
University of Hamburg, Department of Informatics

Bachelor Thesis

Flexible Event Imitation Engine
for Parallel Workloads

Jakob Lüttgau
Matrikelnummer 6146922

Bsc Informatik

18.03.2014

Supervisor Dr. Julian Kunkel
Second assessor Prof. Dr.-Ing. Stephan Olbrich

Evaluating systems and optimizing applications in high-performance computing (HPC)
is a tedious task. Trace files, which are already commonly used to analyse and tune
applications, also serve as a good approximation to reproduce workloads of scientific
applications. The thesis presents design considerations and discusses a prototype imple-
mentation for a flexible tool to mimic the behavior of parallel applications by replaying
trace files. In the end it is shown that a plugin based replay engine is able to replay
parallel workloads that use MPI and POSIX I/O. It is further demonstrated how auto-
matic trace manipulation in combination with the replay engine allows to be used as a
virtual lab.

Contents

1. Introduction 4
1.1. Motivation . 4
1.2. Replaying Traces . 5
1.3. Related Work . 6

1.3.1. SIOX . 7
1.3.2. strace/ltrace . 7
1.3.3. ioreplay . 7
1.3.4. ReplayFS . 7
1.3.5. TraceReplay . 8
1.3.6. Parabench . 8
1.3.7. DIOS . 8
1.3.8. Comparison . 9

1.4. Goals of the Thesis, Requirements and Contribution 11

2. Design 13
2.1. Foundation for Flexible Replay . 13
2.2. Activity Data Type . 14
2.3. Minimizing Distortions . 14
2.4. Replayability, Environment and State Management 15

2.4.1. Replayability . 15
2.4.2. Environment Pre-Creation . 15
2.4.3. State Management during Playback 16

2.5. Trace Manipulation . 16
2.6. Easing Plugin Development . 16
2.7. Virtual Lab . 17

3. Implementation 19
3.1. Implementation Choices . 19
3.2. Activity Data type . 19
3.3. Feign: Overview of all Components . 20
3.4. Feign API and Internals . 21

3.4.1. Plugin registration . 21
3.4.2. Layer registration . 21
3.4.3. The activity work flow . 22
3.4.4. Timing . 23
3.4.5. Plugin Helpers . 24

2

3.5. Developing Plugins . 24
3.6. Supporting POSIX I/O . 25
3.7. Supporting MPI . 25
3.8. Supporting SIOX . 25

4. Evaluation 27
4.1. Overhead . 27

4.1.1. Test setup . 27
4.1.2. Results . 28
4.1.3. Test System . 28

4.2. Accuracy of the Replayed Trace . 29
4.3. MPIOM . 29
4.4. Using feign as a Virtual Lab . 30

4.4.1. Dummy application . 31
4.5. Comparing feign to the Related Work . 32

5. Summary and Future Work 34
5.1. Summary . 34
5.2. Future Work . 34

A. Source Code 36

3

1. Introduction

This chapter gives a short introduction into the field of high-performance computing
and highlights some of the problems with evaluating systems. It is then explained how
replaying trace files can help to overcome many of these problems. After presenting
related work, the goals of the thesis are outlined.

1.1. Motivation

High-performance computing (HPC) relies on incredible complex systems. Most of to-
days fastest computers listed in the TOP5001 employ the concept of cluster comput-
ing. A cluster computer combines the computational power of many smaller computers
(nodes) by connecting them through a network. Every node then solves a small portion
of a bigger problem.
Cluster computers are complex by nature. In practice many different kinds of technolo-
gies and many components are used. Thousands if not millions of compute nodes share
specialised network and storage systems, and new technologies are constantly emerging
e.g. graphical compute units (GPU). However, especially storage and network technolo-
gies are not as fast advancing as processors did. In general we can produce data much
faster than modern storage solutions can permanently store them. Thus introducing a
potential bottleneck.
To compensate for this, storage systems themselves turned to massively parallel ap-
proaches forming their own complex subsystems. Data is distributed among thousands
of hard drives to ensure data safety and file access at high speeds. A similar trend can be
observed for networks. To achieve high bisection bandwidth2 many different technologies
are combined. As a fully connected topology is usually not economical, networks are or-
ganized to reflect common communication patterns using specialized network hardware
(e.g. switches). Further more, heterogeneous approaches may be used where critical
sections are connected using fiber while other sections communicate using the cheaper
Ethernet.
As alternative systems emerge, users would like to know if and how their applications
would benefit. Performance of scientific applications depends on the interplay of different
hardware components. An application being efficient on one system does not necessarily
guarantee efficiency on another system. Most notably are the discrepancies in utilizing
the different system resources that characterize applications. Simple classifications based
solely on computational and Input/Output (I/O) load requirements proved insufficient.

1 http://www.top500.org/ - Ranking of some of the worlds most powerful general purpose computers.
2The bandwidth between the parts of a network when split into two equal parts.

4

http://www.top500.org/

Instead seven and later thirteen archetypes, or ”dwarfs” [Asanovic et al., 2006], have
been identified that capture the algorithmic nature as well as the patterns of computation
and communication.
These different levels of complexity introduce the need for highly sophisticated tools, to
provide benchmarking, stress testing, debugging and forensic capabilities [Joukov et al., 2005]
to operators and users of such systems.
It is common to use so called synthetic benchmarks to evaluate system performance. But
they are usually designed to determine some kind of peak performance of a component.
For example the TOP500 ranking is solely influenced [TOP, 2014] by the results of the
well known LINPACK benchmark which is used to determine the maximum number of
floating point operations per second (FLOPS).
The results of synthetic benchmarks are often only of little use to prospect the perfor-
mance and the behavior of a system because of the mentioned characteristics of real
application workloads. Given the cost of HPC systems and tight budgets, there is lit-
tle room for mismanagement so it makes a lot of sense for operators, institutions and
organisations alike to elaborate before a purchase.
While it is common to benchmark for applications on reference systems, there are some
practical limitations. It can require considerable effort to get an actual application to
run on another system in an efficient fashion. New optimisations such as compiler flags
or parameter changes to the message passing interface (MPI) or I/O need to be applied.
Also code modifications maybe necessary e.g. adding or retracting read-ahead advice.
Adapting the whole application to evaluate the impact of alternative optimizations to
avoid suffering from performance regressions often may be too time consuming.
Another aspect to consider is that calculations on HPC systems may be confidential, as
it might be the case in industry, intelligence or military to protect trade or state secrets.
Performance problems in I/O or communication often require to seek support from
vendors or the open source community. Code that isolates the problem into a small test
case can be hard to come up with, and providing the actual application again may not
be an option.

1.2. Replaying Traces

One solution to many of these problems maybe to record the events or activity (e.g. file or
network I/O) an application triggers and conserve it for later use and analysis in so called
trace files. Traces are already commonly used for debugging or post-mortem performance
analysis of parallel applications. And many projects [PLF, 2014, ?, Vam, 2014] publish
trace files for verification or to engage other researchers.

5

time, activity1, param1, param2

time, activity2, param1, param2, param3

time, activity1, param1, param2

...

Figure 1.1.: A trace file typically holds information about the ”order of” and ”details
about” the activities recorded.

Being able to replay activity recorded in trace files might make testing for performance
of systems less work intense. A trace captures the characteristics of an application on
the system it is run on, and may still be a good approximation on other systems. But
many dependencies do not need to be satisfied. In fact sequential and some parallel
benchmarks already use trace files. The advantage is that once implemented, replaying
is a automated task, that can handle many different inputs.
As the level of detail in trace files is variable to some extend, confidential information
are usually easy to remove. For example stress on a file system does not depend on the
actual content but only on the size, the time and the type of an activity. But there
may be exceptions e.g. the hierarchical data format HDF5 which is quite common in
scientific applications, requires knowledge of the datafile for meaningful playback. An
additional helper tool is needed to obfuscate the data while retaining the file structure.
Traces can be altered to reflect new features and remove old optimisation. A sophisti-
cated replay environment that allows to systematically apply changes to a trace could
then also serve as a virtual lab validating possible optimisations. Such would be very
valuable for autonomous optimisation tools where machine learning approaches can uti-
lize the replay environment to gain insights on isolated trace fragments to base their
decisions on.
While there exist many solutions to obtain traces of parallel applications, there is only
a handful of tools that offer to replay parallel workloads.

1.3. Related Work

To document the state of the art and to gain further insights on the demands users of
replaying software have, we will take a look at related tools and projects. In Section 1.3.8
the features of the tools can be compared directly.
While we focus on parallel replay software, it still makes sense to also look into what
has been achieved in non-parallel solutions.
Obtaining the trace data is not within the scope and responsibilities of this thesis, it
is however important to realize that the trace strategy is a determining factor for the
resulting imitation (e.g. driver level tracing, does not provide a full representation of file
access patterns, because it does not account for the caches but rather can only provide
insights on the penetration of the storage hardware). Consequently we start by looking
at two solutions to trace applications.

6

1.3.1. SIOX

Scalable I/O for Extreme Performance (SIOX) [Kunkel et al., 2014] is a project that
couples automatic monitoring and optimization of parallel I/O. The project is developed
by members of the University of Hamburg, the ZIH Dresden and the HLRS Stuttgart.
Besides monitoring and optimizing parallel I/O, SIOX can be used as an extensive trace
environment. A semi-automatic approach allows to support arbitrary layers by generat-
ing the instrumentation code from annotated header files. Activity captured with SIOX
can then be permanently stored as a trace file. A library to read the trace is available.
SIOX could integrate the results of a virtual lab as described in Sections 1.2 and 1.4 into
its decision making process to issue optimisations.

1.3.2. strace/ltrace

Strace is a popular system call tracer that comes with most modern Linux and Unix
distributions. Ltrace is the equivalent for library calls. Both are originally developed
for sequential programs. The Los Alamos National Laboratory created LANL-trace
[LAN, 2014], which is an application that builds upon these two tools, to gain parallel
tracing capabilities. It determines skew and offsets of multi-node systems by running
MPI before and after executing strace/ltrace.

1.3.3. ioreplay

Ioreplay [ior, 2014] is a tool to replay POSIX I/O, it is only working on Linux systems.
It is relatively feature rich, but can currently replay only 20 systems calls. It can check
in advance if the replay will succeed or abort with an error, but will not precreate the
enviroment. It is possible to filter by call or by filename, and filenames can be mapped
to another file. Further more traces can be converted into a binary format to minimize
overhead. Ioreplay is part of a larger collection of tools called ioapps. It is implemented
in C and open source.

1.3.4. ReplayFS

ReplayFS [Joukov et al., 2005], is an (non-parallel) replay application, that puts a focus
on the forensic and debugging capabilities. It goes great lengths to achieve negative
overhead, which lets you for instance replay a trace faster than recorded from the original
application.
To do so, the developers had to move out of userspace into kernel space, to reduce
any unnecessary layers and by that reducing the call-stack, thus saving time. They
implemented their own specialised virtual file system (VFS) as a kernel module that
would issue the file system operations. It can also restore the cache state. Be A pre
procession run of is done before replay to minimize distortions.

7

1.3.5. TraceReplay

TraceReplay [Ahlers, 2012] is the result of a bachelor thesis, that successfully implements
a prototype to show that a plugin based replayer is a viable concept with acceptable
overheads. It comes with plugins to replay the most important POSIX operations and it
is shown that plugin generation can be automated to some extend by adding annotations
to the function signatures of header files.

1.3.6. Parabench

Parabench [Mordvinova et al., 2010] is a programmable parallel benchmark for POSIX.
Benchmarks can be programmed and stored in a special script language. It allows to set
up MPI groups and to generate reports from the measurements.

1.3.7. DIOS

DIOS [Kluge, 2011] is a parallel file system benchmark developed for during a PhD
thesis at the TU Dresden, ZIH. Instructions are read from XML input, which also allow
to demand parameter randomization. POSIX replay is realized by converting Vampirs
[Vam, 2014] open trace format (OTF) into XML. It supports MPI parallel tasks aswell
as MPI-I/O and POSIX I/O. It has not officially been released yet.

8

1.3.8. Comparison

To simplify the comparison of the different tools Figure 1.2 presents a comparison chart
with the most important replay related features.

ioreplay ReplayFS TraceReplay Parabench DIOS

Input strace tracefs Plugins PBL Script XML, Vampir
Preprocessing Yes Yes - - -
Binary Format Yes Yes - - -

Sanity Check Yes - - - Yes
Precreation - - - - Pool1

Extandable - - Plugins Interpreter -

Modifiers Filepaths2 - Filters - Expressions
offline - - - - -
online - - Yes - Yes

POSIX Partial Yes Partial Yes Yes

Parallel - - - MPI MPI
Threads - - - - -
MPI - - - Yes Yes
IO - - - Yes Yes
Comm - - - Barrier,Groups Barrier

Userpace Yes - Yes Yes Yes
Kernel-module - Yes - - -

Open Source Yes Yes - Yes -
Dependencies none - Glib Glib, Bison Bison, libxml
Prog. Language C C, Perl C C C/C++

Figure 1.2.: Comparison matrix of the discussed benchmark/replay software

1Does not determine which files need to be pre created, but creates files that are explicitly added to a
file ”pool”.

2Filepaths can be filtered or redirected to different physical files.

9

Key to the Feature Chart

A short description for each of the features in comparison chart.

Input The supported input (trace) file formats.

Preprocessing Defines if the replay tool uses some kind of preprocessing to reduce
distortions during playback.

Binary Format Whether or not a binary format is supported.

Sanity check Is the trace checked for replayability in advance?

Precreation Defines if any files or other system state properties are reconstructed from
the trace.

Expandable What mechanisms are provided to expand the application?

Modifiers Can the trace be modified and how. Offline modifications are applied before
playback. Online modifications are applied during playback.

POSIX Whether or not POSIX system calls, and especially POSIX I/O calls are sup-
ported.

Parallel Is the software suitable for parallel applications applications? Either multi-
threading or multiprocessing with inter-process communication (IPC) support.

Threads Is there suppport for multithreading either built-in or by extensions?

MPI Is there support for MPI I/O and MPI IPC either built-in or by extension?

Open Source Defines if the source code is available for the public for inspection.

Dependencies What software dependencies are required on the host system?

Programming Language The programming languages used for the tool.

Conclusion of the Comparison

It becomes apparent that a first fundamental choice for replay software might be whether
it is used for benchmarking of for forensics.

10

1.4. Goals of the Thesis, Requirements and Contribution

The goal of the thesis is to design and also implement a corresponding prototype for a
comprehensive and flexible event imitation engine (feign). In contrast to existing replay
tools, feign does not stop with trying to make scientific workloads more portable, but
also aims to provide a virtual laboratory to exchange and experiment with workloads.
The resulting key requirements include:

• Portability by eliminating dependencies.

• Modularity to support arbitrary (I/O) libraries.

• Support for parallel workloads

• And trace manipulation to adjust to other systems and for the virtual lab.

These requirements stem from the variety of different circumstances as outlined in the
previous sections. The diversity of file systems and other technologies, that effect the
performance of parallel systems make modularity a key requirement. This is further
escalated by a huge variety of trace file formats. Support for different layers should be
therefor be realized by providing a plugin architecture. Also strictly replaying a trace is
often not adequate for the following reasons:

• The deterministic nature of traces, while usually a good property, is problematic
for asynchronous interactions.

• Traces that have been recorded for another purpose can be polluted by a lot of
unrelated activity.

• Some adjustments maybe be necessary to replay in a meaningful way on another
system. This maybe adjusting the offsets of activity, or optimizations which need
to be applied or retracted.

• Randomness/jitter or some other variation may be wanted for more realistic play-
back.

• Other replay approaches may be wanted, that could be derived from the trace, e.g.
load-based replay.

All these use cases motivate the need for ways to manipulate the trace to improve
meaningful playback. But manipulation of traces opens up new possibilities and can be
used to create new knowledge automatically e.g. by using feign as a virtual lab to test
different optimisations.

11

Summary and Structure of the Thesis

Chapter 1 introduced motivations for a comprehensive replay tool which is portable, flex-
ible, expandable and suitable for scientific applications. It is also discussed why it should
be possible to modify traces, and how this would allow a replay tool to be integrated as a
virtual lab into autonomous optimisation engines. We will refine the requirements and
propose a general design for a comprehensive replay tool in Chapter 2. Implementation
details and how to create plugins, as well as the protoype implementations to support
POSIX/MPI/SIOX are presented in Chapter 3. In Chapter 4 the evaluation of the pro-
totype follows. And finally we summarize the results and discuss future work in Chapter
5.

12

2. Design

This chapter proposes a design which addresses the requirements derived from Chap-
ter 1. Following a bottom up approach, we start with a compact design to support replay
of arbitrary layers. The design is than expanded to allow environment pre-creation,
automated trace manipulation and usage as a virtual lab.

2.1. Foundation for Flexible Replay

648848384, open, "myfile.txt", read-only, filehandle=4

649684854, read, 1024 bytes, ret=OK

649798378, read, 1024 bytes, ret=OK

...

654959594, close, filehandle=4

Figure 2.1.: A fictional example trace of a program reading a file.

Given a trace file, a replay tool needs to feature at least three logical components to
replay a trace.

Figure 2.2.: Turning a trace into system or library activity.

• A data type to represent activities during runtime.

• A provider to read and parse entries from trace files and turn them into an activity
data type.

• A replayer that knows the semantics of an activity and what is necessary to re-
produce them.

If the providers and replayers can be exchanged, the source of the input and the resulting
action solely depend on the availability of a matching plugin.

13

Provider plugins for common data sources could be developed, e.g. to support JSON,
XML or CSV as well as database management systems such as postgreSQL or mongoDB.
Furthermore, a provider could generate activity on the fly, either because it is hardcoded
into the plugin or because the plugin supports an interpreter, e.g. for Lua [Lua, 2014]
or Python.
The core responsibilities that remains for the replay tool are the coordination of replay
and the provision of logistic support. To do so in an efficient manner, the replay engine
needs to know some activity attributes such as the time or layer.

2.2. Activity Data Type

The requirements for an activity data type are conflictive. The diversity of different
activities in trace files requires a dynamic data type favorable with support for nesting
and reflection. Reflection would allow to enumerate over the members of the data type.
But dynamic data types inflict memory and management overheads. For trace replay
both, memory and processing time should be considered scarce.
Time can become a problem for rapid activity sequences. Anticipating trace manipula-
tion, expensive mutations and filtering will add to the general overhead.
As trace files can be very large, we cannot assume that a complete trace can be buffered
within the systems main memory (RAM). This is further complicated by the memory
demands of plugins e.g. large writes in a replay plugin need to allocate memory or the
activity cannot be adequately reproduced.
The consequences are disturbing because if the replayer issues I/O during playback to
get new activities, distortions are added and the overhead maybe increased. There are
some strategies to minimize these effects. Most likely, they add efficient serialization of
our data type to the list of requirements.

2.3. Minimizing Distortions

As we cannot avoid distortions we need to try to minimize them as good was we can. One
of the goals of feign is to make life for plugin developers as convienient as possible. So
minimizing distortions that relate to the coordination of replay should be a responsibility
of the replay engine. To minimize I/O, we need to ensure that activities are represented
in a lightweight way and that only activity that is really replayed is fetched from the
trace. Reducing the trace to the bare minimum can be achieved by ”replaying” the trace
twice. Or more precisely:

1. Create a stripped temporary trace from a full trace in a first run.

2. Replay the stripped trace.

If we have a serializeable activity datatype, we can turn it into a minimal binary repre-
sentation. This temporal trace maybe only valid for a combination of <architecture,
trace, plugin configuration>.

14

2.4. Replayability, Environment and State Management

When replaying a trace file we expect the replay to match the original. This includes that
a call that succeeds in the trace also succeeds during replay. And that calls that fail, fail
for the same reasons they did for the original. For I/O this may depend on the existence
and size of files, for MPI we also have to consider MPI Datatypes and communication
groups. It also becomes apparent that some operations depend on others to complete
successfully. A simple example is that we cannot read or write from or to a file without
having obtained a filehandle first.

2.4.1. Replayability

As replay is state dependant, it is useful to reason about a concept of replayability. The
requirements to reach replayability may vary, but still some classifications can be made.

Direct Replayability

Activities come in an order such that all activities complete successfully. It can make
sense to relax the successfull completion criterium and consider all traces directly re-
playable that e.g. do not crash the program.

Implicit Replayabilty

The tracefile might not be directly replayable but contains all the information to derive
a directly replayable trace (e.g. by inserting a missing activity or by preparing the
environment) This might require sophisticated programs or manual work.

Partial and/or approximate Replayability

Certain activities of the trace are not directly nor implicitly replayable. There might be
two strategies to deal with such activity. Either drop them and derive a replayable trace,
or by altering or inserting activities (however this time there are multiple solutions, that
might differ from the actual application).

2.4.2. Environment Pre-Creation

Many traces are only implicitly replayable when replayed on another system. This is
especially true for I/O traces. Files that have been available on the original system are
unlikely to be present on another. It maybe acceptable to create a few files manually,
but scientific applications may read from many sources. Since the sufficient file size for
each opened file can be calculated automatically, pre-creation should be accounted for
in the design of the replay engine.
As pre-creation during playback usually makes no sense due to distortions, the trace file
needs to be processed in advance.

15

2.4.3. State Management during Playback

A replay plugin needs to perform some management tasks to replay a trace. A good
example is the mapping of open file handles that occur in a trace to an actual file handle
that is used during runtime. For file handles this is usually relatively easy (e.g. std::map),
but none the less helpers for this could be part of a library available to plugins.

2.5. Trace Manipulation

Among the most pressing requirements to enable evaluation of different systems is trace
manipulation. The replay engine itself further reinforced this requirement. (cf. Sec-
tions 2.3 and 2.4.1). Section 1.4 provided examples what kind of operations we would
like to perform on a trace:

• filter/remove activities from the trace

• modify/mutate activities

• insert activities

As a decision to do any of these operations may depend on patterns, the operations need
to be context aware. Plugins need to be able to traverse and alter the list of activities.
All of the above operations to manipulate a trace could be conveniently achieved through
one context-aware handler type if the order of events is represented by using a doubly
linked list. If many plugins are used, always notifying every plugin can cost precious
time. Again, more information for the replay engine allows for better performance.
Therefor it should be considered to allow plugins to announce their intents at least on a
per layer basis.
Section 2.3 is introducing the possibility to further distinguish between online (during
playback) and offline trace manipulation. Many deterministic modifications can and
should be made offline. But if jitter or modifications that depend on runtime information
are wanted offline replay is very limited.

2.6. Easing Plugin Development

As already considered for some of the other sections, feign is built to make a daunting
task more convenient. Over time common replay related problems and solutions should
crystallize and could be integrated into a collection of tool chains and software libraries
for others to built upon.
The most time consuming task when creating replay software becomes implementing
support for layers. Each function call that produces activity of interest needs to be
understood, the relevant parameters need to be extracted. A wrapper function has to be
created, that prepares all necessary parameters. Because the call might depend on a pre-
ceding activity, some bookkeeping might be involved (e.g. for file handles). Finally, the
wrapper can call the original function and handle the return value. Corresponding data

16

types and a helper to parse the activity from a trace file format might also be necessary.
This approach does not scale. For example, the MPI standard [Passing and Forum, 2012]
defines more than 280 functions.
A promising alternative is the semi-automatic approach used in SIOX to instrument
library headers can also be used to create replay and provider plugins as was shown by
TraceReplay [Ahlers, 2012].

2.7. Virtual Lab

One of the more innovative uses of feign is to integrate it with other software as a
virtual lab. This becomes possible because plugins can be stacked in different ways to
craft ”new” tools. Figure 2.3 shows a minimalistic approach how such a lab environment
could look like.

Figure 2.3.: Example stack to use feign as a virtual lab

Autonomous optimisations engines may have a collection of possible optimisation strate-
gies. The optimisation engine may have found a pattern in an application but is unsure
which optimisation results in the best performance. At this point the optimizer could
turn to feign, set up an experiment, and simply test the different optimisations. A
mutator plugin would apply the optimisation to the trace and communicate the result
through an reporting plugin.
One interesting property for this approach is, that optimisations are usually applied
based on activity monitored in the past. But in feign sophisticated strategies can be
applied that also consider the events that come in the future.
To serve as a virtual lab, a well structured application programming interface API is
needed. Tuning and configuration should be possible through arguments and environ-
ment variables.

17

Summary

Provider and Replay plugins, as well as a common data type have been identified as
the central building blocks for a comprehensive replay engine for arbitrary layers in Sec-
tions 2.1 to 2.4. Distortions during playback can not be avoided for larger traces but
pre-procession can minimize the problem (cf. 2.3). Sectionx 2.4 introduces the concept
of replayability and explains why certain environment and runtime conditions need to
be created to successfully replay a trace. Section 2.5 outlines how all trace manipula-
tions could be done using one context-aware operation that is able to travers the activity
buffer. But considering a more manifold approach might be more efficient. Section 2.6
advertises the development of a tool chain to ease or automate plugin creation. And
Section 4.4 explains the virtual lab in more detail.

18

3. Implementation

This chapters covers the prototype implementation of the design developed in Chapter 2.
The most important decisions are discussed and the application programming interface
(API) is presented. It is then shown how to create a plugini ins Section 3.5. And finaly
prototype plugins for POSIX, MPI and SIOX are covered briefly in Chapters 3.6, 3.7
and 3.8

3.1. Implementation Choices

Many implementation details are imposed by choosing a programming language. Because
we target scientific applications that often use low-level system interfaces C/C++ are
a natural choice. Large parts of the Linux kernel are implemented in C, and C has a
standardized application binary interface (ABI). This is helpful for a plugin environment
because programs do not need to be compiled the same way and still can communicate
flawlessly. Also the latest MPI Standard Version 3 defines only C and Fortran bindings.
Plugin systems in C and C++ are typically implemented by utilizing shared libraries
that are dynamically loaded at runtime. While all the common platforms offer shared
libraries in one way or another, there is no standardized cross platform approach. The
prototype implementation will therefor work with dlopen() provided by most Linux
distributions.
Higher level programming languages support can still be integrated later [Boo, 2014,
Lua, 2014]. This is especially nice for plugins that filter, mutate as implementing such
in higher level languages is often easier.

3.2. Activity Data type

The data type questions has not ultimately been decided. As C/C++ have no native
data type that fulfills all the requirement from Section 2.2, Different approaches are
possible but every one comes with certain drawbacks.
Tests with nested structs and a way to attach arbitrary data using void pointers have
been made. The advantages of this approach is that it can be implemented in pure C,
but serialization is complicated and would require extra effort from plugin creators.
As C++ allows polymorphism, using a Activity class seems to be a good idea. Dynamic
casting allows to share activities but also to attach own data. This requires all plugins
and feign to be compiled with the same compiler on the same system.
JSON [JSO, 2014], or BSON [BSO, 2014] are tempting because they are more schema-
less data type. But they are not as memory efficient.

19

3.3. Feign: Overview of all Components

Figure 3.1 provides an overview of the different structural components of feign. To
context-aware mutator plugins an iterator for the buffer is passed. Plugins can request
to increase the lookahead.

Figure 3.1.: The relation of different structural components of feign.

feign API Feigns application programming interface (API) defines how plugins can
interact with feign. It also exposes the activity data type and the plugin helper library.

Plugin Manager The Plugin Manager keeps track of all loaded plugins, it is the central
communication hub between components of feign and plugins. It also loads the shared
libraries using dlopen and resolves the plugin handlers using dlsym.

Layer Manager The Layer Manager keeps track of the registered layers and maintains
handler lists for the different hooks during the replay workflow. This way only plugins
get notified who previously subscribed.

Activity / Dynamic Data Type The activity data type forms the basis for all replay
related actions. Can attach their own data

Replay Manager The Replay Manager coordinates replay and

Buffer To realize lookahead and efficient replay.

Serializer The Serializer will write the temporary trace files from the pre-creation run
and turns into an activity provider during playback.

20

3.4. Feign API and Internals

The feign API offers plugins to directly interact with feign. The plugin plugin API is C,
with one exception (context aware plugins).

3.4.1. Plugin registration

When feign is called with --plugin and a shared object is provided feign will load it
as a dynamic library using dlopen and resolve the init symbol using dlsym. Feign then
calls init of the a plugin and the plugin can register itself and arbitrary layers.

Figure 3.2.: Plugin registration

3.4.2. Layer registration

The following sequence diagram illustrates how to register a layer. The layer manager
checks if a layer with the same name has already been registered. If so the runtime id of
the layer is returned to the plugin, otherwise a new layer is created and then the runtime
layer id is returned. Plugins can announce what they intent to do with the layer, e.g.
filter.

21

Figure 3.3.: Layer registration

3.4.3. The activity work flow

Feign establishes an activity work flow and allows plugins to hook into it various loca-
tions.

• providers/destroyers (as the provider is also responsible for destroy)

• context unaware filtes/mutators

• context aware filtes/mutators

• replayers / writers

22

Figure 3.4.: Sequence diagram of the activity work flow

3.4.4. Timing

Feign wraps nanosleep which is used to create the offsets during playback. The wrapper
is also used to account for feigns own overhead, and to dampen inaccuracies by the
operating system. For example very short sleep periods are spent busy waiting. Sleep

23

may wake up early, if so, the wrapper issues to sleep again.

3.4.5. Plugin Helpers

As certain problems repeat during plugin development, facilities to offer plugin helpers
are planned but out of scope of the thesis. But some helper functions e.g. to populate
the filesystem as well as a shared buffer (e.g. for reads and writes) and a logger are
provided.

3.5. Developing Plugins

Listing 3.1 demonstrates how plugins are implemented. The Example registers a plugin
that can provide and replay activity for the layer ”ExampleLayer”.

#include < f e i g n . h>

// in format ion about the p l u g in
Plugin p lug in = {

. name = ”Example−Provider−Replayer ” ,

. v e r s i on = NULL,
} ;

// in format ion about a l a y e r
Layer l a y e r = {

. name = ”ExampleLayer” ,

. i n t e n t s = FEIGN PROVIDER | FEIGN REPLAYER,
}

int i n i t (int argc , char ∗argv [])
// r e g i s t r a t i o n o f p l u g in and l a y e r
f e i g n r e g i s t e r p l u g i n (&plug in) ;
f e i g n r e g i s t e r l a y e r (& l a y e r) ;
return o ;

}

// expec ted because o f FEIGN PROVIDER
Act iv i ty ∗ prov ide (Act i v i ty ∗ a c t i v i t y) {

return c r e a t e a c t i v i t y f r o m d a t a s o u r c e () ;
}

Act iv i ty ∗ dest roy (Act i v i ty ∗ a c t i v i t y) {
i f (a c t i v i t y−>prov ide r == plug in . id) {

// t h i s p l u g in crea t ed the a c t i v i t y , so i t needs to de s t roy i t
f r e e (Ac t i v i ty) ;
return NULL;

} else {
return a c t i v i t y ;

}
}

// expec ted because o f FEIGN REPLAYER

24

Act iv i ty ∗ r ep lay (Act i v i ty ∗ a c t i v i t y) {
i f (a c t i v t i y−>l a y e r == l a y e r . id) {

do something () ;
return NULL;

} else {
return a c t i v i t y ;

}
}

Listing 3.1: A example plugin

3.6. Supporting POSIX I/O

A datatypes header file is shared between the POSIX-plugins.

Provider The SIOX-Provider-Plugin is implemented as a provider for POSIX traces.

Precreator The POSIX-Precreator creates a list of all files that are opened, and cal-
culates the minimal file size by keeping track of the read and write operations.

Replayer Subsets of the POSIX I/O (open, creat, read, write, close) and the buffered
variants in stdio.h (fopen, fread, fwrite, fclose) have been implemented. A std::map is
used to keep track of the different file handles. The plugin uses the ByteBuffer provided
by feigns API.

3.7. Supporting MPI

As with the POSIX-plugins a data types header file is shared between the MPI-plugins.
MPI

Provider The SIOX-Provider-Plugin is implemented as a provider for MPI traces.

Replayer/Precreation The MPI replay plugin introduced the need for a additional way
to load plugins needs to be loaded using the -plugin global option of feign. To prepare
the environment for MPI I/O many parts of the logic can be reused from the POSIX
pre creation plugin. The file size calculation will need to be adjusted to account for
collective operations.

3.8. Supporting SIOX

The SIOX provider plugin uses the data type header files of the MPI plugins and the
POSIX plugins.

25

Provider The SIOX-Provider-Plugin reads the binary trace format of SIOX, and turns
SIOX activties into feign-activities that can get replayed with the POSIX- and/or MPI
replayers. The provider will gracefully skip activity it does not know. As SIOX instru-
ments using annotations in library headers that provide the necessary hints to generate
suitable wrappers, a reverse approach should also work to generate this provider as well
as replaying plugins for the different layers.

Summary

The most important implementation choices and their consequences have been discussed
in Section 3.1. A combination of C/C++ was found to suit the the requirements formu-
lated in Section 1.4 and Chapter 2 the best due to universal availability and proximity
to low-level APIs. Sections 3.3 to 3.4 introduces the structural components of feign and
provides some insight to internals. Section 3.5 covers plugin development, and finally a
brief overview of the prototype layer is given.

26

4. Evaluation

This chapter evaluates how feign performs in respect to the goals specified in Chapter 1
and Chapter 2. The overhead is determined and accuracy of the replay is discussed in
Sections 4.1 and 4.2.

4.1. Overhead

The overhead is the most critical performance metric for a replay eninge. It dictates
what kind of workloads can be replayed in a meaningful way (cf. Section 4.2).

4.1.1. Test setup

To determine the overhead feign introduces to replay one activity, the fread system call
with a read length of zero was used, as it should return immediately and will remain
unoptimized. The reference application and feign where compiled using the -O2 compiler
flag. CLOCK MONTONIC has been used as a time source. For three variations of the fread0
scenario, and two feign setups 100 samples each have been collected on two different
systems.

x fread0 The micro benchmark that simulates rapid activity. fopen, start timer,

fread0 called x times, end timer, fclose

feign-siox A SIOX trace for 10k fread0 was generated and the SIOX-provider is used
to read activities from the trace. The results of this test are the bases for the overhead
when replaying trace files.

feign-emitter A provider plugin that provides 10.000 fread0-operations generated at
runtime (No file I/O). As feign also allows plugins to act as workload generators, the
results of this test deliver the bases for overheads to be expected by workload generators.

27

4.1.2. Results

0 50 100

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

µ
s/

o
p

(a) fread-benchmark

0 20 40 60 80 100

0

1

2

3

4

µ
s/

op

1 fread0
10k fread0
1M fread0
feign-siox

feign-emitter

(b) directly reading the trace

Figure 4.1.: Overhead comparison application and feign on the WR-Cluster

0 50 100

0

0.1

0.2

0.3

0.4

0.5

µ
s/

op

(a) fread-benchmark

0 20 40 60 80 100

0

1

2

3

4

5

µ
s/

op

1 fread0
10k fread0
1M fread0
feign-siox

feign-emitter

(b) directly reading the trace

Figure 4.2.: Overhead comparison application and feign on a consumer notebook

4.1.3. Test System

Measured was on two different systems, a consumer notebook and on the research cluster
of the working group ”Scientific Computing” located in the DKRZ (German Climate

28

Computing Center) in Hamburg, Germany.

• WR-Cluster with 10 nodes each featuring:

– 2×Intel Xeon X5650@2.67GH

– 12 GByte RAM

– Seagate Barracuda 7200.12

• Apple Macbook A1370 (Mid-2011) (Ubuntu 13.10)

– 1.8 GHz Core i7 (I7-2677M) (Boosts to 2.8GHz)

– 1333 MHz DDR3 SDRAM

4.2. Accuracy of the Replayed Trace

Since all recorded activity is replayed with the right replay plugins, the original oper-
ations are reproduced. However, the temporal pattern of operations is also important.
The overhead measurements impose limits to replay accuracy. Activity sequences with
less than 4µs in between will be stretched, other activity will be fine as the overhead can
be automatically be accounted for in feigns own sleep wrapper.

4.3. MPIOM

To show feign can replay the workloads of scientific applications a trace of the Max
Planck Institute ocean model (MPIOM) [MPI, 2014] was generated using SIOX. While
not all calls used in the application have been implemented in the POSIX- and MPI-
prototype plugins, feign was still able to:

• load the trace data using the SIOX-provider and turn them into feign-activities for
POSIX and MPI plugin prototypes

• negotiate which process replays which activity from the trace with the MPI-
replayer/precreator

• precreate files using the POSIX-precreator

• replay the trace with the correct replay plugin, e.g. a POSIX activity with the
loaded POSIX-replayer

Not implemented operations of MPI or POSIX were skipped. The trace could be replayed
on two different systems (cf. 4.1.3

29

4.4. Using feign as a Virtual Lab

To show how feign could be used as a virtual lab a dummy application performing read
operations on a 512MiB file is traced using SIOX. Feign is then run with 3 different
plugins that injects posix fadvise access hints if 5 successive reads are observed.

Figure 4.3.: Lab setup to try different optimisation strategies on a trace

The following output demonstrates how multiple experiments are made using different
configurations to start feign.

$ export FEIGN_SIOX_TRACEDIR = ./trace

unoptimized

$ feign-siox-posix.sh

us,us/op,ops/us

2477224.547000,247.722455,0.004037

2526341.169000,252.634117,0.003958

2518268.108000,251.826811,0.003971

...

POSIX_FADV_SEQUENTIAL

$ feign-siox-posix.sh --plugin libfeign-inject_fadvise2.so

us,us/op,ops/us

2517719.168000,251.771917,0.003972

4605216.420000,460.521642,0.002171

2534644.459000,253.464446,0.003945

...

30

POSIX_FADV_RANDOM

$ feign-siox-posix.sh --plugin libfeign-inject_fadvise1.so

us,us/op,ops/us

4717294.760000,471.729476,0.002120

2515886.380000,251.588638,0.003975

2519459.279000,251.945928,0.003969

...

POSIX_FADV_DONTNEED

$ feign-siox-posix.sh --plugin libfeign-inject_fadvise4.so

us,us/op,ops/us

5194626.859000,519.462686,0.001925

5246762.685000,524.676268,0.001906

5103049.394000,510.304939,0.001960

...

The results is that none of the tried optimisations decreased the runtime. But at least
the optimiser may refrain from applying POSIX FADV DONTNEED to a sequential read.

4.4.1. Dummy application

Listing 4.1

#include < f c n t l . h>
#include <errno . h>
#include <uni s td . h>

int main (int argc , char ∗argv [])
{

int i ;
int fd ;
s s i z e t nr ;

char buf [1 0 2 4∗1 0 2 4] ;

fd = open (” t m p f i l e ” , O RDONLY) ;
i f (fd != −1) {

for (i = 0 ; i < 512 ; ++i)
{

nr = read (fd , &buf , s izeof (buf)) ;
i f (nr == −1)

pe r ro r (” read ”) ;
}

c l o s e (fd) ;
}

return 0 ;
}

31

Listing 4.1: Dummy application reading from a file (512 MiB)

4.5. Comparing feign to the Related Work

Figure 4.4 revisits the comparison chart from Subsection 1.3.8 and appends feign. The
prototype for feign proves that most of the features can be implemented using plugins.

TraceReplay Parabench DIOS feign

Input Plugins PBL Script XML, Vampir Plugins
Preprocessing - - - Plugins
Binary Format - - - Plugins2

Sanity Check - - Yes Yes
Precreation - - Pool1 Yes

Extandable Plugins Interpreter - Plugins

Modifiers Filters - Expressions Plugins
offline - - - Yes
online Yes - Yes Yes

POSIX Partial Yes Yes Partial

Parallel - MPI MPI Plugins
Threads - - - -
MPI - Yes Yes Partial
IO - Yes Yes Partial
Comm - Barrier,Groups Barrier Partial

Userpace Yes Yes Yes Yes
Kernel-module - - - -

Open Source - Yes - Yes
Dependencies Glib Glib, Bison Bison, libxml none, Glib3

Prog. Language C C C/C++ C/C++

Figure 4.4.: Revisiting the comparison matrix from Subsection 1.3.8

32

Summary

The overhead of feign has been determined in Section 4.1 and the resulting consequences
for replay accuracy have been covered in Section 4.2. The result is that applications that
do not undercut 4µs between operations can be replayed in time. To test if basic parallel
trace replay and basic precreation of the files is working an scientifc application was trace
and replayed on two differend systems.

1Does not determine which files need to be pre created, but creates files that are explicitly added to a
file ”pool”.

2The SIOX-provider is using a binary format, a plugin to serialize feigns activities can be developed,
but a built in solution for serialization would be favored.

3Glib was only used for argument parsing and can easily be removed.

33

5. Summary and Future Work

The preceding chapters handled the motivation, proposed a design and disccused a pro-
totype implementation for a comprehensive replay tool. In this chapter the conclusions
are summarized and future work is presented.

5.1. Summary

The thesis was able to demonstrate that a flexible replay engine that uses plugins to
support arbitrary layers is capable of replaying parallel workloads that use MPI and
POSIX I/O. Different ways to provide trace data have been used explored. Most notable,
the successful implementation of the SIOX-provider to process SIOX traces suggest that
that any data source can be supported for replay. Not the replayer but the tracing
strategy is the determining factor for replay quality.
Still distortions during playback can not be avoided for larger traces but pre-processing a
temporary trace can minimize the problem. (cf. 2.3). Section 2.4 introduced the concept
of replayability and explains why certain environment and runtime conditions need to
be created to successfully replay a trace. Pre-creation has been incorporated into the
replay workflow, and basic strategies for POSIX I/O and MPI have been implemented.
Thriving for meaningful replay, traces can be adjusted to different systems using filters
or mutators to remove, alter or inject activities. The replay engine offers multiple way
to do so. (cf. Sections 2.5 and 3.4.3). Context-free and context-aware variants are
offered and can either applied during pre-procession or online during playback.
The most important internals of the prototype have been documented using component
and sequence diagrams. Also an example plugin is discussed to show that creating
plugins for feign is a simple task. (cf. Section 3.5).
While there is room for improvement the overhead introduced by feign is neglectable
for all workloads that do not undercut 4µs between operations. And last but not least,
the replay engine engine could be diverted to be used as a virtual lab to conduct some
experiments on a trace.

5.2. Future Work

While the concept is demonstrated in this thesis, a lot needs to be done. A quick overview
is given in the following list.

• Use the semi-automatic approach to generate layer plugins. Manual layer imple-
mentation is far to work intensive.

34

• Identify what helpers are needed for Providers, Mutators, Precreators and Replay-
ers. This will also support the semi-automatic layer generation.

• Find a more suitable container for activity data to allow binary temporary traces
for optimal playback.

• Investigate prefetch strategies to further reduce overhead.

• Support for multithreaded applications. However unlike MPI, support for multi-
threading might need to be built-in to the replay engine.

35

A. Source Code

The source code is published at:
https://github.com/jakobluettgau/feign

36

https://github.com/jakobluettgau/feign

List of Figures

1.1. A trace file typically holds information about the ”order of” and ”details
about” the activities recorded. 6

1.2. Comparison matrix of the discussed benchmark/replay software 9

2.1. A fictional example trace of a program reading a file. 13
2.2. Turning a trace into system or library activity. 13
2.3. Example stack to use feign as a virtual lab 17

3.1. The relation of different structural components of feign. 20
3.2. Plugin registration . 21
3.3. Layer registration . 22
3.4. Sequence diagram of the activity work flow 23

4.1. Overhead comparison application and feign on the WR-Cluster 28
4.2. Overhead comparison application and feign on a consumer notebook . . . 28
4.3. Lab setup to try different optimisation strategies on a trace 30
4.4. Revisiting the comparison matrix from Subsection 1.3.8 32

37

Bibliography

[BSO, 2014] (2014). Binary JSON. http://bsonspec.org. [Online; accessed 2014-03-
14].

[Boo, 2014] (2014). Boost.Python. http://www.boost.org/doc/libs/1_36_0/libs/

python/doc/index.html. [Online; accessed 2014-03-14].

[ior, 2014] (2014). ioreplay. http://code.google.com/p/ioapps/wiki/ioreplay. [On-
line; accessed 2014-03-01].

[JSO, 2014] (2014). JSON. http://json.org/. [Online; accessed 2014-03-14].

[LAN, 2014] (2014). LANL-Trace. http://institute.lanl.gov/data/software/.
[Online; accessed 2014-03-04].

[Lua, 2014] (2014). Lua. http://www.lua.org/. [Online; accessed 2014-02-14].

[MPI, 2014] (2014). MPIOM. http://www.mpimet.mpg.de/en/science/models/

mpiom.html. [Online; accessed 2014-03-06].

[PLF, 2014] (2014). PLFS Maps. http://institutes.lanl.gov/plfs/maps/. [Online;
accessed 2014-03-06].

[TOP, 2014] (2014). TOP500. http://www.top500.org/. [Online; accessed 2014-03-
06].

[Vam, 2014] (2014). Vampir Trace. http://www.vampir.eu/. [Online; accessed 2014-
03-14].

[Ahlers, 2012] Ahlers, J. (2012). Replay Engine for Application Specific Wokrloads. PhD
thesis, University of Hamburg.

[Asanovic et al., 2006] Asanovic, K., Bodik, R., Catanzaro, B. C., Gebis, J. J., Hus-
bands, P., Keutzer, K., Patterson, D. A., Plishker, W. L., Shalf, J., Williams, S. W.,
Yelick, K. A., and Sciences, C. (2006). The Landscape of Parallel Computing Research:
A View from Berkeley.

[Joukov et al., 2005] Joukov, N., Wong, T., and Zadok, E. (2005). Accurate and Efficient
Replaying of File System Traces. In Fourth USENIX Conference: FAST.

[Kluge, 2011] Kluge, M. (2011). Comparison and End-to-End Performance Analysis of
Parallel File Systems. (September).

38

http://bsonspec.org
http://www.boost.org/doc/libs/1_36_0/libs/python/doc/index.html
http://www.boost.org/doc/libs/1_36_0/libs/python/doc/index.html
http://code.google.com/p/ioapps/wiki/ioreplay
http://json.org/
http://institute.lanl.gov/data/software/
http://www.lua.org/
http://www.mpimet.mpg.de/en/science/models/mpiom.html
http://www.mpimet.mpg.de/en/science/models/mpiom.html
http://institutes.lanl.gov/plfs/maps/
http://www.top500.org/
http://www.vampir.eu/

[Kunkel et al., 2014] Kunkel, J., Zimmer, M., Aguilera, A., Mickler, H., Wang, X., Chut,
A., Michel, R., and Weging, J. (2014). The SIOX architecture – coupling automatic
monitoring and optimization of parallel I/O.

[Love, 2013] Love, R. (2013). Linux System Programming (2nd Edition). O’Reilly.

[May and Livermore, 2005] May, J. and Livermore, L. (2005). Pianola: A script-based
I/O benchmark. International Symposium on Automated Analysis-Driven Debugging,
pages 69–76.

[Mesnier et al.,] Mesnier, M. P., Wachs, M., Sambasivan, R. R., Lopez, J., Hendricks,
J., and Ganger, G. R. //TRACE: Parallel trace replay with approximate causal events.
pages 153–167.

[Mordvinova et al., 2010] Mordvinova, O., Runz, D., Kunkel, J., and Ludwig, T. (2010).
I/O Performance Evaluation with Parabench – Programmable I/O Benchmark. Pro-
cedia Computer Science, pages 2119–2128.

[Passing and Forum, 2012] Passing, M. and Forum, I. (2012). MPI : A Message-Passing
Interface Standard.

[Sivathanu et al.,] Sivathanu, S., Kim, J., Kulkarni, D., Liu, L., and Alto, P. Load-
Aware Replay of I/O Traces. Technical report.

[Thompson, 1980] Thompson, C. D. (1980). A Complexity Theory for VLSI. PhD thesis,
Pittsburgh, PA, USA. AAI8100621.

[Zhu et al.,] Zhu, N., Chen, J., Chiueh, T.-c., and Brook, S. TBBT: Scalable and
Accurate Trace Replay for File Server Evaluation.

[Zimmer et al., 2012] Zimmer, M., Kunkel, J. M., and Ludwig, T. (2012). Towards
Self-Optimization in HPC I / O.

39

Ich versichere, dass ich die Bachelorarbeit im Studiengang Informatik selbstständig ver-
fasst und keine anderen als die angegebenen Hilfsmittel - insbesondere keine im Quellen-
verzeichnis nicht benannten Internet-Quellen - benutzt habe. Alle Stellen, die wörtlich
oder sinngemäß aus Veröffentlichungen entnommen wurden, sind als solche kenntlich
gemacht. Ich versichere weiterhin, dass ich die Arbeit vorher nicht in einem anderen
Prüfungsverfahren eingereicht habe und die eingereichte schriftliche Fassung der auf
dem elektronischen Speichermedium entspricht.

Ort, Datum, Unterschrift

40

