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Abstract
Since the beginning of the computer era, the speed of computation, network and storage as
well as the storage capacity, have grown exponentially. This effect is well known as Moore’s
law and leads to increasing gaps between the performance of computation and storage. High
performance computing organizations like the Deutsches Klimarechenzentrum (DKRZ)
suffer from these gaps and will benefit from solutions introduced by the IPCC for Lustre
projects. To close this cap applications and file systems use compression in order to speed
up the storage of data. Even if file systems like ZFS are already able to compress data,
distributed file systems like Lustre are not completely able to use these functionality in an
efficient way.

A client-side compression implementation done by Anna Fuchs, presented in her thesis
"Client-Side Data Transformation in Lustre" ([Fuc16]), reduces the size of the data before
it is send over the network to the storage server. First changes to ZFS were presented by
Niklas Behrmann in his thesis "Support for external data transformation in ZFS" ([Beh17])
adding support to ZFS for externally compressed data. The interconnection of these two
theses was done by Sven Schmidt in his thesis "Efficient interaction between Lustre and
ZFS for compression" using the client-side compression with the new API functions of
ZFS.

This thesis presents an efficient way to handle externally compressed data in ZFS in
order to do fast read and write calls. The code changes and complexity of the solutions were
kept at a minimum and are as maintainable as possible. In order to do this, a refactoring
of the existing work was done before adding features to the code base. Introducing explicit
flags and simplifying code paths enables ZFS to handle the data as efficient as possible
without neglecting the quality of the software. A correctness and performance analysis,
using the test environment of ZFS, shows the efficiency of the implementation and reveals
also tasks to do in future work.
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1. Introduction
This chapter introduces the thesis and its topics of file systems, supercomputing and
performance. To illustrate the importance of well performing clusters and file systems, the
domain of weather and climate prediction is used. Producing and working with climate
simulations is also the task of the DKRZ (Deutsches Klimarechenzentrum). Increasing the
efficiency of calculations by improving storage systems is ones task of the working group
for scientific computing at the Universität Hamburg, where this thesis was written.

1.1. Historical background
In 1950, the first equations and algorithms for a numerical weather forecast have been
created. They were designed and programmed by John and Klara von Neumann for the
ENIAC, which produces a 24 hour forecast that took 24 hour of computation. A rather
simple barotropic model had been used, which was replaced by alternative multi-level
models in 1966 when the National Meteorological Center in Washington began its operation
with a six-level model. Other countries began a weather forecast operation as well, e.g.
the Deutscher Wetterdienst in Germany. After a few more years, in 1972, they already
used ten levels for their models. [Lyn08]
Weather as well as climate models used the computer of that time. The first climate

simulation, created by Norman A. Phillips in 1956, also used a multi-layer model, but
with only two layers. He did the computation on the MANIAC I, which was also designed
by John von Neuman who was hugely impressed by Phillips work [Lyn08]. Until the
mid 1980s, only atmospheric dynamics had been used and predictions near ground-level
required corrections based on statistics. Also land and sea surfaces were considered since
then, both responsible for factors like heat transportation, radiation and humidity. Until
the late 1990s the composition of the atmosphere went into the models, which includes
the concentration of sulphate aerosols, carbon dioxide and other chemical components.
Nowadays even more complex structures like dynamic vegetation are considered in climate
models that are currently used [Lud18, p. 38].

1.2. Motivation
All these improvements of the models were only possible because of the increased compu-
tational power of computers and supercomputers. The exponential decrease of the time
for a calculation or simulation enables the usage of more complex models [Log16, p. 16].
But not only the amount of considered factors, also the level of details increased. Climate
models use a 3D grid that is placed upon the earth’s surface, where each cell has a specific
size. With a smaller cell size, the grid becomes more dense, a simulation produces more
data and the results are more detailed.
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The Blizzard supercomputer, installed in 2009 at the DKRZ, produced about 10 PetaByte
of data per year saving this with a rate of up to 5 GB/s into the archive. Up to this
point the supercomputers at the DKRZ showed an exponential growth rate regarding the
amount of produced data [DKRc]. In 2016 the new Mistral supercomputer fully replaced
the Blizzard offering even more computational power by increasing the amount of floating
point operations by a factor of 22 (Blizzard: 158 TFLOPS, Mistral: 3.6 PFLOPS) [DKRa].

The data produced by a simulation has to be stored and will be processed in most cases
at a later point in time. Unfortunately there is a gap between the speed of computation,
the storage speed and the storage capacity [KKL16, p. 1]. To fill this gap and to keep costs
at a minimum, more efficiency is needed. One way to increase efficiency is to compress
the data before it gets transferred, for example via the network to a storage server. Also
the network can play a role in the overall performance as it can increase the performance
when data is compressed before sending it to a server [KKL16, p. 2].

1.3. The IPCC for Lustre project
The Intel® Parallel Computing Centers (IPCC) are institutions modernizing open source
code to increase scalability and parallelism. The scientific computing group aims to
implement compression support in the Lustre file system at multiple levels.

One part of this is the implementation of client-side compression, where Lustre interacts
with ZFS in order to store compressed data. Anna Fuchs implemented a client-side
compression mechanism in Lustre [Fuc16] and Niklas Behrmann added in a first approach
the support for externally transformed data in ZFS [Beh17]. Both works were then
combines by Sven Schmidt, who used the changes made to ZFS within the Lustre server
[Sch17].

1.4. Thesis goals
This thesis will add support into ZFS to handle the externally compressed data from
Lustre in a most efficient way. Writing and reading externally compressed data efficiently
can be done by using existing compression functionality of ZFS. To do so, an additional
write and read path is introduced, which makes use of these existing features.

This thesis describes the design decisions and implementation of the additional code
paths. An analysis of the correctness and performance will show if the changes are as
efficient as desired. Also future and related work on this topic is described.
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2. Overview
This chapter describes the fundamental aspects of compression as well as the two file
systems ZFS and Lustre. In the section covering compression, multiple algorithms are
introduced and described in detail. After that an introduction into ZFS is given, describing
its architecture and basics of the internal functioning. The section introducing Lustre
describes the architecture as well and shows how these two file systems interact with each
other.

2.1. Compression
Compression is a mechanism to encode data producing an output that uses less space then
the original data. Therefore one can speak of a physical and a logical size: The physical
size is the size of the compressed data on disk whereas the logical size is the size of the
decompressed data used by applications. Two major categories of compression algorithms
can be determined: Lossless and lossy algorithms.

A lossless algorithm produces compress data that does not loose any information. When
this data is decompressed, it equals exactly the original data since no information got lost.
Lossy compression on the other hand intentionally removes information in order to reduce
the size of the output even more. Therefore does the decompressed data differ from the
original one.

This section will introduce some of the most important algorithms and techniques, also
with respect to ZFS’s compression mechanisms.

2.1.1. Compression ratio and speed
In order to evaluate to quality of a compression algorithm, two criteria were often used as
described by [DCG18, p. 6]: The compression ratio and the speed of the algorithm.
The compression ratio CR(F ), where F is the file being compressed, is simply the

compressed size over the original size. Therefore a smaller value means a better compression
of the algorithm.

CR(F ) = filesize(Forig)
filesize(Fcomp)

Using the reciprocal of the fraction is also valid, where a higher value means a better
compression.

When the compression algorithm is implemented, the speed becomes an important factor.
Even though the speed depends on the Hardware and might fluctuate between executions,
it can be theoretically determined by the following simple formula. The compression speed
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is CS(F ) and the decompression speed DS(F ).

CS(F ) = filesize(Forig)
tcomp

DS(F ) = filesize(Forig)
tdecomp

The speed is often expressed as bytes per second, depending of the unit used for filesize(F ).

2.1.2. Lossy compression
Lossy compression, sometimes referred to as irreversible compression, is a form of compres-
sion that looses some of the information from the original data in order to reduce the size
of the output even more. Famous examples for lossy compression mechanisms are JPEG,
MPEG, the H.264/H.265 codecs and MP3, just to name a few [Wik18b].

Because the decompressed data is not necessarily equal to the original data and precise
results might be distorted, lossy compression is not always suitable for data produced by
climate algorithms [KKL16, p. 3].

On a file system level particularly lossy compression is not suitable, because the knowl-
edge what kind of data should be compressed is missing. The distortion of data might
invalidate it, which makes the data unusable.

2.1.3. Lossless compression
As mentioned earlier, especially lossless compression is relevant for climate data and is
implemented in ZFS. This section covers some of the most fundamental and important
algorithms for lossless compression.

Run-length encoding (RLE)

The run-length encoding (referred to as RLE) saves the amount of repeating characters
instead of the characters themselves. When working on bit-level, a single bit is taken and
its amount of occurrences is saved. The amount of bits used for this amount is specified
by the largest number of successively arising bits in the given data. [SS13]
For example: The bit string 000001111111110000 (18 bits long) has five zeros at the

beginning, nine ones in the middle and four zeros at the end. Therefore the largest amount
of occurrences is nine, which takes four bits to encode in binary: 1001. The different
parts can now be encoded as seen in table table 2.1. Putting all together results in

bit string bit to encode amount in binary result
00000 0 0101 0 0101
111111111 1 1001 1 1001
0000 0 0100 0 0100

Table 2.1.: RLE of different parts of a bit string.

001011100100100, which is 15 bits long and saves three bits on comparison to the original
data.
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Three bits are not much, but when a whole megabyte of zeros can be stored in only
24 bits (as 011110100001001000000000), the RLE is very efficient. Compressing a lot
of repeating zeros may not seem that useful but is actually a use case in scientific data,
which can consist of sparse matrices with lots of zeros in it [Dö16]. ZFS supports the
compression of repeating zeros, which they call ZLE (zero-length encoding)1.

Huffman coding

As of the overview presented by Sharma ([Sha10]), Huffman coding also compresses
characters that occur very often, but they do not need to repeatedly occur. Instead,
Huffman coding uses fewer bits for very often appearing characters and more bits for
characters that do not occur very often.
To do so, the amount of occurrences has to be count. Lets take the word cocoon as

an example, the amount of occurrences and their probability can be seen in table 2.2.
The next step builds up a binary tree, called Huffman tree. First a node is created for

character occurrences probability
o 3 0.5
c 2 0.3
n 1 0.16

Table 2.2.: Occurrence counts and occurrence probabilities of the word cocoon.

every character and a weight is assigned, which can be the amount of occurrences or the
probability. The list of nodes needs to be sorted by the weight at any time. A simple
algorithm will then create the tree:

1. Take the two nodes with the lowest weight and remove them from the list

2. Create a parent node for these two nodes, assign the sum of the weights to the parent
and assign one bit to the edges (e.g. left edge 0, right edge 1)

3. Add the parent to the list

4. Go to step one until there is only one node left

These steps lead to the Huffman tree, which can be seen in figure 2.1.
After the tree had been created, the actual Huffman code can be determined. This can

easily be done by searching the letter in the tree starting with the root node (e.g. with a
depth-first search). The codes of the example can be seen in table 2.3.

character binary code
o 0
c 10
n 11

Table 2.3.: Final Huffman coding of the word cocooon.
1As seen in the source file module/zfs/zle.c.
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Figure 2.1.: Construction of the Huffman tree. The sorted list of nodes is illustrated by
the boxes with a thicker border.

Using 8 bits per character (as the most basic UTF-8 encoding for ASCII characters
does), the uncompressed word cocoon would be 48 bits long. With Huffman code, the
size of the actual data is reduced to only 9 bits: 10 0 10 0 0 11.

LZ77

LZ77 is part of the Lempel-Ziv algorithm family and very similar to the patented LZ78
algorithm. LZ77 is used in more complex compression algorithms such as DEFLATE
[Deu96b], which itself is used in formats like PNG and ZIP [Wik18a]. ZFS supports a
member of the LZ algorithm family, called LZ4. Because LZ77 is more frequently used,
this section describes its basic functionality as presented by [Mü08].

a a c a a c a b c a b a a (0, 0, a)

a a c a a c a b c a b a a (1, 1, c)

a a c a a c a b c a b a a (3, 4, b)

a a c a a c a b c a b a a (3, 3, a)

...
...

Next character

Longest Match

Dictionary

Entry in the dictionary

Length of search buffer: 6
Length of look-ahead buffer: 4

Figure 2.2.: As the windows move forward multiple matches are found (values in parenthe-
ses). [Shi+18, p. 5]

The idea of LZ77 is to find repeating parts in the data, store them in a dictionary
and replace the duplicates with a reference to such a dictionary entry. There are two
sliding, fixed sized parts of the data (called buffer): One called search buffer (used as
dictionary) and one called look-ahead buffer (used as buffer for matches). LZ77 tries to
find the longest prefix from the look-ahead buffer that has a match in the dictionary. If it
succeeds, it replaces this prefix from the look-ahead buffer of length l with a reference to
the dictionary. After that, the windows moves forward by l + 1 characters to find the next
match.
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The reference (sometimes also called pointer) is a triplet containing the relative offset
to the dictionary entry, the length of the match and the next character that is not in the
match: (offset, length, character). An example of the algorithm can be seen in figure 2.2.

If no match has been found, offset and length is 0 and the symbol is the first character
of the look-ahead buffer. The windows then moves one character forward.

DEFLATE and gzip

The DEFLATE algorithm is nothing else but the concatenation of LZ77 and Huffman
coding [Deu96b]. Gzip is the name for a file format and a compression application as
described in the RFC 1952 [Deu96a]. Its compression mechanism is based on the DEFLATE
algorithm and the size of the output can be controlled by the level of compression, which
is a number from 0 (no compression at all) to 9 (best compression). The Gzip compression
standard is mainly used via the library zlib [GA17], which is also used in the Linux Kernel
by file systems like SquashFS as described in section 4.1.1.

ZFS has support for all compression levels of gzip, but compression in ZFS is described
in section 3.1.2.

2.2. ZFS
ZFS is a 128-bit POSIX compliant file system with support for copy-on-write (COW),
transactions, data integrity and many other features [Mic06]. In addition, ZFS combines
normal file system features with the ones of a volume manager. This enables ZFS to be
used in more sophisticated ways, for example for snapshots or special RAID levels like
RAID-Z. Very important for this thesis is the fact that ZFS is already able to compress
data using several predefined algorithms (later described in section 3.1).

2.2.1. History
ZFS was originally developed at Sun Microsystems starting in 2001 (announced 2004)
as proprietary, closed-source software. With the creation of the OpenSolaris project,
ZFS became also open-source and was published under the Common Development and
Distribution License (CDDL). A few years later in 2008 the development of a Linux
port started, also under the CDDL. Even though the CDDL and the GPL are free and
open-source licenses, they are incompatible to each other. That means that ZFS cannot be
merged into the Linux kernel, which stays under the GPL, and has to stay in a separate
code base.
Because ZFS was ported to multiple platforms and the coordination has become more

difficult, the OpenZFS project was founded in 2013. This projects aims to organize the
development and offer a centralized platform for interested groups and organizations.

2.2.2. On disk structure
Before the internal code architecture is described, a look at the on disk structure (as
described in [Mic06]) is needed to understand how ZFS organizes data.
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The uberblock and MOS

ZFS stores everything in a tree of blocks with a root block called uberblock. Every block
stores a checksum of all child blocks and block pointers. This builds up a Merkle Tree (as
showed in figure 2.3) and ensures data integrity because errors can be detected with the
help of the checksums.

Data
Blocks

Hash
1
Hash 1-0

+
Hash 1-1

hash(                  )

Hash
0
Hash 0-0

+
Hash 0-1

hash(                  )

Hash 0
+

Hash 1
hash(                  )

Top Hash

Hash
0-0

hash(L1)

Hash
0-1

hash(L2)

Hash
1-0

hash(L3)

Hash
1-1

hash(L4)

L1 L2 L3 L4

Figure 2.3.: A basic merkle tree with entries containing checksums [Wik19].

The uberblock contains the first block pointer that points to the meta object set (MOS),
which is a dataset of type DMU_OST_META saving pool wide metadata [Ope13]. The MOS
has a reference to the first dnode, which is the beginning of the tree of dnodes and blocks.

The dnode

The dnode structure is comparable to the inode from the UFS or ext file systems and
organizes a set of blocks.
In general a dnode describes an object in the object set and is 512 byte large. It saves

a lot of metadata like the amount of indirections, the checksum algorithm being used or
bonus buffer information. Except for two fields (dn_blkptr and dn_bonus), all fields have
a fixed size. The variable sized field dn_blkptr stores up to three block pointers (specified
by dn_nblkptr) and dn_bonus contains a bonus buffer.

DVA

To fully understand the block pointer the data virtual address (DVA) needs to be described.
A DVA uniquely identifies the location of a block and consists of two parts. The first part
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of a DVA is the 32-bit long ID of the VDEV the block contains to. The second part is an
offset within the VDEV, which is specified in bytes but as a multiple of 512 because a disk
sector is 512 bytes large. A calculation for the offset is therefore done by the following
operations:

physical offset = (offset)� 9 + 0x400000

A bit shift of 9 ((offset)� 9) is done to convert the offset from a sector unit into a byte
unit. The 4MB static offset (0x400000) is the sum of two vdev_labels (each 256KB) and
the boot block (3.5KB).
Often the size of the block a DVA points to is also given when writing a DVA down.

Therefore it can be written as <vdev>:<offset>:<size>.

Block pointer

A block pointer is 128 byte large and is used to locate, verify and describe a block on disk.
This is done by saving up to three DVAs pointing all to a copy of the same data. The size
of this data is specified by the three size parameters psize, lsize and asize:

psize Physical size on disk (rounded up to the next block size)

lsize Logical size, which is the size of the data after decompression or decryption

asize The total amount of all blocks holding this data including all additional information
(for example metadata or parity blocks for RAID-Z)

One other important part of the block pointer is the 256 bit large checksum, which is
an essential part of the write process. ZFS supports several checksumming algorithms like
SHA-256, fletcher2 and fletcher4. The role of the checksum is described in section 2.2.4.
The full structure of the block pointer2 is shown in figure 2.4 with an explanation of

each field in table 2.5.

Embedded data

When data that should referenced by a block pointer is not larger than 112 bytes, it is
directly stored in the block pointer. Therefore the E flag in the block pointer is set to 1 as
described in table 2.5. Because a block pointer is only 128 bytes large, the remaining space
contains necessary metadata like the logical size, physical size or the level of indirection.
However block pointer containing embedded data do not have a checksum or any DVAs.

2.2.3. Internal architecture
ZFS consists of three main layers with several different sub-layers (as illustrated in
figure 2.5), which all have different tasks.

2Described in include/sys/spa.h including a graphic.
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Figure 2.4.: Visualization of the several fields of the block pointer [Beh17, p. 23].
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Figure 2.5.: Internal architecture of ZFS (based on [Ora13])
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Field Description
vdevn Virtual device ID
grid RAID-Z layout information (reserved for future use)
asize Allocated size (including RAID-Z parity and gang block

headers)
G Gang block indicator

offsetn Offset into virtual device
B Byteorder (endianness)
D Deduplication
X Encryption
lvl Level of indirection
type DMU type of the block (dmu_object_type_t)
cksum Used checksum algorithm (zio_checksum)

E 0 if the block does not contain embedded data, 1 otherwise
comp Used compression algorithm (zio_compress)
psize Physical size on disk
lsize Logical size, which is the size of the data after decompression or

decryption
spare Some extra space for future use

physical birth time Transaction group this block was written in
logical birth time Transaction group this block was born in

fill count Number of non-zero blocks under this block pointer
checksum[4 ] 256-bit checksum (split into four 64 bit values) of the data this

block pointer describes

Table 2.5.: Descriptions for each field of a block pointer.

Interface layer

The first layer is the interface layer where the ZFS POSIX layer (ZPL) and the ZFS volume
layer (ZVOL) are located. This layer is mainly used by applications using ZFS as normal
file system, applications that directly use the device files and management applications
via the library libzfs. Normal applications writing or reading data use ZFS via the
system call (syscall) interface with syscalls like read or write. Each syscall is then passed
through the VFS into the ZPL where ZFS decides what to do.
ZFS can also be used via ZVOLs, which are visible to applications as normal block

devices. A ZVOL can for example be used to build up a different file system upon ZFS.

Transactional Object Layer

The transactional object layer mainly consists of the data management unit (DMU). This
component interacts with the storage pool allocator (SPA, described below) working directly
with blocks and provides an interface to other components that deal with transactions.
Therefore operations on object performed with this component, like read, write, create
and destroy, are always assigned to a transactions passed to the DMU.
Keeping the stored data consistent is he main task of the DMU, which is done by

17



performing a copy-on-write (COW) operation for each written block. This means, that
every time a block (or a part of it) changes, the DMU allocates a new block and copies
the new data into it. The exact procedure and benefit of this solution are described in
section 2.2.4.

Pooled Storage Layer

The pooled storage layer contains another important part of ZFS, the storage pool allocator
(SPA). As the name suggests, this layer has the task to allocate space, managing pools and
process I/O (input/output) operations. SPA is only the name for this region consisting of
three main components [Dil10, p. 5]: The ARC, ZIO and VDEV layer.

The ARC

ARC means adaptive replacement cache and acts as a replacement for usual page caches
used in other file systems. It stores data based on the DVA, adapts to the workload of
issued I/O operations and manages memory in the SPA [Dil10, p. 25].

ZIO

The ZFS I/O (ZIO) layer contains the ZIO pipeline, which consists of several steps used for
example for low level read, write and transformation operations. Whereas the ARC works
with DVAs, the ZIO translates them into logical addresses on VDEVs. As mentioned
above, this layer is responsible for data transformation (compression and encryption) but
also for creation and validation of checksums as well as the handling of duplicate data
[Dil10, p. 26].

2.2.4. Writing data

The write process in ZFS is designed to ensure full data consistency, which means that
there are only correctly written blocks in the currently used Merkle tree on disk. To detect
any kind of error, every block pointer has a checksum of the data it holds.
A checksum does not ensure data integrity, but the write mechanism does, which is

implemented in the DMU (as described in [Bon+03]). When any part of a block is written,
the DMU allocates a new block and fills it with the new data. Therefore the indirect block
holding the location of the old block has to be updated too, in order to point to the new
block. To not corrupt any checksums of indirect blocks, each one of them has to be copied
as well, which "ripples" up to the uberblock. Copying all these blocks is therefore called
copy-on-write (COW).
The uberblock is saved in an array of uberblocks where the entry with the highest

transaction group number is "active". Instead of updating an existing uberblock, a new
one is created in a round robin manner across all VDEVs. Within one atomic operation, a
new active uberblock is created, which directly switches to the new tree of indirect blocks.
The figure 2.6 illustrates the tree of blocks while some new data is written.
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1. Initial block tree

. . . . . .

2. COW some blocks

. . . . . .

3. COW indirect blocks

. . . . . .

4. Rewrite uberblock (atomic)

. . . . . .

Figure 2.6.: Following the copy-on-write principal creates new blocks before finally over-
writing the uberblock in an atomic operation. Based on [Dil10, p. 7].

2.3. Lustre
Lustre is a parallel and distributed file system licensed under the GPL v2. It is mainly
used in high performance computing (HPC) clusters, among others at the DKRZ. Lustre
is able to handle petabytes of storage data and gigabytes per second of IO throughput,
as seen by the new super computer "Mistral" at the DKRZ [DKRb]. Another strength
of Lustre is its ability to scale with the amount of servers in a cluster. By adding new
storage devices or nodes, the capacity and the I/O performance increases [Ora17].

2.3.1. Architecture
Lustre consists of a whole variety of components where the most important for this thesis
are the object storage client (OSC), object storage server (OSS) and object storage target
(OST). There are also others like metadata server (MDS), management server (MGS),
metadata target (MDT) and management target (MGT). An overview is given by figure 2.7.
The MGT is a storage device storing information about the Lustre file system and is

used by the MGS. The MGS provides configuration information about the Lustre file
system to clients, which retrieve these information when mounting a drive. Every Lustre
component registers itself at the MGS and provides necessary information.

One of these components is the MDS, which serves metadata for Lustre. Besides storing
namespace information and usual metadata, like owners and groups (as seen by stat()),
the MDS determines where files can be stored in Lustre. Clients rely on the MDS, because
Lustre is unavailable if it is offline.
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Figure 2.7.: Lustre server architecture [Lus17, p. 3].

The third server component is the OSS, which handles the actual read and write requests.
An OSS uses multiple OSTs, which are the devices that store the data. Usually a RAID 6
or similar parity-based RAID levels, like RAID 5 or RAID-Z, are used to form one OST,
as seen in figure 2.8.
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Figure 2.8.: An OST usually use a RAID volume. Here an RAID 6 with eight data and
two parity disks is used [Lus17, p. 21].

All these components are used by a Lustre client, which is a kernel-based software and
installed on every node in order to mount and use the Lustre file system. Thanks to
the implementation of the POSIX standard, a mounted Lustre file system appears to
applications like any other file system. The Lustre client is structured as follows: The
MGC communicating with the MGS, the MDC with the MDS and the OSC with the OSS.
All requests are remote procedure calls (RPCs) specifying the operations that should be
performed. For example, when reading a file a RPC is send from the OSC to the MDS
to lock a file and to look up the location. The MDS returns the requested metadata
containing the OSTs, which hold the file’s data [Lus17].
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2.3.2. Client side compression
To save space in a transparent, efficient and practical way, data should be compressed on
the client side and then sent over the network to be finally stored to disk via ZFS. This
also bypasses the possible bottleneck of relatively low network throughput.
A first approach could be to let the user space application use tools like zip for

compression. Obviously this will work but has a crucial disadvantage: Every application
using the data has to know that the data is compressed and what algorithm had been
used. Another disadvantage is the lack of support for partial writes, which is useful when
only a small part of a large file has changed.

Another solution, which has been implemented by Anna Fuchs, is a client side compres-
sion using Lustre itself. This approach cuts the data into stripes and compresses each
stripe separately before sending it to the Lustre server [Fuc16]. The server then saves the
data using a new API introduced by Niklas Behrmann [Beh17].
In order to be able to use all features of ZFS (especially correct readaheads), the data

ZFS receives from Lustre should be treated as if it was compressed by ZFS itself. This
approach is presented in chapter 3 below.

2.3.3. Usage of ZFS by Lustre
The OSD component of the Lustre server implements two ways of persisting data on actual
disks. The first one is an enhanced version of the ext4 file system called ldiskfs, the second
one is ZFS as the back-end file system. Unlike normal user space applications, Lustre does
not use the ZPL but directly calls functions from the DMU. This is described in [Sch17]
and summarized in the following sections.

Write path

When Lustre uses ZFS to write data, it makes use of the zero-copy approach. In this case
zero-copy means that no data is copied between different buffers, which is done by sharing
a buffer between Lustre and ZFS. To do so, a buffer from the ARC of ZFS is borrowed,
meaning it is created by ZFS but Lustre writes its data into it. It is then directly passed
back to ZFS in order to write the data to disk. This approach does not cause an additional
creation of a copy and is therefore more performant.

Buffers can be loaned via the dmu_request_arcbuf function, which allocates an anony-
mous buffer from the ARC (called arcbuf). This happens in the function arc_buf_al-
loc_impl, called indirectly by dmu_request_arcbuf. Lustre then splits the arcbuf into
pages but uses the whole arcbuf for the zero-copy approach when it is assigned back to
ZFS.
Lustre has a separate function to commit a write request in which the arcbuf is given

back to ZFS. Assigning an arcbuf means that ZFS assigns the content of the arcbuf to a
given buffer from the DMU (called dbuf). The dbuf is then marked as dirty, which leads
to I/O operations by the synchronization mechanism of ZFS.

Read path

Reading data in Lustre is done by osd_bufs_get_read, which calls dmu_buf_hold_-
array_by_bonus to let ZFS fill the empty dbufs passed to that function. Also the amount
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of dbufs is determined, which used by Lustre to iterate over all dbufs to convert them into
pages.
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3. Design
This chapter describes the basic functionality for the support of externally transformed data
in ZFS. To fully understand the design decisions, an introduction into the ZIO pipeline is
given, which is part of the write and read process. After that, the write path is covered by
describing the mechanism to mark data as externally transformed. Finally, the read path
will be described by introducing flags to prevent ZFS from decompressing the data.

3.1. Compressing data in ZFS
ZFS already has native compression support, which is strongly integrated in the existing I/O
infrastructure. Using this to implement an efficient way of storing externally transformed
data needs a deeper understanding of this infrastructure that ZFS already has.

3.1.1. I/O Pipeline
I/O operations in ZFS (therefore often referred to as ZIO) are handled by a pipeline
called the ZFS I/O pipeline or ZIO pipeline for short. This pipeline executes several steps
sequentially before doing the actual I/O operations on a VDEV. Each ZIO is wrapped
by a struct called zio_t, which contains among others the current pipeline stage and the
transformation stack. The pipeline is located in the SPA, which is described in the section
Pooled Storage Layer in 2.2.3.

Execution of a ZIO is done by calling the function __zio_execute. This can happen by
a direct call via e.g. zio_wait, which executes a synchronous I/O operation, or indirect
via a synchronization operation of the SPA. A synchronization of the SPA is done by
spa_sync, which syncs all datasets via dsl_pool_sync.

Each step of the pipeline is specified by the array zio_pipeline in module/zfs/zio.c
containing entries of type zio_pipe_stage_t, which is a function pointer taking a zio_t
as parameter and also returning one1. Each step is executed sequentially in __zio_execute
until NULL is returned. Therefore each function has to check if anything should be done,
like zio_encrypt does as seen in listing 3.1.

1 if (!(zp->zp_encrypt || BP_IS_ENCRYPTED(bp))) {
2 BP_SET_CRYPT(bp, B_FALSE);
3 return (zio);
4 }

Listing 3.1: The zio_encrypt function checks if the data has to be encrypted at all.

1Declarated in include/sys/zio.h with typedef zio_t *zio_pipe_stage_t(zio_t *zio);
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3.1.2. Compression in ZFS
ZFS supports multiple ways and multiple algorithms for compression. By default, ZFS
compresses metadata with its own LZ4 algorithm, which cannot be turned off in OpenZFS2.

The supported algorithms of ZFS are LZJB, GZIP-N where N is a number from 0 (fastest
compression) to 9 (best compression ratio), ZLE and LZ4. All compression properties are
specified by the struct zio_compress in include/sys/zio_compress.h. Each algorithm
has its own enum entry, for example ZIO_COMPRESS_ZLE for ZLE or ZIO_COMPRESS_GZIP6
for GZIP-6.

The actual algorithm is specified by the table zio_compress_table, which is basically
a mapping from algorithm to the actual compression/decompression function. Some
compression properties do not have an associated algorithm, like ZIO_COMPRESS_OFF or
ZIO_COMPRESS_INHERIT.
Compression, as well as encryption, is a form or transformation and is handled by

a stack of transformation steps. Therefore the function zio_push_transform adds a
transformation to the stack and zio_pop_transform removes it from the stack and applies
it to the data.

Compressing data

The actual compression of data when writing is done in the zio_write_compress function,
which calls zio_compress_data if the data should be compressed. zio_compress_data
executes the associated function from zio_compress_table and returns the size of the
compressed data. Back in zio_compress_data this return value is used as psize and
assigned to the block pointer together with the compression algorithm that had been used.
The pipeline stage of compression is now done.

The process and function call stack can be seen in figure 3.1.

Decompressing data

The first step in the pipeline is zio_read_bp_init, which prepares the ZIO by settings
correct flags and also pushing transformations onto the stack. When reading, compressed
data is usually decompressed in zio_done by executing zio_pop_transforms. This pops
operations, goes over every transformation and executes the popped function. When it
comes to compression, zio_decompress is executed whose control flow ends up in zio_-
decompress_data_buf executing the associated function from the zio_compress_table.

The process and function call stack for reading compressed data can be seen in figure 3.2.

3.2. Mark data as externally transformed
Writes to disk happen either with untransformed data or transformed data (compressed or
encrypted). Somehow transformed data always has a physical and a logical size, which are
not necessarily equal. When data should be stored compressed, the zio_write_compress
step in the ZIO pipeline compresses the data.

2As mentioned by Tom Caputi in commit b1d217338a51b025b802ebf6a759f45dcd8e3b4c on February
21, 2018.
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Figure 3.1.: Code path for compressing data on a write call executed from the ZPL using
the LZ4 compression algorithm as an example.
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Figure 3.2.: Code path for decompressing data on a read call executed from the ZPL using
the LZ4 compression algorithm as an example.
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As described earlier in section 2.3.2, Lustre sends already compressed data to ZFS. In
order to store the data Lustre sent to ZFS, the write-process needs to be modified to
prevent ZFS from compressing the data again and to mark the saved data as externally
compressed. Also the logical and physical sizes must be stored correctly so that efficient
readaheads can be done.
The function zio_write_compress is called from __zio_execute and sets the basic

properties of the block pointer. Withing zio_write_compress there is already a handling
for compressed and uncompressed writes, where externally compressed data can be handled
as well.
A first approach using an additional compression mechanism called ZIO_COMPRESS_-

EXTERNAL already exists in the thesis [Beh17] by Niklas Behrmann. This thesis also
introduced additional compression flags in the DMU layer structs dmu_buf, dbuf_hold_-
impl_data and dbuf_prefetch_arg as well as flags for the function dbuf_read. The new
flags were then passed through several functions to be finally used when writing or reading
data. To extend these changes for an efficient and tested solution within ZFS, a refactoring
needs to be done in order to add a simple and easy to maintain write and read path.

3.2.1. Efficient readaheads
A compressed block has a physical and logical size where the logical is usually larger then
the physical. When writing data without considering the difference between physical and
logical size, holes appear on disk. This leads to inefficient readaheads, because these holes
can be ignored, but cost resources for reading. An example of this effect can be seen
in figure 3.3. However, this is a minor issue, because ZFS is already able to deal with
different physical and logical sizes.

1MiB stripe

0 255 256 511 512 767 768 1023

compress

write

A

B

block 0 block 1 block 3 block 4

Figure 3.3.: This example shows the effect of writing compressed stripes with and without
considering physical and logical size [Fuc16, p. 52].

When the compressed blocks are written correctly and both sizes are stored within the
block pointer, efficient readaheads can be made. To do so, ZFS must map the wanted
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size of the prefetch (logical size) to the corresponding physical size. Only then, the exact
amount of compressed data can be read without reading additional, unnecessary data.
Lustre supports next to ZFS also the ext4 variant ldiskfs, which does not support

transparent compression. In order to store compressed blocks efficiently, gaps between
blocks have to be resolved manually by Lustre before writing data using ldiskfs.

3.3. Prevent decompression
Normally decompression takes place in the ZIO pipeline and is initiated by the function
zio_read_bp_init, which pushes the decompression step onto the transformation stack.
When the I/O operation is done, zio_done executes the previously pushed transformation
and decompressed the data. This mechanism can be seen in figure 3.2.
Preventing zio_read_bp_init from pushing the decompression step onto the stack,

won’t cause a decompression. The decision if anything is pushed onto the stack or not
depends on multiple conditions:

1. The block pointer’s compression algorithm must be set.

2. The child ZIO has to be a logical child (and not e.g. a ZIO of a VDEV or deduplicated
block).

3. The read must not be a raw compressed read. Raw reads do not transform the data
in any form.

Using the last conditions prevents ZFS from decompression, if reading externally com-
pressed data would be a raw read.

The function dbuf_read_impl is already setting the ZIO_FLAG_RAW flag at the end, when
the data should not be decrypted. For the read function dbuf_read, which calls dbuf_-
read_impl for uncached buffers, several flags like DB_RF_NO_DECRYPT exist3. Because the
ZIO layer should not depend on DMU specific flags, all DB_RF_... flags are then used to
set ZIO specific flags and properties.

Using the exact same mechanism for data that should not be decompressed will prevent
zio_read_bp_init from pushing onto the stack and therefore zio_done from decompres-
sion. To achieve this, an additional DB_RF_NO_DECOMPRESS flag would be able to indicate
that data should not be decompressed when reading externally compressed data.

Alternative approach: Implicit prevention of decompression

An alternative approach is the usage of the algorithm set in zio_write_compress. When
reading the block, this new compression mechanism ZIO_COMPRESS_EXTERNAL can either
be used to prevent the decompression in zio_done or in a function called by zio_done.
Not handling ZIO_COMPRESS_EXTERNAL in zio_read_bp_init causes the call of zio_-

push_transform, which pushes zio_decompress onto the stack. Because the ZIO_COM-
PRESS_EXTERNAL mechanism for externally compressed data does not have any decompres-
sion function associated, NULL will be used in zio_decompress_data_buf. However this

3Defined in the include/sys/dbuf.h

27



would fail due to an invalid value (in this case NULL) and therefore would return the error
EINVAL4 back to zio_decompress_data.

To not go into this situation, preventing ZFS from popping zio_decompress would be
a solution. This requires zio_done to know about zio_decompress and the new ZIO_-
COMPRESS_EXTERNAL mechanism. Nevertheless this is not a feasible solution as zio_done
should not modify the behavior of the transformation stack. When a transformation
should not be executed, it should not be pushed onto the stack.
The second and also not feasible approach is to pop the decompression step from the

stack and prevent zio_decompress from doing anything. However this might fail later,
when other steps rely on pre- or post-conditions like lsize == psize, because this should
be the case after the decompression of data.

3.4. Code paths from Lustre to ZFS
To sum the above design considerations up, this section shows the overall paths for writing
and reading data. As Anna Fuchs [Fuc16], Niklas Behrmann [Beh17] and Sven Schmidt
[Sch17] showed in their theses, there are new code paths for reading and writing data. The
most important function calls are illustrated by figure 3.4.

1. 2.
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__zio_execute

direct call indirect call 1. order of execution

Figure 3.4.: Read and write paths from Lustre into ZFS.

4Defined in /usr/include/asm/errno.h with the value 2210 (1616)
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Because the Lustre part is already implemented and uses the new API, the interesting
parts for this thesis are the functions and data structures in ZFS. However there needs to
be a refactoring before the new design decisions can be implemented. More details and
the actual changes are presented in chapter 5.
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4. Related work
This chapter shows related work regarding file systems and compression. Two local and
distributed file systems with different ways of compression are presented showing alternative
approaches in one point or another.

4.1. Local file systems
Even though not all frequently used file systems have support for transparent compression,
some important do have this feature. To give a small view into other local file systems
and their compression strategies, this section will describe SquashFS and NTFS.

4.1.1. SquashFS
The Linux file system SquashFS is an explicitly read-only file system supporting various
compression methods and is used for archival purposes and embedded systems [Squ14].
Aiming to reduce overhead as much as possible, this is done among others by supporting
different compression algorithms and using different inode types for each file type (directory,
regular file, device file and others). This efficiency is used by many embedded systems and
Linux Live CDs like Ubuntu1.
Next to normal compression of the data, SquashFS also compresses metadata saved

in the blocks for inodes. Data is not compressed if the option -noI is given or if the
compressed data is larger than the original data.

When data is compressed, one of the methods zlib, lz4, lzo or xz is used. Each block is
compressed separately and it is from 4KiB up to 1MiB large (default is 128KiB).

4.1.2. NTFS
Not only Linux and UNIX specific file systems, but also the Windows file system NTFS
support compression of files [Wik18c]. NTFS uses the LZ77 variant LZNT1 for compression
by splitting a file into 16 4KiB large clusters resulting in a 64KiB large chunk. Compression
is not available when the cluster size is larger than 4KiB.

Next to compression NTFS also supports efficient writes for sparse files, for example a
file with large amounts of zeros in it. Only the relevant content is stored on disk, in this
example only the non-zero content.

The free space of compressed files is considered like a sparse file and therefore not written
to disk. For example when a 64KiB large file is compressed to 42KiB, five 4KiB clusters
are now empty and not written.

1As in the file casper/filesystem.squashfs packed in the Ubuntu 18.10 image
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4.2. Distributed file systems
Distributed file systems often use a local file system underneath, which may support
compression. Therefore client-side compression is not always in the focus of the development
of distributed file systems. Nonetheless there is some ongoing work in the area of client-side
compression as presented by this section.

4.2.1. Lustre
The distributed file system Lustre was not able to compress data until Anna Fuchs
presented a mechanism for client-side compression [Fuc16]. In this approach, Lustre does
not compress a whole file, but splits the data into stripes. A stripe is then cut into smaller
units called chunks, which are then compressed individually. Although there is already a
smaller unit called page, this in turn is too small for good compression. Each chunk is
then compressed and stored to disk, as illustrated earlier by figure 3.3.

An integration of this client-side compression feature in Lustre with a new API of ZFS
was presented by Sven Schmidt [Sch17].

4.2.2. MRC integration in FusionFS
Another distributed file system is FusionFS, which fuses client and storage server into one.
Zhao and Raicu integrated a new compression mechanism into FusionFS called multiple
reference compression (MRC) [ZR13].

MRC splits the data into blocks and compresses each block. In addition of storing the
blocks, equidistant original blocks are stored as well, appended to the decompressed data.
These blocks are called references and allow future reads to only decompress requested
subsequences of the compressed data. The part between the original data entries is called
partition. For example, when the data consists of eight blocks D0 to D7 with a partition
distance of four, the references would be D0 and D4. When data from D6 is requested, only
the second partition with the blocks from D4 to D6 needs to be read and decompressed.
Next to compression, the implementation done in [ZR13] introduces additional per-

formance improvements. Data is only written locally on a node, saving time by not
transferring data over the network. Read calls from a job requesting data that is stored
on another node are just rescheduled, so that the job is executed on the node where the
data is stored. Again, this saves a lot of time by not transferring data over the network.
These improvements combined with the MRC mechanism showed a two times faster

I/O throughput compared to normal, uncompressed operations [ZR13, p. 10].
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5. Implementation
As the design showed, there are two parts to work with: The refactoring and enhancement
of the write-path and the implementation of the read-path. First, this chapter describes the
refactoring of the write path and shows why it was needed. After that, the changes in the
data structures and code paths for writing data are described. The last part deals with the
read-path with has been implemented using the new flags introduced in section 3.3.

5.1. Write path
Writing data to ZFS consists of several steps. First a bonus buffer, containing meta
information about the requested data, is read from disk using dmu_bonus_hold. Then
an empty buffer from the ARC is created using dmu_request_compressed_arcbuf and
the data is filled into this buffer. At the end this filled buffer is written to disk using
dmu_assign_compressed_arcbuf. How each function had been implemented is described
in this section, whereas the read path follows in section 5.2.

5.1.1. Refactoring
Motivation

Before the new features for reading externally compressed blocks had been implemented, a
refactoring of the current write path was done. The reason for this is the simplification of
the code. In the solution Niklas Behrmann presented, the information if a block is already
compressed or not was passed via boolean parameters to several functions. Following
this approach would cause many unnecessary changes to the source code introducing a
mechanism that is already usable via existing flags.

Data structures

In addition to the introduced parameters, the compression state (compressed or uncom-
pressed) was also added to two data structures. The dbuf_hold_impl_data_t1 structure
contained the field dh_compressed_dbuf and the dmu_buf_t structure db_compressed.
Both fields were of type boolean_t, the exact usage is presented below.

The dh_compressed_dbuf flag

This flag was only used once to be passed via the new introduced parameter compressed_-
dbuf to dbuf_create. In dbuf_create just the db_compressed property of the newly
created dbuf was set with the value of the new parameter. As listing 5.1 shows, it was

1dbuf_hold_impl_data_t was renamed to dbuf_hold_arg_t in ZFS 0.8.0-rc1
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1 static dmu_buf_impl_t *
2 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid,
3 dmu_buf_impl_t *parent, blkptr_t *blkptr, boolean_t compressed_dbuf)
4 {
5 ...
6 db->db.db_compressed = (blkptr != NULL &&
7 BP_GET_COMPRESS(blkptr) == ZIO_COMPRESS_EXTERNAL) ?
8 TRUE : compressed_dbuf;
9 ...
10 }

Listing 5.1: The new parameter (highlighted in red) was only used for the db_compressed
flag

set to TRUE when the block pointer’s compression was set to ZIO_COMPRESS_EXTERNAL.
If the data was not externally compressed, the value of the newly added parameter of
dbuf_create was assigned.

In the case that externally compressed data is not handled by ZFS, FALSE was used as
actual parameter by the caller of dbuf_create.
Why this parameter could be removed without loss of functionality is shown below in

section Removing paramters.

The db_compressed flag

Removing this flag was a larger part of the refactoring because it was more often used. For
the write-path the main impact was in the functions dmu_sync and __dbuf_hold_impl2.
The dmu_sync function stores a single dbuf on disk and is called in special situations

like the period of time while a pool gets exported [Beh17, p. 66].
More important was the __dbuf_hold_impl function that also called dbuf_create

passing the value of dh_compressed_dbuf into it.

Removing paramters

Because the __dbuf_hold_impl function was called by dbuf_hold_impl, which in turn
was called by a variety of functions, each of them got a new parameter, which was just
passed through until it reached __dbuf_hold_impl.

When the dbuf created in __dbuf_hold_impl had the db_compressed flag set to TRUE,
the allocation of an ARC buffer was done via arc_alloc_compressed_buf. This allocation
function also received ZIO_COMPRESS_EXTERNAL as parameter. However the logic to do so
was already implemented in a generalized way in dbuf_hold_copy.

The dbuf_hold_copy function uses the ARC compression property via arc_get_-
compression to determine if the newly allocated arcbuf should contain compressed data
or not. Only using this function and therefore removing the manual logic described above,
simplified the code a lot. Because there was no need to pass a boolean value regarding

2__dbuf_hold_impl was renamed to dbuf_hold_impl_arg in ZFS 0.8.0-rc1
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compression to __dbuf_hold_impl after deletion, most of the new parameters could be
removed as well.

5.1.2. ARC flags for RAW I/O
The ARC has not been changed but also contains some very important flags for writing
externally compressed data. Because a usage of ZIO_COMPRESS_EXTERNAL, to prevent ZFS
from transforming the data, would introduce new code paths, the existing infrastructure
of raw I/O operations has been used. As mentioned earlier in section 3.3, a raw operation
does not change the data by compression, encryption or any other kind of transformation.

To do a raw read or write, the ARC uses specific flags from the ZIO layer. There are three
flags, ZIO_FLAG_RAW_COMPRESS for compression, ZIO_FLAG_RAW_ENCRYPT for encryption
and ZIO_FLAG_RAW combining both.

The approach presented below makes use of the ZIO_FLAG_RAW_COMPRESS flag to ensure
that the data is not compressed again before writing it to disk.

5.1.3. New compression mechanism
The zio_compress data structure contains all compression mechanism known to ZFS.
A mapping from a compression mechanism enumeration value to a specific compression
and decompression functions, called zio_compress_table, is used to transform the actual
data (as described earlier in section 3.1.2). Because the externally compressed data is not
compressed in ZFS but within Lustre (or any other application using this feature), there
is no compression and decompression function attached to the ZIO_COMPRESS_EXTERNAL
value presented by Niklas Behrmann.

5.1.4. Creating buffers
During and especially after the refactoring, the creation of buffers in ZFS had to be
adjusted. Because ZFS now has to rely on properly set flags, which already existed in
ZFS, setting these needed to be implemented.

Buffer structure of ZFS

ZFS knows different kinds of buffers. The layers DMU and ARC have their own structures
to deal with buffers.

The DMU buffer (or dbuf for short) is of type dmu_buf_t and consists only of the actual
data, the size of it, the offset inside the object and the object it is associated with. It is a
multi purpose buffer, which for example can contain data read from disk or a whole buffer
from the ARC.
This rather small and simple structure is used, among many other places, inside the

structure dmu_buf_impl_t. In addition to only holding a dmu_buf_t reference, this larger
structure also contains meta information about the dbuf. For example, the indirection
level, cache state, block pointer or dnode handle are stored in dmu_buf_impl_t.

The ARC has its own buffer called arc_buf_t (or arcbuf for short), which among other
properties consists of the actual data, flags and a header. The header for an arcbuf contains
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metadata about the actual data. Next to the flags and the DVA, also the physical and
logical size are stored in the header.

Creation of ARC buffers

The function arc_buf_alloc_impl creates an empty buffer. One parameter contains the
header of this ARC buffer, which is created via arc_hdr_alloc in the function that called
arc_buf_alloc_impl. There are several other functions using this allocation function, one
of them is arc_alloc_compressed_buf, which can handle compression modes other than
ZIO_COMPRESS_OFF. This function in turn is among others called by dbuf_hold_copy,
whose usage is described above, and by arc_loan_compressed_buf.

The arc_loan_compressed_buf function is then called by dmu_request_compressed_-
arcbuf, which is one of the new functions introduced by Niklas Behrmann in his new
DMU API for Lustre. The described function calls are illustrated in figure 5.1.

Setting properties

As mentioned in section 5.1.2, the ARC works with flags indicating that a buffer should
not be compressed/decompressed or encrypted/decrypted. These I/O operations are called
"raw" operations.

Setting the ARC_BUF_FLAG_COMPRESSED flag when allocating an ARC buffer has therefore
been added. The allocation function arc_buf_alloc_impl sets this flag, if the buffer
contains compressed data and if this data is externally compressed. However this flag does
not directly cause raw I/O operations, but it is used in arc_write, where the corresponding
ZIO flag ZIO_FLAG_RAW_COMPRESS is set. This will cause a raw I/O operation when the
ZIO pipeline starts processing the request. The code execution paths can be seen in
figure 5.1.

5.1.5. Assign buffer
After creating the buffer with all properties set correctly, Lustre calls the function dmu_-
assign_compressed_arcbuf introduced by Niklas Behrmann.
This function assigns an arcbuf to a dbuf that should be written to disk. To create

a correct dbuf where the actual data should be stored in, a handler dbuf is passed into
dmu_assign_compressed_arcbuf. This handler dbuf does not necessarily contain the
data but can instead contain the metadata of a dnode. Irrespective of the content, this
handler dbuf is just used to get the attached dnode we want to write to.
The final step of assigning the dbuf is done in dbuf_assign_arcbuf with the most

important function calls at its end: dbuf_set_data, dbuf_dirty and dmu_buf_fill_done.
Executing the dbuf_set_data function follows a zero-copy approach by just setting the
arcbuf’s data to the data of the dbuf, without copying memory. As shown by figure 3.1,
the call of dbuf_dirty is one of the last steps in the write process (even though the code
path described here differs from figure 3.1). The last call, dmu_buf_fill_done, verifies
the dbuf, sets the cache-state to DB_CACHED and notifies observers waiting for changes on
that buffer. The synchronization thread will then write the dirty data to disk as described
in section 3.1.1.
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1. 2.

1. 2.

1. 2. 3.

Lustre

dmu_request_compressed_arcbuf

arc_loan_compressed_buf

arc_alloc_compressed_buf

arc_hdr_alloc

arc_buf_alloc_impl

...
}
else if (compressed &&

arc_hdr_get_compress(hdr) == ZIO_COMPRESS_EXTERNAL) {
buf->b_flags |= ARC_BUF_FLAG_COMPRESSED;

}
...

dmu_assign_compressed_arcbuf

dmu_assign_arcbuf

dbuf_set_data

dbuf_dirty

dmu_buf_fill_done

Thread from
Lustre call

Background thread
for synchronization ZFS sync mechanism

dnode_sync

arc_write

...
} else if (ARC_BUF_COMPRESSED(buf)) {

zio_flags |= ZIO_FLAG_RAW_COMPRESS;
}
...

__zio_execute

zio_write_compress

...
if (compress != ZIO_COMPRESS_OFF && psize == lsize &&

!(zio->io_flags & ZIO_FLAG_RAW)) {
void *cbuf = zio_buf_alloc(lsize);
psize = zio_compress_data(compress, ..., lsize);
...

}
...
} else {

ASSERT3U(psize, !=, 0);
}
...

1. 2.

direct call
indirect call

1. order of execution

Figure 5.1.: Illustration of the functions setting several flags on a write call from Lustre.
The code snippets are simplified part of the actual ZFS code.

5.2. Read path

In contrast to the write path, the structure of the read path is rather simple. This section
describes the changed made in order to correctly set the new introduced flags to prevent
decompression. Therefore the new code path is presented.
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5.2.1. Flags for reading via the DMU
Reading via the DMU makes use of several flags indicating different kinds of procedures
that should or should not be executed. One example is the decryption of data, which can
be disabled by the DMU_READ_NO_DECRYPT flag when it is passed to DMU functions like
dmu_buf_hold. These DMU_READ_... flags are then converted into buffer and I/O specific
DB_RF_... flags. For decryption this would be the DB_RF_NO_DECRYPT flag, which can for
example be passed to the dbuf_read function.

To use the exact same mechanism, and therefore introduce as little changes as possible,
these flags have also been used to prevent ZFS from decompressing the data. The new flags
are called DMU_READ_NO_DECOMPRESS for the DMU functions and DB_RF_NO_DECOMPRESS
for dbuf_read.

5.2.2. Code path
Reading data using the DMU layer is done by dmu_buf_hold_array_by_bonus_com-
pressed, also introduced by Niklas Behrmann. This function requires a handler dbuf
(called a "fake" dbuf inside the function) whose only purpose is – as described in section 5.1.5
– to determine the dnode the data should be written to.

More important is the function dmu_buf_hold_array_by_dnode, which gets called with
the DMU_READ_NO_DECOMPRESS flag set. It therefore sets the DB_RF_NO_DECOMPRESS flag
and issues multiple I/O operations using dbuf_read where the flag is passed to. Because the
issued I/O operations are all asynchronous, the dmu_buf_hold_array_by_dnode function
also waits for these operations to finish. After that, the data is set – not copied – to the
return parameter. Figure 5.2 illustrates the read-path, which has similarities to the normal
read path illustrated by figure 3.2.
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Lustre

dmu_buf_hold_array_by_bonus_compressed

dmu_buf_hold_array_by_dnode

zio_wait

__zio_execute

zio_read_bp_init

No decompression is pushed because ZIO_FLAG_RAW_COMPRESS is set:

...
if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&

zio->io_child_type == ZIO_CHILD_LOGICAL &&
!(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) {

zio_push_transform(zio, ...,
psize, psize, zio_decompress);

}
...

zio_done

dbuf_read

arc_read

zio_nowait

static zio_pipe_stage_t
*zio_pipeline[]

*
1.

2.

1. 2.

* dbuf_read is called for every block to read and executed asynchonous I/O operations.

direct call indirect call 1. order of execution ... definition of type

Figure 5.2.: The read path for externally compressed data that does not push transforma-
tions onto the transformation stack.
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6. Correctness test and evaluation

This chapter describes the correctness test and performance analysis done for the changes
to ZFS presented by this thesis. For testing the correctness of writing and reading data, a
new test case had been created which functionality is described in this chapter. An analysis
of the performance is done by measuring the execution time of the tested functions. The
results are presented at the end of this chapter.

Test environment

All tests ran on a QEMU virtual machine (VM) with an emulated x64 Haswell-noTSX
dual core CPU at full 3.4 GHz, 4GB of RAM and a 30GB VirtIO drive. The operating
system was a CentOS version 7.5.1804 on a 3.19.0-862.6.3.el7.x86_64 kernel. The
code was based on ZFS 0.8.0-rc1 and compiled with GCC version 4.8.5 20150923.

The VM ran on an Arch Linux computer with the kernel 4.20-arch1-1, an Intel® Xeon®
E3-1231 CPU and 16GB of RAM.

6.1. Correctness test

To verify that the changes presented in chapter 5 work as intended, a test has been written
that uses the functions that had been changed. In order to test the API and the changes
presented by chapter 5, the ztest file was used to create a special test. The internal
functionality is described by this section.

6.1.1. ZFS test suite and ztest

The correctness of ZFS is tested by two test environments called ztest and ZFS test suite.
ZFS’ own test suite contains normal bash scripts, which are sequentially executed and
perform a variety of operations. This could be increasing the pool size by adding a disk,
mounting drives or simple operations like renaming directories. However, these tests do
not test API functions of ZFS directly, they are wrapped by the test framework, which
sets up all necessary VDEVs, pools and datasets.
When certain functions of ZFS should be tested, the test file cmd/ztest/ztest.c is

used. As the test framework does it in the ZFS test suite, this file as well uses a set up
environment and performs randomized tests but directly executes ZFS functions. Normally
these ZFS functions are only available in the kernel space but ZFS can also be compiled
into a library (libzfs), which then operates in the user space.
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6.1.2. Test case
Creating a test case in the ztest file just needs a function fulfilling a simple interface.
After registering the function to the array ztest_info, the function will be executed
periodically.
The test case itself creates data with a reasonable pattern, in this case the repeating

word moin. After that the functions Lustre uses are called. First the write functions:

1. dmu_bonus_hold_impl, with the DMU_READ_NO_DECOMPRESS flag passed to it, creates
a dbuf with meta information about the object that should be stored

2. dmu_request_arcbuf creates an arcbuf that is filled with the data created earlier

3. dmu_tx_create creates a new transaction for the object set

4. dmu_tx_hold_write assigns the dnode of the created dbuf to the transaction. If the
object itself already exists but is not cached, I/O operations are issued to read the
dnode from disk.

5. dmu_assign_arcbuf assigns the dbuf to the filled arcbuf so that the arcbuf is
correctly written to disk

6. dmu_tx_commit detaches the transaction and the dnode from each other

To verify that the data is written correctly, the test directly reads it back. Because the
actual write process depends on the background thread and synchronization mechanism,
the data might not be stored on disk but comes from the cache. The read functions used
are:

1. dmu_bonus_hold_impl creates the dbuf as mentioned above

2. dmu_buf_hold_array_by_bonus_compressed reads the actual data from disk, fills
the creates buffer array and returns the number of buffers used for that

The read data is then compared to the data that has been written. If a single bit is
different, the test fails, otherwise the buffers are released and the test succeeds.

6.1.3. Reading data manually
The ztest uses files as virtual disks and therefore the data can be read, after successfully
running the ztest, by just opening the file and searching for the pattern moin. Because
the files are big and there might be plenty of them, the ZFS debugging utility zdb makes
it a bit easier to manually read and verify the data.
To do so, the DVA of the data has to be determined in order to read exactly that

block. Because ZFS always builds zdb with it, the zdb utility is in bin/zdb. Executing
zdb in combination with the filtering utility grep prints out every externally compressed
entry including meta data of it. To get the necessary information from zdb, the -vvvv
flags are used to increase verbosity (more v’s, more verbosity), the -U <cache> parameter
specifies the cache file used by ztest and the last argument specifies the pool name. The
listing 6.1 shows that the ZIO_COMPRESS_EXTERNAL was correctly stored, the data is not
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1 ~/zfs $ ./bin/zdb -vvvv -U /tmp/zpool.cache ztest | grep external
2 ztest_write_external_compressed(0)[0] = 20
3 loading concrete vdev 0, metaslab 14 of 15 ...
4 objset 5 object 20 level 0 offset 0x0 DVA[0]=<0:18017400:1800> [L0 other uint64[]]

↪→ sha256 external unencrypted LE contiguous unique single size=1400L/1000P
↪→ birth=24L/24P fill=1 cksum=6d32f0502059cbdf:fd5f1ca34f1d73ae:3f52b4568626da20:
↪→ 263ab8b814921b3a

Listing 6.1: Using zdb and grep to get the DVA and meta data of the written data.
Important parts are highlighted.

encrypted and that the data has the correct size. The ztest used a physical size of 4096
bytes (1000 in hexadecimal, therefore 1000P in the output) and a logical size of 5120
bytes (1400 in hexadecimal, therefore 1400L in the output). The DVA of this example is
0:18017400:1800.

Using zdb with -R <poolname> <vdev>:<offset>:<size> to specify the DVA and -U
<cache> to specify the cache file created by ztest, views the actual data. The listing 6.2
uses also head -n 6 to display only the first six lines.

1 ~/zfs $ ./bin/zdb -R ztest 0:18017400:1800 -U /tmp/zpool.cache | head -n 6
2
3 0:18017400:1800
4 0 1 2 3 4 5 6 7 8 9 a b c d e f 0123456789abcdef
5 000000: 6d6f696e6d6f696e 6d6f696e6d6f696e moinmoinmoinmoin
6 000010: 6d6f696e6d6f696e 6d6f696e6d6f696e moinmoinmoinmoin
7 000020: 6d6f696e6d6f696e 6d6f696e6d6f696e moinmoinmoinmoin

Listing 6.2: Using zdb and grep to get the DVA and meta data of the written data.
Important parts are highlighted.

6.2. Performance test
Determining the performance is done by measuring the execution time of each function
used for writing and reading as listed in section 6.1.2.

Measuring execution times

To compare the functions used for externally compressed data to the non-compressed version
of these functions, a second test case has been created. This used the non-compressing
functions that are also called by Lustre for uncompressed data.
Because the execution time for each function depends on a variety of factors, 139

test runs have been made to calculate an average execution time. Figure 6.1 shows the
execution times of all functions mentioned in section 6.1.2.
The recorded data had some strong outliers, as figure 6.2 shows for dmu_bonus_hold.

They are so strong that they have a significant impact on the average showed in figure 6.1.
A very simple mechanism removed them, which used the deviation of each data point from
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Figure 6.1.: Execution times for several parts of the test case.

the average of the whole data set for the according function. Every data point above a
threshold, which was a multiple of the average, had been removed.

Evaluation

As one can clearly see in figure 6.1 the execution time of dmu_tx_hold_write is a clear
outlier with more then 6 times the execution time of the non-compressing function (21.89µs
externally compressed; 3.32µs non-compressing). Because the difference is so high, usual
fluctuations on the data are very unlikely. The reason for this significant difference might be
a code path that was not covered by the newly introduced conditions and flags. Therefore
unnecessary I/O operations, copying of buffers or other instructions might result in a
higher execution time.

A second thing that the figure 6.1 shows is that all other functions have rather similar
execution times. There is no other function with a difference as high as the one by
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Figure 6.2.: These raw execution times for dmu_bonus_hold have two large outliers in it
(note the logarithmic scale of the y-axis).

dmu_tx_hold_write. Because the changes, which have been made, should be as efficient
as possible with as little impact as possible, the lower differences at other functions show
that this is the case.
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7. Conclusion and future work

7.1. Conclusion
As the IPCC for Lustre project aims to improve existing open source systems, client-side
compression inside Lustre and the efficient storage of this compressed data is one part of
it. The motivation mentioned that the computational power, network throughput, storage
speed and storage capacity increase differently. Closing this building gap between the
performance of each component is one reason for client-side data compression with an
efficient backend file system, which in this case is ZFS.

7.1.1. Integration of existing theses
As the client-side compression was already implemented by Anna Fuchs in her thesis "Client-
Side Data Transformation in Lustre" [Fuc16], some implementation details were described.
Her approach splits the data further into stripes, compresses them individually and sends
them over the network. Each stripe also contains metadata used for decompression.

A first implementation to support externally compressed data was presented by Niklas
Behrmann in his thesis "Support for external data transformation in ZFS" [Beh17], which
was used to show the thoughts that had been made and to point out tasks. In his thesis,
he presented some new parameters and a new compression mechanism, which is stored on
disk to mark data as externally compressed. Also a new API was introduced, which this
thesis is based on.

Their both theses were combined by Sven Schmidt in the "Efficient interaction between
Lustre and ZFS for compression" [Sch17]. He used the new API added by Niklas Behrmann
[Beh17] and used the compression functionality implemented by Anna Fuchs [Fuc16].

7.1.2. This thesis
This thesis presented the design and implementation of an efficient way to write and read
externally compressed data in ZFS using additional and yet lightweight code paths. The
need for this additional feature in ZFS was presented earlier and made clear that client-side
compression inside the Lustre file system needs an efficient storage mechanism in ZFS.

First, the design of a refactoring was described by removing existing parameters and by
using more of the existing infrastructure. Secondly, the implementation of the described
refactoring as well as the actual new changes and functionalities were shown.
The question if the changes are as efficient as they should be, was answered in the

chapter 6 by showing an analysis of the performance. The measurement results of the
execution times for the new functions were nearly the same as for the existing and
non-compressing functions – with one exception. Even after removing outliers, the dmu_-
tx_hold_write function had a significantly higher execution time when used for externally
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compressed data. Even though the duration is very small (21.89 µs), it can add up when
a lot of small write calls are made. To solve this problem, additional work has to be done.

7.2. Future work
7.2.1. Performance enhancements
As the section 6.2 showed in a performance test, the function dmu_tx_hold_write needs
a performance enhancement. Unnecessary I/O operations, an unwise use of memory or
other unneeded instructions might cause this discrepancy.

7.2.2. Open issues
The described test in section 6.1.2 stores the data correctly, however there are two major
issues to solve:
Even though the the data is written correctly, there are certain edge cases where at

least the ztest fails. One – maybe only theoretical – case is a physical data size lower than
or equal to 512 bytes. In this case the size of the data is rounded up to 512 bytes and
therefore stored inside a block pointer as "embedded" data. Apparently this causes ztest
to fail and further investigations are needed.
In a special and yet not fully determined state, the dmu_tx_hold_write issues an

I/O operation to read data from disk. However this read call does not receive the
DMU_READ_NO_DECOMPRESS flag as it is an internal call of dmu_read, issued indirectly by
dmu_tx_hold_write. Because the data is interpreted as compressed (!= ZIO_COMPRESS_-
OFF), the call of zio_decompress_data fails on an ASSERT statement. One way to solve
this, is the correct setting of the flag DMU_READ_NO_DECOMPRESS in the call of dbuf_read.

7.2.3. Relaxation of ZIO_COMPRESS_OFF

During the development of this thesis, a pull request on the main code base had been
made on GitHub1. The intention was to get feedback from ZFS developers, who presented
alternative solutions regarding the write path of the data, which is currently marked as
externally compressed. Using ZIO_COMPRESS_OFF instead of the described ZIO_COMPRESS_-
EXTERNAL from section 3.2 needs additional code changes but would not cause problems
regarding backward compatibility. New flags for externally compressed data, instead of a
new compression mechanism, can be used to run the code path designed earlier.

7.2.4. Decompression inside ZFS
The pull request resulted in another task, which can be implemented in the future. Instead
of only marking data as externally compressed, a possible feature is the decompression by
ZFS itself. Therefore the data needs to have the same format as if it was generated by
ZFS in order to be able to decompress it. This enables a local application to use the data
as well as a remote ones like the Lustre client.

1https://github.com/zfsonlinux/zfs/pull/8143

48

https://github.com/zfsonlinux/zfs/pull/8143


Bibliography
[Beh17] Niklas Behrmann. “Support for external data transformation in ZFS”. Master’s

Thesis. Universität Hamburg, Apr. 2017.
[Bon+03] Jeff Bonwick et al. The Zettabyte File System. Tech. rep. 2003. url: http:

//citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.184.3704&
rep=rep1&type=pdf.

[DCG18] Xavier Delaunay, Aurélie Courtois, and Flavien Gouillon. “Evaluation of lossless
and lossy algorithms for the compression of scientific datasets in NetCDF-4 or
HDF5 formatted files”. In: Geoscientific Model Development Discussions 2018
(2018), pp. 1–25. doi: 10.5194/gmd-2018-250. url: https://www.geosci-
model-dev-discuss.net/gmd-2018-250/.

[DKRa] DKRZ. Computer History at DKRZ. url: https://www.dkrz.de/systems/
historie.

[DKRb] DKRZ. HLRE-3 "Mistral". url: https://www.dkrz.de/systeme/hpc (visited
on 11/21/2018).

[DKRc] DKRZ. Supercomputing and data. url: https://www.dkrz.de/mms/pdf/
klimadaten/poster/K202037_Infotresen.pdf.

[Deu96a] P. Deutsch. DEFLATE Compressed Data Format Specification version 1.3.
May 1996. url: https://www.ietf.org/rfc/rfc1951.txt.

[Deu96b] P. Deutsch. GZIP file format specification version 4.3. May 1996. url: https:
//www.ietf.org/rfc/rfc1952.txt.

[Dil10] Andreas Dilger. ZFS Features & Concepts TOI. 2010. url: http://wiki.
lustre.org/images/4/49/Beijing-2010.2-ZFS_overview_3.1_Dilger.
pdf (visited on 12/01/2018).

[Dö16] Sebastian Döbel. Scientific data formats. May 2016. url: https : / / wr .
informatik.uni-hamburg.de/_media/teaching/sommersemester_2016/
sds16_dobel_data_formates_presentation.pdf (visited on 12/11/2018).

[Fuc16] Anna Fuchs. “Client-Side Data Transformation in Lustre”. Master’s Thesis.
Universität Hamburg, May 2016.

[GA17] Jean loup Gailly and Mark Adler. zlib 1.2.11 Manual - gzip File Access Func-
tions. Jan. 2017. url: https://zlib.net/manual.html#Gzip.

[KKL16] Michael Kuhn, Julian Kunkel, and Thomas Ludwig. “Data Compression for
Climate Data”. In: Supercomputing Frontiers and Innovations. Volume 3,
Number 1 (June 2016). Ed. by Jack Dongarra and Vladimir Voevodin, pp. 75–
94. doi: http://dx.doi.org/10.14529/jsfi1601. url: http://superfri.
org/superfri/article/view/101.

49

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.184.3704&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.184.3704&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.184.3704&rep=rep1&type=pdf
https://doi.org/10.5194/gmd-2018-250
https://www.geosci-model-dev-discuss.net/gmd-2018-250/
https://www.geosci-model-dev-discuss.net/gmd-2018-250/
https://www.dkrz.de/systems/historie
https://www.dkrz.de/systems/historie
https://www.dkrz.de/systeme/hpc
https://www.dkrz.de/mms/pdf/klimadaten/poster/K202037_Infotresen.pdf
https://www.dkrz.de/mms/pdf/klimadaten/poster/K202037_Infotresen.pdf
https://www.ietf.org/rfc/rfc1951.txt
https://www.ietf.org/rfc/rfc1952.txt
https://www.ietf.org/rfc/rfc1952.txt
http://wiki.lustre.org/images/4/49/Beijing-2010.2-ZFS_overview_3.1_Dilger.pdf
http://wiki.lustre.org/images/4/49/Beijing-2010.2-ZFS_overview_3.1_Dilger.pdf
http://wiki.lustre.org/images/4/49/Beijing-2010.2-ZFS_overview_3.1_Dilger.pdf
https://wr.informatik.uni-hamburg.de/_media/teaching/sommersemester_2016/sds16_dobel_data_formates_presentation.pdf
https://wr.informatik.uni-hamburg.de/_media/teaching/sommersemester_2016/sds16_dobel_data_formates_presentation.pdf
https://wr.informatik.uni-hamburg.de/_media/teaching/sommersemester_2016/sds16_dobel_data_formates_presentation.pdf
https://zlib.net/manual.html#Gzip
https://doi.org/http://dx.doi.org/10.14529/jsfi1601
http://superfri.org/superfri/article/view/101
http://superfri.org/superfri/article/view/101


[Log16] Aleksej Logacjov. “Klimamodellierung und die Entwicklung moderner Com-
puter”. MA thesis. Universität Hamburg, 2016. url: https://wr.informatik.
uni - hamburg . de / _media / teaching / sommersemester _ 2016 / siw - 16 -
seminararbeit.pdf.

[Lud18] Prof. Dr. Thomas Ludwig. Hochleistungsrechnen - Vorlesung im Wintersemester
2018/19. Oct. 2018. url: https://files.wr.informatik.uni-hamburg.de/
s/GtwRaaRT3wMYPbA/download?path=%2F&files=hr-1819.pdf (visited on
01/12/2019).

[Lus17] Lustre. Introduction to Lustre Architecture. Oct. 2017. url: http://wiki.
lustre . org / images / 6 / 64 / LustreArchitecture - v4 . pdf (visited on
11/21/2018).

[Lyn08] Peter Lynch. “The origins of computer weather prediction and climate mod-
eling”. In: J. Comput. Phys. 227.7 (2008), pp. 3431–3444. issn: 0021-9991.
doi: 10.1016/j.jcp.2007.02.034. url: https://doi.org/10.1016/j.jcp.
2007.02.034.

[Mic06] Sun Microsystems. ZFS On-Disk Specification. Sun Microsystems, 2006. url:
http://www.giis.co.in/Zfs_ondiskformat.pdf (visited on 12/01/2018).

[Mü08] Jens Müller. Data Compression LZ77. Nov. 2008. url: http://jens.jm-
s.de/comp/LZ77-JensMueller.pdf (visited on 12/13/2018).

[Ope13] OpenZFS. Documentation/Administrative Commands. Sept. 2013. url: http:
//open-zfs.org/wiki/Documentation/Administrative_Commands (visited
on 12/01/2018).

[Ora13] Oracle. ZFS Source Tour. Mar. 2013. url: https://web.archive.org/web/
20130316073014/http://hub.opensolaris.org/bin/view/Community+
Group+zfs/source (visited on 11/25/2018).

[Ora17] Intel Oracle. Lustre Software Release 2.x Operations Manual. 2017. url: http:
//doc.lustre.org/lustre_manual.pdf.

[SS13] S. Sarika and S. Srilali. “Improved Run Length Encoding Scheme For Efficient
Compression Data Rate”. In: 2013.

[Sch17] Sven Schmidt. Efficient interaction between Lustre and ZFS for compression.
Online https://wr.informatik.uni- hamburg.de/_media/research:
theses:sven_schmidt_efficient_interaction_between_lustre_and_
zfs_for_compression.pdf. Bachelor’s Thesis. Aug. 2017.

[Sha10] Mamta Sharma. “Compression Using Huffman Coding”. In: IJCSNS Interna-
tional Journal of Computer Science and Network Security 10.5 (May 2010),
pp. 133–141. url: http://paper.ijcsns.org/07_book/201005/20100520.
pdf.

[Shi+18] Peng Shi et al. “A knowledge-embedded lossless image compressing method
for high- throughput corrosion experiment”. In: International Journal of Dis-
tributed Sensor Networks 14 (2018). url: https://journals.sagepub.com/
doi/full/10.1177/1550147717750374.

50

https://wr.informatik.uni-hamburg.de/_media/teaching/sommersemester_2016/siw-16-seminararbeit.pdf
https://wr.informatik.uni-hamburg.de/_media/teaching/sommersemester_2016/siw-16-seminararbeit.pdf
https://wr.informatik.uni-hamburg.de/_media/teaching/sommersemester_2016/siw-16-seminararbeit.pdf
https://files.wr.informatik.uni-hamburg.de/s/GtwRaaRT3wMYPbA/download?path=%2F&files=hr-1819.pdf
https://files.wr.informatik.uni-hamburg.de/s/GtwRaaRT3wMYPbA/download?path=%2F&files=hr-1819.pdf
http://wiki.lustre.org/images/6/64/LustreArchitecture-v4.pdf
http://wiki.lustre.org/images/6/64/LustreArchitecture-v4.pdf
https://doi.org/10.1016/j.jcp.2007.02.034
https://doi.org/10.1016/j.jcp.2007.02.034
https://doi.org/10.1016/j.jcp.2007.02.034
http://www.giis.co.in/Zfs_ondiskformat.pdf
http://jens.jm-s.de/comp/LZ77-JensMueller.pdf
http://jens.jm-s.de/comp/LZ77-JensMueller.pdf
http://open-zfs.org/wiki/Documentation/Administrative_Commands
http://open-zfs.org/wiki/Documentation/Administrative_Commands
https://web.archive.org/web/20130316073014/http://hub.opensolaris.org/bin/view/Community+Group+zfs/source
https://web.archive.org/web/20130316073014/http://hub.opensolaris.org/bin/view/Community+Group+zfs/source
https://web.archive.org/web/20130316073014/http://hub.opensolaris.org/bin/view/Community+Group+zfs/source
http://doc.lustre.org/lustre_manual.pdf
http://doc.lustre.org/lustre_manual.pdf
https://wr.informatik.uni-hamburg.de/_media/research:theses:sven_schmidt_efficient_interaction_between_lustre_and_zfs_for_compression.pdf
https://wr.informatik.uni-hamburg.de/_media/research:theses:sven_schmidt_efficient_interaction_between_lustre_and_zfs_for_compression.pdf
https://wr.informatik.uni-hamburg.de/_media/research:theses:sven_schmidt_efficient_interaction_between_lustre_and_zfs_for_compression.pdf
http://paper.ijcsns.org/07_book/201005/20100520.pdf
http://paper.ijcsns.org/07_book/201005/20100520.pdf
https://journals.sagepub.com/doi/full/10.1177/1550147717750374
https://journals.sagepub.com/doi/full/10.1177/1550147717750374


[Squ14] SquashFS. Documentation suqashfs.txt. From Linux Kernel "Documentation/-
filesystems/squashfs.txt", commit 62421645bb702c077ee5a462815525106cb53bcf.
Nov. 2014. url: https://github.com/torvalds/linux/blob/master/
Documentation/filesystems/squashfs.txt (visited on 01/07/2019).

[Wik18a] Wikipedia. LZ77 and LZ78. Dec. 2018. url: https://en.wikipedia.org/
wiki/LZ77_and_LZ78 (visited on 12/12/2018).

[Wik18b] Wikipedia. Lossy compression. Dec. 2018. url: https://en.wikipedia.org/
wiki/Lossy_compression#Methods (visited on 12/10/2018).

[Wik18c] Wikipedia. NTFS. Dec. 2018. url: https://en.wikipedia.org/wiki/NTFS
(visited on 01/07/2019).

[Wik19] Wikipedia. Merkle tree. Jan. 2019. url: https://en.wikipedia.org/wiki/
Merkle_tree (visited on 01/04/2019).

[ZR13] Dongfang Zhao and Ioan Raicu. “Exploring Data Compression in Distributed
File Systems”. In: (Jan. 2013). url: https://pdfs.semanticscholar.org/
d04d/951536299397c66abb08f157b5f36ae2558a.pdf.

51

https://github.com/torvalds/linux/blob/master/Documentation/filesystems/squashfs.txt
https://github.com/torvalds/linux/blob/master/Documentation/filesystems/squashfs.txt
https://en.wikipedia.org/wiki/LZ77_and_LZ78
https://en.wikipedia.org/wiki/LZ77_and_LZ78
https://en.wikipedia.org/wiki/Lossy_compression#Methods
https://en.wikipedia.org/wiki/Lossy_compression#Methods
https://en.wikipedia.org/wiki/NTFS
https://en.wikipedia.org/wiki/Merkle_tree
https://en.wikipedia.org/wiki/Merkle_tree
https://pdfs.semanticscholar.org/d04d/951536299397c66abb08f157b5f36ae2558a.pdf
https://pdfs.semanticscholar.org/d04d/951536299397c66abb08f157b5f36ae2558a.pdf


List of Listings
3.1. The zio_encrypt function checks if the data has to be encrypted at all. . . 23

5.1. The new parameter (highlighted in red) was only used for the db_com-
pressed flag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.1. Using zdb and grep to get the DVA and meta data of the written data.
Important parts are highlighted. . . . . . . . . . . . . . . . . . . . . . . . . 43

6.2. Using zdb and grep to get the DVA and meta data of the written data.
Important parts are highlighted. . . . . . . . . . . . . . . . . . . . . . . . . 43

52



List of Figures
2.1. Construction of a Huffman tree . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2. LZ77 example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3. Merkle tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4. Visualization of the block pointer . . . . . . . . . . . . . . . . . . . . . . . 16
2.5. Internal architecture of ZFS . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.6. Copy-on-write disk structure of blocks . . . . . . . . . . . . . . . . . . . . 19
2.7. Lustre server architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.8. OST example with RAID 6 . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1. Code path for compression on write . . . . . . . . . . . . . . . . . . . . . . 25
3.2. Code path for decompression on read . . . . . . . . . . . . . . . . . . . . . 25
3.3. Saving compressed stripes . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4. Read and write paths from Lustre into ZFS . . . . . . . . . . . . . . . . . 28

5.1. Settings flags on write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2. Read path for externally compressed data . . . . . . . . . . . . . . . . . . 39

6.1. Execution time chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.2. Outliers in the data of execution times . . . . . . . . . . . . . . . . . . . . 45

53



List of Tables
2.1. RLE of different parts of a bit string. . . . . . . . . . . . . . . . . . . . . . 10
2.2. Occurrence counts and occurrence probabilities of the word cocoon. . . . . 11
2.3. Huffman coding of the word cocooon . . . . . . . . . . . . . . . . . . . . . 11
2.5. Descriptions for each field of a block pointer. . . . . . . . . . . . . . . . . . 17

54



List of Abbreviations
API Application programming interface. 21, 29, 32, 36, 47

ARC Adaptive replacement cache. 18, 21, 33–35

arcbuf ARC buffer. 21, 35, 42

CDDL Common Development and Distribution License. 13

CentOS Community Enterprise Operating System. 41

COW Copy-on-write. 13, 18

CPU Central processing unit. 41

dbuf DMU buffer. 21, 35

DKRZ Deutsches Klimarechenzentrum. 3, 7, 19

DMU Data management unit. 17, 21, 26, 27, 35, 38

dnode DMU node. 14, 35, 36, 38, 42

DVA Data virtual address. 14, 15, 18, 36, 42

ENIAC Electronic Numerical Integrator and Computer. 7

ext Extended file system. 14

ext4 Fourth extended file system. 21, 27

FLOPS Floating-point operations per second. 8

GCC GNU Compiler Collection. 41

GDB GNU debugger. 60

GPL GNU General Public License. 13, 19

HPC High performance computing. 19

I/O Input/output. 18, 23, 36, 48

IPCC Intel® Parallel Computing Centers. 3, 8, 47

55



JPEG Joint Photographic Experts Group. 10

LZ4 Lempel-Ziv 4. 12, 24

LZ77 Lempel-Ziv 77. 12, 31

LZ78 Lempel-Ziv 78. 12

LZJB Lempel-Ziv-Jeff-Bonwick. 24

LZNT1 Lempel-Ziv New Technology I. 31

MANIAC I Mathematical Analyzer Numerical Integrator And Computer Model I. 7

MDS Metadata server. 19

MDT Metadata target. 19

MGS Management server. 19

MGT Management target. 19

MOS Meta object set. 14

MP3 MPEG-2 Audio Layer III. 10

MPEG Moving Picture Experts Group. 10

MRC Multiple reference compression. 32

NTFS New Technology File System. 31

OSC Object storage client. 19

OSD Objest storage device. 21

OSS Object storage server. 19

OST Objest storage target. 19

PNG Portable network graphic. 12

POSIX Portable Operating System Interface. 13, 20

QEMU Quick emulator. 41

RAID Redundant array of independant disks. 13, 15, 20

RAM Random access memory. 41

RLE Run length encoding. 10, 11

RPC Remote procedure call. 20

56



RPM Red Hat package manager. 59

SPA Storage pool allocator. 17, 18, 23

SquashFS A read only Linux file system. 13, 31

syscall System call. 17

UFS UNIX file system. 14

VDEV Virtual device. 15, 18, 23, 27, 41

VFS Virtual file system. 17

VirtIO Virtual I/O. 41

VM Virtual machine. 41

zdb ZFS debugger. 42

ZIO ZFS I/O. 18, 23, 24, 27

ZLE Zero length encoding. 11, 24

ZPL ZFS POSIX layer. 17

ZVOL ZFS volume. 17

57



Appendices

58



A. Build, test and debug ZFS
Requirements

The following the commands and scripts of this chapter were used on hard- and software
described in the section Test environment in chapter 6 and require a working environment
with all packages installed as recommended by the ZFS wiki1.

Building
Full build
A full build of ZFS consists of three steps:

./autogen.sh

./configure.sh
make -j$(nproc)

The -j# parameter specifies the amount of threads used by make. It is not necessarily
needed to build and install packages like RPM packages.

Build with assertions
Building ZFS does not include the evaluation of assertions. All ASSERT statements (or
similar) are ignored. Adding the parameter –enable-debug to the configuration script
above enables assertions.

./configure.sh --enable-debug

Testing
Ztest
The ztest script is located in ./cmd/ztest/ztest.c and directly calls ZFS functions to
test them. Most of the parameters and properties are randomized (for example compression
settings or the size of objects).

Build

A simple usage of make build ztest:
cd cmd/ztest
make

1https://github.com/zfsonlinux/zfs/wiki/Building-ZFS

59

https://github.com/zfsonlinux/zfs/wiki/Building-ZFS


Run

Running ztest has some default parameters, which are among others the usage of 23
threads and a total run time of 300 seconds. Overriding some parameters might be useful:

./cmd/ztest/ztest -VVVVVVVV -t 1 -T 60

This prints a lot of output, only uses one thread (which prevents the output from being
mixed up) and just runs for 60 seconds (which is enough for most use cases).

ZFS test suite
The ZFS test suite is a collection of scripts testing all kinds of functions. The scripts
are located in ./tests/zfs-tests/tests and have the file extension .ksh. However the
executable to run the tests is ./scripts/zfs-test.sh. All tests are registered by a so
called runfile, which is a list of .ksh files that should be executed. The default is the
./tests/runfiles/linux.run and can be changed by -r <runfile>.

./scripts/zfs-test.sh -vx -r foo.run

The -v flag increases verbosity, -x removes files from previous runs and -r foo.run
specifies the custom run file foo.run. The default linux.run runfile might take several
hours to complete all tests. Therefore a custom run file with the most important tests
might be useful.

Debugging
Using a debugger
The first two build steps create all makefiles used to build ZFS. These makefiles specify
flags with CFLAGS = -g -O2 which are adding debugging information via the -g flag.
However, the optimization -O2 might cause problems due to heavy usage of compiler
optimizations.
Using GDB is possible via executables like ztest.

cd ./cmd/ztest
make
./ztest

The execution of ztest can be aborted immediately, it was only executed to create the
./cmd/ztest/.libs/lt-ztest file, which is the actual binary that can be debugged.

gdb .libs/lt-ztest

Depending on the environment, GDB might need to be executed as root via sudo. When
GDB has been started, normal breakpoints can be set:

b 1234
b ../../module/zfs/dmu.c:1234

Even though this might work for most cases, there are many situations during the
development of this thesis were GDB was not usable for proper debugging. However, the
error was probably not on GDB’s side.
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Using print functions
Because ztest is running in the user space, the normal printf function can be used.

#ifndef _KERNEL
printf("i = %d\n", i);

#endif

Writing the check for the _KERNEL definition over and over again can be very annoying,
but a simple definition of a logging makro helps.

#ifdef _KERNEL
#define hlog(fmt, ...) printk(KERN_DEBUG "LOG %s - " fmt \
"\n", __FUNCTION__, ##__VA_ARGS__)

#else
#define dlog(fmt, ...) printf("DEBUG LOG %s - " fmt "\n", \
__func__, ##__VA_ARGS__)

#endif

When running ZFS in the kernel, the normal printk can also be used. The output is
available via dmesg.

#ifdef _KERNEL
printk(KERN_INFO "i = %d\n", i);

#endif

Another way is ZFS’ own debug messaging mechanism with the function dprintf. This
must first be enabled and in order to use it a file from the /proc/ file system must be
read.

echo 1 > /sys/module/zfs/parameters/zfs_dbgmsg_enable
...
cat /proc/spl/kstat/zfs/dbgmsg
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B. Measurement data

From figure 6.1
This is the raw data in µs for figure 6.1. The interesting value for the function dmu_tx_-
hold_write is highlighted.

Externally compressed (µs) Not compressed (µs)
dmu_bonus_hold 9,07 9,74

dmu_request_arcbuf 13,29 10,01
dmu_tx_create 0,55 0,59

dmu_tx_hold_write 21,89 3,32
dmu_assign_arcbuf 20,59 19,87

dmu_tx_commit 1,67 1,88
dmu_bonus_hold-read 2,68 2,77

dmu_buf_hold_array_by_bonus 4,52 5,11
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