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Abstract

The major objective of this thesis is to approach the procedure of getting into compiler-
based checks. The focus are high-performance computing use cases. Especially the
Message-Passing-Interface (MPI) is used to execute parallel tasks via inter-process
communication, including parallel reading and writing of files are taken into account. A
motivation states why it is remarkable to use static analysis. Following this, techniques
and tools to improve software development with static analysis are introduced. Nowadays
parallel software has large code bases. With rising complexity the possibility of generating
bugs is undeniable. Tools to reduce the error-proneness are important factors of efficiency.
The infrastructure of LLVM as well as the Clang Static Analyzer (CSA) are introduced
to understand static analysis and how to capture information of the relevant compile
phases. Based on this, the utility of an existing check is explained. Problems exposing at
runtime are observed through code simulation in the frontend named symbolic execution.
In what follows, the comprehension is transferred to the use case of purpose. Common
mistakes to overlook like issues with readability and bad code styles are checked through
analysis of the abstract-syntax-tree. For this intention the LLVM tool Clang-Tidy has
been extended with new checks.
The checks regarding symbolic execution involve MPI-IO related double closes and
operations concerning file access. The routines to find these bugs have been added to
the CSA. This thesis makes use of the already existing structure named MPI-Checker,
which provides the handling of MPI.
As a summary the benefits of working on checks to detecting serious bugs are mentioned.
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1 Introduction

1.1 Motivation

The importance of high-performance computing (HPC) is indisputable. Sectors of
businesses, science and military uses HPC to simulate behavior of settings, even before
they start with the real case. Geo and climate research needs high calculation power
for complex computation while aiming for great throughput. This is necessary to make
precise predictions and to draw conclusions from big amounts of collected data. For
this reason it is not only necessary to concentrate on computing power but also on the
performance of the in and output. Most of the time there are mathematical models to
state insights with computer simulations. Moreover, the means of machine learning are
realized with the help of HPC. Analyzing and learning from large amounts of data is in
great demand.
There is a strong need for best maintainable, efficient, and readable software. Trade-
offs have to harmonize these characteristics. Therefore, a lot of tools can support the
engineers in software architectures by checking for issues that are not obvious to capture.
Debuggers, which are specialized to handle parallel programs with MPI, are just a couple
commonly used.
However, debugging is not limited to these specific debuggers. GDB, the debugger of
GNU [Pro], can debug by manually control multiple sessions. Each session corresponds a
process of the parallel program. In general, most single-process debuggers not particular
created for parallel programs can debug parallel by starting a session for every process
involved. Allinea’s DDT [All] is specialized in parallel debugging and can handle a lot
processes while visualizing communication and also detecting typical bugs of parallel
programs. Another one endorsed for HPC is TotalView by RogueWave [Wav]. TotalView
also debugs multiple processes and enables control over the program execution. Both
DDT and TotalView have similar demands for debugging of parallel applications and are
recommendations by the official Open MPI homepages FAQ [OM]. TotalView restricts
the user to have all executables on the local machine, where the debugger is started from.
As all of these tool examples interact with the running program, faulty states are not
easy to reproduce or to keep track of thousands or even millions of processes involved.
While the mentioned multi-process debuggers are popular to use, other tools like STAT,
the Stack Trace Analysis tool, grant insight by merging stack traces from parallel
applications visualized as graph. It is also used to locate groups of processes and can
pass this information to DDT or TotalView for more in depth analysis [LLN17]. This is
a big advantage because these parallel debuggers are limited to an amount of processes
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and STAT can capture even more. Static code analyses can observe errors even before
they occur in the running program. Based on the abstract-syntax-tree representation of
the source, static analysis is performed to find violations, wrong use of interfaces and
bad code style. With symbolic execution respectively path-sensitive analysis, a graph
of program points is used to detect failures, which occur at runtime by using symbols
as assignments to variables. The abstract-syntax-tree, or AST in short, is explained in
section 2.3. Simulating the program run while the frontend is processing the source is an
advantage of the CSA.
Since it is possible to have checkers for a limited amount of bugs, which is also augmented
by used interfaces, there is a gap supplying checks needed for up-to-date programming
tools and libraries.

1.2 Nowadays Software in HPC

Due to the size of benchmarks and libraries like IOR (Interleaved Or Random) and HDF5
(Hierarchical Data Format 5), the reason for static analysis is motivated once again. The
following tables were emitted by the tool Count Lines of Code [Dan]. The command
cloc is called for the whole source folder. The resulting lines for IOR are shown in table
1.1 (a) and the one for HDF5 in table 1.1 (b).

Language files code
C 12 4 870
C/C++ Header 6 526
Other 7 1 733
total 25 7 129
(a) Lines of Code in IOR-2.10.3

Language files code
C 670 467 912
C/C++ Header 270 31 337
Other 651 167 412
total 1 591 666 661

(b) Lines of Code in hdf5-1.10.1

Table 1.1: CLOC Results

Statistics about Bugs

For these huge applications it might not be feasible to find bugs by manual testing.
However, the frequent usage of them reveal bugs, which are reported by users. These
issues might get fixed with a version upgrade.

HDF5 Bugs Statistics

The homepage of HDF5 offers no information about located bugs in general. Because this
data is kept intern, there are no reports. A contact with their HDF Helpdesk brought
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the knowledge of table 1.2. With assumption, that only C/C++ include parallel and
MPI related manner, the ratio of 478 359 lines of code compared to 410 issues is not to
neglect.
The issues captured by their statistics exclude a specific amount of undetected ones. The
quantity of solved bugs in relation to open cases denotes how important it is to use tools
supporting the creation of program code.

Year Total Number of Issues Parallel (closed) MPI (closed)
2016 410 24(8) 16(3)
2015 629 23(9) 11(6)

Table 1.2: Total Number of HDF5 Issues

IOR

There were no clear results about bugs found in IOR. Different repositories had different
amounts of commits and the source of LLNL (Lawrence Livermore National Laboratory)
is not actively developed anymore. This information is provided from direct contact to
their support. The biggest amount of commits were found at [LAN] with latest commit
in April 2017.

Static Analysis in Present Use Cases

With the rising importance of nowadays software embedded into a lot of different areas,
static analysis is a relevant tool to find vulnerable and safety-critical locations. An
example of medical software that is very difficult to test, shows an infusion pumps
software under real conditions before it gets connected to the hardware. Since it is
very critical to have bugs in the program code, especially in this case, the so-called
technique, static code analysis, is used next to manual code reviews, exhaustive testing
and simulating the program on a computer to verify the correctness [Adm16].
Software of nuclear power plants imposes the same requirements in their reactor pro-
tection system. In general there are technical assignments for computer systems to
accomplish, like the standard of the International Electrotechnical Commission named
IEC 60880:2006 for nuclear power plants of 2006 [IEC06].
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1.3 Foundation

As this thesis is based on analysis of representations generated at compile time, a brief
initiation elucidates the structure.
With lexical analysis a compiler is scanning the source code as sequence of characters.
After this step a sequence of tokens is passed to the parser, which analyzes the syntax
and translates these into the AST. As last step of the frontend, the semantic analysis
takes place to check for example types of variables. Thereafter a so called intermediate
form will be generated, which is also the last step of the frontend phase. The optimizer,
or also called middleend, can do additional processing before the final step of generating
the executable is carried out. This takes place in the backend where the machine code is
generated. The named frontend steps are visualized in figure 1.1.

Figure 1.1: Frontend Process

Certainly, the parts of a compiler can be built self-generated, but as there is limited time
for this thesis and the section of nowadays computer science has plenty of really good
open source implements with beneficial licensing, the focus is set on implementing new
features and understanding given compiler infrastructures.
To name a few C/C++ compilers used in HPC use cases that might provide the interface
to get access to the different parts of compilation, Clang is a very popular sample with a
well documented and reusable API. The licensing is an advantage because it allows to use,
copy and change the tools, while it is necessary to keep the copyrights in the files. This
licensing is called BSD, the Berkeley Software Distribution. For a long time it was not
possible for GCC to just supply the frontend functionalities to the programmer. GCC is
distributed under the GPL license allowing the usage and modification but disallows the
changing of the license named Copyleft.
A further frequently used compiler in HPC is the Intel C++ Compiler or ICC [Int],
which offers a cluster edition. Special are the Intel performance libraries included to
optimize the performance for their own processors, as well as an OpenMP support. Intel
also integrated tools for analysis and debugging into their compiler package.
Another common used compiler is part of the collection of tools named PGI Compilers
& Tools by the Portland Group [Gro]. Included are optimizers, debuggers, profilers and
an IDE. At its early stages it was specialized for high-performance Fortran, a language
extension of Fortran 90 made for parallel tasks. In 2013 NVIDIA Corporation bought
PGI and integrated it into their system use.
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The choice of frontend processing functionality is determined by the programming
language. In the case of HPC it is very common to use C/C++ and also languages like
Fortran. Debugging applications written with MPI for a multitude of processes can be a
hard task. Susceptibilities of making mistakes should be minimized by supporting tools.
In an optimal setting every bug is reported before the batch of computing is started.
While the compiler outputs errors and warnings at compile time based on the frontend,
other bugs might be unnoticed until the calculation is already in progress.
It is important to remember that various compilers find and generate different dispatches
about mistakes found.
Table 1.3 shows the key features that needs to be mentioned about frequently used
compilers in HPC in short.

Compiler License Features

GCC GPL mature compiler with a lot of languages supported

Clang BSD good documented API, re-useable

ICC license server high optimization for Intel CPUs, OpenMP support

pgcc NVIDIA End-User
License

big package with compilers, profilers, debuggers and IDE
supporting OpenMP

Table 1.3: List of Compilers

1.4 Overview

This thesis is structured as follows:
Chapter 2 observes the main facilities to handle different points of the compilation
process. The setup and also the establishment of the tools are considered as well as
the basic structures to unterstand Clang and the surroundings of static analysis are
explained.
Chapter 3 introduces MPI with examples of commonly used functionalities.
Chapter 4 covers basic usage and an example of Clang-Tidy.
In chapter 5 path-sensitive analysis regarding the Clang Static Analyzer is introduced.
With chapter 6 the implementation of the added checks are explained. Considered files
in the LLVM project to change are addressed.
Chapter 7 covers different approaches and techniques of debugging. Chapter 8 contains
the summary with sight on future improvements of the MPI-Checker.
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2 Components of LLVM

As the foundation in chapter one already stated, building the lexical analysis, parser and
other involved components would exceed the amount of time in addition to the creation
of a checker. The implementation of the working checks are based on the infrastructure
of LLVM and the Clang frontend.
Clang provides the AST classes and features to generate and observe these information.
To understand the tools and contexts of LLVM, this chapter exhibits an introduction.

2.1 LLVM

LLVM Logo [LLV17m]

LLVM is a collection of compiler and tool-chain technologies used
to design compiler front- and backends, as well as optimizers
between both of these phases [Lat12]. This umbrella project is
greatly known for its Clang compiler, which has a lot of advan-
tages compared to GCC (GNU Compiler Collection) [Tea17a].
With its beginning in year 2000 at the University of Illinois it
was developed with the purpose to have re-usable libraries with
a well documented interface. The repository of LLVM consists of
two main and one optional part. The first one is the LLVM suite
containing all libraries, tools and header files. Also included
are an assembler, a disassembler, a bitcode analyzer and a bitcode optimizer. Further
implied are regression tests used to verify Clang and LLVM tools. The test suite, which
is the optional part, is used to validate the correctness of functionality and efficiency.
This infrastructure is also directly applied to approve the implementation of Clang-Tidy,
while especially lit, the LLVM Integrated Tester, is used. The second big part is Clang,
which can compile C/C++ and Objective-C/C++ code and also transfer it into different
representations with the possibility to be processed by LLVMs optimizer and backend
facilities [LLV17k]. In general the core of LLVM is the intermediate representation (IR).
IR is an internal data representation describing the already processed source code by
the frontend. It is quite similar to assembly language and located in the middle layer of
the compiler. LLVM takes the general IR and represents it in an optimized form. The
optimizer tries to perform different transformations on the representation generated from
the AST. The aspiration is to reduce the runtime of the program code through removal
of redundant computations. At last the code generator, also named backend, maps the
code fitting to the instruction set of a given architecture. As there are various ways in
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LLVM to process a language in the frontend and different options of generating the code
for the backend are possible, the compilation is very adaptive. This concept is called the
Three-Phase-Compiler, illustrated in figure 2.1, in which every part is rather independent
and therefor maintenance and writing of one component is mainly limited to one phase.

Figure 2.1: Three-Phase-Compiler LLVM [Lat12]

The problem of supporting M source languages and N targets would require M · N
compilers to build. Figure 2.2 shows the advantage of the concept LLVM is supporting.
This retarget-ability makes the tool-chain usable for many programmers by supporting
an amount of languages for different target machines [Lat12].

Figure 2.2: Retarget-Ability LLVM [Lat12]

Further, more introductions to write new languages and compilers are provided by
LLVM. A very well known result of the good infrastructure is the OpenCL implemen-
tation. It is a framework to share the workload of tasks between different processing
devices using a C-like language. Especially the graphics processing unit is a major part of
optimizing computations and transfer a program object containing the compute kernel to.

Figure 2.3: LLVM Compiler Parts

The frontend parses and checks the source for errors. Following this, an AST is created
and converted into IR. Afterwards it is possible to process it with a set of optimizers and
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analyses, increasing the overall performance and verify the correctness. At the end the
code generator creates the native machine code. LLVM has a lot of tools to improve the
parts of the three phases. Programmers specialized for frontend can completely focus
on their part without taken other parts of the compilation into account. This was and
still is not smoothly possible with GCC because it uses global data structures, which
are creating dependencies between the front- and the backend. This structs contain for
example debugging information.

“The compiler frontend and backend interact with each other using callback functions
called language hooks. All hooks are included into a global variable struct ...” [Wik13]

The following listing gives an overview of LLVM in short [LLV17n]:

• LLVM Core

– source- and target-independent optimizers

– based on the LLVM intermediate representation (LLVM IR)

– facilities to invent an own language and to use the LLVM as code generator
and optimizer

• Clang

– very fast C/C++/Objective-C frontend with low memory use

– emphasizes expressive diagnostics

– is a powerful compiler-fronted for different kind of code analysis and other
processing

• LLDB for debugging

– a native debugger as combination of Clang and LLVM qualities

– uses Clang expression parser and ASTs as well as LLVM disassembler and
LLVM JIT

– can be faster and more efficient in memory usage than GDB

• libc++

– a project with focus on high-performance implementation of the C++ standard
library

– quick execution, small memory usage, fast compile time

– better implementation of standard containers

• compiler-rt

– refers to well tuned low-level generator support routines
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– run-time libraries for dynamic tests with tools like

∗ AddressSanitizer for detecting memory errors

∗ ThreadSanitizer for detecting data races

∗ MemorySanitizer detects uninitialized reads

∗ DataFlowSanitizer for dynamic analysis of the data flow

• OpenMP

– a sub-project of LLVM to support the implementation in Clang

– supports offloading computations

– since Clang 3.8.0 support of OpenMP 3.1

• lld

– is a linker in replacement for system linkers

– supports linkers like ELF PE/COFF

– replaces the GNU linkers

2.1.1 Structures of LLVM

Since LLVM is a really large project, this section takes a closer look at some relevant parts
for the implementation and understanding of checks. Picking the right data structure is
an important decision. All of them are located in the folder llvm/ADT and just included
in to the program code. Based on the algorithmic context and use case, there are different
kinds of containers to choose from. The folder structure of LLVM is explained in section
2.1.2.

Commonly used data structure in checks and also inside of the MPI-Checker, are
the SmallVector [LLVe] and the SmallSet [LLVd]. They are used as containers to store
relevant data element for the analysis. As they are really efficient to use, both vector
and set are limited to the basic operations. How both are decelerated is shown in listing
2.1 and listing 2.2.

1 SmallVector <Type , Size > Name;

Listing 2.1: SmallVector

1 SmallSet <Type , Size > Name;

Listing 2.2: SmallSet
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Like their names already tells, they are used for small sizes of elements. Important to
mention is that if the set for example gets larger than the specified size, it falls back to a
std:set to keep an efficient lookup time. The FoldingSet [LLVc] is a class implemented
as single-linked chained hash table. A given node is stored as bucket and created, if there
is no instance already contained in the set. The FoldingSet is used to generate a set of
unique elements corresponding a program state as singular instance. This is useful in
symbolic execution to differentiate nodes and improve the access. The example in listing
2.3 is used to store the FoldingSetID value rather than recompute the node every time
it is needed. This is used in the case of path-sensitive analysis of the MPI-Checker.

1 void Profile(llvm:: FoldingSetID &ID) const override {
2 ID.AddInteger(CurrentState);
3 }

Listing 2.3: FoldingSet

Furthermore, custom run-time type information like dynamic casts are used to verify a
reference or a pointer pointing to an instance of a certain class. These operations are
similar to the ones in C++ but have their disadvantages removed like a virtual method
table. All of them are contained in the file llvm/Support/Casting.h and important to
use in static analysis. The isa<> operator is used to check if a referenced object is of a
certain class. In other words listing 2.4 returns true if the parameter Val is an instance
of the type argument.

1 isa <Type >(Val)

Listing 2.4: isa

The instruction cast is a check cast shown in listing 2.5. It returns the cast of a parameter
argument for a specified type. When the type is incorrect, null is returned.

1 cast <Instruction >(Val);

Listing 2.5: cast

The operation dyn_cast of listing 2.6 does the same as cast but it also denotes the
correctness of a type as well as the success of the cast.

1 dyn_cast <Instruction >(Val);

Listing 2.6: dyn_cast
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2.1.2 Setup of LLVM

For the fastest access, it is possible to download the pre-built binaries directly for one
of the listed operating systems at their homepage [LLV17l]. When it is needed to have
the latest updates and changes, the repository can be directly copied [LLV17f]. The
repository at GitHub is a mirror of Subversion and can be one possibility of building
LLVM. For this purpose it is possible to use the version-control git to receive the needed
source.

There are different directories of tools, which need to be considered one by one. As the
/llvm directory may contain all utilities to use LLVM IR and the core libraries, the
directory llvm/tools/clang contains the CSA, scan-build and main parts to work
with Clang. Another directory called llvm/tools/clang/tools contains Clang-Tidy
and much more.
It is usual for large projects, that packages are put into one another and also needed
to be updated with git commands by themselves. A general pull in the root directory
/llvm only works for itself and not for the other mentioned folders. In addition, it is rec-
ommended to use git pull --rebase because the upstream repository is in Subversion
and it is beneficial to avoid a non-linear history of the cloned repository [Gee15].
LLVM can be built for example with ninja or make. In the first step it is required to
create a top level directory to clone the source and create a folder for the build.
A sample of a script is attached to the appendix. To clone the three basic repositories,
an example is shown in listing 2.7.

1 git clone http://llvm.org/git llvm
2 cd llvm/tools
3 git clone http://llvm.org/git/clang.git
4 cd tools/extra
5 git clone http://llvm.org/git/clang -tools -extra.git

Listing 2.7: Git and LLVM

To configure LLVM the command in listing 2.8 is executed in the build folder build/de-
bug. While Ninja is specified as build system generator through the CMake option -G, it
can be replaced with any other common building system as argument. For make it is
“Unix Makefiles” to generate standard UNIX makefiles and “Xcode” to generate Xcode
project files. Many options are available.
The debug option CMAKE_BUILD_TYPE=DEBUG activates all assertions, compile libraries
unoptimized and generates debugging information. This option is set by default. Other
configurations like Release, RelWithDebInfo and MinSizeRel are also available. Re-
lease disables debugging information and includes optimization. The default value is
-O3 but can be changed through CMAKE_CXX_FLAGS_RELEASE to add flags as one would
usually do it in a normal compile command. To enable the output of compile commands
during generation, CMAKE_EXPORT_COMPILE_COMMANDS=ON activates this feature. The
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option set through LLVM_USE_SANITIZER=“Address” defines the sanitizer, which is used
to build binaries and tests. In this case it is the AdressSanitizer. The last argument
hands cmake the path to the source containing the CMakeLists.txt.

1 cmake -G Ninja -DCMAKE_BUILD_TYPE=DEBUG \
2 -DCMAKE_EXPORT_COMPILE_COMMANDS=ON \
3 -DLLVM_USE_SANITIZER="Address" \
4 <path -to-source >

Listing 2.8: Build LLVM

In the next step LLVM is built like in listing 2.9 while there are different options available.
All rules to build are listed in the file ninja.rules inside of build/debug or through
the command ninja help.

1 ninja
2 # executes default
3
4 ninja install
5 # to install header files , libraries , tools and documents
6
7 ninja install clang
8 # installs and rebuild clang
9
10 ninja check -all
11 # runs all LLVM regression tests
12
13 ninja check clang -tidy
14 # clang -tidy tests

Listing 2.9: Setup LLVM
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2.2 Clang

Clang is a central part and with its static analyzer a important unit of the LLVM project.
This compiler can confirm the correctness of code through analyzing the AST. Clang is
a compiler-frontend created with the purpose to be an improvement of the back then
already existing compiler GCC. With intention to create an easy to understand AST,
Clang is well-conceived [LLV17a] ,while the old code-base of GCC aggravate it for new
developers to get into compilers [LLV17h]. Due to its nature, Clang is built as an API
to make it comprehensible to reuse. This is not the only reason for Google to set it as a
main compiler for Google Chrome [pML15], also Apple is using it since Xcode version 3.2
and integrated it directly into the IDE [LLV17b]. As Clang uses a different frontend than
GCC, there are pros and cons of choosing one of them. The past showed that GCC has
and had some disadvantages concerning information kept for further activities. One of
them is trivial constant folding. This potentially disables a lot of IDE typical features like
refactoring, auto completion and some more. Since 1990 till today, GCC is not serving
the needs for example the IDE of Apple due the lack of various properties. Clang saves
even more information for static and dynamic processes of analysis afterwards. Besides
static analysis, dynamic analysis is enabled through the flag -fsanitize=<check> with
different sanitizers to choose from. This flag is just passend to the normal compile
command clang. The result of storing additional information with Clang leads to the
typical IDE features.

“Clang does not implicitly simplify code as it parses it like GCC does. Doing so causes
many problems for source analysis tools: as one simple example, if you write "x-x" in
your source code, the GCC AST contains "0", with no mention of ’x’. This is extremely
bad for a refactoring tool that wants to rename ’x’.” [LLV17g]

For dynamic analysis Clang uses for example its MemorySanitizers, which checks the
code at runtime to find present errors like reading of uninitialized memory [Tea17b] or the
AddressSanitizer to find flaws like use-after-free, use-after-return, double-free
and some more [Tea17c].
Because it makes use of Clangs frontend, the already mentioned debugger LLDB by
LLVM performs faster in most cases than GNUs GDB. The Clang compiling can be
much faster while straining less memory [LLV17r].
For all that, there are languages like Java, Fortran, Ada supported by GCC, whichever
are not even planed to be provided by Clang. In addition, there are also more targets
available like through LLVM itself. While examining different benchmarks of both com-
pilers, it really depends on the case and environment in which they are tested [Pho17].
LLVM had a project called dragonegg, which implemented parts of the GCC frontend
into the LLVM environment until 2015. Today many GCC extensions are supported
inside of LLVM. As a current example llvm-gcc, an implementation of GCC with parts
of LLVM, supports a lot of GCC specific features and options [Teaa].
Figure 2.4 shows how similar the compilers are in structure, while figure 2.5 shows the
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time taken to compile a small .c file. The measurement was repeated 100 times for every
command. Afterward the mean was used to visualize the result. llvm-gcc performs
with 90 ms better than GCC with 140 ms. Clang takes in this case 619 ms to compile
the file, which might be different in larger settings.

Figure 2.4: Phases of Compilers [DKV17]

Figure 2.5: Measurement of Compile Times

Since 2009, Clang is used in production also for compiling LLVM and itself [Gre09]. For
the intention to work with LLVM it is a big advantage to use its own tool Clang than
frontends like the one of GCC. As other compilers, Clang is invoked in the command
line like in listing 2.10.
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1 clang program.c

Listing 2.10: Clang Command Line

There are a lot of options, which can manipulate the different phases of the frontend. As
already mentioned, dynamic analysis with different sanitizers can be activated and many
more. The following table 2.1 shows some sample flags that can be passed to the compile
command clang. All options are listed when the command clang -help is used.

Option Description
-Xanalyzer <arg> Arguments for the static analyzer
-Xpreprocessor <arg> Arguments for the preprocessor
-fsanitize=<check> Enable runtime checks for different forms of behavior.
-c Only run preprocess, compile, and assemble steps
-S Only run preprocess and compilation steps
--analyze Run the static analyzer
-g Generate source-level debug information

Table 2.1: Example Flags for Clang
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In the following a brief summary of the project Clang:

• Clang Frontend

– Lexer, Parser, Semantic Analysis

– Clang AST

– Static Analyzer with frontend and checkers

• LibClang

– high level interface to Clang

– used with Xcode and other languages

– backwards compatible

– defines the API for most functionality of Clang

• LibTooling

– C++ interface to write standalone tools

– grants full control over the AST

– build on top of LibTooling tools

∗ clang-check for syntax checking

∗ clang-fixit fixing of compile errors

∗ clang-format for code formatting

∗ refactoring tools
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2.3 The Clang Abstract Syntax Tree

To understand the coherence in which the AST is used, the following initiation provides
a brief overview. Based on the code of listing 2.11 and the graph of figure 2.6 the
components of LLVMs frontend and backend are very flexible in use.

1 #include <stdio.h>
2 int main()
3 { // CompoundStmt { group of statements }
4 int i = 2; // DeclStmt
5 i += i; // CompoundAssignOperator
6 return i; // ReturnStmt
7 }

Listing 2.11: Clang Command Line

Figure 2.6: AST

As this thesis exhibits the work with LLVM, Clang and Clang tools, it is essential to
know the functionality of their AST. Other compilers have a different representation and
capabilities to process. Clang represents important information in a form that refactoring
and further analysis can be archived. The problem of simplifying code and arithmetics
in the phase of parsing is discussed again and illustrated in listing 2.12. The x would
not be mentioned with GCC anymore and also can not be considered by procedures like
refactoring. This is true for particular cases, where the settings of compiling are not
set to avoid those simplifications. Additional this is an often named example for the
comparison of Clang and GCC.
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1 // GCC
2 x = 5
3 y = 25 + x
4 // afterwards
5 x = 5
6 y = 30
7
8 // Clang
9 x = 5
10 y = 25 + x
11 // afterwards
12 x = 5
13 y = 25 + x

Listing 2.12: Constant Folding GCC and Clang

The Clang AST is a very comprehensive representation “fully type resolved”, what means
that it can create a node for every type leading to a very large size of the AST [Tea17d].
The nodes of Clangs AST are ordered in a hierarchy of classes. The class ASTContext
contains all information about the AST of a translation unit, the final input for Clang to
generate the IR. This unit is the result of the preprocessor, which captures also directives
specified by #include, macros and #ifdef.

1 Preprocessor -> C compiler -> Assembler -> Linker

Listing 2.13: Compile C

With the function getTranslationUnitDecl() the entry point of the AST can proceed
to one of the core classes named Decl, Stmt and Type. Graphs of these classes are
added to the appendix. Instances of these classes have identity and also pointer identity,
therefore two pointers can be compared.

RecursiveASTVisitor

The AST is traversed with a class called RecursiveASTVisitor. It is used to visit all
reachable nodes, beginning with the TranslationUnitDecl. At each node it also can
walk up the class hierarchy until the uppermost like Decl, Stmt or Type is reached.
RecursiveASTVisitor can also find class node combinations determined by the user.
This is achieved with an override of the function VisitNode(). In listing 2.14 the
function VisitArrayType will be triggered for every ArrayType node. The name of the
array will be assigned as string to the variable arrayTypeName_.
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1 bool VisitArrayType(clang :: ArrayType *at) {
2 arrayTypeName_ =
3 at ->getDecl ()->getQualifiedNameAsString ();
4 return true;
5 }

Listing 2.14: Visitor Function

Source Code and the AST

In figure 2.7 the uppermost node is an instance of the class FunctionDecl represent-
ing a declaration. From all core classes, there are many reachable child nodes. As
it is illustrated in figure 2.7, the DeclStmt is the parent node of the VarDecl. While
VarDecl denotes the declaration of the variable result, the following child nodes are
the statement. It is important to know that a DeclStmt is an “Adaptor class for mixing
declarations with statements and expressions.” [LLV17i]. This feature can lead to complex
coherences. Every node in the AST got its own special methods to survey the connections
of the tree.

To generate a comprehensible AST dump on the command line, it is required to denote
the position of the source code for every class of the ASTContext. For this reason a
so called SourceLocation encodes the position. The SourceManager can decode the
location to get all the information like column, line and full include stack saved in the
object. The lines of listing 2.15 will not correspond to those of figure 2.7 because the
source is represented in a shortened form.
A descriptive example of how an AST looks is shown in the following figures 2.7 and 2.8.

1 int sqr(int x){
2 int result = x * x;
3 return result;
4 }

Listing 2.15: Simple Program for the AST
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1 clang -Xclang -ast -dump -fsyntax -only test.c

Listing 2.16: Console AST Dump

While -Xclang passes arguments directly to the clang compiler, -ast-dump creates an
output of the AST in the console. The option -fsyntax-only is used to check the syntax
and prevent the creation of an objective file.

Figure 2.7: AST Dump

24



2.3.1 Another AST Representation

Another more graphical representation can be achieved with the following command in
listing 2.18.

1 clang -cc1 -ast -view test.c

Listing 2.17: Clang AST with -ast-view

This option generates a .dot file representing the AST in a special format. Graphviz, a
tool particularly for visualization of graphs, can transfer the given structural information
into these while serving an amount of types for common visual outputs [Gra17]. The
program itself is open source and one way of generating graphs from .dot files. The flag
-ast-view is a frontend only option and can just be used by passing the flag -cc1. The
frontend only option is actually for Clang developers because it is not guaranteed to be
stable. The flag -Xclang can pass arguments to the driver, which also can pass it on to
the frontend [Teab].

Figure 2.8: AST with Graphviz
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2.3.2 AST Matchers

For certain problems it is a good choice to write a matcher specified for one’s own
interests. To work with the AST a specific Domain Specific Language (DSL) is provided.
To match a function declaration of figure 2.8, the matching looks like listing 2.17. If the
match was successfully found in the AST, the class MatchCallback is invoked [doxa].

1 match functionDecl(
2 hasName(
3 "sqr"))

Listing 2.18: Matching Example

There are 3 different categories the matcher offers [LLV17d]. The first ones are the
node matchers. They track down which type of node to find. In the example of
listing 2.18, functionDecl() searches for all matching nodes of type FunctionDecl.
As this call alone would fit hundreds of matches including the internal declaration of
Clang, it needs to be specified. The second type of matchers are the narrow matcher.
They observe the attributes related to a node. For the already mentioned example
hasName("sqr") differentiates if the FunctionDecl is named like the string passed to
the function. The third category are the AST traversal matchers. This matchers
survey the relationship of the given node to others. For the FunctionDecl there are
given functions to be called on that node, like hasAnyParameter(<ParmVarDecl>),
hasBody(<Stmt>) or returns(<QualType>). With this knowledge and basic information
about the LLVM environment, a source-to-source translation tool could be implemented
with the help of Clangs LibTooling and LibASTMatchers. It is possible to write syntax
checking tools observing the nodes and relationships of them in the AST.
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clang-query

Besides building tools for matching specific node conditions, an interactive tool for
evaluation of match expressions can be be used, called clang-query. As it is also
included in the LLVM sub directory clang-tools-extra/ the binary might be already
available system-wide. By basically running the command clang-query while passing a
.c file as argument, an environment pops up to interactively interpret match expressions
to view the matching points in the source. For the named example in figure 2.8, the
result looks like listing 2.19. The programmers have a quick idea about the accuracy of
their matcher expression.

1 clang -query > match functionDecl(hasName("sqr"))
2
3 ... /test.c:3:1: note: "root" binds here
4 int sqr(int x){
5 ^~~~~~~~~~~~~~~
6 1 match.

Listing 2.19: clang-query Example
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3 MPI - Message Passing Interface

The Message Passing Interface is an implementation to hand the programmer the power
of inter-process communication. Furthermore, simultaneous reading and writing is
also included called MPI-IO. Conveniently MPI is used by every HPC program, which
includes parallel processes. Since its beginning of development in year 1992, MPI can
make distributed computer systems cooperate with each other and solve a problem
through dividing it into sub-problems. Each sub-problem is solved in less time than the
whole problem. Data of the computation are exchanged between processes. A master
process gathers all results at the end of every partial-computation, to combine them
for the final result. As powerful MPI is, it is hard to handle. Bugs like race conditions,
deadlocks, livelocks and issues with the message itself might occur [Squ17]. Reproduction
of errors and detecting the cause can be an exhaustive tasks to solve.
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3.1 MPI Communication Example

This section discusses some basics and clues about the functionality of MPI in short.
For further information it is recommended to have a look at http://mpi-forum.org/.
Listing 3.1 shows the main parts every program with MPI should have. This is followed by
the initialization of the environment, which is executed by every process. The individual
rank as well as the total number of processes in the communicator are stored in variables
for later purposes. The environment is closed with MPI_Finalize.

1 #include <mpi.h>
2
3 // Initialize the environment.
4 MPI_Init (&argc , &argv);
5
6 int processRank;
7 MPI_Comm_rank(MPI_COMM_WORLD , &processRank);
8
9 int processCount;
10 MPI_Comm_size(MPI_COMM_WORLD , &processCount);
11
12 // main program
13
14 // Finalize environment.
15 MPI_Finalize ();

Listing 3.1: MPI Basics

The following models in listing 3.2 and 3.3 show the communication of two processes.
As each process has its own unique rank, the communication is addressed for a specific
destination to send to or a source to receive from. To know what kind of data to send
and how much, the parameter count denotes the number of elements, whereas the
MPI_Datatype MPI_INT describes the datatype of the buffer. In MPI_Recv it is possible
to inspect a status of type MPI_Status. This is used to verify the receive operation.
Like in listing 3.1, the already shown communicator group MPI_COMM_WORLD is used and
needed by the functions while there are more possibilities. There is usually no need
for splitting the communicator in small programs. It is used for dividing the group of
processes into smaller groups to encapsulate different sub-groups of communication.

However, it has to be mentioned that the use of the tag is only needed for special cases,
otherwise it can be set to 0. An example would be to send two different messages of
same length and same type but with different information to the same destination. At
this point it is needful to set different tags to differentiate the data in the communication
of two processes, as it can not be guaranteed that the messages are received in the order
they are sent [CSE17].
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Important to know is, that this kind of communication represented in listing 3.2 is
classified as blocking communication. When the routine comes to the point of calling
MPI_Send or MPI_Recv it does not return until the data is stored and the buffer is free
again. The other kind is called nonblocking communication in which the routine comes to
an immediately call like MPI_ISend and MPI_IRecv. This functions return immediately
back to their task without waiting for the buffer being copied and the communication to
terminate successful. The programmer needs to implement specific points, where the
process verifies the integrity of the communication. This is realized with the function
MPI_Wait or MPI_Test. For both immediately calls a request handle is returned to
manage the enduring status of the message. Especially this both properties of MPI calls
lead to different kinds of bugs named in the introduction beforehand.

1 if(rank == 0)
2 MPI_Send(data , count , MPI_Datatype ,
3 destination , tag , comm)
4 if(rank == 1)
5 MPI_Recv(data , count , MPI_Datatype ,
6 source , tag , comm , status)

Listing 3.2: MPI Communication Mode Formal

1 if(rank == 0)
2 MPI_Send(sendbuf , count , MPI_INT ,
3 rank + 1, 0, MPI_COMM_WORLD)
4 if(rank == 1)
5 MPI_Recv(recvbuf , count , MPI_INT ,
6 rank - 1, 0, MPI_COMM_WORLD , status)

Listing 3.3: MPI Communication Mode

Of course the communication is not limited to the point-to-point example of listing
3.2 and 3.3. In addition there are different communication modes integrated into MPI.
While MPI_Bcast spreads a message to all processes in the communicator, a MPI_Gather
collects all data of all processes in one. To keep in mind that MPI is used to solve
computation problems more efficient than one single process, the interface offers plenty
functions and specifications to improve a program in its efficiency and performance.

3.2 MPI-IO Example

The sample in listing 3.4 shows how different processes can write a sequence of characters
into the same file. In this case, fh is the file handle of the special MPI type MPI_File.
To prevent overwriting each others data, an offset of type MPI_Offset indicates the
displacement of the individual pointer inside the file. As usual, the process with rank
== 0 is considered as master. Regarding to the rank a specific value for char *data
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is hand to the MPI_File_write operation. The result of four processes looks like the
illustrated text file of figure 3.1.

1 MPI_File fh;
2 MPI_Status status;
3 MPI_File_open(MPI_COMM_WORLD , "test.txt",
4 MPI_MODE_CREATE | MPI_MODE_RDWR ,
5 MPI_INFO_NULL , &fh);
6
7 const char *data = rank == 0 ? "Master " : "Slave ";
8
9 const MPI_Offset offset = rank * strlen(data);
10
11 // Update individual file pointer.
12 MPI_File_seek(fh, offset , MPI_SEEK_SET);
13
14 MPI_File_write(fh , data , strlen(data), MPI_CHAR ,
15 &status);
16
17 MPI_File_close (&fh);

Listing 3.4: MPI-IO Example Code

Figure 3.1: MPI-IO Example
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4 Clang-Tidy

“Clang-tidy is a clang-based C++ “linter” tool. Its purpose is to provide an extensible
framework for diagnosing and fixing typical programming errors” [LLV17j].

The diagnosis is based on the information provided by the AST using matchers or the
preprocessors PPCallbacks [doxc]. Checks which are not depending on run time behavior
and occur through distracted programming can be created. Certainly, it can analyze even
bigger problems with just the AST information, but a check might get very soon very com-
plex. In addition, there are no assumptions made about values of variables for most cases.

The command clang-tidy has its own checks but can also invoke those of the CSA.
This is achieved by passing the flag -checks= with the desired check. A big advantage is
to write a custom check straightforward. The checks are organized in modules based on
their class of what they detect. Issues related to readability, performance, MPI and many
more are included. Clang-Tidy is made for problems according style, misconstruction of
source code and misuse of interfaces by analyzing the syntax based on the AST. There
can be hints generated to apply proposed fixes to a detected hitch.
To pass a compile command database for analysis is mentioned as recommendation.

The tool clang-query is used to create matchers directly in the console as mentioned in
section 2.3.2. Despite it already contains a great number of checks, including modernize-
loop-convert [LLV17o], readability-else-after-return [LLV17q] and many more, the adding
of a new check is explained in the following section.
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4.1 Example of Clang-Tidy

This section explains how a certain check works. To have a quick overview of all, listing
4.1 shows how to invoke the right command. Because the option -list-checks only
displays enabled ones, the -checks=* is additionally passed to list all available.

1 $ clang -tidy -list -checks -checks='*'

Listing 4.1: All Clang-Tidy And Analyzer Checks

As the names of the listed checks reveal, CSA routines can also be inducted by the
clang-tidy binary. The details on how to activate the analysis is explained in the
following. Located in clang/tools/extra/clang-tidy is a python script named add_-
new_check.py.

1 $ ./ add_new_check.py readability checker -name

Listing 4.2: Add a Clang-Tidy Check

The command in listing 4.2 creates a template of a checker as .cpp file, a header file .h,
denotes the checker in the CMakeLists.txt and also generates a default test file inside
of clang/tools/extra/test/clang-tidy. With rebuild of LLVMs tools the checker
would be ready to go.

Example - Readability ElseAfterReturn

In what follows the already implemented check ElseAfterReturnCheck.cpp is re-
viewed. This check detects additional else statements after a potential return in the
body of an if statement.

Every check has two main functions, which needs to be adapted for the desired pur-
pose. The function registerMatchers(MatchFinder *Finder) registers a Clang AST
Matcher to provide the source locations of interest.
Afterwards check(const MatchFinder::MatchResult &Result) is called to perform
actions on the locations of match, which is referred. For this particular case, the matcher
finds every if with a then statement, that is defined as ControlFlowInterruptor-
Matcher in listing 4.3 on line 3 or is part of a group of statements. This just finds and
binds the defined statements to a given string. As certain statements are tracked for
every if body, an else statement is also bound with the string else on line 15.
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1 void ElseAfterReturnCheck :: registerMatchers(
2 MatchFinder *Finder) {
3 const auto ControlFlowInterruptorMatcher =
4 stmt(anyOf(returnStmt ().bind("return"),
5 continueStmt ().bind("continue"),
6 breakStmt ().bind("break"),
7 cxxThrowExpr ().bind("throw")));
8
9 Finder ->addMatcher(
10 compoundStmt(forEach(
11 ifStmt(hasThen(stmt(
12 anyOf(ControlFlowInterruptorMatcher ,
13 compoundStmt(has(
14 ControlFlowInterruptorMatcher))))),
15 hasElse(stmt().bind("else")))
16 .bind("if"))),
17 this);
18 }

Listing 4.3: ElseAfterReturnCheck::registerMatchers()

At this point the matching logic for the wished source locations to find is viable. To process
whats happening after the matcher is registered, the method ElseAfterReturnCheck
creates diagnostics about the AST node and location where the fault is detected.

1 void ElseAfterReturnCheck :: check(
2 const MatchFinder :: MatchResult &Result) {
3 const auto *If = Result.Nodes.getNodeAs <IfStmt >("if");
4 SourceLocation ElseLoc = If ->getElseLoc ();
5 std:: string ControlFlowInterruptor;
6 for (const auto *BindingName : {"return", "continue",
7 "break", "throw"})
8 if (Result.Nodes.getNodeAs <Stmt >( BindingName))
9 ControlFlowInterruptor = BindingName;
10
11 DiagnosticBuilder Diag = diag(
12 ElseLoc , "do not use 'else' after '%0'")
13 << ControlFlowInterruptor;
14 Diag << tooling ::fixit:: createRemoval(ElseLoc);
15
16 ...
17 }

Listing 4.4: ElseAfterReturnCheck::check()
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4.2 Invoke Clang-Tidy Checks

To obtain the benefits of Clang-Tidys checks, a script named run-clang-tidy.py is
invoked to call default checks an all files considered by a compilation-database, a JSON
file. The flags and commands for compilation contained in the JSON file are captured.
The clang-tidy binary and the clang-apply-replacements have to be in the users
$PATH to enable the function of this Python script.

1 clang/tools/extra/clang -tidy/tool/run -clang -tidy.py

Listing 4.5: Call run-clang-tidy

Another way to access the checks is shown in listing 4.6, which was already used to list
the available checks.

1 clang -tidy [options] <source >

Listing 4.6: Call clang-tidy

ElseAfterReturn Example

The present code of listing 4.7 is analyzed with the command of listing 4.8. The check
ElseAfterReturn outputs a warning like in figure 4.1.

1 if(j > 1){
2 return 1;
3 }else{
4 return 0;
5 }

Listing 4.7: elseAfterReturn Example

With the option -*,-readability-else-after-return’, all checks are disabled while
ElseAfterReturn is enabled.

1 $ clang -tidy -checks='-*,-readability -else -after -return ' \
2 elseAfterReturn.c

Listing 4.8: clang-tidy ElseAfterReturn

Figure 4.1: ElseAfterReturn Diagnosis
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5 Clang Static Analyzer

5.1 Introduction

The CSA enables with its facilities an even deeper analysis beyond the AST but still
based on the already mentioned representation. The key is to simulate the execution of
the source code without completely compiling or even running it. Because it reasons
about possible execution not depending on input parameters, random generated data or
even properties of library elements, bugs which might occur on very unusually program
paths can be found. The advantage of analyzing every reachable program point and
state is a feature other common testing methods can not fulfill. Certainly there are
limitations like loops, which are simulated for up to 4 iterations. After that the CSA can
only approximate the following iterations [Zak13].
Through symbolic execution, it is possible to abstract from concrete values with symbols
and make assumptions about the path of execution that led to a certain error. The
pathway of execution is represented as ExplodedGraph, a reachability graph. The graph
is an object while the nodes are ExplodedNode containing a program state and program
point. The program point is related to the location of execution, the stack frame, post-
and pre-statement. The program state encloses the memory location, constraints on
symbolic values, a generic data map and environmental expressions [LLVa]. Even bugs
whichever been overseen by test suits or through testing by hand are precipitated. The
path which led to the bug is tracked and minded for the result of analysis.
Different APIs lead to different behavior of the final program, especially if there is
something like MPI. Nowadays landscape of computers provide software developers with
an amount of cores on one chip. Not only this setting might be difficult enough to
picture most mistakes happening trough parallel interaction in the code. Inter-process
communication with MPI makes it possible for processes on different nodes to cooperate,
which is a very powerful but also susceptible to failures tool. The CSA will not find all
prospects of difficulties by using just the already present checks. It is needed to build a
check, that extracts the necessary information out of the data offered by Clang. The
programmer of such a check needs to capture predefined nodes in the ExplodedGraph,
store them and observe dependencies of symbolic values of different states. If a defect
covered by the check is found, it reports the state specified by the developer. The
handling of an event occurring during analysis can be customized. It is possible to
continue the analysis until the end of execution. Because it is up to the designer of the
check what to trace and when to stop the pursuit. The behavior at detection can be
designed different. The CSA is a very powerful tool to keep HPC programs from faulty
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executions and improve the overall ruggedness of the application. It is completely open
source and a component of the Clang project. The CSA is used during development and
makes it possible to find bugs in early stages, which makes them simpler to fix.
“Like the rest of Clang, the analyzer is implemented as a C++ library that can be used by
other tools and applications.” [CA17]

5.2 Path-Sensitive

The benefit of the CSA is, that it uses path-sensitive analysis. Clang-Tidy with its
purely AST based analysis can not really reason about values of variables. Symbolic
execution make assumptions about ranges of values. This leads to different program
execution paths. Even for-loops can be simulated up to the 4th iteration, as mention in
the introduction of the CSA. The difference of both methods are clearly pointed when
looking at their results of analysis. As Clang-Tidy emits a message about the location of
the bug, the CSA will show a whole path, with conditions leading to the issue.

1 void pathSensitive(int a){
2 if(a < 5)
3 a = a - 4;
4 if(a > 3)
5 a = 10 / a;
6 }

Listing 5.1: Example for Path-Sensitive

Listing 5.1 leads to different paths of execution, depending on input a of the function
pathSensitive(). All states P of figure 5.1 are valid, except the faulty state P4, where
a division by zero is detected.

Figure 5.1: Path-Sensitive Graph
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5.3 Invoke The Analyzer

Currently the static analyzer can be executed in Xcode or as an autonomous tool from
the command line. To check source code mainly from the command line, there is an
utility called scan-build. For Mac OS X it is possible to download pre-built binaries
for direct use [LLV17p]. There are two location to obtain scan-build from. The first one
is the LLVM repository, where it is contained in Clang and the second one is the Python
Package Index pip. Another way of executing the analyzer is to pass the --analyze flag
to the compile command clang already mentioned in section 2.2. Both routines contain
all required parts for analysis. This includes the checks, algorithms, libaries and the
parts explained in section of LLVM. The related MPI options being part of checker-279
release [Rel16] are new to the analyzer. A following test program shows the result of
calling scan-build. The usage is conceptualized to be straightforward. For this example
there is a simple program in listing 5.2 where at some point an error occurs. scan-build
overrides the CC and CXX environment variables and uses a wrapper compiler in between
of the one which would have done the task. This wrapper compiler guesses the default
one and uses for most cases gcc or clang [scan-build -h]. It is also possible to hand
scan-build a specific compiler by using the option --use-cc <path-to-compiler> for
C or --use-c++ <path-to-compiler> for C++. Because of mpicc is being a wrapper
with different configuration of environment variables and linked libraries, it would not
work directly with scan-build. To solve this issue, a different solution is mentioned
later. Its important to know that every file, which is not compiled is also not considered
by the analyzer.

1 int divisionByZero(int i, int j){
2 int result = i / j;
3 return result;
4 }
5 int main (){
6 divisionByZero (0,0);
7 }

Listing 5.2: Simple Program with Bug

The script scan-build is just placed in front of the build command like in listing 5.3 or
additional with a specification for the compilation and the file to analyze illustrated in
listing 5.4. In case of listing 5.4 it just invokes the preprocess and compile steps activated
through the option -S. This flag offers enough processing to analyze the AST. There is
no need for a binary, especially in cases where compilation would take several minutes.
It is useful to reduce the analysis to the only needed steps.

1 $ scan -build -o . make
2 # with current folder as output

Listing 5.3: Invoke scan-build
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1 $ scan -build clang -S divbyzero.c

Listing 5.4: Invoke scan-build with options

Figure 5.2: Analyze result

Obviously this produces an error shown in figure 5.2 because of the division by zero.
scan-build analyzes this example and provides a report with the order of control flow.
To visualize how the program execution led to the bug, another script called scan-view
is included into the utility. scan-view opens the report generated by scan-build in the
default browser.

Figure 5.3: HTML Report scan-build

There is one more option to work with this tool. The commands intercept-build and
analyze-build does the same job as scan-build but with more options to choose from.
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intercept-build builds the program without analyzing or running it and analyze-
build only do the analysis and delivering of the output. With intercept-build a
compilation database is created, which is a JSON file containing all compile commands
required to build the project as already mentioned in section 2.1.2. The up-to-date
version of this command is part of the pip installation [Nag17], while in LLVM it is still
not in default use. The generated JSON file is different to the database generated by
CMake but both can be used for the analysis. The counterpart analyze-build runs the
analyzer based on the generated compiler calls in the compilation database [LLVf].
Chapter 3 explained the structure of MPI. As the already mentioned unreleased scripts
might not created the expected results, the use of them is limited to circumstances.

It is important to use both intercept-build and analyze-build, especially if there is
an API used like MPI, which needs to be wrapped before analyzing. This is not that
clear by just using scan-build.
A good hint to consider is to always analyze the project in its debug configuration
because the CSA can extract more information from assertions about unfeasible paths,
whichever can be shortened. False-positive are reduced through assertions of the program
by checking certain conditions like preconditions, postconditions and invariants to verify
the reliability of the programs executions [Ree95]. The analyzer omits messages about
false-positives and generates a more solid result.

The CSA improves the quality of program code because it can find a lot of flaws and
should be used frequently in the process of developing. By comparison, the CSA finds
most potential bugs in the source that would have been hard to find by manual testing.
An example of invoking the analyzer just with clang is shown in listing 5.5.

1 $ clang --analyze divbyzero.c

Listing 5.5: Clang with analyze option

Figure 5.4: Clang with analyze option activated

This leads to the same report shown in figure 5.2 but precludes the HTML view of
scan-view. Instead a special formatted XML file .plist is created and can be observed
with Xcode. The view is shown in figure 5.5.
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Figure 5.5: .plist in Xcode

5.3.1 About the Checks

When the CSA is invoked with scan-build, there are default checks that are always
turned on. Part of them are Core Checks in which the core.DivideZero is included.
Besides, there are special checks for C++, OS X and unused code. Table 5.1 exhibits a
brief overview [LLV17e].

41



Name Description
Core Checkers General purpose checks
C++ Checkers Specific for C++
OS X Checkers Specific for Objective-C and the SDK of Apple
Dead Code Checkers Detects unused code
Security Checkers Security checks for APIs and the standard of CERT
Unix Checkers Specific for the POSIX API and Unix

Table 5.1: Available Checkers

Furthermore, there are more checks available like the Alpha Checks with limitations
and likely to occur false positives. Because of this, these checks are not enabled by default
[LLV17c]. Checks of the Core Alpha Checkers include for example the detection of
bool variables assigned with non bool values and a dozen more. To list all enabled checks
the command in listing 5.6 is invoked.

1 $ scan -build --help -checkers

Listing 5.6: Display Enabled Checks

For all available checks, the commands of listing 5.7 are used. This will also print all
non-path-sensitive checks.

1 $ clang -tidy -list -checks -checks =*
2 # or
3 $ clang -cc1 -analyzer -checker -help

Listing 5.7: Display Available Checks

A particular check can be enabled or disabled. This is determined with the scan-build
option -enable-checker <NameOfCheck> or -disable-checker <NameOfCheck>. It
will add or delete a check from the list of enabled checks the command in listing 5.6
showed.
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5.3.2 scan-build with MPI

As there is no possibility to execute scan-build primitive like in listing 5.3, options to
make use of wrapping MPI are hidden inside the usage of intercept-build or other
options of revealing the right flags to the analyzer. The replacement through the wrapper
compiler explained beforehand is not working for this particular case, the build command
does not pass the right compiler and linker flags in order to understand and analyze
MPI.
scan-build guesses the systems default one in this case and fails. There are options
to pass different compiler wrappers to intercept-build. The option –use-cc <path>
specifies a path to the one of interest. By typing intercept-build -h the option
-use-cc displays the default compile command set by the CC and CXX environment
variables. The default of intercept-build denotes and run the MPI compiler mpicc, if
it is set via export CC=mpicc. This can also be directly achieved by passing -use-cc
mpicc. To have a look at an example of the static analyzer being invoked at projects
containing MPI, the example of Alexander Droste [Dro16] gives a well insight.
It is important to keep in mind again that intercept- and analyze-build are official released
in the package of pip but not in the repository of LLVM.
Listing 5.8 exhibits the result of just passing the parameters but without the right
information the wrapper would deliver. This error occurs through the lack of the not
linked MPI library. A wrapper for the MPI implementations came in the the mid-90’s.
It just passes the right compiler flags and links to the underlying C/C++ compiler.

1 $ scan -build -o . -enable -checker optin.mpi.MPI -Checker \
2 --use -analyzer $(which clang) make
3
4 basic.c:27:10: fatal error: 'mpi.h' file not found
5 #include <mpi.h>

Listing 5.8: Invoke scan-build at MPI error

To solve this problem of missing include paths listing 5.9 shows a solution for that. The
compiler and linker flags are obtained directly from the mpicc command with the option
–showme. With assignment to environmental variables the analyzer recognizes the MPI
specific features to use the underlying compiler in a correct context. Afterwards the
commands in listing 5.10 will analyze the related files with MPI checks activated.

1 $ export LDFLAGS=`mpicc --showme:link `
2 $ export CFLAGS=`mpicc --showme:compile `
3 $ export CXXFLAGS=`mpicc --showme:compile `

Listing 5.9: MPI Flags
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1 $ scan -build -enable -checker optin.mpi.MPI -Checker \
2 --use -cc=$(which clang) make
3 # or
4 $ intercept -build make
5 $ analyze -build -o . -enable -checker optin.mpi.MPI -Checker \
6 --use -analyzer $(which clang)

Listing 5.10: Analyse MPI

It is possible to have some issues with the JSON Compilation Database, which is not
created reliable by intercept-build. Another tool to experience the same effect as with
intercept-build is bear:
“Bear is a tool that generates a compilation database for clang tooling.” [Nag]
This tool based on scan-build and should therefore have a similar behavor. Afterwards
analyze-build or clang with --analyze and -p compiledb can be invoked. Instead of
using intercept-build it is possibility to create the database with a simple CMake flag
as a parameter for the build command like in listing 5.11 or add the line of listing 5.12
to the prime CMakeLists.txt file.

1 $ cmake -DCMAKE_EXPORT_COMPILE_COMMANDS=ON

Listing 5.11: Analyze based on CMakes compilation database

1 set(CMAKE_EXPORT_COMPILE_COMMANDS ON)

Listing 5.12: Analyze Based on CMakeLists.txt Option

After this procedure the analyzer is invoked like in listing 5.13 by leaving out intercept-
build.

1 $ analyze -build -o . -enable -checker optin.mpi.MPI -Checker \
2 --use -analyzer $(which clang) -o .

Listing 5.13: intercept- and analyze-build for MPI
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6 MPI-Checker

This chapter captures the added features and files of the MPI-Checker implementation.
New functions of MPI are supplemented and used in the extension for a wider range of
analysis. The concepts of checks implemented and planned are explained and visualized.
Test files verify the correct implementation and detection of bugs.
Since the actual MPI-Checker implementation is particular for MPI communication
regarding non-blocking calls, this thesis modifies already implemented features as well
as expand the checker with MPI-IO related functionality’s. This also takes care about
the implementation of Clang-Tidy, which includes checks for type-mismatches of MPI
functions and wrong referenced buffers.
The repository for this implementation is available at Github:
https://github.com/Bassstring/llvm_mpi_checks.

6.1 Files of the Implementation

The files in listing 6.1 are more or less important for the adaption of the MPI-Checkers
functionality. Clang-Tidy needs the help of the MPIFunctionClassifier to capture the
calls and relevant data of the AST.
The static analyzer is part of Clang, while Clang-Tidy belongs to clang-tools-extra.

1 # Clang Static Analyzer
2 /clang/StaticAnalyzer/Checkers/MPIFunctionClassifier.h
3 /lib/StaticAnalyzer/Checkers/MPI -Checker/
4 /test/Analysis/MPIMock.h
5
6 # Clang -Tidy
7 /tools/extra/clang -tidy/mpi/
8 /tools/extra/test/clang -tidy/mpi -buffer -deref.cpp
9 /tools/extra/test/clang -tidy/mpi -type -mismatch.cpp
10 /test/clang -tidy/Inputs/mpi -type -mismatch/mpimock.h

Listing 6.1: Paths MPI-Files
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6.2 New Features

6.2.1 AST Analysis

For the pure AST analysis, function of MPI-IO are added to the MPIFunctionClas-
sifer.cpp and MPIFunctionClassifer.h. With this step the AST can capture the
relevant functions of MPI in containers. These containers are realized with the already
introduced llvm:SmallVectors. All added functions are listed in the appendix section C.
Next to MPI_File_open and MPI_File_close, the most common non collective MPI-IO
functions are added to the MPI-Checker. The already presented communication functions
have similar patterns in array of their parameters. For this check there are two important
parameters to take care of. The first one is the buffer and second the MPI_Datatype.
Depending which function is observed, the position of these two values are stored and
analyzed. The assignment of this section organize MPI-IO functions in pendency of their
parameters and use the already present logic of comparing the given types.

Details MPI-IO

As a continuation of chapter 3, where MPI was introduced, there are different classes of
data access routines MPI-IO makes use of. Like the present functions in table 6.1 are
added to the MPI-Checker, they are classified into different handling of positioning on
data and synchronism.

A nonblocking data access routine is continuing the computation while the read or write
is executed in the background. The user needs to assure the IO request similar to
nonblocking communication. For the blocking operations the call do not return until the
operation is completed.

Explicit offset does not use a file pointer. The access of data is directly performed at
the location given as MPI_Offset. MPI functions of this kind have a _at at the end of
their call.

There are two possibilities of implicit positioning on files. Every process have a indi-
vidual file pointer for each file handle. The position of this pointer is updated with
each operation in relation to the view of the file. The offset is not delivered by the
programmer but is incremented by pointing to the next elementary type. This etype
describes an item of positioning and accessing of the data. Functions of this kind contain
an i standing for immediately.

A shared file pointer is for example used with the call MPI_File_open. There is only
one shared pointer, which is used among all processes in the communicator. Only this
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pointer is updated, while the individual file pointers remain unused. It is important that
all processes have the same file view. If there are several operations called with use of
the shared file pointer, the behavior is same as a serial sequence. For the related non
collective data access routines of table 6.1, the user needs to define a specific order. Non
collective routines are not deterministic in serial sequences. The functions of this kind
have a _shared at the end of their name.

position synchronism function like
explicit offset blocking MPI_File_read_at

MPI_File_write_At
nonblocking MPI_File_iread_At

MPI_File_iwrite_At
individual pointers blocking MPI_File_read

MPI_File_write
nonblocking MPI_File_iread

MPI_File_iwrite
shared pointer blocking MPI_File_read_shared

MPI_File_write_shared
nonblocking MPI_File_iread_shared

MPI_File_iwrite_shared

Table 6.1: MPI-IO Function Classification [Fora]

47



Type-Mismatch

Write and read functions have the same arrangement of their parameters shown in listing
6.2. Because of this reason the capturing of the buffer and data type is arranged.

1 int MPI_File_write(MPI_File fh , void *buf , int count ,
2 MPI_Datatype datatype , MPI_Status *status)
3
4 int MPI_File_iread (MPI_File fh, void *buf , int count ,
5 MPI_Datatype datatype , MPI_Request *request);

Listing 6.2: Type-Mismatch MPI-IO

In figure 6.1 the output of detecting such a mismatch is illustrated. The original buffer
type and the expected MPI_Datatype are compared and an issue is displayed.

Figure 6.1: Type-Mismatch Example

Buffer-Dereference

The dereference of buffers has the same needs like the type-mismatch. In this case the
only important parameter is the buffer. Based on the check, incorrectly access to buffers
with missing or incorrectly placed & are detected. The error message is very precise,
because it counts the amount of references and considers this in the output. Figure
6.2 shows an example, where the buffer readbuf was declared as char* readbuf. This
leads to a pointer -> pointer issue.

Figure 6.2: Buffer-Dereference Example
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6.2.2 Path-Sensitive Implementation

Double-Close

The call MPI_File_close(MPI_Fille fh) synchronizes and then closes the file related
to the given file handle fh. This synchronization is equal to the call of the collective op-
eration MPI_File_sync(MPI_File fh). The collective routine MPI_File_close(MPI_-
Fille fh) should only be used when all routines incorporated to fh have finished
their task. An unwanted double-close can lead to unpredictable behavior in uses of the
file between these calls. The CSA can now track program-states calling MPI_File_-
close(MPI_File fh) and captures two closes of a file handle happening successive. An
example for the working report is shown with figure 6.3.

Figure 6.3: Double Close Example
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7 Related Work

A lot of HPC and critical software demand assurance through static analysis. Another
tool named MUST [ra17a], the MPI Runtime Error Detection Tool, is also more of a
static analyzer to assure the correct usage of MPI, than a debugger with options to halt
the execution and mark break points. It helps the developer to write correct code while
assuring the MPI-Standard during development and before the application gets ported
to a system [ra17b, p. 3]. MUST consists of three packages with different properties. As
MUST contains the main functionality to assure MPI, another tool named P nMPI is used
to intercept the calls. P nMPI is a wrapper library with a standardized interface [Forb].
The Generic Tool Infrastructure, GTI, is used to support event-based tools in parallel
systems and is the third package MUST needs. While providing these infrastructures,
developers can concentrate on implementing functionality to their tool, than handling
the structure around it. Other than scan-build, MUST replaces mpiexec with mustrun.
A code generation step is conducted to run the application with MUST. The result of
analysis is a HTML file containing all issues and locations of occurrence. Graphs for
visualization are also included. MUST detects a lot of bugs like type mismatches, send-
send deadlocks, leaked datatypes, overlapping buffers and many more. Since features of
a debugger are missing, the integration with DDT is supported [ra17b, p. 15-18]. This
enables the usage of the normal DDT surface with extras of MUST.

Whereas static code analysis is one part of detecting issues of a specific class, other
techniques like fuzzing have a different approach. With fuzzing the ruggedness of an
application is assured through negative testing with random input. Following this, the
execution is examined for misconduct. While there are tools with primitive attempts,
American Fuzzy Lop [Zal]is also observing the program paths. This is realized through
compiling with a wrapper and favoring the investigation of certain paths in the process
of fuzzing.

LLVM contains a library for fuzzing itself, named libFuzzer [LLVb]. This was already used
with Clang and the AddressSanitizer in projects like Chrome for many years [ACN12].
With in-process fuzzing there is the possibility of testing more input values a second,
than with out-of-process fuzzing. In-process fuzzing means, that there is no new process
launched for every test case and inputs are directly modified in the memory.
Fuzzing is next to other testing methods another one to improve the properties of software
through discover of hidden issues.
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8 Conclusion

The purpose of this thesis was to explore the field of static analysis. This was achieved
with the help of LLVM. After the setup and structure of the umbrella project was initiated,
tools to help the programmer in relevant cases were explained. Clang as major component
was observed to manipulate the compilation and receive the needed information for
purely AST and path-sensitive analysis. The AST as key part with its classes and
methods to gain knowledge for the analysis was considered. Clang-Tidy, clang-query
and scan-build were illustrated with examples. Different views of understanding the
infrastructure and tools were given. Cases of usage were considered, while the process of
building checks was explained. MPI was the main target to deal with. As wrong buffer
referencing and type mismatches were detected with Clang-Tidy, symbolic execution was
used to simulate run time dependencies regarding IO specific calls. As this only involves
the case of double-close, there are even more options of checks now available to add to
the MPI-Checker. The infrastructure was extended with many MPI-IO calls as well as a
function to capture relevant information of file handles.
Like in the case of MPI communication, immediate MPI-IO calls have to be matched.
Overlapping writes are another option to verify. Checks to assure collective routines like
a file open can be added to the MPI-Checker.
Due to the amounts of interfaces and libraries of LLVM, this thesis lead to regard the
structures than implementing a lot of new features in the MPI-Checker.
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1 #!/bin/bash
2
3 ping -c 1 www.google.com
4 if [ $? -eq 0 ]; then
5 branch=master
6 address='http :// llvm.org/git '
7
8 mkdir llvm -top && cd llvm -top
9 git clone -b $branch $address/llvm llvm
10
11 tools='llvm/tools '
12 git clone -b $branch $address/clang $tools/clang
13
14 ctools='llvm/tools/clang/tools '
15 git clone -b $branch $address/clang -tools -extra \
16 $ctools/extra
17
18 mkdir -p build/debug && cd build/debug
19 cmake -G Ninja -DCMAKE_BUILD_TYPE=DEBUG \
20 -DCMAKE_EXPORT_COMPILE_COMMANDS=ON \
21 -DLLVM_USE_SANITIZER="Address" \
22 ../../ llvm
23 ninja
24 ninja check -all
25 fi

Listing 1: LLVM Setup Script
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Figure from [Doxd]
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Figure from [Doxe]
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