instantiated and
submitted to the simulation. In addition to explicit submission it possible to
register event providers to the simulation. As the simulation proceeds event
providers are polled for future events until they indicate they have been drained.
A workload provider could be used to create requests on the fly according to a
script, a probability distribution or a trace file.

Xferlog Provider For the evaluation of the simulator with real world work-
loads, tracefiles using the xferlog format as provided by the FTP server daemon
(proftpd) were used. The trace files are to some extend anonymized which has
the potential to introduce unwanted collisions though an analysis of requests
suggest that the effect is negligible. The Xferlog provider discards entries it can
not parse and accepts requests types based on a white list. Four request types
are accepted and mapped to read and write as follows:

• read – PST Cmd, STOR Cmd

• write – PRTR Cmd, RETR Cmd

On startup of the simulation, the trace is analysed to populate the filesystem
and the tape library. The Xferlog Provider automatically registers unknown
hosts as network components to a predefined node in the network topology.
Connections are automatically made bidirectional and all hosts are assumed to
have the same bandwidth. For very large traces the simulation may run out of
memory as no hosts are removed. In practice this has never been a problem, as
the memory profile usually remains relatively stable (see Section 6.4).

Assumptions for Tracefiles

To ensure simulations are meaningful when using workload traces, a number of
assumptions were made, mostly because a trace alone does not provide all the
necessary information.

• Assume only serviceable reads: Incoming reads with not entries in the
simulated filesystem are created and then served despite they may have
been dropped in reality.

• Ignore hardware failures and service. Components do not fail, though a
event generator that disables components is straight forward to implement.

62

5.5 5.5. CONFIGURATION OF A SIMULATION

5.5 Configuration of a Simulation

5.5.1 Experiments

To make the setup of experiments more convenient a number of features were
implemented. In particular command line arguments to quickly change the
configuration were used, though a comprehensive method for components to
register additional options is not provided yet. Topologies can be saved and
loaded from XML files. The workload generators from Section 5.4 and the
reporting tools covered in Section 5.6 are also important features to make the
life of experimenters easier.

5.5.2 Graph based Network Topology from XML

Every data center uses a different configuration, to account for this and also
to allow easily switching a configuration, the topologies currently implemented
offer import functions to initialize a topology from an XML file. As described in
Section 4.6.2, the network represented by a directed graph that connects physical
components. Every component provides methods to query for the components
capacity. The default for network components is a capacity of one which can
not be shared. Parts of the network capacity can be allocated and freed, e.g.,
as a path from source to target. Figure 5.3 demonstrates the concept on a very
simple configuration with already one tape drive busy (a); (b) shows the result
of a available flow from a free drive to a client. This approach was chosen to
serve as light weight alternative to a paket-based simulation of the network.

It was tried to avoid third party dependencies. For the graph representation
it was decided to use a library. Network and library topologies are based on
a graph representation, and graph-tool (Peixoto, 2014) bundles a collection of
useful tools in graph theory. Algorithms are implemented in C++ as provided
by Boost are wrapped so they can be called from within Python. As a note
of caution: the library wrapping C++ features relatively “unpythonic” access
to data structures. Graph-tool cannot be installed from pip but needs to be
compiled from source which may take some time as the library makes heavy use
of template code. Graph-tool can be compiled with OpenMP to exploit parallel
algorithms.

5.5.3 Command-line Options

Command-line interfaces have proven to be extremely helpful to ensure repro-
ducibility and to enable simple means for automation. Using shell scripts it is
then possible to start simulation runs varying different parameters, in a simi-
lar fashion a optimization engine may start multiple runs and decide based on
the results which configurations to try next. The parameter requirements for
the simulation of tape drives have not been formalized but were added as they
became useful during development. This way arguments to control the trace
provider using --tracefile FILE and --limit NUM. Arguments to switch the
topology configuration are available including --networktopology FILE and
--librarytopology FILE and --drives NUM to specifiy the number of tape
drives. To manually step through the simulation one can set --confirmstep.
Most class constructors have additional parameters which are not exposed yet.

63

5.5 5.5. CONFIGURATION OF A SIMULATION

10.0

10.0
10
.0

1
0
.0

5.0

10.0

10
.01

0
.0

30.0

3
0
.0

25.0
3
0
.0

20.0

3
0
.0

30.0

20.0

2
5
.0

30.0

20.0

5.
0 5

.0

20.0
0.
0

5
.0

Client:A

Client:B

Client:C

Client:D

Switch

I/O:A

I/O:B

Cache

Switch

Disk Cache

Drive:A

Drive:B

Library

(a) The current state of the system.
Drive:A is busy as indicated by it’s color.

0.0

0.0

0.
0

0
.0

5.0

0.0

0.
0

0
.0

0.0

0
.0

5.0

0
.0

0.0
0
.0

0.0

0.0

5
.0

0.0

0.0

0.
0

0
.0

0.00.
0

5
.0

Client:A

Client:B

Client:C

Client:D

Switch

I/O:A

I/O:B

Cache

Switch

Disk Cache

Drive:A

Drive:B

Library

(b) A flow from a free Drive:B to
Client:A for the state as depicted in (a).

Figure 5.3

10.0

250.0

10.0

7
5
0
.0

1
0
0
0
.0

1000.0

10
00
.0

1500
0.0

0.0

3
0
.0 30

.0

1475
0.0

1
0
0
.0

100.0

100.0

20
0.0

20
0.
0

200.0

2
0
0
.0

200.0

3
0
.0

30
.0

5
0
.0

100.0

100.0

0.0

20
0.
0

200.0

2
0
0
.0

200.0

1
0
0
0
.0

1
0
0
0
.0

1000.0

10
00
.0

0::Dummy

1::Node Switch2::Switch

3::Drive Switch

4::I/O:A

5::I/O:B

6::Drive:A
7::Drive:B

8::Drive:C9::Drive 1

10::Drive 2

11::Drive 3

12::Drive 4

13::Drive 5

14::mistral.dkrz.de

15::mistralpp.dkrz.de

16::lobster1.dkrz.de

17::mistralpp03.dkrz.de

Figure 5.4: Network graph visualisation with two busy drives and the remaining
bandwidths as edge weights. Note the link from 1::Node Switch which is
dimensioned so the network would be quickly saturated.

64

5.6 5.6. REPORTING AND DEBUGGING

5.6 Reporting and Debugging

The simulation was build with certain reporting capabilities in mind from the
beginning. For every simulation run a dedicated and timestamped directory
is created which can be used by other modules to store data associated with
the current run. This way it is easy to inspect and analyse the data during
simulation and post-processing. The consolidated structure of simulation results
makes automated report generation much easier.

• Request data

– requests.csv for request summaries (e.g. throughput, duration,
size, status/errors)

– stages.csv

– wait-times.csv

– Detailed request histories including bandwidth changes (optional)

• Simulation process log when enabled (Default: stdout)

• Simulation state in limited detail (dumped at the end of the simulation)

– Filesystem state

– Tape system state (Tapes and Slots)

– Global cache state

• HSM/Tape System Configuration

– Network Topology as XML

– Library Topology (pickle/XML)

Post-Processing

Performance reports are not generated automatically after a simulation run
completes, but a number of R and post-processing scripts to generate plots from
snapshot directories or for trace files are available. In particular this includes:

• Timeline plots for requests, stage-counts and wait-times, trace-activity and
memory consumption

• Density, histogram and boxplots for performance metrics like throughput,
duration and wait-times

Summary

The programming language has implications on the execution of any software
project. For a prototype rapid development is important which is why the simula-
tor is implemented in Python. Python, being a object oriented language encour-
ages the use of classes, which the simulator uses to provide abstract components
that are related to tape systems. The simulation itself is based on the principles
of discrete event simulation, and a simple simulation core was developed for the
thesis. To conduct experiments a wide range of support tools had to be devel-
oped to allow for workload generation, library configuration and visualisation
and debugging.

65

Chapter 6

Evalution

This chapter validates whether the models and the simulation prototype meet to
the goals of the thesis. In Section 6.1 we take a look at a real world workload as
it was observed on the storage archive of the DKRZ. Section 6.2 compares the
simulated library performance to plots with the monitoring of the real system.
Section 6.3 looks at how varying the number of drives effects the performance of
the simulated system. In Section 6.4 we briefly look runtime and memory usage
of simulation runs to see if running lots of experiments can be feasible.

6.1 A month of PFTP activity

For the evaluation of the simulator, the DKRZ generously provided workload
traces of FTP traffic that cover a periods of roughly a month as well as matching
snapshots of of the information captured monitoring during that time. The
monitoring plots covers a period of about 3 weeks. This section will give a
quick overview on the workload and discuss in how far it is suitable for the
verification of the virtual tape system. Notable but not problematic appear the
following:

• PFTP traffic accounts for the majority of the workload on the system,
but other services to browse and access the data are also available e.g.,
through CERA.

• No files are deleted from the climate database. This may be reasonable as
users are charged for using the archive and won’t submit data that is not
meant for long-term archival.

• The trace data was anonymized by stripping the filenames, which may
lead to collision in the virtual systems on files which are not the same file
in the real system.

• The trace includes a period of scheduled downtime. This takes away from
simulations thriving to improve normal operations, but maybe more mean-
ingful for verification as the recovery from a downtime can be simulated.

• I/O in the trace touches only about 0.5 PB of data, but for the evaluation
of of caching strategies for a 5PB disk cache no replacement of cached files
need to be performed.

Figure 6.1 plots the frequency of different file sizes in megabytes as they
occur in the trace. It is notable that most files are about 10 GB in size, which is
consistent with the recommendation communicated to users of the DKRZ. Fig-
ure 6.2 counts the number of read and write requests in the trace in comparison
to the DKRZ’s monitoring.

66

6.1 6.1. A MONTH OF PFTP ACTIVITY

0

20000

40000

60000

80000

1e−04 0.1 100 1e+05
megabytes

fr
eq

ue
nc

y

(a) Frequency of different request sizes. With a large
peak for requests with a size of 10 GB.

0

20

40

60

read write
type

%

(b) Percentage of
reads/writes.

Figure 6.1: Composition of the workload in terms of request size and type.

(a) Reads and writes as they are observed by DKRZ’s monitoring.

0

10

20

30

Sat Mon Wed Fri Sun Tue Thu Sat Mon Wed Fri

co
un

t

type read write

(b) Read/Writes as they occur in the trace that is fed to the simulation.

Figure 6.2: Observed request types over time for a period of 3 weeks.

67

6.2 6.2. MODEL VERIFICATION

6.2 Model Verification

In order to stress the virtual system, the workload trace discussed in Section 6.1
was used and similer graphs as observed in the DKRZ’s monitoring system were
created. A special provider to support the xferlog format had to be developed,
as had to be a strategy to approximate the system state of the library. A number
of assumptions and simplifications had to be made, which limit the accuracy of
the simulation:

• As a distribution of files, tapes and tape types could not be obtained a
random distribution is generated when starting a simulation. This is a
multi-step process, and requires to randomly pick a tape and the tape
generation followed by randomly choosing a free slot if a new tape was
created.

• Files which are read the first time they occur in the trace, are created in
the file system, as it is assumed that they exist. Thus dropping requests
to non-existing files does not occur.

• Hardware-side compression was ignored completely for the lack of a sen-
sible heuristic to map compression rates to files.

• The trace does not provide information on where the files reside in the
tape system. For the simulation the virtual tape systems files, tapes and
slots are populated randomly. Files which are read only are ensured to
exists.

• The type and generation of 65 tape drives is considered, but the exact
placement in the library is not. Considering construction of the SL8500
the effect should be negligible especially as already the tape generations
do not reflect the original system state.

• Local caches within the I/O nodes are not taken into account.

6.2.1 Comparison to DKRZ Monitoring

The monitoring system collects multiple metrics concerned with the library
utilization and performance the system. By collecting similar metrics using the
simulation and comparing the virtual performance to the monitoring data it
is possible to verify how good the approximation of the simulation is. Two
particular interesting monitoring metrics for the purpose are the cache stages
and the wait-times for requests.

Verification of Staging Behavior

Figure 6.3 combines the number of FTP requests and the number of stages
in one plot. It therefore can be used to visualize backlogs should the system
not be able to keep up with the workload. While not identical, the simulation
behavior clearly matches the behavior observed by DKRZ’s monitoring. The
simulation stages files slightly faster then the real system. This is consistent
with the results of the wait-time analysis.

68

6.2 6.2. MODEL VERIFICATION

(a) FTP jobs and stage counts as reported by the monitoring.

0

20

40

60

Sat Mon Wed Fri Sun Tue Thu Sat Mon Wed Fri

F
T

P
 J

ob
s

(b) FTP Jobs as observed by the trace file

0

20

40

60

Sat Mon Wed Fri Sun Tue Thu Sat Mon Wed Fri

S
ta

ge
s

(c) Stages (red) as they are performed by the simulation.

Figure 6.3: FTP activity for a period of three weeks. Validation of stage-counts
by comparing the DKRZ’s monitoring (a) to the results of the simulation (c).

69

6.2 6.2. MODEL VERIFICATION

Verification of Wait-times

Figure 6.3 groups requests by the time that they are already waiting. Shorter
wait-times are visualized at a higher resolution than longer waiting requests.
Most requests are waiting only a few minutes before they are served, but as
workloads are bursty, sometimes wait-times of up to a few hours can occur.
As observed when analysing the stage-counts, the simulation appears to handle
requests faster than observed in reality.

(a) Wait times as observed by monitoring.

0

10

20

Sat Mon Wed Fri Sun Tue Thu Sat Mon Wed Fri

N
um

be
r

of
 J

ob
s

wait−times
< 1m
< 2m
< 3m
< 4m
< 5m
< 8m
< 10m
< 15m
< 20m
< 30m
< 1h
< 2h
< 4h
< 8h
more

(b) Wait times as observed by the simulation.

Figure 6.4: Wait times as observed over a period of three weeks.

70

6.2 6.2. MODEL VERIFICATION

6.2.2 Virtual Setup

In Section 2.6 we briefly introduced the storage archive of the DKRZ. For the
experiments a network topology and a library topology to resemble the general
structure of the deployment at DKRZ were prepared. Notable characteristic of
the setup are:

• Figure 6.5 is an illustration of the used network topology. Components
colored in green are consistent across all experiments in this chapter.

• For the verification run only 60 Tape drives were used. For other exper-
iments the number of used tape drives varies and is also specified by the
caption of each plot.

• The library topology used six SL8500 tape library modules, but unlike the
DKRZ’s only a single library complex was assumed. The Pass-Thru-Ports
and elevators were disabled in all experiments.

• The disk cache could fit up to 5 petabyte of data.

15000.0

15000.0

10.0

10.0

1
0
0
0
.0

1
0
0
0
.0

1000.0

10
00
.0

1500
0.0

1500
0.0

1
0
0
.0

100.0

100.0

20
0.0

20
0.
0

200.0

2
0
0
.0

200.0

1
0
0
.0

100.0

100.0

20
0.0

20
0.
0

200.0

2
0
0
.0

200.0

1
0
0
0
.0

1
0
0
0
.0

1000.0

10
00
.0

0::Dummy

1::Node Switch

3::Drive Switch

4::I/O:A

6::Drive:A
7::Drive:B

9::Drive 1

10::Drive 2

11::Drive 3

12::Drive 4

13::Drive 5

...

15::mistralpp.dkrz.de

16::lobster1.dkrz.de

17::mistralpp03.dkrz.de

...

...

1
5
0
0
0
.0

1
5
0
0
0
.0

2::Switch

Disk Cache

Figure 6.5: The network topology used to approximate the DKRZ’S deployment
in the experiments.

71

6.3 6.3. EXPERIMENTS

6.3 Experiments

6.3.1 Experiment Candidates

Different experiments are anticipated, but are out of scope of the thesis. Still
they shall be discussed as a starting point for future work. Experiments at the
moment usually touch verification and optimization. Verification-experiments
require more effort to construct. Optimizations tend to be resource intensive as
many different configurations are tried to determine which performs best.

Drive Placement or Partitioning Optimization: Drive placement and
partitions can have dramatic effects on the dynamics within tape library. By
varying how partitions or drives are configured, a existing library may be im-
proved.

RAIT Experiments RAIT provides many opportunities for tape optimza-
tion. RAIT provides many parameters which can be varied, e.g., number of
stripes, number of redundant copies in the system, RAIT layout strategies.

Budget Optimization Many systems are obtained on a budget. By including
a price catalogues it becomes possible to minimize the initial cost, TOC or
energy consumption.

Drive Type/Generation Optimization: Tape drives are among the most
expensive components in a tape library. Older generations are usually more
affordable, thus picking a mix of different tape drive generations may provide a
similar performance at a reduced cost.

Tape Type/Generation Optimization: As with drives, tapes generations
can be varied. To find a cheap transition strategy when a new tape generation
is released, the mix of tape can be varied and compared.

Scheduling and Cache Policies: Scheduling occurs in multiple places within
a tape system. By exchanging the scheduling components by experimental ones
it is possible to evaluate their performance. Similarly it is possible to evaluate
different caching policies.

6.3.2 Experiment: Varying the Number of Tape Drives

To demonstrate that the simulation can be used to conduct experiments, the
workload from Section 6.1 is used again. The same limitations as discussed
in Section 6.1 and Section 6.2 also apply for the experiments in this section.
However, this time the library configuration is changed in two ways and results
are compared to the baseline run from Section 6.2.

1. Reduced number of drives to understand system degradation.

2. Increased number of tape drives to validate performance improvement.

72

6.3 6.3. EXPERIMENTS

Effect on Stage Counts

Figure 6.6 shows how the number of stages over time changes when decreasing
(a) and increasing (c) the number of tape drives that are available in the system;
(b) serves as a reference run with the same configuration as in Section 6.2.
Consistent with expectations, reducing the number of tape drives distributes
the number of stages over a longer period of time. Increasing the number of
tape drives results in more immediate realisation of requested files being staged.

0

20

40

60

Sat Mon Wed Fri Sun Tue Thu Sat Mon Wed Fri

S
ta

ge
s

(a) Stages when number of drives is reduced to 30.

0

20

40

60

Sat Mon Wed Fri Sun Tue Thu Sat Mon Wed Fri

S
ta

ge
s

(b) Reference run, with original configuration with 60 drives (also see Figure 6.3)

0

20

40

60

Sat Mon Wed Fri Sun Tue Thu Sat Mon Wed Fri

S
ta

ge
s

(c) Stages when number of drives increased to 75.

Figure 6.6: Stages for varying configurations with (a) reduced and (c) increasing
number of tape drives; (c) serves as a reference run (see Section 6.2).

73

6.3 6.3. EXPERIMENTS

Effect on Wait-times

Figure 6.7 shows how the wait times change over time when decreasing (a) and
increasing (c) the number of tape drives that are available in the system; (b)
serves as a reference run with the same configuration as in Section 6.2. Because
stage counts and wait times are to some extent related, it is no surprise that the
observations match our expectation of a decrease in wait-times as we increase
the number of drives.

0

250

500

750

1000

Sat Mon Wed Fri Sun Tue Thu Sat Mon Wed Fri

N
um

be
r

of
 J

ob
s

wait−times
< 1m
< 2m
< 3m
< 4m
< 5m
< 8m
< 10m
< 15m
< 20m
< 30m
< 1h
< 2h
< 4h
< 8h
more

(a) Wait-times when number of drives reduced to 30.

0

10

20

Sat Mon Wed Fri Sun Tue Thu Sat Mon Wed Fri

N
um

be
r

of
 J

ob
s

wait−times
< 1m
< 2m
< 3m
< 4m
< 5m
< 8m
< 10m
< 15m
< 20m
< 30m
< 1h
< 2h
< 4h
< 8h
more

(b) Reference run, with original configuration with 60 drives (also see Figure 6.4)

0.0

2.5

5.0

7.5

10.0

12.5

Sat Mon Wed Fri Sun Tue Thu Sat Mon Wed Fri

N
um

be
r

of
 J

ob
s

wait−times
< 1m
< 2m
< 3m
< 4m
< 5m
< 8m
< 10m
< 15m
< 20m
< 30m
< 1h
< 2h
< 4h
< 8h
more

(c) Wait-times when number of drives increased to 75.

Figure 6.7: Wait-times for varying configurations with (a) reduced and (c) in-
creasing number of tape drives; (c) serves as a reference.

74

6.3 6.3. EXPERIMENTS

6.3.3 Optimizing for Quality of Service

By aggregating the total wait-times for users collected for different configu-
rations, it is possible to narrow down the optimal configuration to provide a
certain quality of service. Figure 6.8 plots the discrete cumulative distribution
of wait-times for varying numbers of drives. It is now easy to make statements
such as:

• All setups are suitable to serve 90% of requests in under 20 minutes.

• To serve at least 50% of the requests within 3 minutes, use 45 drives.

0.00

0.25

0.50

0.75

1.00

< 1m < 2m < 3m < 4m < 5m < 8m < 10m < 15m < 20m < 30m < 1h < 2h < 4h < 8h more
total wait−times

Jo
bs

(a) Wait-times when number of drives set to 30 drives.

0.00

0.25

0.50

0.75

1.00

< 1m < 2m < 3m < 4m < 5m < 8m < 10m < 15m < 20m < 30m < 1h < 2h < 4h < 8h more
total wait−times

Jo
bs

(b) Wait-times when number of drives set to 45 drives.

0.00

0.25

0.50

0.75

1.00

< 1m < 2m < 3m < 4m < 5m < 8m < 10m < 15m < 20m < 30m < 1h < 2h < 4h < 8h more
total wait−times

Jo
bs

(c) Wait-times when number of drives set to 60 drives.

Figure 6.8: Wait-times for varying configurations with wait-times aggregated to
pick optimal configuration for QoS.

75

6.4 6.4. PERFORMANCE OF THE SIMULATION

0

200

400

600

00:00 01:00 02:00 03:00 04:00
runtime

m
eg

ab
yt

es variable

rss

size

Figure 6.9: Memory profile of simulation runs. The number of drives effects the
runtime. In ascending order by runtime: 30, 60 and 75 drives.

6.4 Performance of the Simulation

As using the model to automatically explore and optimize library configurations
was an objection a brief analysis of the memory footprint and on the runtime
should be performed. Figure 6.9 plots the resident set size (rss) and the total
memory consumption of the process running the simulation over time. A typical
simulation run that processes 140.000 requests takes about 3-4 hours mostly
depending on the complexity of the network topology. There is some potential
further reduce the runtime by providing a better schema to disabled debugging
information and logging. All measurements were performed single threaded on
a system featuring:

• Intel(R) Core(TM) i7-2677M CPU @ 1.80GHz

• 4GB system memory

Memory and Runtime Targets Memory consumption and runtimes should
be kept as low as possible because a large number of different configurations is
required for some experiments. As many parts of the prototype implementation
use a simplified model, it is expected that the demands of a simulation will
grow. A reasonable target seems to maintain the 3-4 hour time frame to process
a month of FTP activity for systems similar to the one deployed at DKRZ.

Summary

Settling for a method to test a complex system implies significant limitations on
the information value of later obtained results. The situations is worsened by the
short-comings that come with any abstraction, especially when still a prototype.
Yet, the simulation manages to approximate the behaivor observed in a real
system. An approach to show how experiments could be performed the systems
is consistent with expected experiment outcomes. The runtime performance and
memory consumption are within bounds that also allow to run larger number of
experiments on a notebook computer.

76

Chapter 7

Conclusion

This chapter summarizes the findings from the previous chapters and covers
future work. Section 7.1 quickly revisits the essence of each chapter reviews
what was achieved. It follows an assessment of future work in Section 7.2.

7.1 Summary

With the increasing demand for long-term storage, automated tape libraries will
likely remain a integral part of the storage hierarchy for many years to come.
Tape as a storage medium has many attractive properties. It es fairly resilient
and provides high data densities, but by far the most important factor is that
tape is very affordable in comparison to other storage technologies. Standardiza-
tion efforts such as LTO make tape attractive and future proof, thus protecting
investments. Despite tapes long history the technology is still advancing, though
on a artificially slowed schedule.

In an effort to speed up innovation and enable also talent without access
to large scale tape systems to contribute, the objectives of the thesis were to
develop a simulator, the tools, and primarily the appropriate models required
to reproduce the dynamics of hierarchical storage systems and tape libraries. In
Chapter 4 we have seen that modeling a complete tape system is a incredibly
complex task because so many different components are involved. Nonetheless,
it was possible to identify a number of key components that are essential to
any tape system. It was further possible to provide comprehensive models to
describe the dynamics of many of these key components. In particular models
for hardware and software components where proposed and isolated in such a
way that turning to a more accurate model is possible when deemed necessary.

The problem with computer systems is the complexity that unfolds because
of the virtually infinite number of possible combinations for hardware and soft-
ware. Modeling hardware is particular cumbersome because in the real world
the performance of a device emerges as a result of the laws of physics, but for
a virtual model the dynamics have to be understood and abstracted. For stan-
dardized components it often is relatively easy to find a model that is adequately
applicable for the whole class of of components. Unfortunately, composite com-
ponents, such as the library topologies turn out to be harder to generalize in
a simple way than expected. Nonetheless, by mixing mostly 2D and a graph-
based topology approaches very good approximations of the library dynamics
can be achieved. Another problem occurs with proprietary designs for which
detailed information are hard to find. The same is true for benchmarks and a
comprehensive catalogue of performance parameters.

The network is an integral part to hierarchical storage systems and can be
used to model and simulate even low-level components and communications.

77

7.1 7.1. SUMMARY

As a result, simpler algorithms similar to those used in real world systems
could not be used directly but had to be adapted to account for the slightly
different dynamics of the flow-based approach. In general it appears advisable to
avoid faux models for components and subsystems when most other components
depend on them. Simulation control flow and maintainability trumps shortcuts
and short-term optimizations.

Hardware devices and subsystems such as the library topology and the net-
work are controlled by software. For a proof of concept prototype it was often
sufficient to turn to “naive” implementations. But because parts of the virtual
software stack already begin to stabilize and because of the modular structure
more sophisticated algorithms can be integrated in the future.

We could show that the footprint of the current simulation is fairly moderate
at 400-600 MB main memory and 3-4 hours runtime. Components such as the
library and network topologies, that differ from data center to data center, can
be configured simply by providing a XML file. Adding or removing components
is always possible through the topology APIs, so we can load a configuration and
change a few parts by executing additional startup scripts that e.g., “installs”
additional drives. A combination of commend-line arguments, configuration
files and well designed APIs has proven to make experimenting much easier.

Besides starting a simulation, collecting results is important. Many tools
scatter result files all over the current working directory. The simulator build
for this thesis, creates a unique and timestamped directory for every run to
store generated data in a consistent way. In addition components can register
named CSV reports which can be used for logging of performance and debugging
information. This structure proved useful, as it made aggregating results and
generating reports much more user and machine friendly.

In an effort to verify the accuracy of the simulation additional tools and
reporting capabilities were added. In particular it is now possible to directly
use FTP xferlog files found in real systems as workload traces for the simula-
tion. By feeding these workload traces to simulations prepared to use a library
configuration similar to the one deployed at DKRZ it was possible to show that
the models can be used to approximate the behavior of a real system.

Two key performance metrics were measured and compared to records from
the DKRZ’s tape library monitoring as a reference. For both metrics, the num-
ber of staged files and wait-times in the systems stage queue, the simulator could
demonstrate a behavior analog to the one observed by the monitoring. While
some fine-tuning is still required, the approximation is good enough to conduct
first experiments. As a proof of concept, the number of tape drives installed to
the virtual system was varied. Consistent with our expectations a reduction of
tape drives degraded the tape systems performance and increased wait-times.
Likewise an increase of tape drives reduced the wait-times and files were staged
quicker.

Equipped with comprehensive models and a simulator to approximate tape
archives within hierarchical storage systems, it is now possible to improve mod-
ern tape libraries without requiring a physical tape library for testing. Work-
flows to experiment and asses the performance directly influenced the design
of the simulator, consequently the next step is to put it to use in experiments.
Also gradually turning the simulator into a open source tape library manage-
ment solution for production systems is now within reach.

78

7.2 7.2. FUTURE WORK

7.2 Future Work

With a prototype to proof the feasibility of the concept, only the first step is
made into production ready tools. The broader vision is to gradually turn the
simulation into an actual open source tape system management tool. For this
to become a reality some effort is necessary in terms of software development,
in particular:

• Further improve the configuration process, for example through a GUI to
setup library and network topologies.

• Mature existing architecture to allow physical tape library management.

• Port core APIs to more efficient programming languages were necessary
so they would be suitable for deployment in real system.

From a research perspective the interesting part of a simulation is to apply
it to practical problems to learn and generate new insight which was out of the
scope the thesis. The logical next step is to carefully construct experiments
with the current system and iteratively improve the tools required to conduct
more experiments. In particular this might include parametrized Monte-Carlo
methods to optimize for budgets or quality of service. The foundation to perform
these kinds of experiments is provided with the work of this thesis. In addition,
it would be useful to have a comprehensive database for benchmarks that collect
the characteristics of drives, libraries and other devices. The database should
also include component prices, though utilizing online price comparison APIs to
fetch prices on demand may also be an attractive option when combined with
a way to apply a correction factor for discounts.

79

Bibliography

Amazon (2016). Amazon Glacier Pricing . https://aws.amazon.com/en/

glacier/pricing/. [Online; accessed 2016-02-08].

Amouroux, V. (2014). The end of memory? (movie).

A.M.P.A.S (2007). The Digital Dilemma - Strategic Issues in Archiving and
Accessing Digital Motion Picture Materials. Technical report, Academy of
Motion Picture Arts and Sciences.

Backblaze (2016). What Can 49,056 Hard Drives Tell Us? Hard
Drive Reliability Stats for Q3 2015. https://www.backblaze.com/blog/

hard-drive-reliability-q3-2015/. [Online; accessed 2016-01-20].

Belady, L. A. (1966). A study of replacement algorithms for a virtual-storage
computer. IBM Systems Journal, 5(2):78–101.

Berlekamp, E. R. (1975). Algebraic codes for improving the reliability of tape
storage. pages 497–500.

Dashti, A. and Shahabi, C. (2000). Data placement techniques for serpentine
tapes. Proceedings of the 33rd Hawaii International Conference on System
Sciences, pages 1–10.

Day, J. D. and Zimmermann, H. (1983). The OSI reference model. Proceedings
of the IEEE, 71(12):1334–1340.

Dee, R. H. (2008). Magnetic tape for data storage: An enduring technology.
Proceedings of the IEEE, 96(11):1775–1785.

DKRZ (2015a). Das weltweit größte Archiv für Klimasimulationsdaten steht
in Hamburg. https://www.dkrz.de/about/kontakt/presse/aktuell/

archiv-2015/HPSS_archive. [Online; accessed 2016-02-09].

DKRZ (2015b). Data Life Cycle Management at DKRZ. https://www.dkrz.

de/daten. [Online; accessed 2016-02-09].

DKRZ (2015c). New supercomputer ”Mistral” at DKRZ delivers particularly
detailed regional climate simulations for Germany. pages 45–47.

DKRZ (2016). Services of DKRZ. https://www.dkrz.de/about/dienste. [On-
line; accessed 2016-02-20].

Eleftheriou, E., Haas, R., Jelitto, J., Lantz, M., and Pozidis, H. (2010). Trends
in storage technologies. Data Engineering, pages 1–10.

Fontana, R. E., Decad, G. M., and Hetzler, S. R. (2013). The Impact of
Areal Density and Millions of Square Inches (MSI) of Produced Memory
on Petabyte Shipments of TAPE , NAND Flash , and HDD Storage Class
Memories. Proceedings of the 29th IEEE Symposium on Massive Storage Sys-
tems and Technologies.

80

https://aws.amazon.com/en/glacier/pricing/
https://aws.amazon.com/en/glacier/pricing/
https://www.backblaze.com/blog/hard-drive-reliability-q3-2015/
https://www.backblaze.com/blog/hard-drive-reliability-q3-2015/
https://www.dkrz.de/about/kontakt/presse/aktuell/archiv-2015/HPSS_archive
https://www.dkrz.de/about/kontakt/presse/aktuell/archiv-2015/HPSS_archive
https://www.dkrz.de/daten
https://www.dkrz.de/daten
https://www.dkrz.de/about/dienste

7.2 BIBLIOGRAPHY

Goldman, N., Bertone, P., Chen, S., Dessimoz, C., LeProust, E. M., Sipos, B.,
and Birney, E. (2013). Towards practical, high-capacity, low-maintenance
information storage in synthesized dna. Nature.

Hitachi and Kiyataka, M. (2014). Successful read / write of digital data in fused
silica glass with a recording density equivalent to Blu-ray Disc.

Hübbe, N. and Kunkel, J. (2012). Reducing the hpc-datastorage footprint with
mafisc—multidimensional adaptive filtering improved scientific data compres-
sion. Computer Science - Research and Development, 28(2):231–239.

Hughes, C. J., Fisher, D., Dehart, K., Wilbanks, B., and Alt, J. (2009). HPSS
RAIT Architecture 07/01/2009.

IBM (2011a). High Performance Storage System. Technical report.

IBM (2011b). IBM System Storage TS3500 Tape Library Connector and TS1140
Tape Drive support for the IBM TS3500 Tape Library. pages 1–15.

Inman, J., Grider, G., and Chen, H. B. (2014). Cost of Tape versus Disk for
Archival Storage. 2014 IEEE 7th International Conference on Cloud Com-
puting, pages 208–215.

Jenkins, J., Zou, X., Tang, H., Kimpe, D., Ross, R., and Samatova, N. F. (2014).
RADAR: Runtime asymmetric data-access driven scientific data replication.
Lecture Notes in Computer Science (including subseries Lecture Notes in Arti-
ficial Intelligence and Lecture Notes in Bioinformatics), 8488 LNCS:296–313.

Johnson, T. and Miller, E. (1998). Performance measurements of tertiary stor-
age devices. Proceedings of the International Conference on Very Large Data
Bases, pages 50–61.

Koltsidas, I., Sarafijanovic, S., Petermann, M., Haustein, N., and Seipp, H.
(2015). Seamlessly Integrating Disk and Tape in a Multi-tiered Distributed
File System. pages 1328–1339.

Kunkel, J. M., Kuhn, M., and Ludwig, T. (2014). Exascale Storage Systems –
An Analytical Study of Expenses 2 . Characteristics of Future Systems. pages
116–134.

Lingfang Zeng, D. F. (2005). Hybrid RAID-Tape-Library Storage System for
Backup. Second International Conference on Embedded Software and Systems
(ICESS’05), pages 31–36.

Niset, M. and Kuhn, P. (2005). Typical Data Retention for Nonvolatile Memory.
Freescale Semiconductor Engineering Bulletin, page EB618/D.

Nutaro, J. (2016). Adevs (A Discrete EVent System simulator). http://web.

ornl.gov/~1qn/adevs/. [Online; accessed 2016-01-20].

Oracle (2015). StorageTek SL8500 Modular Library System User’s Guide.

Ornl, S. K., Lanl, G. G., Snl, R. O., Pnnl, E. F., Lanl, G. S., Llnl, M. G.,
Lbnl, J. W., Exmatex, D. R., Asc, R. N., Asc, M. G., and Climate, D. W.
(2015). DOE: Storage Systems and Input / Output to Support Extreme Scale
Science.

81

http://web.ornl.gov/~1qn/adevs/
http://web.ornl.gov/~1qn/adevs/

.0 BIBLIOGRAPHY

O’Toole, J. (2016). Why Facebook is stockpiling Blu-ray. http://money.cnn.

com/2014/08/21/technology/facebook-blu-ray/index.html. [Online; ac-
cessed 2016-01-20].

Page, B. (2016). DESMO-J. http://desmoj.sourceforge.net/home.html.
[Online; accessed 2016-01-20].

Pantazi, A., Furrer, S., Rothuizen, H. E., Cherubini, G., Jelitto, J., and Lantz,
M. A. (2015). Nanoscale track-following for tape storage. pages 2837–2843.

Pease, D., Amir, A., Villa Real, L., Biskeborn, B., Richmond, M., and Abek,
A. (2010). The linear tape file system. 2010 IEEE 26th Symposium on Mass
Storage Systems and Technologies, MSST2010, 4.

Peixoto, T. P. (2014). The graph-tool python library. figshare.

QUADStor (2015). QUADStor Virtual Tape Library. http://www.quadstor.

com/virtual-tape-library.html. [Online; accessed 2015-12-08].

Quantum (2015). Quantum Scalar i6000 Datasheet.

Quibik (2010). Computer Memory Hierarchy. https://commons.wikimedia.

org/wiki/File:ComputerMemoryHierarchy.svg. [Online; accessed 2016-12-
08].

Real, L. C. V., Richmond, M., Biskeborn, B., and Pease, D. (2015). An I / O
Scheduler for Dual-Partitioned Tapes. pages 234–243.

Sandsta, O. and Midtstraum, R. (1999). Improving the access time performance
of serpentine tape drives. Data Engineering, 1999.

SimPy (2016). SimPy (Event discrete simulation for Python.). https://simpy.
readthedocs.org. [Online; accessed 2016-02-10].

Spectralogic (2016a). LTO Roadmap. https://www.spectralogic.com/

features/lto-7/. [Online; accessed 2016-01-24].

Spectralogic (2016b). Spectralogic TFinity - Enterprise Perfor-
mance. https://www.spectralogic.com/products/spectra-tfinity/

tfinity-features-enterprise-performance/. [Online; accessed 2016-02-
12].

Sun (2006). StorageTek StreamLine SL8500 - User Guide. (96154).

Top500 (2016). Top500 Supercomputer Sites. http://www.top500.org/. [On-
line; accessed 2015-12-08].

Varshney, M. (2016). http://simjs.com/. http://simjs.com/. [Online; accessed
2016-02-10].

Xu, C. and Lau, F. (1996). Load Balancing in Parallel Computers: Theory and
Practice. The Springer International Series in Engineering and Computer
Science. Springer US.

Zhang, X., He, D., Du, D., and Lu, Y. (2006). Object Placement in Parallel
Tape Storage Systems. Proceedings of the 2006 International Conference on
Parallel Processing (ICPP’06), pages 0–7.

82

http://money.cnn.com/2014/08/21/technology/facebook-blu-ray/index.html
http://money.cnn.com/2014/08/21/technology/facebook-blu-ray/index.html
http://desmoj.sourceforge.net/home.html
http://www.quadstor.com/virtual-tape-library.html
http://www.quadstor.com/virtual-tape-library.html
https://commons.wikimedia.org/wiki/File:ComputerMemoryHierarchy.svg
https://commons.wikimedia.org/wiki/File:ComputerMemoryHierarchy.svg
https://simpy.readthedocs.org
https://simpy.readthedocs.org
https://www.spectralogic.com/features/lto-7/
https://www.spectralogic.com/features/lto-7/
https://www.spectralogic.com/products/spectra-tfinity/tfinity-features-enterprise-performance/
https://www.spectralogic.com/products/spectra-tfinity/tfinity-features-enterprise-performance/
http://www.top500.org/
http://simjs.com/

List of Figures

1.1 DKRZ Data Lifecycle . 5
1.2 Memory cost per GB . 7

2.1 LTO Cartridge . 12
2.2 On Tape Data Layouts . 13
2.3 LTO Roadmap . 16
2.4 IBM TS3500 . 18
2.5 Oracle StorageTek SL8500 . 19
2.6 Spectralogic TFinity . 19
2.7 Quantum Scalar i6000 . 20
2.8 Quantum Scalar i6000 . 20
2.9 LTFS . 21
2.10 Storage/Cache Hierarchy . 22
2.11 HPSS Overview . 23

3.1 Load Balancing Algorithms . 28

4.1 Datapath . 33
4.2 Read . 35
4.3 Write . 36
4.4 Serpentine Tape Model . 39
4.5 Example: Graph Topology . 42
4.6 Example: 2D Topology . 43
4.7 Oracle StorageTek SL8500 . 44
4.8 SL8500 Slot Enumuration . 46
4.9 StorageTek SL8500 . 47
4.10 Transfer Rates . 48
4.11 Flow-based model . 49
4.14 Model Stack . 51
4.15 Conflict-Serializability . 52
4.16 Request bundling . 53
4.17 SL8500 Robots . 54
4.18 Chained-Request-Quees . 55
4.19 Model overview . 56

5.1 UML Class Diagram . 60
5.2 Discrete Event Simulation . 61
5.3 Network Simulation . 64
5.4 Graph inspection . 64

6.2 Request Types over Time . 67
6.5 Virtual Setup . 71

83

List of Tables

2.1 History of Magnetic Tape Storage 14
2.2 LTO Cartridge Specifications . 16

84

Versicherung an Eides statt

Ich versichere, dass ich die Masterarbeit im Studiengang Informatik selbstsandig
verfasst und keine anderen als die angegebenen Hilfsmittel – insbesondere keine
im Quellenverzeichnis nicht benannten Internet-Quellen – benutzt habe. Alle
Stellen, die wörtlich oder sinngemäß aus Veröffentlichungen entnommen wur-
den, sind als solche kenntlich gemacht. Ich versichere weiterhin, dass ich die
Arbeit vorher nicht in einem anderen Prüfungsverfahren eingereicht habe und
die eingereichte schriftliche Fassung der auf dem elektronischen Speichermedium
entspricht.

Ort, Datum, Unterschrift

	Introduction
	Motivation
	The Relevance of Tape in the Future
	Simulating Tiered Storage Systems
	Goals
	Thesis Outline

	Background
	Magnetic Tape Storage
	Tape Data Layouts
	Resilience of Tape Storage
	History
	Magnetic Tape Formats
	Linear Tape Open (LTO)

	Features of Modern Tape/Storage Systems
	Write once read many (WORM)
	Archive and Backup
	Self-describing tape formats
	Data Reduction and Compression
	Encryption

	Automated Library Complexes
	Linear Tape File System (LTFS)
	Hierarchical Storage Systems
	Virtual Tape Libraries (VTL)
	High Performance Storage Systems (HPSS)

	DKRZ Storage Archive

	Related Work
	Physical and Hardware Improvements
	Algorithmic Improvements
	Scheduling and Load-Balancing Algorithms

	Improving Hierachical Storage Systems
	Simulation and Modeling
	Performance Evaluation

	Modeling Hierarchical Storage Systems
	Model Objectives
	Model Overview
	Data Path
	Key Components

	Request Types
	Reading
	Writing

	Hardware Components
	Fault-Tolerance
	Tape and Tape Drives
	Tape-Seek- and Drive-Busy-Time Models

	Modelling Library Topologies
	Robots
	Generic Library Models
	StorageTek SL8500

	Network Topology
	Communication
	Flow-based Model
	Packet-based Model

	Modelling Software Components
	Stack
	File, Tape and Cache Management
	Concurrency and Request Bundling

	Drive Allocation and Robot Scheduling
	Summary of the Model

	Implementation
	Programming Language
	Architecture
	Classes for the Key Components

	Discrete Event Simulator
	Workload Generation
	Configuration of a Simulation
	Experiments
	Graph based Network Topology from XML
	Command-line Options

	Reporting and Debugging

	Evalution
	A month of PFTP activity
	Model Verification
	Comparison to DKRZ Monitoring
	Virtual Setup

	Experiments
	Experiment Candidates
	Experiment: Varying the Number of Tape Drives
	Optimizing for Quality of Service

	Performance of the Simulation

	Conclusion
	Summary
	Future Work

