MASTERARBEIT

Adaptive Compression for the
Zettabyte File System

Universitdt Hamburg
Fakultat fur Mathematik, Informatik und Naturwissenschaften
Fachbereich Informatik

Autor: Florian Ehmke

Studiengang: Informatik

Matrikelnummer: 6053142

E-Mail: 8ehmke@informatik.uni-hamburg.de
Erstgutachter: Prof. Dr. Thomas Ludwig

Zweitgutachter: Prof. Dr. Norbert Ritter

Betreuer: Michael Kuhn

Pinneberg, 24. Februar 2015

Abstract

Although many file systems nowadays support compression, lots of data is still
written to disks uncompressed. The reason for this is the overhead created when
compressing the data, a CPU-intensive task. Storing uncompressed data is expensive
as it requires more disks which have to be purchased and subsequently consume more
energy. Recent advances in compression algorithms yielded compression algorithms
that meet all requirements for a compression-by-default scenario (LZ4, LZ]B). The
new algorithms are so fast, that it is indeed faster to compress-and-write than to just
write data uncompressed. However, algorithms such as gzip still yield much higher
compression ratios at the cost of a higher overhead.

In many use cases the compression speed is not as important as saving disk space.
On an archive used for backups the (de-)compression speed does not matter as much
as in a folder where some calculation stores intermediate results which will be used
again in the next iteration of the calculation. Furthermore, algorithms may perform
differently when compressing different data. The perfect solution would know what
the user wants and choose the best algorithm for every file individually.

The Zettabyte File System (ZFS) is a modern file system with built-in compression
support. It supports four different compression algorithms by default (LZ4, LZ]B,
gzip and ZLE). ZFS already offers some flexibility regarding compression as different
algorithms can be selected for different datasets (mountable, nested file systems).

The major purpose of this thesis is to demonstrate how adaptive compression in the
tile system can be used to benefit from strong compression algorithms like gzip while
avoiding, if possible, the performance penalties it brings along.

Therefore, in the course of this thesis ZFS’s compression capabilities will be extended
to allow more flexibility when selecting a compression algorithm. The user will be able
to choose a use case for a dataset such as archive, performance or energy. In addition to
that two features will be implemented. The first feature will allow the user to select a
compression algorithm for a specific file type and use case. File types will be identified
by the extension of the file name. The second feature will regularly test blocks for
compressibility with different algorithms. The winning algorithm of that test will be
used until the next test is scheduled. Depending on the selected use case, parameters
during the tests are weighted differently.

Acknowledgments

First of all, I would like to thank my advisor Michael Kuhn for his help throughout the
time of writing this thesis. Whenever I had questions or needed any kind of support
he had time for me.

Furthermore, I would like to thank everyone from the research group Scientific
Computing. In 2010 I visited the lecture “high-performance computing” from Prof. Dr.
Thomas Ludwig which first draw my interest to that topic. Ever since then I attended
several other courses and seminars during which I met many nice people.

Contents

1

2

7

Introduction

Background

2.1 Areas of Application for Compression
2.2 Differences of Important Compression Algorithms
2.3 The Zettabyte FileSystem

Design

3.1 Aims and Design Principles
3.2 File Type Specific Compression
3.3 Adaptive Block Compression

Related Work

4.1 Adaptive Compression Solutions,
42 LZAHighCompression.
43 B-treeFileSystem

Implementation

51 ZFSCreateand Write
52 Compression Mode Property
5.3 File Type Specific Compression
5.4 Adaptive Block Compression

Results and Evaluation

6.1 Infrastructure
6.2 Preliminary Measurements
6.3 AddedOverhead
6.4 Adaptive Block Compression

Conclusion and Future Work

Bibliography

List of Acronyms
List of Figures
List of Listings
List of Tables

13
13
20
24

33
33
39
41

45
45
47
48

49
49
52
53
56

61
61
64
72
73

81

85

89
91
93
95

Chapter 1

Introduction

This chapter will give a short motivation as to why compression is increasingly relevant today
and how it can be used to conserve energy and save money. The following section will discuss
the benefits of adaptive compression, where it is used and why it is important. After that the
structure and goals of this thesis will be described.

Motivation

Compression reduces the size of data by identifying and removing redundant in-
formation. There are two main driving factors that make compression increasingly
important.

First of all, the electricity price is steadily increasing. A typical Hard disk drive (HDD)
nowadays has a capacity of 2 TB and consumes around 5 to 10 W. The average price
per 1 kWh in the European Union (EU) was 0.2014 € in 2014. Storing data for one year
(assuming the drive runs 24 hours per day, as it is the case in data centers) would cost
us between 9 and 18 €. Supercomputers or data centers have tens of thousands of
HDDs and as such the energy cost of the HDDs alone make up a major portion of the
Total Cost of Ownership (TCO). The TCO is not only driven up by the electricity cost
but also by having to replace broken disks. If we compress our data and subsequently
need less disks for the same amount of information, we save at three different spots.
First, we need to buy less disks, second, we need to replace less disks and third, the
energy cost is lower.

The second driving factor for compression is a big discrepancy in the growth of
Central Processing Unit (CPU) and HDD speed as well as HDD capacity. The CPU
speed and HDD capacity increase at much higher rates than the HDD speed.

Every 10 years the HDD speed increases by a factor of 10 while the HDD capacity
increases by a factor of 100 [22, 23]. In the same time CPU speed increased by factor of
500 [14]. This makes writing to disks a bottleneck in many use cases. If we compare
the throughput of today’s HDDs with that of popular compression algorithms, we can
see that some algorithms compress faster than HDDs write. Therefore, we can, to some
degree, compensate for the slow throughput of HDDs with the help of compression
and a fast CPU.

Chapter 1. Introduction

Name Ratio Compression Decompression
LZ4 (r101) 2.084 422 1820
LZO 2.06 2.106 414 600
QuickLZ 1.5.1b6 2.237 373 420
Snappy 1.1.0 2.091 323 1070
LZF 2.077 270 570
zlib 1.2.8 -1 2.730 65 280
LZ4 HC (r101) 2.720 25 2080
zlib 1.2.8 -6 3.099 21 300

Table 1.1: Ratio, compression and decompression speed (in MB/s) of various compres-
sion algorithms on an Intel Core i5-3340M with 2.7 GHz [10].

In Table 1.1 we can see that LZ4, for example, almost reaches 3 times the throughput
of a current HDD. Assuming we want to write 1 GB of data, compressing it first with
LZ4 would take 12! = 2.42 seconds. Writing the remaining ;%: = 491 MB of data
at a speed of 150 MB/s would last another 3.3 s. Writing the 1024 MB uncompressed
would take over one second longer (assuming we reach the compression ratio of 2.084
shown in the table). In reality, compression and writing to disk would not happen
sequentially, but instead in parallel, and the difference would be even bigger in favour

of LZ4.

Adaptiveness

Table 1.1 also shows us that some algorithms (zlib, LZ4 HC) offer higher compression
ratios at the expense of a significantly slower speed. If data is intended to be stored
for long amounts of time, the further reduced size conserves energy and thus saves
money (if less drives have to be used). But it is not guaranteed that the compres-
sion is worthwhile as some data is simply incompressible. When confronted with
incompressible data, some algorithms perform significantly worse than others.
Hence the difficult part is to decide when to use which algorithm. This depends on
the layer in which compression is conducted. It can be done manually, in applications,
during transport or in file systems. Not every layer offers the same flexibility in terms
of choice. If it is done manually we can choose the data and the tool used to compress
it. We can skip some data that we know is incompressible. When we send the data
over network we are limited to the implementation of the used protocol. As it is not
common to offer a large selection of compression algorithms there are other means to

10

Chapter 1. Introduction

compensate for that.

One way is to use adaptive compression that changes the compression algorithm
based on the data that is being compressed. This could be done by determining the file
type of the data. For data types that are known-to-be incompressible, the compression
can be turned off and for other data we could choose the best algorithm, determined
by prior tests. Another way would be to continuously measure the effectiveness of the
compression and adapting accordingly. Two solutions that offer adaptive compression
in the network layer are OpenVPN'and rsync?.

In file systems, however, so far no adaptive solutions are available. To compensate
for that, fast compression algorithms like LZ4 or Lempel-Ziv-Oberhumer (LZO) that
perform well under almost all circumstances are used. But this also implies that
potential is given away at times, since they almost never reach compression ratios that
are as good as, for example, zlib’s.

Goals

The goal of this thesis is to bring adaptive compression to the file system. The file
system that will be used for this is the Zettabyte File System (ZFS). ZFS is a modern
tile system that has built-in compression. The implemented compression algorithms
are LZ]B, LZ4, ZLE and gzip. If the user chooses an algorithm, it will be used for all
subsequent writes. As this includes all kinds of data, incompressible data regularly is
part of the data that gets compressed. If an algorithm like gzip is used for this, severe
performance problems are the consequence. LZ4 on the other hand performs very well
when confronted with incompressible data. As a consequence LZ4 is the algorithm of
choice most of the time and gzip does not get used. This gives away potential as gzip
frequently reaches much better compression ratios.

In the course of this thesis, ZFS will be extended to allow more flexibility when
compressing data. Two main features will be implemented. The first is a file type
specific compression mode. In that mode a specific file type is always compressed
with the same algorithm. This allows us to test file types for compressibility and set
up a list of rules in accordance.

The second feature is adaptive block compression. That mode is used if no prior
knowledge about the current data exists. Some blocks of the current file will be tested
for compressibility with different algorithms. The algorithm that works best for our
current use case will be used for the remaining blocks.

In addition to that, a new property will be added called compression mode. This
further extends the flexibility as it allows us to specify a use case. The compression
mode will be used in conjunction with the two features and allows us to choose
between archive, performance and energy. Depending on the mode, different parameters

1http://wwww.openvpn.net
’https://rsync.samba.org/

11

Chapter 1. Introduction

are more important than others when conducting adaptive block compression. In
case of file type specific compression we can specify different algorithms for one file
type, one for each mode. The archive mode is intended for long term storage such as
backups, where reducing the data size is the most important goal. The performance
mode should be used when other CPU-intensive tasks are running whose performance
should not be impacted. Lastly, the energy mode represents a tradeoff where we will
sacrifice some performance if, in turn, we get a better compression ratio.

Structure

This thesis is structured as follows. In Chapter 2, background to the topics relevant
in the course of this thesis will be provided. This includes areas of application for
compression, important compression algorithms and ZFS. Chapter 3 will present the
design of the new features for ZFS. In Chapter 4, related work, primarily in other areas
than file systems, will be discussed. Chapter 5 will cover the implementation of the
features designed in Chapter 3. The results and evaluation of this thesis are presented
in Chapter 6, and Chapter 7 concludes this work.

Summary

This chapter gave an introduction to the topic of this thesis. Increasing electricity costs and the
discrepancy between growth in speed and capacity make compression increasingly important.
As compression is CPU-intensive, often adaptive solutions are used to account for special cases.
In file systems, this is not the case and as a consequence algorithms that provide a good tradeoff,
but not the best compression ratio, are used.

12

Chapter 2

Background

This chapter will provide the necessary background on topics that are important for this thesis.
Section 2.1 will describe four different areas of application for compression. The benefits and
drawbacks of conducting compression in the specific area will be discussed as well as how
the areas influence each other. In the following Section 2.2 the most important compression
algorithms will be introduced and the difference between lossless and lossy compression
discussed. Section 2.3 is about ZFS and will present its architecture. The focus lies on the
components most important for this thesis.

2.1 Areas of Application for Compression

There is no doubt that compressing data is an important task and thus it is conducted
in a variety of different areas. This section gives an overview of the areas of application
for compression. Additionally, the difficulties as well as how the areas affect each
other will be discussed. The areas, which to some extent can also be understood as
layers, in question are user level (e.g. manual compression with tools like WinRAR!) or
application level (data created by applications gets compressed) as well as compression
in file systems or transport (data gets compressed before sent over network). The
latter two can be found in lower levels and thus can not be controlled as easily as
manual compression, something that has to be accounted for when compression gets
applied on multiple layers at once. A not so far fetched scenario which touches the
compression mechanisms of all four layers would be an application that allows to
export data in a compressed format. That compressed data will be sent to a backup
server (which has file system compression enabled) over network protected by a Virtual
Private Network (VPN) which compresses and encrypts the traffic. This illustrates why
it is important to ensure that the layers work together well without introducing too
much redundancy or inefficiencies.

Encryption and Compression Where data gets compressed encryption is often
not far away. Both require considerable amounts of resources to transform the data

http://wwww.win-rar.com

13

Chapter 2. Background

into the desired compressed or encrypted format. It is important to know that when
combining the two the order is very important. The data has to be compressed first
before it will be encrypted, otherwise the compression will be a worthless effort. As
a general rule, when data gets encrypted, it will retain the length. That means a
chunk of data that only contains zeroes will result in a same-sized chunk of seemingly
random encrypted data. That random data is incompressible, the zeroes however can
be compressed extraordinarily well. That means, when looking at the big picture, not
only compressing (redundantly) multiple times in several layers is an efficiency pitfall,
but also encryption when it is conducted at an unfortunate step.

2.1.1 User Level

Compression on user level is perhaps the most widely applied and accepted of all. To-
day several compression standards are widely used and are either natively supported
by the used operating system or applied using available third party applications. The
user will usually manually select the files and folders that should be compressed using
a tool of his choice. The files will then be placed inside of a compressed archive.

Popular tools used today are (among others) WinRAR, WinZIP?, 7-Zip® and GNU
zip (gzip)*. It is common to identify the used tool and algorithm by extending the
compressed file with an extension corresponding to the algorithm (.rar, .zip,
.7z, .gz). Compression on user level is used for a variety of purposes, among them
some that at first seem counter-intuitve.

2.1.1.1 Archive

The most obvious reason to compress data is for archive purposes. Storage space
is expensive, so having to store less saves money. In this use case compression and
decompression speed do not matter as much and one will gladly accept a longer
backup or restore operation for the benefits of saved space. Compressed archives
however have some drawbacks. They make tasks like incremental backups harder
as the application creating the incremental backups has to support the compression
algorithm and archive format. One also has to make sure that the tools for decompres-
sion are available in the future and also run on newer hardware that might be used
for accessing the backups. Corruption of the archive might also endanger the whole
archive rather than just a couple of files. Most tools however allow repairing archives
or even decompression from partial archives so this should not be an issue.

’http://wwww.winzip.com
Shttp://wwww.7-zip.org
‘http://wwww.gzip.org

14

Chapter 2. Background

2.1.1.2 Sharing

Another reason for compression is to share all kinds of data. There are countless
possible ways to share data with another person, where each way has its own quirks.
A nuisance still present in many tools of the twenty first century is to allow only one
file upload per time. Instead of uploading an entire folder of pictures with one click,
each image has to be uploaded at a time, probably even sequentially. A workaround
for this is to place files in archives, for example with tools like the old tape archiver
Tar. It is a logical next step to compress that archive after it has been created. If the
size of the archive gets rather large however it could get difficult to share it again.
Only one file to upload also means a single point of failure as many transfer protocols
have to restart at zero in case of errors. Most tools nowadays allow splitting up the
archive into same-sized chunks. This makes big data easier to share while avoiding
the hassle of thousands of small files. The only drawbacks of this use case are the need
of additional software on the other end, as well as possible cross platform difficulties.

2.1.1.3 Validation

A not-so-obvious advantage of storing files in (compressed) archives is the easier
validation of data. It is common to also post a checksum® when some kind of archive
is published, for example the source code of software. After downloading that archive
the user can create a checksum for comparison with the one posted where they
downloaded the archive. That comparison can often be done by just looking at the
two, if more than one checksum is involved however the need for additional tools
arises. This also saves a lot of resources, as computing checksums can be a CPU-
intensive task. Of course that happens at the expense of knowledge as a changed
checksum only tells us that one or more (if not all) files have changed, but not which
ones. For most cases however, that information suffices.

Drawbacks Problems arise when it comes to cross-platform availability of the tools.
WinRAR for example relies on a proprietary compression standard. Although the
application is free of charge for private use the proprietary standard results in WinRAR
not being available in Debian” (a stripped down version is available, for all features the
non-free repository of Debian has to be enabled). Another problem is the amount of
competing tools and standards. At some point the user will encounter an unrecognized
compression format. If the file extension is correct the right tool should be identified
fairly fast, if not, the matter can become problematic. On Unix-like systems tools like

Shttp://wwww.gnu.org/software/tar

®A checksum is a value which allows to verify the integrity of data. If, for example, one bit gets
flipped, the checksum will change and that error can be detected.

"http://wwww.debian.org

15

Chapter 2. Background

Dtrx® cope with the difficulty of selecting the right (de-)compression algorithm for a
given archive. Dtrx stands for “Do the right extraction”.

2.1.2 Applications

Compression is also very common for applications that create data in any way. Com-
pared to compression in user level the apparent difference is that the application
knows the data. It knows when the data is compressible, when it is incompressible
and whether or not it makes sense to compress the data at all. Additionally, the
internal application state is known. If there are CPU-heavy calculations happening
the application may choose not to compress data to avoid slowing down those calcula-
tions. The application may then choose to defer the compression until a later point in
time or skip it completely.

Compression can be realized by using external libraries of common compression
algorithms or by implementing a custom solution tailored to the specific data. De-
pending on the choice the created data may not be accessible without the application.

2.1.2.1 Examples

Applications that use compression are, for example, those that get in touch with
all kinds of media, be it audio, video or images. Media can be compressed very
well and heavy use is made of it across the World Wide Web (WWW). The reason
for that is that media can be compressed using lossy compression algorithms (see
Section 2.2.1.1). Applications that deal with text also make use of compression, with
specialized compression algorithms existing for different languages.

2.1.2.2 Databases

Databases are a poor example for applications (or rather a component used by appli-
cations) that use compression. That is because they are not generating data, but rather
storing what the user wants them to store. This actually entails that the database
software does not perfectly know whether or not compression makes sense. Post-
greSQL?, for example, wields compression as follows. Rows that contain data types
with a variable length, that exceed a certain size, will be compressed in order to fit
them into the page size (8kB). Tuples are not allowed to exceed the page size (there
are workarounds however) so this is a necessity. This scheme has two major draw-
backs. First of all compressing only tuples (rows) and not redundant data in columns
gives away huge potential. Below are three typical log entries of a fictional backup
tool to illustrate that case. The highlighted passages represent data that could be
compressed if it was not for the constraint that only data in rows can be compressed.

8http://wwww.brettcsmith.org/2007/dtrx
http://wwww.postgresql.org

16

Chapter 2. Background

21-04-14 19:33:27 MyBackupTool:startBackup() "will start backup"
21-04-14 19:33:29 MyBackupTool:doBackup() "backing up xyz..."
21-04-14 19:34:02 MyBackupTool:finishBackup() "backup finished"

The second drawback is that a threshold has to be met before compression actually
kicks in. As per default that threshold is 2kB. Other compression methods will
attempt to compress no matter the size, so this is expected to further draw down the
(theoretical) best compression ratio achievable with this approach.

2.1.3 Transport

Compression of data is a very well established practice in various transport layers. The
reason for this is that often it is faster to compress, send and uncompress than to just
send uncompressed data. This requires a CPU fast enough to do the compressing and
decompressing in reasonable time. Although network bandwidth is steadily increas-
ing, it will probably never be faster to send uncompressed data, given a fast enough
CPU, as the performance of CPUs increases at a much higher rate [21]. Additionally,
there are further constraints depending on the used network. Wireless networks such
as the Universal Mobile Telecommunications System (UMTS) raise further constraints as
the clients using the network may do so under harsh conditions. The connectivity
may be sparse or even interrupted from time to time. In addition transmitting data
over a wireless medium draws much more power compared to processing the data on
the device [7]. As a consequence it is desirable to send as few bits as possible. Many
network solutions have implemented some kind of compression into their protocol,
although not all of them are enabled by default.

2.1.3.1 Hypertext Transport Transfer Protocol

Hypertext Transport Transfer Protocol (HTTP) is one of the most important building
blocks of the WWW. HTTP is a client-server model that allows request-response
communication. The server provides resources such as Hypertext Markup Language
(HTML) files to the client (response) if they are requested. That communication can be
compressed if the compression algorithm of choice is supported on both ends (web
server, web browser). If that is not the case, it is sent uncompressed. Given that web
servers are often equipped with powerful hardware, whereas the clients may be low
end devices such as mobile phones, performing compression is a good measure to
increase the effectiveness of the communication.

2.1.3.2 Virtual Private Network

A VPN creates private networks across public networks such as the Internet. The main
goal is to provide secure network access. This allows, for example, an employee to
connect to the company network from a public wireless network without posing a

17

Chapter 2. Background

security risk. OpenVPN is a VPN solution that allows both encryption and compression
of the traffic. An interesting feature is the adaptive compression of all traffic. By default
(if compression is turned on) Open VPN will periodically measure the efficiency (in
terms of compression ratio) of the compression. If the algorithm detects incompressible
data it will turn off the compression until the next check is conducted.

2.1.3.3 Secure Shell

Secure Shell (SSH) is a network protocol for secure data communication. Security is
realized by encryption of all traffic. It is best-known for remote shell access to Unix-like
operating systems. Other than that various file transfer protocols are built on top
of SSH. Among them are the well-known Secure Copy (SCP) and Secure File Transfer
Protocol (SFTP). The file synchronization software rsync also offers a remote mode that
can use SSH. SSH itself already supports compression of the network traffic which is
the implementation that both SFTP and SCP use when compression is enabled. On top
of that rsync implemented a more feature-rich compression system. It allows higher
compression ratios (at the cost of CPU utilization) but it also features a skip-compress
option that accepts a list of file extensions. If such an extension is encountered during
the sync process it will not be compressed. The list can be customized by the user and
comes with a list of files known to be incompressible.

2.1.3.4 Multiplayer Games

Multiplayer games often feature complex network solutions as the requirements are
highly demanding. In most genres the game state has to be synchronized among
clients in real-time to avoid unexpected behaviour. To realize this the data that achieves
that synchronization has to be kept as small as possible. This is why it is common to
only send delta updates in compressed packets.

2.1.3.5 Video Streams

Streaming videos is very demanding from the network connection. It requires a lot
of bandwidth and depending on the source it will take as much of it as it gets. This
means that the stream will be affected by other things that might occupy bandwidth
and requires a solution that adapts to the current context in order to avoid buffering.
A video streaming solution that adapts to different available bandwidths on the fly
means that the source has to be available at different bitrates at all times. Therefore the
encoding to different bitrates has to be done either preemptively or on demand. Doing
so on demand requires an encoder that is capable of outputting multiple bitrates at
once and preferably even be able to adapt to the available CPU resources.

18

Chapter 2. Background

2.1.3.6 Voice Chat

In voice chat specialized forms of audio compression are applied to transmit only
what is relevant to the human ear. The used compression is different to that used
for e.g. music. Speech is much simpler and lot of statistical information is available
about he properties of speech. That information is used to compress the audio data as
much as possible and transmit only what is needed to retain the intelligibility of the
conversation.

Discussion Compression in transport requires highly specialized solutions that
are often very resource demanding. No matter whether it is bandwidth or CPU
utilization, requiring as much as possible of a resource also creates the need for an
adaptive solution to make room for other applications. Other reasons that create
the need for adaptiveness are environments or contexts that impose constraints such
as mobile networks with varying connectivity or the need for real-time updates. A
compressing VPN solution that transfers all kinds data needs to react appropriately
when confronted with incompressible data. If this does not happen resources are
wasted as data might get compressed more than once without further gains.

2.1.4 File Systems

Conducting compression in the lowest possible software layer, the file system, is a
very tempting thing to do. It has several outstanding advantages over the areas of the
previous sections but also notable drawbacks.

2.1.4.1 Advantages

The one big advantage of compression in the file system is transparency. To every layer
above the file system, compressed files will behave just the same as uncompressed
files. They are usable without external tools and report their actual logical file size (as
opposed to the physical size). In this manner other tools operating in higher layers
will be able to benefit from compression without having to implement it themselves.

2.1.4.2 Problems

Compression in the file system comes with several problems that need to be worked
out first. The file system will have to deal with all kinds of data, already compressed
tiles, encrypted files or flat-out incompressible data. This requires a compression
algorithm which performs well when confronted with incompressible data.

Another area of concern is performance. Doing additional processing of the files as
a file system is subject to stringent requirements as it is not the expected behaviour
of a file system to use lots of CPU resources. A suitable algorithm should therefore

19

Chapter 2. Background

compress as good as possible while not using too much CPU resources which might
disrupt other applications.

Additionally, in a file system the compression algorithms might not work on the
whole file, but instead only on the blocks of that file. Typical block sizes are e.g. 128 kB.
This gives the compression algorithm a much smaller window to find redundancy
and as such it is expected to have worse results compared to compressing in higher
layers.

Furthermore, the file system is in a difficult spot as it has almost no knowledge
about the current context and the data it writes to disk. It does not know why the data
is written, it does not know how long the data will stay and it does not know whether
or not it would be acceptable to use more resources to achieve a better compression
ratio. By this means it will most of the time make a good effort, but never the best.

2.1.4.3 State of the Art

Many file systems today support transparent compression, among them are Hierar-
chical File System Plus (HFS+), New Technology File System (NTFS), ZFS and B-tree File
system (Btrfs). Other widely used file systems that do not support compression are e.g.
Extend File System (ext) (all versions) or XFS.

The implementations in these file systems allow an all-or-nothing compression of
the data. No finer control like per-file type or folder compression are available.

2.2 Differences of Important Compression Algorithms

This section introduces the different compression algorithms important for this thesis.
Prior to that, the difference between lossless and lossy algorithms, as well as why
lossy ones are not applicable for file systems, will be described.

2.2.1 Lossless and Lossy Compression

The main point when compressing data is always to reduce the size as much as
possible. This for a large part depends on the available time for the compression. If
given more time, most compression algorithms will be able to squeeze out higher
compression ratios. The highest impact on possible compression ratios however has
the decision whether or not the compression should be lossless or lossy. A file that has
been compressed with a lossless compression algorithm lost no information compared
to the original. As a consequence the original file can always be completely restored,
bit for bit. Lossless compression algorithms compress by identifying redundant
information. As opposed to this lossy compression algorithms compress by removing
unnecessary information. What information gets categorized as unnecessary depends

20

Chapter 2. Background

on the data to be compressed. The information removed during compression can not
be restored, thus lossy compression is irreversible.

2.2.1.1 Usage of Lossy Compression

Lossy compression is very common for all kinds of media. Since it aims to remove
unnecessary information the goal is to reduce the size as long as the differences
in the resulting file are not noticeable for human senses. Lossless compression of
media is also possible, but the difference in compression ratio is significant. Lossless
compression of videos for example may achieve a ratio of up to three whereas lossy
algorithms reach a ratio between 20 and 200 [20]. Lossy compression algorithms focus
on specific kinds of media. There are specialized ones for music, videos and pictures.

2.2.1.2 Usage of Lossless Compression

Other than lossy compression algorithms lossless ones are eligible to compress all
kinds of data. Since no information is lost they can be used for file systems or file
transport protocols where it is not known beforehand what kind of data gets stored or
transferred and whether or not information loss would be acceptable. Nevertheless,
there are also lots of lossless compression algorithms specialized for specific file types.

2.2.2 Zero-Length Encoding

Zero-Length Encoding (ZLE) or (more general) Run-Length Encoding (RLE) is the simplest
form of compression. It is applicable on many different kinds of data and always
works on the same principle. The algorithm iterates over the data and looks for
sequences of repeating data values. Instead of storing the entire sequence in the
compressed form a count and a single data point will be stored.

So, for example, in a picture the algorithm would iterate line by line, pixel by pixel
over the entire picture. If ten red pixels occur in a sequence it will store [10r]. If the
subject is text, it will iterate over the text and count sequences of the same character.
When working on bits the procedure is a little different. The algorithm will only store
when the bit changes, and not what the actual bit was as that information is already
present. A short example:

1111 0000 1100 — 4,4,2,2

The algorithm could also be modified to look for repetitions of sequences of characters
instead of only single characters. RLE is used today as a preliminary step for other
compression algorithms to save other algorithms some work but rarely as a standalone
solution.

21

Chapter 2. Background

2.2.2.1 Advantages and Characteristics

The big advantage of RLE is that it only needs one iteration over the entire data for
the entire process — both for compression and for decompression. This makes it easy
to implement and is also the reason why it is a very fast compression algorithm. In
fact it is so simple that the entire implementation of the compression in ZFS is only
22 Logical Lines of Code (LLOC) long, the decompression needs another 14 LLOC. If
the data consists of constantly changing values, the algorithm could in the worst case
increase the size. For that reason only sequences of a certain length (e.g. a minimum
of three) will be encoded.

2.2.3 Lempel-Ziv Compression

AABCBB

NN

[0,0]A, [1,1], [0,0]B, [0,0]C, [2,1], [1,1], [5,3]

T\ L=

01100110111110

Figure 2.1: Deflate compression example. Consists of two steps: LZ77 compression
(line 1 — 2) and Huffman coding (line 2 — 3). Example taken from [4].

In 1977 Abraham Lempel and Jacob Ziv published a lossless compression algorithm
called Lempel-Ziv Compression (LZ77) [25]. Many compression algorithms used today
are based on LZ77, among them are LZ4 and LZ]B which are both available in ZFS.
LZ77 searches the text (any byte sequence) that should be compressed for redundant
sequences of variable size. The text is searched using a sliding window of a constant
size.

In Figure 2.1 such a window can be seen. The first line shows the text sequence
with the current window (AABCBBABC). The second line shows the output of the LZ77
algorithm. When the algorithm detects a character (or sequence of) that previously
occurred inside the sliding window it will output a tuple. That tuple encodes the
position and length of the character (sequence). The tuple [5, 3] can be read like
this: “Go back five characters and then read three characters”. In order to detect such
sequences of multiple characters, the algorithm needs to look ahead. Thus the window
can be separated into two areas, a search buffer and a lookahead buffer. If the tuple
contains zeroes ([0, 0]) the character after it is new and therefore encoded as-is. Since
the algorithm uses the sliding-window to “look up” things, it can also be thought of
as a dictionary. Bigger dictionaries yield more things to look up and therefore better
compression ratios, but they also increase the time needed to compress the whole text
as more needs to be searched.

22

Chapter 2. Background

Since the size of sliding window, the search buffer and the lookahead buffer can be
of arbitrary size the algorithm allows many optimizations. There is no perfect setting
for these values as effectiveness for the most part depends on the input data. gzip
uses (among other things) LZ77 and allows different “compression levels”. These
compression levels are in fact the size of the sliding window. Higher levels refer to a
bigger window and vice versa.

2.2.3.1 LZJB

The compression algorithm LZ]JB was developed by Jeff Bonwick who also lead the
team that developed ZFS. It was specifically designed for use in ZFS. As compression
in a file system is very performance critical it aims for high compression and decom-
pression speeds. LZ]B is a variant of Lempel-Ziv Ross Williams (LZRW) which in turn is
a variant of LZ77.

2.23.2 LZ4

LZ4 is another compression algorithm that belongs to the LZ77 family. It was devel-
oped by Yann Collet. Similarly to LZJB it was developed with (de-)compression speed
in mind. In 2012 LZ4 was added to ZFS as a potential future replacement for LZJB.
LZ4 outperforms LZ]B significantly both in compression and decompression. It is
approximately 50% faster on compressible data and 80% faster during decompression.
Additionally, it is over three times faster when operating on incompressible data
[9]. The reason for that is a so-called “early abort” undertaken by LZ4 if it detects
incompressible data at the beginning of the compression.

2.2.4 Deflate Compression

The Deflate compression is actually a combination of two different compression algo-
rithms that work together very well. The first compression is LZ77. The output of
LZ77 is then Huffman coded. The compression is specified in [2].

Huffman coding is a form of entropy encoding which was developed by David A.
Huffman in 1952 [5]. It encodes frequently occurring words to short bit sequences, and
uncommon ones to long bit sequences. In the example of Figure 2.1 it can be seen that
the tuple [0, 0], which occurs the most (three times), gets the shortest bit sequence
(0) whereas [5, 3] is encoded to 1110 as it only occurred once.

This secondary compression makes Deflate compress considerably better than pure
LZ77 but it also requires more CPU time to do so. Deflate is, for example, used by gzip.

23

Chapter 2. Background

2.3 The Zettabyte File System

ZFS is a modern file system designed by Sun Microsystems. Development started
in 2001, the first release was in 2004 as part of the OpenSolaris source code. In 2010
OpenSolaris was discontinued and further development of ZFS was no longer open
source. Also in 2010 illumos, an open source derivate of OpenSolaris, was founded as
its successor which ensured that ZFS continued to exist in the open. ZFS also found
its way to other platform as in 2006 development for a Linux port started and in 2007
Apple started porting it to Mac OS X [17].

2.3.1 Characteristics and Classification

ZFS is a general purpose file system, intended to be used on any possible system, be
it database servers or desktop computers. The goals during the design of ZFS were
to provide simple administration, data integrity and immense capacity [1]. In short,
it can be described as a transactional object-based copy-on-write file system. In the
following some of the key design principles will be listed.

2.3.1.1 Pooled Storage and Integrated Volume Management

Traditional File System 7FS
POSIX Interface ZFS POSIX Layer
Block Management Data Management Unit (DMU)
Volume Manager Storage Pool Allocator (SPA)
Device Driver Device Driver

Figure 2.2: Areas of responsibilty for traditional file systems (left) and ZFS (right).

Traditional file systems work on top of a single storage device. That storage device
may be a partition or an entire disk. With the help of volume managers like the Logical
Volume Manager (LVM) of Linux it is possible to span a traditional file system over
multiple storage devices and add features like mirroring of the data. This keeps the
file system code simple and creates an abstraction between device management and
actual file system work. But this also means that the volume manager does not know
anything about the data it manages. All semantic information about blocks is lost

24

Chapter 2. Background

in the interface between the two layers. The consequence of this is that the volume
manager has to regard every single block on the disk as allocated and must therefore
keep all blocks consistent. To circumvent such drawbacks ZFS has an integrated
volume manager that allows pooled storage devices. As shown by Figure 2.2 this
means a larger area of responsibility for ZFS.

2.3.1.2 Maintaining Consistency

Maintaining a consistent state of the on-disk data is a very important task of the file
system. In case of power outage traditional file systems will encounter an inconsistent
state (provided that modifications to the data happened). Different approaches exist to
bring the disk back into a consistent state. One way is to use a log. Before modifications
to the on-disk data are made the file system will write into the log what will be done.
After the reboot log and on-disk state will be compared. Inconsistencies will be
removed by replaying the log. A better way to deal with consistency would be to
never allow an inconsistent on-disk state in the first place. In ZFS the disk is consistent
at all times.

2.3.1.3 File System Capacity

Because the authors of ZFS assumed storage capacity to double every 9 to 12 months
using 64 bit addresses seemed not enough. The maximum capacity achievable with a
64 bit file system is 16 exabyte. ZFS prepared for the future as it has an address space
of 128 bit. This allows ZFS to store up to 256 quadrillion zettabytes. Allowing file
systems of such sizes entails the need to grow (or shrink) them as it is hard to predict
the future size of a file system. To solve this ZFS uses dynamically sized file systems
that grow or shrink as the users add and delete data.

2.3.1.4 Error Detection and Correction

Bugs in areas ZFS has no control over such has the firmware of disks or Redundant
Array of Independent Disks (RAID) controllers can cause erroneous data to be written
to disk. Another problem is data that can no longer be read from the disk. Such an
incident is called Unrecoverable Read Error (URE). How often an URE may occur is
part of disk specifications. Enterprise disks have an URE error rate of 10~'° whereas
consumer drives have a rate of 107'* or 107'°. An URE of 107'% means that at most
one bit may be erroneous for every 10'° read bits. To detect such errors ZFS will
validate everything it reads from disk instead of trusting the data. Once such an
error is detected it should be corrected (if possible) by writing a correct copy of the
corresponding block back to the disk.

25

Chapter 2. Background

2.3.2 ZFS Architecture

The following sections will describe most of the relevant components that can be
found in ZFS. The components can be placed (roughly) in three layers: the interface
layer, the transactional object layer and the pooled storage layer (see Figure 2.3). The
place of a component inside of a layer does not correspond to the internal architecture
of ZFS and is purely for aesthetics.

Interface Layer

ZVOL
SPL ZPL
ZPOOL

Transactional Object Layer

ZAP

DMU DSL

ZIL
Pooled Storage Layer

ARC ZIO SPA

Figure 2.3: Basic overview of the layered ZFS architecture and where its most important
components can be found.

2.3.2.1 Interface Layer

The interface layer of ZFS allows administrative tasks such as creating storage pools,
volumes or setting up data replication. To conform with standards it implements the
necessary functions to achieve POSIX compliance. Also part of the interface layer is
the Solaris Porting Layer (SPL) which is used to bring ZFS to Linux.

Solaris Porting Layer As ZFS’s origin is Solaris, getting it to work on Linux required
additional work. Linux and Solaris have a similar kernel Application Programming
Interface (API), but not all that is available in Solaris can be found in Linux and vice
versa. Thus the SPL was created in an effort to bring ZFS to Linux. This makes the port
possible with very minimal architecture specific changes to the actual ZFS codebase.

POSIX Layer The ZFS POSIX Layer (ZPL) is responsible for compliance with POSIX
file system aspects. POSIX stands for Portable Operating System Interface and is
specified by the IEEE. POSIX specifies many things of Unix-like operating systems
such as command line utilities and shells. It also has a standard for threads, Pthreads.
For a file system to be POSIX compliant many things have to be taken into account. The

26

Chapter 2. Background

goal is to create a uniform behaviour across all file systems to simplify development
of applications that make use of the file system. Among other things this means to
support:

e Hierarchical file names
e Unix permissions

e Three file times:
— Last modified time
— Last accessed time

— Last changed time
e Support for fsync () / dirfsync ()
e Access control lists
e Extended attributes

This is all taken care of by the ZPL. The ZPL sits on top of the Data Management Unit
(DMU), consumes its objects (ZFS is object based) and makes them look like a POSIX
file system.

Storage and Volume Management As ZFS is more complex than a traditional file
system it has to provide further (non POSIX) interfaces. These interfaces provide
access to managing (pooled) storage devices and volumes.

With the command zpool it is possible to create storage pools that may span
multiple devices and include data replication like mirroring or RAID. The ZVOL layer
allows to create volumes inside of such pools. A ZFS volume is a virtual block device.
Since this volume resides inside of ZFS pools it is backed by the ZFS Storage Pool
Allocator (SPA) and can therefore benefit from the data replication methods. A ZFS
volume works just like any other virtual (or raw) block device and as such other file
systems like ext4 can be installed on it.

2.3.2.2 Transactional Object Layer

The middle layer of ZFS is the transactional object layer. The most import component
of that layer is the DMU. Apart from that it contains a logging facility that ensures no
data is lost in case of hardware failures, a component that makes it possible to take
snapshots of file systems and an attribute processor which is used to create hash tables
that are used for many things in ZFS.

Data Management Unit ZFS is an object based file system. The DMU is the heart
of ZFS. It sits on top of the SPA and consumes blocks. These blocks will be grouped

27

Chapter 2. Background

[| I
L] L) CJEa]

Copy-on-write the data ~ Copy-on-write all inter- ~ Finally, rewrite the
block (leaf). mediate indirect blocks. tiberblock in place.

Figure 2.4: Copy-on-write process of writing a new block.

into into logical units — objects. Objects are contained in an object set which is also
managed by the DMU. Almost every entity inside of ZFS is represented by a DMU
object. They are kept apart by their distinct object type. Some example DMU object
types are (there are many more):

DMU_OT_PLAIN FILE A plain ZPL file.
DMU_OT_DIRECTORY_CONTENTS A ZPL directory.
DMU_OT_OBJSET Collection of objects.
DMU_OT_ZVOL ZFS volume (zvol).

The DMU is in charge of maintaining consistency. A DMU object is identified by a 64
bit identifier. They can can contain 2%* bytes of data. Every change to a DMU object is
assigned to a transaction. A transaction is an all-or-nothing operation — either the
change finishes successfully, or no change is made at all. This transactional behaviour
is achieved by treating every block as copy-on-write. [1, 15]

All data in a pool is represented as a tree of blocks. The root of that tree is the
so-called iiberblock. The leafs are the actual data blocks, all other blocks (in-between
the leafs and the tiberblock) are indirect blocks. In Figure 2.4 we can see how data
blocks are modified using copy-on-write in ZFS.

When a file is changed, that means the corresponding DMU object has to be changed.
A new transaction will be created (to clarify: ZFS groups changes into transactions,
not every change gets its own transaction) responsible of writing the new, modified
blocks that will represent the changed DMU object. The original blocks will be kept.
A new block will be allocated and the entire modified block will be copied into it
(copy-on-write, leaving two versions of the block). After that the tree will have to
be updated, the changes will walk up the tree, starting at the leaves modifying all
indirect blocks until the iiberblock is reached. The tiberblock is the only block that
will be changed in place and not in a copy-on-write manner (it has backups in case

28

Chapter 2. Background

of failure). Only when the tiberblock is successfully changed, the old copies of all
changed blocks will be discarded. Once this is the case, the transaction is finished.

ZFS Attribute Processor The ZFS Attribute Processor (ZAP) uses the DMU to create
ZAP objects. ZAP objects are hash tables used for various management tasks across
ZFS. There are two versions of the ZAP, depending on how much data needs to be
stored. A FatZAP and a MicroZAP. They are, for example, used for directories to
provide fast entry lookup, insertion and deletion. The ZAP will store the name of files
as keys and the corresponding DMU object identifiers as values.

ZFS Intent Log As the DMU likes to group multiple operations into transactions
there are delays between write and write-to-disk. If the system crashes before a
transaction commits, writes could be lost (but the file system would still remain
consistent). To solve this problem, ZFS maintains the ZFS Intent Log (ZIL), one for
each file system. The ZIL contains enough information about the transaction to be
able to replay it when the system comes back online.

Dataset and Snapshot Layer The Dataset and Snapshot Layer (DSL) is responsible
for managing datasets. A dataset in ZFS can be any of the following:

File system Stores and organizes objects.

Clone Initially identical clone of a file system.

Snapshot Read-only snapshot of a file system or clone at a specific time.
Volume A logical volume (block device).

The DSL manages the interdependencies between datasets and is capable of creating
snapshots and clones. Creating these is computationally free because of the copy-on-
write properties. The DSL only has to create a new iiberblock, pointing to the same
tree. Then, whenever a copy-on-write in the original tree happens it keeps the original
block which otherwise would be freed. A clone can further diverge from the original
tree, as it is not read-only. These “free” snapshots are a very handy feature for things
like system upgrades since one can easily roll-back to a snapshot at any point in time.

2.3.2.3 Pooled Storage Layer

The pooled storage layer of ZFS is the lowest layer of all. It works directly with disk
drivers and provides abstractions to those by combining multiple physical disks to a
single storage pool. Additionally, data replication techniques can be used to increase
the reliability of the storage pool. The performance of reading blocks from such a pool
is improved by leveraging a special caching algorithm.

29

Chapter 2. Background

Adaptive Replacement Cache The Adaptive Replacement Cache (ARC) is used by
ZFS to speed up access to recently, or frequently, used blocks by caching them. The
ARC is based on a development of IBM [12] and was further extended for ZFS.

Traditionally a Least Recently Used (LRU) cache would be used for such a case. The
LRU works by caching the least recently used blocks. Every block that is read gets
marked with an age indicator (age bit), the oldest block will be discarded when a
newer one enters the cache. This mechanic is suboptimal when large, sequential reads
happen. These will fill up the entire cache and frequently used blocks (not part of the
sequential read) will be discarded. Least Frequently Used (LFU) caches are different,
they will discard newer data that is not read frequently enough.

The ARC is a (more complex) combination of LRU and LFU, that takes the best
out of the two worlds. Simply put, the ARC maintains four lists to classify the items
currently in the cache [13]:

LRU Block is in cache because it was recently used.

LRU Discarded A discarded block that was least recently used.
LFU Block is in cache because it is frequently used.

LFU Discarded A discarded block that was least frequently used.

These lists do not actually contain the blocks, rather they are used to identify blocks.
The adaptiveness of the cache is realized by online changing of the number of allowed
LRU or LFU items in the cache. To come to a decision on that matter, the information
in the lists maintaining discarded blocks will be used. If many new blocks can be
found in the LFU Discarded list, more LFU items will be allowed and vice versa.

mirror

concat disk

R

N
500 GB
K

disk disk

L

N N
250 GB 250 GB
~— ~—_

Figure 2.5: An example VDEV that is based on 2 concatenated 250 GB disks that are
mirrored with another 500 GB disk (example taken from [1]).

30

Chapter 2. Background

Storage Pool Allocator The SPA works on physical disks and exports virtual de-
vices. A virtual device is created using a Virtual Device Driver (VDEV). A VDEV may
implement a feature like mirroring or just provide regular access to a physical device
using its device driver. Virtual devices that are combined using a data replication
technique like mirroring are called leaf VDEVs. This is visualized by Figure 2.5 where
we can see 5 VDEVs in total. Data can be written to, and read from, VDEVs using a
Data Virtual Address (DVA). A DVA has to be allocated first at the SPA. The SPA then
translates that DVA into a physical location on one or more disks.

ZFS Input/Output The ZFS Input / Output Framework (Z1O) processes all blocks prior
to (write) or after the disk I/O (read). It works on top of the SPA and translates DVAs
into blocks. A block, from the time of its creation until it is written to disk, will go
through a multi-stage pipeline (same for reads). Figure 2.6 visualizes that pipeline. It
can be seen that, in case of a write, the first stage a block goes through is compression.
If the compression algorithm of choice is not able to compress for more than 12.5% it
will be disabled. After that the block will be encrypted (if that feature is enabled) and
finally the checksum will be generated. Processing of the new block is now “finished”
and it can be written to disk. The ZIO will allocate a new DVA from the SPA and
subsequently the block will be written to the VDEV to which the new DVA translates.
In case of a read, the pipeline looks (as expected) almost like the complete opposite,
except that there is no complementary step to the allocation of a DVA.

ZI0O State Compression Encryption Checksum DVA VDEV ZI10 State
write
open | compress > encrypt > generate > allocate > write > done
. read
done [« decompress «— decrypt [« verify read |« open

Figure 2.6: Visualization of the ZFS input/output pipeline. For the sake of simplicity,
some intermediate stages were omitted. Based on [3].

Summary

This chapter has introduced the different areas of application for compression. The differences,
benefits and drawbacks of conducting compression in a specific layer have been discussed. It
has also presented the most important compression algorithms used in the course of this thesis.
Lastly it gave an in-depth overview over ZFS.

31

Chapter 3

Design

This chapter presents the planned changes to ZFS. In the first section we will describe the
current behaviour of ZFS regarding compression. The drawbacks of the current decision
making will be discussed and a newly developed approach that is subject to several design
principles is going to be introduced. The new design consists of two main components. The
first, file type specific compression, will be presented in Section 3.2. The second, adaptive block
compression, will be introduced in Section 3.3.

3.1 Aims and Design Principles

This section will discuss reasons for, and changes to, the decision making of ZFS
compression when a new file is created. First the current behaviour and its drawbacks
will be described. After that the design principles, that all changes will be subject to,
are introduced. The following part will present the desired behaviour of ZFS in the
event of a newly created file.

3.1.1 Current Behaviour

By default, compression in ZFS can be controlled with one property (compression)
that can be set on a per-file-system basis. The property can be set on the fly. If done so,
the new value will be used for all subsequently created files. Already written files will
not be compressed again with the new algorithm. ZFS allows nested file systems that
by default inherit properties from the parent file system. Changing the property in a
child file system allows some flexibility as shown in Table 3.1.

In this example a media file system exists with compression turned off, as media
is usually already compressed with some lossy compression algorithm. Trying to
compress media with a lossless compression algorithm is a worthless undertaking.
The “archive” will be compressed with gzip which yields higher compression ratios
than LZ4. It could be used, for example, for backups. The home(s) of the users inherit
the LZ4 compression from the pool they are part of. As a user’s home directory
typically contains a diverse set of different file types the compression algorithm needs
to offer a good tradeoff between performance and compression.

33

Chapter 3. Design

Name Compression Mountpoint

pool LZ4 /pool

pool/archive gzip /export/zfs/archive
pool/media off /export/zfs/media
pool/home inherit (LZ4) /export/zfs/home

pool/home/meier inherit (LZ4) /export/zfs/home/meier

Table 3.1: Example file system scheme.

3.1.1.1 Drawbacks

While the flexibility offered by creating multiple file systems with different selected
compression algorithms is certainly a good thing it is not enough for many cases.
Often it is not known in advance what kind of data will be stored in a file system.
An archive containing backups compressed with gzip makes sense. Backups of the
media file system however would need a separate file system for best efficiency. This
still seems manageable, but trying to optimize the compression scheme of a user’s
home directory using multiple file systems with different compression algorithms
quickly becomes very complex. To get the best possible results we could use a separate
file system for countless directories of the system. This would require us to know
for every directory what kind of files it would store in advance, as well as the best
compression algorithm for that kind of file.

Despite it being a hassle and complicated, it is not impossible. It is however not
possible (in the current version of ZFS) to get flexibility beyond directories. Setting
different compression algorithms for different file types is not possible.

To deal with shortcomings like that compression algorithms like LZ4 are designed
to perform well under all conditions. The tradeoff for the versatility of such algorithms
is that they do not reach as high compression ratios as algorithms such as gzip.

3.1.2 Design Principles

The lack of flexibility and the huge potential of algorithms like gzip motivate changes
to ZFS’s handling of compression. After this part the newly developed, more flexible
behaviour will be presented. This part will discuss the principles that led to the newly
developed design.

3.1.2.1 Flexibility

As pointed out in Section 3.1.1 the current decision making of ZFS in terms of com-
pression lacks flexibility. We can only distinguish between directories with different

34

Chapter 3. Design

compression algorithms, not files.

The need for flexibility on a per-file-type basis is nothing new in the area of com-
pression. It is common to provide an exclude option for applications that deal with
compression. File types that are part of that exclude list will not be compressed. The
tile type will usually be identified by the file extension. This approach is first and
foremost to filter out known-to-be-incompressible files.

Similar to the idea of an exclude list would be a more general list, that maps file
types to compression algorithms. A list like that would allow excludes (mapping to
compression=off)butalso further optimizations. Log files (highly redundant, very
good to compress) could, for example, be mapped to gzip.

To extend the flexibility in ZFS a solution based on these ideas should be im-
plemented. It should be aware of the file type and decide how the file should be
compressed at the moment of its creation.

3.1.2.2 Adaptiveness

Adding flexibility to ZFS in terms of file type awareness is not enough. Detecting the
tile type has the same disadvantage that per-file-system compression has. The file
types, and how to compress them, have to be known in advance. Something that is not
always possible. A simple reason for not knowing the file type is a being confronted
with a file that lacks an extension, which frequently happens.

This raises the need not only for a flexible, but also adaptive solution. That solu-
tion needs to be able to react when having to deal with data about which no prior
knowledge exists. A simple adaptive solution is for example applied by OpenVPN
(see Section 2.1.3.2). OpenVPN adaptively compresses traffic by regularly checking
whether or not the compression is effective at the moment. If it is not, it turns off the
compression until the next scheduled check.

Turning off the compression when ineffective is only one side of the coin. It would
be best if the solution would offer other reactions as well. For instance, a different
algorithm could be tried, maybe it can compress better and the compression does not
have to be turned off altogether.

3.1.2.3 Performance

The performance of the file system is a major part of the overall system performance.
As such, when file systems are designed performance is always a key aspect. Good
performance is no longer a feature of file systems, it is regarded as a requirement [1].
Therefore, when designing new features it is very important not to introduce new
bottlenecks or to lower the overall performance by notable amounts.

35

Chapter 3. Design

Time ¢ Time needed to compress
Energy e Energy consumed during compression

Ratio r Achieved compression ratio

Table 3.2: Important compression parameters.

3.1.3 Desired Behaviour

The current compression behaviour of ZFS is entirely controlled by one property:
compression. Whenever blocks of any file within a file system are written they
are compressed with the compression algorithm corresponding to the value of the
compression property at the time the file was created. This solution is neither aware
of the file type nor adaptive in any kind. Changing this requires more fine-grained
control over compression in ZFS as well as an engine capable of making adaptive
decisions.

3.1.3.1 Different Modes for Different Use Cases

As described in Section 2.1.4.2, file systems are not aware of the current context. They
have little to no knowledge about the actual reasons as to why files are written, or
how important performance is right now.

This represents a big problem as this knowledge is a very important ingredient for
making the right decisions. If, for example, an application is generating lots of data
as a result of a CPU heavy calculation, then performance is likely very important.
Slowing down the write performance might cause a bottleneck which would slow
down the calculation. However, if we are writing a backup, performance might not be
so important as there is no calculation in the background that could be influenced. To
the file system both undertakings look the same — lots of files are written. Being able
to distinguish such use cases is very important.

Since the file system is not able to do this on its own it has to get the information from
the user. In the following we will refer to such use cases as modes. When a compression
is conducted there are many interesting parameters that can be interpreted. The three
most import ones are listed in Table 3.2. Time, energy and compression ratio are of
different significance in different modes. We identified three different modes which
place value on different parameters. Certainly there are more specific use cases, but
those would in turn need additional parameters. The three modes are: performance,
energy and archive.

Performance The performance mode is one where the time ¢ needed to write a block

to disk is more important than the disk space it requires. The compression ratio r
is also important as in some cases it is faster to compress-and-write than to write

36

Chapter 3. Design

uncompressed. This is often true when the CPU is idle as this means there are
plenty of resources available to compress the data. If the system is not idle, there
may not be enough CPU time available to beat writing uncompressed in time.

Archive The archive mode is for long term storage of data. For example, important
backups or scientific data that needs to be preserved for the future. If we know
that the data will be stored for weeks, months or even years, parameters like the
energy cost e to compress the data become irrelevant compared to the cost of
storing the data. As a result when in archive mode the compression ratio r is of
the highest significance.

Energy The energy mode represents a tradeoff between performance and archive.
The energy consumed during compression is important but so is the resulting
compression ratio. The energy mode will accept longer compression times than
the performance mode but does not place the compression ratio above all other
parameters as the archive mode does.

These modes can be used to make advanced decisions. For instance, if we know that a
certain algorithm creates a huge overhead when the system is under heavy load we
could choose not use that algorithm in performance mode. Similarly, if we know that
the overhead results in significant gains in compression ratio we could choose that
same algorithm for the archive mode. Using modes that correlate to different contexts
we can come to different decisions for one and the same file.

3.1.3.2 Compression Mode Property

In order to make use of the modes introduced in Section 3.1.3.1 a new property needs
to be added to ZFS. The property will be called compression_mode and works
in conjunction with the normal compression property. The compression_mode
property will be set on a file system basis, just like the compression property.

Thus far, with only the compression property, the decision making was rather
simple. When a new file was created, the corresponding object got assigned a write
policy by the DMU. That write policy includes the compression algorithm to be used
and will be inherited from the object set (the file system). When the blocks of that file
are written the value of that property is checked, and the blocks are compressed (or
not) accordingly.

With the introduction of modes we have more information at hand and can decide
about whether or not to compress more precisely and at different stages during the
process of writing the new file to disk. Two additional mechanics will be added. The
first one is, determining the compression algorithm based on the file type of the new
file and the current mode (see Section 3.2). The second mechanic is to test how the
blocks of the file can be compressed and decide which algorithm to use based on the
parameters (see Table 3.2) that result from the compression.

37

Chapter 3. Design

Check compression
mode property

Read file
extension on
J l off

New file

unknown Check compression
ext="7?
property
known l

{ Compress! @
on

off

on

Check compression
mode property

mode =? £ E—

off

Do not compress! }

Figure 3.1: How ZFS should decide whether or not to compress a newly created
tile. The colors of the components refer to the layers of ZFS as seen in Figure 2.3
(yellow=interface layer, blue=object layer, red=storage layer). The “on” values of
compression and compression_mode refer to any compression algorithm or a
valid mode respectively.

In Figure 3.1 we can see a flowchart that represents the new behaviour and shows
how the two compression properties compression and compression_mode work
in conjunction. If compression_mode is set to off, everything will behave just as if
no changes were made and the decision depends solely on the value of compression.
If it is set to any of the three modes, two different cases (depending on the value of
compression) can be distinguished.

compression=on If the compression property is set to any of the implemented
compression algorithms and not off, then every file that is not known (unknown
file extension) will be compressed with that algorithm. Otherwise (known file
extension) the file will be compressed with the algorithm corresponding to mode
and file type. Both of these decisions are made in the object layer of ZFS.

compression=off In this case every unknown file will be tested in the ZFS1/0O
pipeline and compressed with an algorithm depending on the compression

38

Chapter 3. Design

parameters and the mode. Files with a known extension will be compressed
depending on the mode.

At first it may seem counterintuitive to check the compression mode property twice,
once in the object layer and once in the storage layer. However, the checks happen at
two different events in ZFS. In the object layer we check the property when the file is
created. In the storage layer we check it when actual blocks are written. In between
those events arbitrary time spans can pass. Log files, for example, are usually created
once and then data is written to them for an indeterminate amount of time.

Summary This section introduced a new property that will extend the configurabil-
ity of ZFS. Additionally, two new mechanics were briefly introduced. The first one
makes ZFS aware of the file type by reading the extension of a newly created file. It is
done in ZFS’s object layer and will be described in Section 3.2. The second mechanic
evaluates how the blocks of the file in question can be compressed by weighting some
compression parameters more than others, depending on the current mode. This is
done in the pooled storage layer of ZFS and will be explained in Section 3.3.

3.2 File Type Specific Compression

Different types of files have different degrees of compressibility. A media file that is
already compressed with a lossy compression algorithm can not be compressed again.
A simple text file can be compressed very well. Some packed binary data may be good
or bad to compress, it has to be determined by empirical analysis. If we gather lots
of information about the compressibility of different file types we can optimize our
compression system by always choosing the best algorithm for the file type depending
on the context. In order to do this in ZFS we have to be able to determine the file
type when a new file is created. The only feasible way to do so is by reading the file
extension even though this is no perfect solution.

3.2.1 The File Name Extension

It is a de facto standard to provide an extension to file names, the file name extension.
The extension is separated from the rest of the file name with a dot. The usage of file
extension varies between operating systems and is not standardized. On Windows the
extension is used to determine which application should be used to open it. Unix like
operating systems have additional measures to determine the right application such
as reading the header of the file (the first bytes). On Unix systems the file extension is
also used for other purposes such as displaying the version number of a library. It is
also common to put together multiple extensions to indicate an “inner” and an “outer”

file type.

39

Chapter 3. Design

File name Extension Actual meaning
notes.txt txt Text file

data.nc nc NetCDF data
backup.tar.gz gz Compressed tar archive
libxcb.s0.1.1.0 0 Version 1.1.0 of libxcb.so

Table 3.3: Example file extensions.

Table 3.3 shows that the usage of file name extensions is not consistent at all and
in some cases hard to parse reliably. For the human eye it is easy to see that we are
talking about version 1.1.0 of libxcb. Since the version number contains additional dots
it becomes hard to parse though. Furthermore, some files lack an extension entirely.
This is the result of file name extensions not being standardized.

Nevertheless, using the file extension works for most files and thus determining
the file type by interpreting the extension remains a viable way, even though it is not
perfect.

3.2.2 Extension Lookup Table

Once the file type is determined the information has to be correlated with the current
compression_mode in ZFS. We choose to do so using a lookup table as shown in
Table 3.4. This should be done in the object layer of ZFS as the name of the file is
still at hand in that layer. If the extension is known, a compression algorithm will be
looked up that may be different to the one of the file system. Therefore, when the write
policy of the file is set the algorithm should already be determined. As extensions that
contain dots in itself are hard to parse the table will only support the simplest format.
It will however work with extensions like tar . gz which will refer to gz in the table.

3.2.3 Adding Entries to the Lookup Table

There are multiple possible ways to feed data into ZFS that can be considered to build
the lookup table. The simplest way would be to compile the table into the ZFS kernel
module. Another way would be to use extended attributes. Extended attributes are a
feature of many file systems that allow the user to set additional meta data on files
and folders. Finally, ZFS allows to set custom properties if they contain a colon in the
name. New entries could be added like this:

zfs set compress:archive:nc gzip-1

40

Chapter 3. Design

Extension Archive Energy Performance

txt gzip-6 gzip-1 LZ4
log gzip-9 gzip-6 gzip-1
nc gzip-1 LZ4 LZ4
gz off off off

Table 3.4: Example extension lookup table.

Using ZFS custom properties is certainly the nicest way on the paper, but it has a
disadvantage in common with extended attributes. Both are designed to be used for
user space tasks and not to change the internal state of ZFS. ZFS simply does not know
what to do with them beyond persisting them on the disk. Therefore both will very
likely require considerable code changes.

3.3 Adaptive Block Compression

If we are confronted with a file that lacks an extension, or the extension is simply
unknown, and the compression property is not set to off, we would use the chosen
compression algorithm and hope for the best. To still benefit from a more intelligent
compression we will test the file for compressibility by compressing some of its blocks
and evaluating the resulting parameters depending on the chosen compression mode.
As shown by Figure 3.1 this is done in the lowest layer of ZFS if previously no known
extension was detected and the compression property is set to off.

3.3.1 Testing Blocks of a File

The goal is to test some blocks of a file and evaluate the resulting parameters depending
on the current mode. If we are in performance mode and one algorithm is significantly
faster than the rest, then that algorithm will be used for the rest of the file. In archive
mode the amount that we compressed matters most and in energy a compromise
between compression time and compression ratio is what causes an algorithm to win.
The winning algorithm should then be used until the next test is conducted.

The biggest raised question when testing blocks is how often it should be done.
Testing every block with multiple algorithms is hardly feasible. At the same time,
testing too infrequently may render the results useless as the characteristics of the
blocks may have already changed.

A file in ZFS is represented by an object inside the DMU — a dnode. The dnode
will be written to disk in blocks of a size between 512 B and 128 kB depending on the
chosen block size. If the file is bigger than 128 kB it will be structured as a tree, where

41

Chapter 3. Design

indirect blocks hold pointers to the actual data blocks. The pointer to a block is 128 B
large. The biggest indirect block (128 kB) can therefore hold pointers to 1024 blocks.
That means per indirect block we can store 128 MB of data. However, the default size
for indirect blocks in ZFS is 16 kB and as such the maximum size an indirect block can
store is 16 MB of data. Therefore, if we conduct the test at the first data block of an
indirect block, the result will be used for the next (up to) 127 blocks (if the file is that
large).

3.3.2 Difficulties

Since ZFS is heavily threaded the blocks are written in parallel. Every block will go
through the I/O pipeline (see Figure 2.6), but it is not guaranteed that the data blocks
of an indirect block will go through it sequentially. Hence some problems need to be
worked out in order for this approach to work. In the following we will refer to the
blocks after the first block as secondary blocks. The important key points that need to
be solved are:

Identifying the first block When a new block enters the compression routine we
need to be able to identify it. Is it the first block or one of the secondary blocks?
If it is the first block, the tests should be conducted.

Secondary blocks outpacing the first block If blocks enter the compression rou-
tine while the first block is still testing compression algorithms the blocks will
have to wait for the first block to finish. Waiting is always performance criti-
cal. Busy-waiting' should be avoided to prevent wasting of energy. Instead the
threads should wait (if necessary repeatedly) for a fixed amount of time (wait
until timestamp). This implies a tradeoff as threads might wait longer than
actually needed.

Notifiying secondary blocks of the result Once the first block has finished the tests
the secondary blocks should be able to retrieve the results.

3.3.3 Cost Function

When a block is tested we have several parameters that can be used to interpret the
compression. The most important ones are listed in Table 3.2. It hast to be noted that
the compression ratio has to be calculated from the physical size (psize, compressed
size — actual used disk space) and the logical size (Isize, uncompressed size). These
parameters (ratio, time and power) can be used to calculate the cost of the compression.
For this we use the cost function 3.1. The cost function is defined as follows:

!Repeatedly checking whether or not the wait-condition is still active.

42

Chapter 3. Design

po D) (3.1)
(g = np)™
where:
¢ = compression cost
t = compression time
p = power consumption

my; = time multiplier
m, = ratio multiplier
n; = logical size

n, = physical size

The algorithm with the lowest cost under the current circumstances is the winner.
In order to get different results for the different modes we weight the parameters
accordingly. When in performance mode, the time is exponentially weighted with
a time multiplier and when in archive mode the compression ratio is exponentially
weighted with a ratio multiplier.

Summary

This chapter presented the planned changes to ZFS. To extend flexibility of ZFS a new com-
pression mode property was introduced. The new property can be used in conjunction with the
default compression property of ZFS to control two new features. The first, file type specific
compression, chooses a compression algorithm based on the extension of a newly created file and
the current compression mode. The second feature, adaptive block compression, tests blocks of a
file for compressibility with different algorithms and makes a choice based on the compression
mode and the resulting parameters.

43

Chapter 4
Related Work

This chapter gives an overview of existing and related work in the field of adaptive compression
and file systems. Section 4.1 will present adaptive compression solutions which are primarily
used in the transport layer. In Section 4.2, the compression algorithm LZ4HC will be intro-
duced. Furthermore, in Section 4.3, Btrfs, its differences to ZFS and why it was not suited as
well as ZFS for the purpose of this thesis will be discussed.

4.1 Adaptive Compression Solutions

This section presents solutions that adaptively compress data to meet external con-
straints or to avoid weaknesses of used algorithms by filtering out data that is known-
to-be incompressible.

OpenVPN and rsync

As already mentioned in Chapter 2, both OpenVPN and rsync use adaptive methods
in their protocols. This is primarily motivated by the fact that arbitrary data can
be transferred by both, which includes incompressible data. In order to circumvent
performance problems which the compression of that data might cause, the tools
follow different approaches.

OpenVPN regularly measures the efficiency of the compression. If it detects that the
compression fails to reach a minimum compression ratio it will turn it off until the
next check is scheduled. OpenVPN uses LZO for this procedure. Both the minimum
amount that has to be compressed and the frequency are hard coded and cannot be
changed by the user (if he does not want to recompile). By default, Open VPN will
measure the efficiency for a two second period and schedule a test every 60 seconds.
The data has to be compressed for at least 5 %, otherwise the compression will be
turned off [16].

A different approach has been taken by rsync. It relies on identifying incompressible
files by using a list of file extensions that belong to known-to-be incompressible files.
The extensions can be provided on the command line using the —-skip-compress

45

Chapter 4. Related Work

option. By default, extensions that correspond to known compression algorithms such
as gz, zip,bz2, 7z are skipped.

The approaches used by Open VPN and rsync work well for their specific purposes.
Skipping the compression for known-to-be incompressible files as done in rsync is
similar to our file type specific compression. However, as files may show different
degrees of compressibility and not just compressible / incompressible the more fine
grained control offered by file type specific compression was needed. The adaptive
compression of OpenVPN is similar to our adaptive block compression, but as with
rsync’s skip compress option it only considers compressible and incompressible as
options which is not enough for our purpose. Apart from that the checks are far too
coarse and as such do not offer the accuracy we have in mind.

Image Compression

Image compression is usually done with lossy compression algorithms. Typically, they
offer many parameters that allow the user to control how much quality the algorithm
may sacrifice in return for more space savings. One algorithm that offers several
parameters to control the quality of the compressed file is the JPEG image compressor.
It is heavily used across the WWW to significantly reduce the size of images. This
is especially important for mobile devices which have a finite supply of energy and
are therefore forced to budget their energy consumption. Both the compression and
transmission of data consume significant amounts of energy.

Clark N. Taylor and Sujit Dey [19] present an adaptive solution that varies com-
pression parameters to minimize energy consumption on the device while meeting
latency, bandwidth and quality constraints. They use two different parameters of
JPEG, Quantization Level (QL) and Virtual Block Size (VBS), which have different effects
on energy consumption, compression ratio and image quality.

Determining the optimal parameters for the current situation consists of three steps.
The first two steps are done offline. In those steps they precompute tables in which
the radio of the device can lookup compression parameters. Only the third step is
done online at run-time. In that step the radio of the device continuously monitors the
current image quality, latency and bandwidth constraints and adjusts the compression
parameters accordingly. For example, to meet a certain energy constraint the radio may
have to decrease the VBS of the compression which lowers its energy consumption but
also decreases the image quality. To maintain the image quality (too meet a constraint)
the QL has to be decreased which has no influence on the energy consumption but
decreases the compression ratio. This however increases the energy consumption
of the network interface as more bits have to be transmitted. In order to find the
optimal tradeoff between compression and transmission energy cost an algorithm
compares parameter combinations until the optimal combination of QL and VBS has
been identified.

The adaptive image compression presented in this section works well in its particular

46

Chapter 4. Related Work

domain. However, for our purpose we lack the flexibility in terms of parameters that
JPEG offers. The only parameter we possibly have is the compression level of gzip
which cannot be compared to the unique interaction of VBS and QL.

Adaptive On-the-Fly Compression

In many cases compressing data before transmitting or writing it is overall faster than
sending uncompressed data. However, that is not always the case as the compression
performance is dependant on the underlying resources such as the network bandwidth
or CPU utilization. In high-speed networks, for example, the situation is different.
They reach such high speeds that it is faster to send the data uncompressed. Neverthe-
less, if the network is fully utilized compression can help to maximize throughput.

The authors of [8] developed the Adaptive Compression Environment (ACE) which
aims to find and apply the best compression technique for the current circumstances
on-the-fly. ACE intercepts program communication and adaptively selects a compres-
sion algorithm that suits the current data characteristics, network and CPU perfor-
mance. ACE uses the Network Weather Service (NWS) to predict resource usage on both
of the communicating systems [24]. NWS stores time series and when queried returns
an accurate short term performance estimate for the requested resource (e.g. CPU or
network). Based on that data and statistics about compressibility of previously sent
blocks ACE will decide how or if to compress data prior to sending it.

ACE uses adaptive compression in order to react to changes in resource availability
and data characteristics. This is similar to our adaptive block testing. The key dif-
ference is that ACE has to factor in changes on the receiving end while in our case
everything happens on one system. Therefore we do not have to use a prediction
engine like NWS.

4.2 LZ4 High Compression

LZ4 is a different version of LZ4 which aims for higher compression ratios. It does
so by doing a full search for redundant data in the data to be compressed . Typically,
this increases the compression ratio by 20 % while being six to ten times slower
[11]. The special thing about LZ4HC is that it shares exactly the same format with
LZ4. Therefore, it is possible to use the standard LZ4 decompressor with data that
has been compressed with LZ4HC. This makes LZ4HC interesting for scenarios
where compression speed is not important as it allows the user to benefit from better
compression ratios while maintaining the extremely fast decompression speed of LZ4.
For example, data that will only be compressed once but decompressed very often.
LZ4HC is an interesting compression algorithm that would work great in the archive
mode of both adaptive block testing and file type specific compression. Unfortunately

47

Chapter 4. Related Work

it is not yet implemented in ZFS although it should be fairly simple as the necessary
decompressor is already on board.

4.3 B-tree File System

Btrfs is very similar to ZFS in many aspects. Both are copy-on-write file systems that
checksum data, support transparent compression, may span multiple devices and
are capable of creating writeable snapshots. However, the ways both file systems
implement the aforementioned features are fundamentally different.

ZFS divides disks into blocks which are subsequently consumed by objects of the
DMU. Blocks are compressed, checksummed and objects are modified by copy-on-
writing the blocks. The default block size in ZFS is 128 kB. When compressing blocks,
the compression function operates on the entire block. A typical sliding window (see
Section 2.2.3) has a size of 32 kB, and as such the compression has an adequate amount
of data to build a dictionary to look up redundant data.

Contrary to that, Btrfs stores data in extents. Extents are continuous runs of on-disk
area [18]. Each file gets its own extent and the compression can be stored per-extent.
However, the current compression support has a serious drawback as the compression
function only compresses 4 kB! sized blocks, one at a time. The compressor is not able
to reuse state between two blocks and as such the dictionary will be very limited.

Btrfs has two compression algorithms implemented, LZO and zlib. They can be
compared to LZ4 and gzip in terms of speed and compression ratio. However, the
drawbacks in the way Btrfs compresses data, and the limited choice of algorithms,
made Btrfs an inferior choice for the purpose of this thesis.

Work is being done to implement a new compression format in Btrfs that should
resolve these issues. The new compression format will allow the compressor to work
on bigger blocks. Once that is done it is planned to implement LZ4, LZ4HC and the
Lempel-Ziv-Markov chain algorithm (LZMA) in Btrfs?.

Summary

This chapter presented adaptive compression solutions. Due to the nature of the lossy JPEG
algorithm the presented adaptive image compression shows a good way to utilize adaptive
compression. ACE demonstrates how adaptive compression can be used in distributed environ-
ments with changing resource availability. Furthermore, this chapter presented LZ4HC, which
at the time of this writing, was not implemented in ZFS. Therefore, we can not make use of it
in the archive mode for which it seems very well suited. Lastly, we discussed why Btrfs was an
inferior choice for the purpose of this thesis.

Linux page size.
https://btrfs.wiki.kernel.org/index.php/Project_ideas

48

Chapter 5

Implementation

This chapter describes the implementation of the features presented in Chapter 3. The first
section describes how basic operations like creating a file, or writing to it, work in ZFS. Section
5.2 describes how the new compression mode property was implemented in ZFS. The following
sections 5.3 and 5.4 will present the implementation of file type specific compression and
adaptive block compression, respectively.

5.1 ZFS Create and Write

Before we discuss the implementation of the features outlined in Chapter 3, we will
describe how ZFS creates and subsequently writes to files. This is where the compres-
sion algorithm is determined and the data gets compressed. Therefore it is of essential
importance to understand when and how files are created, and written to, in ZFS.

Everything the user initiates will have

to go through the Virtual File System ’ Program / Library ‘
(VES). The VEFS is in charge of separat- 2

ing file system code from the rest of the User Space | (g)lllbc |
Linux kernel. Together with the ZPL this Kerel | V; S |
makes two layers of abstraction before | z;s |

user land calls actually reach ZFS. In Fig-

ure 5.1 we can see how a <':a11 from user Figure 5.1: Calls from user space to ZFS
space will go through a C library and the |, . go through the VFS.
VES, before reaching the POSIX layer of

ZFS. Inside of ZFS all calls start in the

ZPL where they wrap around vnode operations. Every object inside of a file system
(file / folder) is represented by a vnode. Vnodes are virtual representations of files and
folders that have a unique Identifier (ID). They are managed by the VES. Two of these
vnode operations are zfs_create and zfs_write. They are used to create a file,
or write to it, respectively. These are the two most important calls for the purpose of
this thesis. During zfs_create, among other things, the compression algorithm will
be chosen, whereas during zfs_write actual data will be written and compressed.

49

OO U= W -

Chapter 5. Implementation

In Section 5.1.1 (create) and 5.1.2 (write) the process of these two routines will be
described. Section 5.1.3 will talk about the synchronization of buffers since a call to
zfs_write does not immediately write to disk, but instead to a buffer. The actual
compression happens later, when the buffer is synchronized to disk.

5.1.1 ZFS Create

Create Write

’ zpl_inode.c: zpl_create ‘ zpl_file.c: zpl_write ‘
1 i

’ zfs_vnops.c: vnode zfs_create ‘ ’ zfs_vnops.c: zfs_write ‘
1 i

’ zfs_znode.c: znode zfs_mknode ‘ ’ dmu.c: dmu_write ‘
1

’ dmu_object.c: dmu_object_alloc ‘
1

’ dnode.c: dnode dnode_allocate ‘

Figure 5.2: Call sequence to create, or write to, a file in ZFS.

When we create a file with an application or a library, our call will go through five rou-
tines before the corresponding ZFS object is created. Figure 5.2 visualizes the sequence
of these calls. We begin with the POSIX layer, where zpl_create corresponds to
the fopen () call in a C library like glibc. Next are the ZFS vnode operations where
zfs_create gets called and subsequently calls zfs_mknode. This call creates a
znode which is the ZFS equivalent to the vnodes of the VES. The last interface layer call,
zfs_mknode, is in charge of creating a DMU object for the newly created file. This
operation is wrapped in a DMU transaction. If the transaction succeeds a dnode was
created, the internal object representation of a vnode or znode, respectively. When the
dnode is allocated in dnode_allocate, it gets assigned several properties of ZFS
that by default are set to inherit (Listing 5.1). Inherit means, when needed, the value
will be taken from the object set rather than the dnode itself. This means the compres-
sion algorithm can be stored per-dnode (per-file). Note that, when creating a directory
the sequence looks the same, apart from the first two calls being {zpl/zfs}_mkdir
instead of create.

dnode_allocate (dnode_t *dn, dmu_object_type_t ot, int blocksize, int ibs,
dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)

{

dn—>dn_checksum
dn—>dn_compress

ZIO_CHECKSUM_INHERIT ;
ZIO_COMPRESS_INHERIT ;

Listing 5.1: Initialization of compression/checksum algorithm per file.

50

Chapter 5. Implementation

5.1.2 ZFS Write

Once created, we can write to a file (see Figure 5.2). The entry point for this is
again the POSIX layer of ZFS with the function zpl_write. After that, just like in
zfs_create,aZFSvnode operation (z fs_write) takes care of wrapping everything
in a transaction. This operation then calls dmu_write where, as the name indicates,
the DMU writes the actual data to the internal object representation (dnode) of the file.
One would assume that this is where the data is compressed, but that step happens
later as the DMU only writes to a buffer. The SPA is responsible of persisting the
internal state to disk, and just before data is written to disk, it will be compressed.
Therefore we will need to have a look at how ZFS synchronizes buffers onto the disk
in order to get a closer look at how, and where, the compression is conducted.

5.1.3 Synchronizing Buffers

There are several operations that initiate

’ dnode_sync.c: dnode_sync ‘
a synchronization of buffers and disk in I
ZFS. For example, when the user calls ’ Clom - €8 e ‘
1, £sync? or when a ZFS pool i :
sync’, rsync” or when a pool 18 ’ dbuf.c: dbuf_sync_{indirect,leaf}‘
exported. In any case, at some point,]
dnode_sync is called to synchronize a | dous.c: . dbuf_write |
tile. If the operation concerns the en- [zio.cs zio_write |

tire pool this routine is called for every
dnode that has “dirty” (unsynchronized) Figure 5.3: Buffer synchronization.
buffers. Since the blocks of a dnode are

structured in a tree, ZFS has to walk along that tree and synchronize the blocks which
consist of indirect and data blocks (leafs). The routine dbuf_sync_11ist makes sure
that all blocks are included. Just before a block enters the ZFS I/O pipeline through a
call to dbuf_sync_{indirect, leaf}, its write policy is specified. This is where
the compression property which was set in dnode_allocate is evaluated. The
function dbuf_write creates two important structs for every block: zio_prop_t
and zio_t. The chosen compression algorithm is stored in the zio_prop_t along
with other properties. Among them are the chosen checksum algorithm, if the block
is replicated somewhere or if it should be considered for deduplication. The other
struct, zio_t, holds the actual data. With those structs, dbuf_write then calls
zio_write. That call initiates the I/O pipeline where one of the first stages of the
block is compression in the function zio_write_bp_init.

1Synchronizes data on disk with memory.
2Synchronize file’s state with storage device(s).

51

NGl LN

OO Ul W -

_
N — O O

Chapter 5. Implementation

if (compress != ZIO_COMPRESS OFF) {
void xcbuf = zio_buf_alloc(lsize);
psize = zio_compress_data(compress, zio—>io_data, cbuf, Isize);
if (psize == 0 || psize == Isize) {
compress = ZIO_COMPRESS_OFF;
}

Listing 5.2: Block compression in zio_write_bp_init (simplified).

In Listing 5.2 we can see how the block data gets compressed with the algorithm
chosen in dmu_write_policy (called by douf_write). If the compression yields
no savings (physical size = logical size) the compression for the block will be set to off.

5.2 Compression Mode Property

As the name suggests, the compression mode property should be implemented as a
ZFS property, changeable on the fly. The property should be stored — as the normal
compression property — on a per-file-system basis. That means we will have to store
it in the object set. To implement this we had to (among other, minor, things) add a
lookup table in zfs_prop. c and register the property as an “index” type property in
the same file (see Listing 5.3). We registered the property as PROP_INHERIT which
means child object sets (nested file systems) will inherit the property (just as the
normal compression property).

static zprop_index_t compress_mode_table[] = {

{ "off", AC_MODE_OFF 1},

{ "archive", AC MODE_ARCHIVE 1},

{ "energy", AC MODE_ENERGY },

{ "perf", AC_MODE PERFORMANCE }}

};

zprop_register_index (ZFS_PROP_COMPRESSION_MODE, "compression_mode",
AC_MODE_DEFAULT, PROP_INHERIT,
ZFS_TYPE_FILESYSTEM | ZFS TYPE VOLUME,
"off | archive | energy | perf", "COMPRESSION_MODE",
compress_mode_table) ;

Listing 5.3: Adding a new property (compression mode) to ZFS.

Additionally, we had to provide a callback that specifies what should happen in case
the value changes (see Listing 5.4). We just make sure that it is a valid value and
update the entry in the object set. The callback is registered when the object set is
opened and the to be opened object set is passed as an argument.

52

OO Ul WN -

i g
B W N~ OO

Chapter 5. Implementation

static void compression_mode_changed_cb(void *arg, uint64_t newval) {
objset_t xos = arg;
ASSERT (newval < AC_NUM MODES) ;
0os—>0s_compress_mode = newval;

}

int dmu_objset_open_impl(spa_t *spa, dsl_dataset_t xds, blkptr_t xbp,
objset_t xxosp) |

err = dsl_prop_register(ds,
zfs_prop_to_name (ZFS_PROP_COMPRESSION_MODE) ,
compression_mode_changed_cb, os);

Listing 5.4: Adding a callback for compression mode property changes.
g g P property g

5.3 File Type Specific Compression

As we have seen in Section 5.1, ZFS allows us to store a dedicated compression algo-
rithm for a specific file. However, as shown in Listing 5.1, by default the compression
is set to inherit which means it takes the value of the object set. Unfortunately, the
compression algorithm is not part of the parameters of dnode_allocate and neither
is the file name still available inside dnode_allocate.

As a consequence, we will have to decide between two modifications. The first
one is to pass the file name all the way down into the object layer and evaluate the
tile extension there. The other one is evaluating the extension in the interface layer,
and passing down the chosen compression algorithm down into the object layer. We
have opted for the second modification, which means evaluating the extension in
zfs_create inside zfs_vnops. c as this is the last function where the file name
is still available. Note that available in this case means “available with reasonable
effort”. Theoretically the name is available in other layers as well, but retrieving it
would require manners that go against the design of ZFS. We would have to search the
specific ZAP (a hashtable which maps file names to object ids) by value, something
that is not supported and likely not performant. In the end that meant that we had to
change the signature of three functions in ZFS:

1. zfs_mknode (..., compression)
2. dmu_object_alloc (..., compression)
3. dnode_allocate(..., compression)

Once this change was done, two things were left to do. In zfs_create the file
extension had to be evaluated. The extension should then be used together with

53

NGl LN -

= W N -

Gl W N -

Chapter 5. Implementation

the compression mode to retrieve a compression algorithm from a lookup table as
described in Section 3.2. Before that, though, we had to decide how the lookup table
should be maintained and edited. Sections 5.3.1 and 5.3.2 cover the implementation
of this. With the implementation of the lookup table and the mapping between file
extension and file type, choosing the right compression algorithm in zfs_write is
simple as can be seen in Listing 5.5.

ac_mode = os—>o0s_compress_mode;
if (ac_mode !'= AC_MODE _OFF) {

compress = ac_compress_select(ac_mode, name) ;
} else |

compress = 0S—>0S_cCOmpress;
}
zfs_mknode (dzp, vap, tx, cr, 0, &zp, &acl_ids, compress);

Listing 5.5: Selecting the compression algorithm for the new file.

5.3.1 Lookup Table

Ideally, the lookup table should be editable by the user online, when the file system
is mounted and used. As described in Section 3.2.3, the two considered ways that
would make this possible had disadvantages. Therefore we had to use a compiled
list of known extensions. Adding entries to the table using extended attributes was
implemented but later removed as it had too many drawbacks.

The lookup table consists of an array of entries of type ac_file_info_t (see
Listing 5.6) which has two members. The first one is the extension and the other is a
list of compression algorithms — one for each mode.

typedef const struct ac_file_info {

char xext;

uint8_t compressions [AC NUM MODES] ;
} ac_file_info_t;

Listing 5.6: Mapping an extension to a list of compression algorithms.

Listing 5.7 shows how the lookup table looks like (with example entries). The table
is both used to check whether an extension is known and to lookup the compression
algorithm if it is the case.

const ac_file_info_t ac_lookup_table [AC NUM KNOWN_FILES] = {{

/+* PERFORMANCE ARCHIVE ENERGY x/
"txt", {ZIO_COMPRESS L74, ZIO_COMPRESS_GZIP_5, ZIO_COMPRESS_GZIP_1}},{
"gz", {ZIO_COMPRESS_OFF, ZIO_COMPRESS_OFF, ZIO_COMPRESS_OFF} }

}

Listing 5.7: Lookup table with example entries.

54

OO WDN -

RO UT WD -

N NN R Rl
NP, O OVWWONNNOGERE WDN =L O\

Chapter 5. Implementation

Looking up an entry, once the type and compression mode are known, is simple as
shown in Listing 5.8. Both the type of the file and the selected compression mode
are mapped to integers which are subsequently used as array indices to retrieve
the appropriate algorithm. If the provided index (file type or compression mode) is
unknown, the compression is set to inherit. That means in the following ZFS will
behave just as if no changes were made.

uint8_t
ac_lookup_compression (uint8_t ac_mode, uint8_t ac_filetype)
{
if (ac_mode >= ACNUMMODES || ac_filetype >= AC NUM_KNOWN_FILES)
return ZIO_COMPRESS_INHERIT;

return ac_lookup_table[ac_filetype].compressions[ac_mode];

Listing 5.8: Looking up entries in the table.

5.3.2 Extracting the Extension

Extracting the extension first required us to define what should be considered as the
extension. As described in Section 3.2.1, we opted to consider everything past the last
dot in the file as the file extension.

unt8_t
ac_get_filetype (char xfname)

{

char rext;
uint8_t type;

if (fname == NULL)
return AC FILE UNKNOWN;

ext = strrchr (fname, '.7");
if (ext != NULL)
ext++;
if (ext && !(ext[0] == "\0")) {

for (type = 0; type < AC NUM KNOWN_FILES; ++type) f{
if ((strcmp(ext,ac_lookup_table[type].ext) == 0))
return type;

)

return AC_FILE UNKNOWN;

Listing 5.9: Extracting the extension from the file name.

55

NGl LN

Chapter 5. Implementation

As shown in Listing 5.9 we use st rrchr () to obtain a pointer to the last occurrence
of the character “.” in the file name. Incrementing this pointer by one leaves us with
just the extension without the dot. That pointer is then used to compare the extension
with all known ones inside of a loop. The current loop index when a match was found
is our file type. If no match is found we return AC_FILE_UNKNOWN which causes
ac_lookup_compression toreturn ZI0_COMPRESS_INHERIT. We considered to
use a more efficient way to lookup entries inside the table, other than looping over all
of them. But in order for the performance gains by this to matter, the lookup table had

to become remarkably large.

5.4 Adaptive Block Compression

This section will describe how the implementation of adaptive block compression
(see Section 3.3) was done. We decided to test the first block of every indirect block,
which means the decision made there will be used for the next (up to) 127 blocks. As
outlined in Section 3.3.2, we need to make sure that we can exchange information
between the first and the secondary blocks. Furthermore, we need to make sure that
the secondary blocks do not overtake the first block. This is discussed in Section 5.4.1.
As we will see in Section 5.4.2, implementing the cost function introduced in Section
3.3.3 proved to be more difficult than assumed.

5.4.1 Synchronizing First and Secondary Blocks

To exchange the necessary information between the different secondary blocks (chil-
dren), we decided to use the zio_t struct that is part of every I/O operation. We
added three members as shown in Listing 5.10.

typedef struct {

boolean_t io_first_child; // Am 1 the first block?
boolean_t io_first_child_ready; // Is first block ready with testing?
uint8_t io_ac_compress; // Which algorithm won the test?

} zio_t;

Listing 5.10: New members for zio_t which are used to exchange information
between the first and secondary blocks.

When a block enters zio_write_bp_init it will check in the zio_t struct of its
parent if it is the first block. If so, it will set io_first_child to false (see Listing
5.11). All other blocks that share the same parent with the first block will have to wait
until it finishes testing the chosen compression algorithms.

56

NGl WD -

N

N O U1 = W

Chapter 5. Implementation

zio_t xpio = zio_unique_parent(zio);

mutex_enter(&pio—>io_lock);

if (pio—io_first_child) {
pio—io_first_child = B_FALSE;

}

mutex_exit(&pio—>io_lock);

Listing 5.11: The first child will set io_first_childin the parent zio_t to false.

The first child will then start the tests. When it is done, it will set io_first_child_
ready (see Listing 5.12) to true and if there were waiting secondary blocks they will
continue to progress in the I/O pipeline.

cbuf = zio_buf_alloc(lsize);
ac_compress = ac_block_compress_select(ac_mode, lsize, zio—>io_data,
— cbuf);

mutex_enter(&pio—>io_lock);
pio—>io_ac_compress = ac_compress;
pio—>io_first_child_ready = B_TRUE;
mutex_exit(&pio—>io_lock);

Listing 5.12: The first block calls ac_block_compress_select to determine which
algorithm should be used in the following and stores the result in the parent’s zio_t.

The secondary blocks are waiting in the beginning of zio_write_bp_init (see
Listing 5.13) where they call zio_wait_for_first_child (shown in Listing 5.14)
until the first block is done . If that method returns true, they will call usleep_range.
This sleep function does not busy wait. Instead, usleep_range is called with a range
(e.g. 10000-12 000 ps). The documentation states [6]:

“With the introduction of a range, the scheduler is free to coalesce your
wakeup with any other wakeup that may have happened for other reasons,
or at the worst case, fire an interrupt for your upper bound.”

This behaviour is ideal for our case and should not impact the performance too much.
The reason being that usually multiple blocks are waiting at once. They start sleeping
at different times but wait for the same thing. This way the blocks will eventually
synchronize as the scheduler will use occurring wakeups for multiple blocks at once.

57

Chapter 5. Implementation

NGl Wi

if (compress == ZIO_COMPRESS_OFF && ac_mode != AC MODE OFF &&
— !pio—>io_first_child) {
while (zio_wait_for_first_child (zio, pio)) f{
zfs_sleep_until (gethrtime () + AC_WAIT_TIME) ;
zio—>io_wait_count++;
continue;

}

Listing 5.13: The secondary blocks are waiting for the tests to finish in the beginning
of zio_write_bp_init.

Note that not every block will wait in the beginning of zio_write_bp_init as
shown in listing 5.13. Blocks that deal with metadata are not affected by the adaptive
compression logic and will work their way through zio_write_bp_init ignoring
all tests and waiting.

— O 0 0 NN Ul kW -

[

static boolean_t
zio_wait_for_first_child (zio_t =pio)
{

boolean_t waiting = B_FALSE;

mutex_enter(&pio—>io_lock);

if (pio—io_first_child_ready == B_FALSE) ({

waiting = B_TRUE;

}

mutex_exit(&pio—>io_lock);

return (waiting);

Listing 5.14: Called by secondary blocks to determine if the first block is ready.

5.4.2 Integer Cost Function

The first block tests three different compression algorithms: LZ4, LZ]B and gzip-1. The
first algorithm tested is always LZ4. Thereby we make use of LZ4’s early abort feature,
as it is by far the fasted algorithm to detect incompressible data. If the algorithm
detects incompressible data, we will not test the other two algorithms to save time.

Implementing the cost function as planned was not trivial (see Listing 5.15). The
reason for that was that it is not allowed to use floating point calculations. They are too
slow and as such we were restricted to use integers. Since our cost function contains
exponentials we needed a pow function. We used exponentiation by squaring for this.
Since we could not use floating point numbers we used the difference between the
logical and physical size instead of the compression ratio. In case of the archive mode,
we had to use big integer constants to retain as much accuracy as possible while
preventing integer overflows and achieving a large exponential growth.

58

OO Ul WN -

N NDNNR PR PR PR R R
WP OOV XIONUTER WDN P O\

Chapter 5. Implementation

uint64_t
ac_block_compress_cost(hrtime_t t, uint64_t Isize, uint64_t psize,
uint8_t ac_mode, uint8_t compression)

{

uint8_t p = ac_cost_info[compression];
uint64_t c = 0;
uint64_t d = lsize — psize;

switch (ac_mode) {
case AC MODE_ARCHIVE:
d = d / DIV_ROUND_CLOSEST(lsize , 10);
c = (t xpx*x le6) / (ipow(d, 16) / leb);
break;
case AC MODE ENERGY:
c=(t=xp)/d;
break;
case AC MODE PERFORMANCE:
c = (ipow(t, 2) = p) / d;
break;
}

return c;

Listing 5.15: Cost function using only unsigned integers.

Initially we wanted to make use of Intels Running Average Power Limit (RAPL) which
allows us to obtain power measurements of the whole CPU or individual cores. This
would have allowed us to measure how much energy a single compression used.
Unfortunately we were not able to read the RAPL counters from within a Linux
kernel module while it worked perfectly fine from user space. As a consequence, we
had to fall back to using constant values for every compression algorithm, based on
preliminary measurements.

Summary

This chapter described how operations like create and write in ZFS work. Writing to a file
does not imply that its contents are immediately written to disk. That synchronization of
buffers and disk happens later. With the understanding of such internal behaviour of ZFS the
implementation of file type specific compression and adaptive block compression were explained.
Implementing a cost function in the Linux kernel was more complicated than first assumed as
floating point operations are not available due to performance constraints.

59

Chapter 6
Resulis and Evaluation

This chapter presents the results and evaluation of this thesis. In the first section the used
infrastructure together with data collection methods and used test data will be introduced.
The following Section 6.2 will show preliminary measurements that were made to get a better
understanding of performance and behaviour of compression in ZFS. Section 6.3 will show
if and how much overhead the modifications added to ZFS. Section 6.4 will evaluate the
effectiveness of adaptive block compression.

6.1 Infrastructure

All tests were conducted on consumer grade hardware with the test data presented in
Section 6.1.3. The system has a Intel Core i5 2500 CPU of the Sandy Bridge generation
and 8 GB of DDR3 Random-access memory (RAM). The operating system (Ubuntu 14.04)
is installed on a 320 GB HDD. All tests were done on a separate 2 TB drive from Western
Digital.

To see how the compression of the data is influenced by heavy load on the machine
we utilized a Python script that multiplies random numbers on one process for every
core on the machine. All tests were repeated at least three times and the results
averaged.

6.1.1 Data Collection Methods

We wanted to have more information about what happens when data gets compressed
in ZFS. The resulting compression ratio as well as the time it took to compress the data
is easy to obtain. However, to get further insight, we needed more information and
also traced the CPU utilization, power consumption as well as various informations
for every block that ZFS writes and compresses. The following sections briefly describe
how the data was acquired and correlated.

61

Chapter 6. Results and Evaluation

6.1.1.1 ZFS Logs

To analyse ZFS’s internal behaviour we used extensive logging for all relevant com-
pression activities. For every block that enters zfs_write_bp_init we now get
to know whether it was compressed or not. If it was compressed, we log the algo-
rithm and how long the compression took. Logging is done in binary format into a
buffer, controlled by the SPL. The buffer has to be dumped regularly to prevent it
from overflowing. On the system we used the logging did not introduce significant
overhead.

Understanding how the logging works, and how the logs can be accessed, is, to
quote Ned Bass from the ZFS developer mailing list!, “not at all obvious”. Logging
in ZFS is done with the call dprintf (message ...). In Solaris these logs can be
accessed using the tool dtrace. Unfortunately that tool is not (yet) available on Linux
and therefore we have to use a /proc/sys interface exposed by the SPL. If we write
anything to the file /proc/sys/kernel/spl/debug, the logs since the last “dump”
will be written to a file in /tmp named spl-log.XXX. That binary log can then be
opened using the spl command which is part of the SPL sources.

6.1.1.2 CPU Utilization

The CPU utilization was obtained by sampling the data from /proc/stat every
10ms. The file contains statistics about how much time the CPU spent in user mode,
low priority user mode (nice), system and idle. Dividing the sum of the first three
through the sum of all entries gives us the CPU utilization.

6.1.1.3 Energy Consumption

To get data about the energy consumption of the CPU we used the Performance Appli-
cation Programming Interface (PAPI), which allows us, among various other things, to
read data from Intel’s RAPL facility. Originally RAPL is designed to limit the power
usage of Intel CPUs to, for example, meet power constraints in data centers or similar.
However, it also provides registers that contain the energy consumption for reading
which are used by PAPI. We used PAPI in the same program that also traces the CPU
utilization and therefore the energy consumption is also read every 10 ms.

6.1.2 Correlation of Measurements

To correlate the data from ZFS with other data we used timestamps. In ZFS this is
done using gethrtime (). The function is part of the SPL and uses the Linux function
clock_gettime (CLOCK_MONOTONIC). Using the same function in the C program
that calculates the CPU utilization and reads the RAPL data allowed us to correlate

1ht’cps: / /groups.google.com/a/zfsonlinux.org/forum/#!topic/zfs-devel /S7TRIXIRTfg

62

Chapter 6. Results and Evaluation

the data points. The timestamps from the monotonic clock give us the elapsed time
from some arbitrary point in the past, in our case since the system booted.

6.1.3 Test Data

We used five different sets of test data to evaluate how the modified ZFS performs. We
wanted to cover different areas of compressibility with the used data — incompressible,
good and very good compressibility. In addition to that, we wanted test data that
consists of large amounts of files. Our test data consists of the current Linux kernel tree
(as-is and in a tar archive), 500 MB of random data (generated from /dev/random)
and NetCDF data.

linux 637 MB comprised of 47971 files (average file size ~14 kB).
linux.tar Uncompressed tar archive of the Linux kernel.
random.dat 500 MB of incompressible, random data.

TP04 10GB of NetCDF data.

mixed.dat Combination of 1inux.tar and random.dat.

The reason for using the Linux source tree as-is and in a tar archive is that this nicely
demonstrates how the same data (with the same size) can create completely different
results. The overhead of processing that many files in ZFS is enormous and not
only increases the runtime by a large margin, it also heavily influences the resulting
compression ratio.

63

Chapter 6. Results and Evaluation

6.2 Preliminary Measurements

This section presents measurements that were made with the default version of ZFS.
Section 6.2.1 analyses the nine different available compression levels of gzip. In Section
6.2.2 we have a look at the influence of the selected block size on compressibility
with selected algorithms. Section 6.2.3 shows the impact of high system load on the
compression speed and energy consumption.

6.2.1 Study of GZIP’s Compression Levels

This section presents measurements of the nine different compression levels that gzip
offers. Those nine levels are also available in ZFS, currently implemented in the form
of nine different compression algorithms. In the future though, ZFS will offer a com-
pression level property since other algorithms also offer levels. If no level is specified (
zfs set compression=gzip asopposed to zfs set compression=gzip-X),
ZFS will choose level six.

6.2.1.1 Compression of 1linux.tar

250

s—= Duration (idle)
e—e Duration (load)

200 || =—= Compression ratio

150

e
3
9] &
=
L
[}
100
o
o e e ——— ¢
_— &
e
0 e A A
1 2 3 4 5 6 7 8 9

gzip compression level

Figure 6.1: Comparison of the nine different gzip compression levels (% increase
compared to level 1) when compressing 1inux.tar.

In Figure 6.1 we can see how the time during load (100% CPU utilization), during idle
(nothing else is happening on the machine, apart from the compression) as well as the

64

Chapter 6. Results and Evaluation

compression ratio increases together with the compression level. In this example, the
very good to compress file 1inux.tar was tested. Despite its good compressibility,
increasing the level from one to nine only increases the achieved compression ratio
by around 25%. This is not a negligible amount, but at the same time we can see a
big discrepancy when we look at the time needed to compress the file. Compared to
the ratio increase of 25% the runtime increase of 80% on level nine is huge. When the
system is under heavy load it gets even worse. Instead of 80%, level nine needs over
200% longer to compress the file.

Interestingly, the last level where the increase in compression ratio is higher than
the runtime increase, is level six, the default level of ZFS. However this is not the case
under load.

6.2.1.2 Compression of random.dat

10

s+~ Duration (idle)
[]
e—e Duration (load) N
5| e— Compression ratio
A
P @
0
‘E <
)
2
)
&‘ L 4
-5
: L]
—-10 - i ;
A & '3
—15
1 2 3 4 5 6 7 8 9

gzip compression level

Figure 6.2: Comparison of the nine different gzip compression levels (% increase
compared to level 1) when compressing random. dat.

In Figure 6.2 we can see how the gzip levels compare when trying to compress
incompressible data. As we can see, the differences between the levels range between
+10 and -15%. It can be concluded, that increasing the gzip level has no noteworthy
impact when compressing incompressible data.

65

Chapter 6. Results and Evaluation

6.2.2 Influence of Block Size on Speed and Compression Rate

In this section we will examine the impact of block size in ZFS on compression. By
default, the block size is set to 128 kB. ZFS allows block sizes between 512 B and 128 kB.
The next valid block size is always twice as much as the previous one, e.g. 1kB, 2kB,
4 kB etc.

6.2.2.1 Compression of 1linux.tar

4.0 ®
s— Ratio: 1z4
» 40 4+ Ratio: gzip-1
35 ; ~— Ratio: 1zjb
: 35 +— Ratio: zle
&
30 e—e Time: 1z4
5 30 e—e Time: gzip-1
£ » H 0 e—e Time: Izjb
725 ¥ B g | e Time: zle
. A -
g : : 20
3§ 20 e
15
15
—
1.0 5 3 9 3
0.5 16 32 64 128

Blocksize (in kilobytes)

Figure 6.3: Impact of block sizes when compressing 1inux.tar.

In Figure 6.3 we can see the compression of 1inux.tar with all different block sizes
using LZ4, ZLE, LZ]B and gzip-1. The smaller block sizes (0.5 kB — 2kB) thereby seem
to create a huge overhead, as the runtime is significantly higher than for the remaining
block sizes. For this test file, the block sizes between 4kB and 128 kB have equal
performance for all used algorithms with minor variations. As the file is very good to
compress, increasing the block size also increases the compression ratio significantly
(apart from ZLE). The reason is that the LZ77-based algorithms can build bigger
dictionaries that way to look for redundant data.

66

Chapter 6. Results and Evaluation

6.2.2.2 Compression of 1inux

3.5 56

~—a Ratio: 1z4

+—+ Ratio: gzip-1
30N +~—= Ratio: 1zjb
~—a Ratio: zle
o—o Time: 1z4

e—e Time: gzip-1

N
ol

e—e Time: Izjb

e—e Time: zle

Compression ratio
D
o

1.5

05 1 2 1 8 16 32 64 128
Blocksize (in kilobytes)

Figure 6.4: Impact of block sizes when compressing 1inux.

In Figure 6.4 we can see the compression of (essentially) the same data, just not in
a tar archive. In that case (with more than 50000 files of an average 14 kB size), we
can observe a sweet spot at around 32kB. We can also see that the complexity of
compressing that many files outweighs the overhead of smaller block sizes to some
degree. In the previous example the difference between a block size of 512B and
128 kB was ~43 seconds to ~7 seconds. Now the difference is just ~53 seconds to ~40
seconds.

If we factor in both the achieved compression ratio, and the needed runtime, it can
be concluded that 128 kB is the best block size (for the used data), despite (for some
reason) the block sizes 64 and 128 being slightly worse in terms of compression ratio
in the second example.

67

Chapter 6. Results and Evaluation

6.2.3 Impact of High Load on Write and Compression Speed

This section presents measurements of all available compression algorithms in ZFS
(including turned off compression). The focus lies on the consumed energy. All tests
were conducted during load (100% CPU utilization) and idle.

6.2.3.1 Compression of linux.tar

70

_ M M M M [Idle 45
60 - - M - - - -/ Load
- [[Ratio| |40
50 - =
%\ | 35 %
o =
=40 [
S | 3.0.8
< -
> | =
8430 25 &
3 | &
5 S
20 2.0
10 1 - - - j ﬂ ﬂ 15
0 [[[[l D D D — = = 1.0

N 2 o) N “ o q % 9 N ; <
%1;& %q;Q %(l.’& do(l}Q %1;& %’I}Q oo’l;Q doq}Q OO(I;\Q NGNS RS D

Compression algorithm
Figure 6.5: Energy spent compressing 1inux.tar under load and idle.

In Figure 6.5 we can see the energy consumption under full system load and idle,
as well as the achieved compression ratio, for all available compression algorithms
when compressing 1inux. tar. It can be seen that gzip achieves a significantly higher
compression ratio, across all levels, than the other algorithms. After level six though,
the ratio no longer increases considerably.

Looking at the energy consumption of gzip during system load we can see a steady
increase of five to ten kilojoule between levels two and eight. At the beginning (level
one to two) and in the end (level eight to nine) the increase is not that high. The
consumed energy increases regardless of the achieved compression ratio, more spent
energy does not translate to a higher ratio.

The energy consumption during idle does not look as drastic. Especially when com-
paring the first levels of gzip to LZ4 and LZ]B, spending the extra effort looks very
promising. Although the energy consumption increases we get a large increase in

68

Chapter 6. Results and Evaluation

120
_ M M o [Idle 45
100 B] , [Load
B - B [1 Ratio | |40
80 = 35._8
s
% o M 3.0 §
9]
: |
= [a,
2.5 g
40 : - : : i i : : °
@)
2.0
20 : : : : i i : .
0 (((F{i ﬂ ﬂ 1.0
Nig N Y & e

S ec- B S T (S S)
qoq}Q qoq}Q qoq)Q %‘I}Q %@Q qo«[}Q qoq)Q qoq)Q QO(I}Q

Compression algorithm

Figure 6.6: Time spent compressing 1inux.tar under load and idle.

compression ratio in return. In Figure 6.6 we see the data from the same benchmark,
only this time how much time the compression took instead of the spent energy. In
most aspects the time and spent energy correlate one to one. However, when looking
at gzip-1, LZ4 and LZJB, we can see that they all finished faster than the run with
compression turned off. Apart from gzip-1, the algorithms even finished faster when
the system was under load.

We can conclude that for this test data, gzip-1 offers great compression ratios. When
the system is idle it is even faster to compress-and-write than just to write the data
uncompressed. During load however, gzip increases the runtime significantly whereas
LZ4 and LZ]JB still finish faster than the uncompressed run.

69

Chapter 6. Results and Evaluation

6.2.3.2 Compression of random.dat

80 1.20
B Idle

70 _ R R _ B ‘:I Load

60!t o) I S | B B | I ! USSR 1.15
—~ o
] 1
= 50 B B B =
o) Y
o 5
‘g/ 401 0l I — | - _— S - - o OO OO OSSR 1.10 g
> g
5 3
8 300 B &
-)

201 bl I N | - I |- | | OO 1.05

1010 I N | - I |- | (RN SRR SR B -

0 1.00

N M2 2 N 5 o A 2 9 X X0 !
PR G G S A A A G S

Compression algorithm

Figure 6.7: Energy consumption of trying to compress random. dat

How algorithms fare when working on incompressible data is very important. In
Figure 6.7 we can see how much energy the different algorithms consumed trying
to compress random. dat. As pointed out in Section 6.2.1 there is no big difference
between the gzip levels regarding compression time. This translates one to one into
the consumed energy. The other algorithms do significantly better, both under load
and idle. Both LZ4 and ZLE do not create a measurable overhead, only LZ]B is slightly
slower than no compression under load. All gzip levels use more than twice the energy
during idle and more than three times the energy during load compared to the rest.
This is very significant and really boots out gzip as a viable “always on” compression
algorithm for any kind of data.

70

Chapter 6. Results and Evaluation

6.2.3.3 Compression of 1inux

90 = -
A - - E Idle
80 L [] | B ol - 35
0 Load
700 Lo B B |[ET3 Ratio
3.0
60 2
[
-
@50 25 §
2 - ?
E 40 &
S
20 §
30 S
20
15
10
0 1.0

N2 s x5 k4 %5 9
R %&(L §° g% @Y g% ¥ ¥ ¢f ¥

Compression algorithm

Figure 6.8: Time spent compressing 1inux during load and idle.

In Figure 6.8 we can see the Linux source tree being compressed by all available
algorithms. As it is comprised of over 50 thousand files, ZFS has a lot more to do
compared to writing (and compressing) the tar archive of it. The overhead of this is so
huge, that we do not see any difference in compression time between the algorithms
(during system idle). We basically get the compression ratio for “free” (time wise).
It is astonishing that there is not even a difference between gzip-9 and the rest, the
level which performed much slower in the other tests. During load we start to see a
difference, gzip-1 is already slightly slower with the other levels getting increasingly
slower. Still, gzip-9 took “only” twice the time of LZ4.

In Figure 6.9 we can see the energy consumption of this compression. This shows us
that, again, the time spent compressing does not translate one to one to the energy
cost. Although gzip does not take longer than the rest during idle, it uses more energy
(while achieving a larger compression ratio). Both LZ4 and LZ]B use approximately
the same energy as the run with compression turned off, while still offering huge
compression ratios of 2.4 and 2.0, respectively.

71

Chapter 6. Results and Evaluation

50 _
T e |,
M [Load
40| g e el B B | I Ratio |
| 3.0
C) u 2
2 30 | g
2 | 25 §
> o
2020 g*
5 O
10 115
NEFrrfTNlrrrem.
Y

P N N E S SV
g @ @Y ¥ g¥ ¥ g¥ oY & ¥ V¥

Compression algorithm

Figure 6.9: Energy consumption of compressing 1inux during load and idle.

6.3 Added Overhead

This section will analyse how much overhead the changes to ZFS created. Both the
detection of the file type and the block testing result in more work being done before a
block is finally written to disk. The question is how much overhead this creates. If the
overhead is too large it may outweigh the advantages.

6.3.1 File Type Detection

To test the overhead of the file type detection we used the 1inux dataset. We com-
pressed it once with gzip-1 and compression mode set to off. This test represents the
normal behaviour of ZFS without any changes. To get a clean, comparable test with
compression mode set to on, we renamed all files in the dataset to have the same
extension. Then we set the compression algorithm for that extension to gzip-1 and
compressed the dataset again. We compare the time needed to compress and the
consumed energy. The compression ratio is obviously equal. As we can see in Table
6.1 there is no noteworthy overhead.

72

Chapter 6. Results and Evaluation

Default Adaptive
Test Utilization Time Energy Time Energy
Extension idle 33.91s 4530] 34.20s 4580]
Extension load 42.02s 24587] 41.98s 25055]
Block testing idle 150.09s 14582] 150.37s 15538]
Block testing load 174.29s 94790] 192.41s 104107]

Table 6.1: Overhead due to testing blocks or passing through the file extension.

6.3.2 Block Testing

To test the overhead of the block testing, and the inevitably introduced wait times, we
used the NetCDF dataset TP 04 because of its bigger size. All files were renamed to an
unknown extension to make sure that the file type detection does not prevent the block
testing. As this method introduces (sometimes, not always) waits, it is expected to
have some overhead. During idle, the runtime is essentially equal while the additional
work introduces a slight increase in energy consumption of 6.5%. When the system is
under heavy load (100% utilization on all cores) the runtime, and energy consumption,
increases by considerable 10%. This is something that has to be kept in mind albeit
not surprising since testing blocks with compression algorithms before deciding on
one does not come for “free”.

6.4 Adaptive Block Compression

In this section we will investigate how the adaptive block compression worked on
our test data. The primary metric will of course be the achieved compression ratio. In
addition to that we will look at the consumed energy. The used energy gives us more
insight than the used time. Often the time will be equal, yet more energy has been
consumed since significantly more work has been done.

6.4.1 Compression of 1inux.tar

Compression of 1inux.tar results in a total of 4429 blocks being compressed by ZFS.
Four of those blocks are not compressible. The archive mode compresses 3875 of those
blocks using gzip-1 and 640 with LZ4. The result is a compression ratio of 3.52 with an
energy consumption of 1.48 k] which we can see in Figure 6.10. The complete gzip-1
compression resulted in a ratio of 3.68 with an energy consumption of 1.54 kJ. Under
load the archive mode saves around 3 k] since it compresses more blocks using LZ4.

73

Chapter 6. Results and Evaluation

25
] [35
20 - e
30
= =
158 7B = | E
2 O
;.-\4'1 2.5 @
z 5
100 e g
g]]] 5)
a5 205
Sl
15
0 1.0

archive energy gzip-1 1z4 perf
Compression algorithm

Figure 6.10: Comparison of adaptive block compression with gzip-1 and LZ4 when
compressing linux.tar under load / idle.

The other modes, energy and performance, look like the LZ4 run. And indeed both
compressed all blocks using LZ4.

6.4.2 Compression of 1inux

The complete 1inux test dataset consists of over 50 thousand files. In ZFS this results
in 48358 blocks, more than 10 times the amount of the tar archive of the same data.
Although the actual data of this test is very good to compress (demonstrated by the
previous test), LZ4 still disabled the compression for 8048 blocks because it categorized
them as incompressible. On the other hand, gzip-1, which has no early-abort feature
like LZ4, turned off the compression for only 5787 blocks. Compression will be turned
off in ZFS (regardless of the chosen algorithm) if less then 12.5 % were compressed.
Since the adaptive block compression makes use of LZ4’s early abort this results in
a turned off compression for more blocks. As such, the archive mode has turned off
compression for 13022 blocks, energy 14088 and performance even 14105. This results
in compression ratios for the adaptive modes being worse than expected as we can
see in Figure 6.11.

From this test we can conclude that for a dataset with many files being much smaller
than the ZFS block size of 128 kB, using the LZ4 early abort squanders potential.

74

Chapter 6. Results and Evaluation

25 —
3.0
20 = =
< | 25-3
a 15 = g
S o)
23 N] 208
210 3
= S
M v
5 , , , |15

archive energy gzip-1 1z4 perf
Compression algorithm

Figure 6.11: Comparison of adaptive block compression with gzip-1 and LZ4 when
compressing 1inux under load / idle.

This can be circumvented by not relying on LZ4 to detect incompressible data, but
instead gzip-1 and testing whether we compressed 12.5 %. As gzip is much slower
when working on incompressible data this would however mean a significantly worse
performance for adaptive block compression.

6.4.3 Compression of mixed.dat

The mixed.dat dataset is an artificial example constructed to demonstrate the use-
fulness of adaptive block compression. It contains 50 % of incompressible data
(random.dat), a big obstacle for gzip-1. The rest of the dataset consists of 1inux.tar.
We can see in Figure 6.12 that the archive mode achieves almost the same compression
ratio as gzip-1 while conserving significant amounts of energy, both under load and
idle. Under load the archive mode used 28k]J to achieve a compression ratio of 1.6,
while gzip-1 used 51 kJ. During system idle the difference is 2.2 k] (archive) compared
to 3.8 k] (gzip-1). The modes energy and performance also detect the incompressible
data and turn off compression for those blocks.

75

Chapter 6. Results and Evaluation

* 1.8
50 - 17
B] 1.6
;J A0 o g
3 B — — |15¢8
) g
S 30| 14 &
5| B 1
==
g 13 §
B 20 | S
12
TV S B E—
1.1
0 1.0

archive energy gzip-1 1z4 perf
Compression algorithm

Figure 6.12: Comparison of adaptive block compression with gzip-1 and LZ4 when
compressing mixed.dat under load / idle.

6.4.3.1 Block Compression Visualization

To see more than just numbers after the benchmark finished we visualized when blocks
are compressed, how long the compression takes and along with that the current CPU
utilization and energy consumption. The mixed.dat data is especially well suited
for this as it allows us to see just how drastic the difference between good-to-compress
and incompressible data is, and how much extra work that means for gzip.

In Figure 6.13 we can see mixed.dat being compressed by just gzip-1. A blue dot
represents an actual data block being compressed, while the red dots are meta data.
The position on the left y-axis shows us how long the compression of that block
took. The right y-axis shows us the CPU utilization in percent and the current power
consumption in watt. The first half of the graph visualizes the compression of the tar
archive of the Linux kernel, the second half is the compression of random. dat.

As we can see, the compression in the first half takes between 1 and 2 ms for every
data block. An incompressible data block in the second half needs 3 ms and on top of
that working on incompressible data also results in a higher energy consumption as
the CPU utilization goes up to 100 % during compression.

In Figure 6.14 we can see the same data being compressed using the archive mode.
The majority of blocks in the first half is again between 1 and 2ms, compressed by
gzip-1. Some blocks are way above that between 2 and 6 ms — blocks that had to wait.

76

Chapter 6. Results and Evaluation

100
6 File contents
Metadata
5/| — CPU Usage 80 2
— Energy (Cores) kS
£ =
~ ~
() —
: “ 3
2 g
§ § -
2 - alls 2
g 0 g
5 g
o 2
)
20 &
0 A
2 4 6 8 10 12 14 16

Time (s) relative to first block

Figure 6.13: System utilization (CPU, power) and block compression times when
compressing mixed.dat with gzip-1.

100
61 File contents
Metadata ‘ ‘ ‘ i ‘

— Energy (Cores) =
2 =
~— ~
_Oé 60 @B
2 g
& o)
g 5
4 w0 QO
: g
) 2
o]

‘ 20 &

L//\R/’/_V\Vh /\V\A./\/\‘\‘/\/a/\/ \“/\;/\/W/\\/_\’\ .

8 10 12 14
Time (s) relative to first block

Figure 6.14: System utilization (CPU, power) and block compression times when
compressing mixed.dat with adaptive mode archive.

77

Chapter 6. Results and Evaluation

At the 0, 2 and 5 second mark we can also see some blocks finishing between 0.2 and
0.5 ms. Those were compressed by LZ4 which is also reflected in the CPU utilization
and power consumption at that time.

The second half shows us how huge the impact of compression can be compared to
writing blocks uncompressed. The CPU utilization almost never goes above 10 % and
the power consumption stays below 10 W.

This example demonstrated how archive mode can be used to still benefit of the
better compression ratios of gzip while avoiding the enormous overhead of gzip when
working on incompressible data.

6.4.4 Compression of TP04

600
24
E Idle
500] e @ Load -
] [Ratio ||~
2.0
g 400 |- B S
3 s
i) 18 §
2300 | i Z
z u] P 9&
2 =
257010 J I | R AR o B S
14
1000 bl e
12
0 1.0

archive energy gzip-1 1z4 perf
Compression algorithm

Figure 6.15: Comparison of adaptive block compression with gzip-1 and LZ4 when
compressing TP04 under load / idle.

The dataset TP04 is the biggest of all with a size of 10 GB. In Figure 6.15 we can see
the compression using all adaptive modes as well as gzip-1 and LZ4. In ZFS TP04
is represented by total of 81697 blocks. The archive mode compresses 70191 with
gzip-1, 1388 with LZ]B, 8455 with LZ4 and turned off the compression for 1663 blocks.
The resulting compression ratio is 2.2. During idle the compression consumed 40 k]J.
During idle gzip-1 consumed 40.5 k] and achieved a ratio of 2.24.

78

Chapter 6. Results and Evaluation

Summary

This chapter has shown measurements made both with the original and modified version of
ZFS. The preliminary measurements showed that larger block sizes are preferable as it gives
compression algorithms the possibility to build bigger dictionaries to identify redundant data.
On top of that smaller block sizes also create considerable overhead. The different levels of gzip
offer, to some degree, better compression ratios at the expense of significant runtime increase.
When working on incompressible data gzip is significantly slower than all other algorithms
implemented in ZFS.

The modifications of ZFS allowed us to make use of gzip in situations where the default
version of ZFS would experience a severely worse performance. Despite adaptive block com-
pression introducing a slight overhead its usefulness can be justified by the fact that its cost
function reliably detects different kinds of data and reacts accordingly. This makes it possible to
achieve significantly higher compression ratios while avoiding the huge performance penalties
that algorithms like gzip bring along. File type specific compression introduced no overhead
at all and as such is a very well suited addition to ZFS as it allows the user to realize a
compression scheme that would not be possible otherwise.

79

Chapter 7

Conclusion and Future Work

This chapter concludes the thesis. The results of the designed and implemented new features
will be summarized. Furthermore, ideas for future work that were out of scope for this thesis
will be presented.

This thesis focused on the problems of compression in the file system layer. In other
layers than the file system, compression algorithms such as gzip are frequently used to
squeeze out every last bit of compression ratio. However, file systems usually prioritize
performance over compression ratios and as such they use algorithms like LZ4 that
yield good ratios while barely impacting, or even improving, the overall performance.
Although algorithms like gzip are available, the lack of flexibility in the compression
settings makes them an unattractive choice. Choosing an algorithm implies that
everything gets compressed with that algorithm — including incompressible data.

The preliminary measurements showed that gzip can be a legimitate choice as a file
system compression algorithm. When the system is not under full load and the data
is compressible, gzip will generally finish as fast as LZ4 and LZJB while achieving
better compression ratios. However, if confronted with incompressible data gzip will
need up to 15 times longer than LZ4 for a single block. Under load gzip will generally
be slower than LZ4 and LZ]B since gzip needs more CPU resources and as such is
affected more by the higher load.

In the course of this thesis two features were added to ZFS to add flexibility and to
provide a way to make use of gzip while avoiding some of the performance penalties
it brings along. In addition to that a new property was added which allows the user
to specify a use case that further influences the selection of an algorithm.

The flexibility in terms of selecting a compression algorithm was increased with
the implementation of file type specific compression. It allows the user to set the best
compression algorithm for a specific file type if prior knowledge about it exists. Such
knowledge could for example be that the file has already been compressed in user
space and compressing it again would be worthless. In that case the compression can
be disabled for that file type. Other files may show different degrees of compressibility
with different algorithms being better than others. The more the user knows about the
data used on the system, the better the overall compression can be. As determining the

81

Chapter 7. Conclusion and Future Work

file type only happens once, when the file is created, the feature adds no noteworthy
overhead. This procedure has one main weaknesses. It does not work on files that
have no extension as that is the only way to determine the file type.

To negate weaknesses or account for strengths of some algorithms, adaptive block
compression was implemented. It works with a selection of algorithms and tests the
first out of a batch of blocks (which are part of a write operation) for compressibility.
The compressions result in several parameters that are subsequently used to decide
which of the tested algorithms is going to be used until the next test is scheduled.
The parameters used are the time a compression needed, the difference in physical
and logical size and constant values for power consumption that account for the
higher demands of algorithms like gzip. The parameters result in a cost value for
each compression where the algorithm with the lowest cost wins. This, on the one
hand, works very well on large files that have differing compressibility and, on the
other hand, also accounts for changing system load. If, in the beginning of the file, the
system load is very low, algorithms like gzip may win. If towards the end of the file
the load becomes higher gzip likely takes longer because of its higher demands and as
a result will loose because of too high cost.

To further increase the flexibility a new property called compression mode was
implemented that works in conjunction with adaptive block compression and file
type specific compression. It allows the user to specify a use case which may be
archive, performance or energy. Archive mode strives for the best compression
ratio, performance mode for the least decrease in file system throughput and energy
represents a tradeoff. For file type specific compression this gives the user the ability to
set different compression algorithms for the different modes for each file. In adaptive
block compression this weighs different parameters more than others. For example,
in archive mode the compression ratio is much more important than the needed
compression time, whereas in performance it is the other way around.

Future Work

The following sections present ideas for future work. This includes evaluation of a new
compression algorithm once it is implemented in ZFS as well as several improvements
to the current implementation.

Other Compression Algorithms

The evaluation of the changes made in this thesis was limited to the choice of al-
gorithms implemented in ZFS at that time. The differences between the present
algorithms are significant with LZ4 being up to 20 times faster than gzip under cer-

82

Chapter 7. Conclusion and Future Work

tain circumstances. Recently, a new algorithm was developed, Zstandard'. It was
developed by the developer of LZ4 and can be placed between LZ4 and gzip. It
aims for higher compression ratios and still reaches half of LZ4’s speed. It would be
very interesting to see how the algorithm performs as part of the algorithms used in
adaptive block compression.

Implementation

The current implementation is only prototypical as it requires the user to recompile
ZFS in order to change the algorithms used for adaptive block compression or the
lookup table for file type specific compression. Ideally both should be configurable
with ZFS properties. Section 3.2.3 presented how this could be done for file type
specific compression. The set of algorithms used for adaptive block compression could
be represented as a simple, ordered list.

zfs set adaptive_algoritms 1lz4:1zjb:gzip-1
zfs set adaptive_algoritms gzip-l:1zjb:1z4

Ordered, because the testing ends if the first algorithm classifies the data as incom-
pressible. Incompressible is all data that does not get compressed by at least 12.5 %.
LZ4 classifies more data as incompressible than gzip since gzip reaches better com-
pression ratios. This way we can control both the choice of algorithms and the overall
performance with one property. If we want faster choices we use LZ4 as the first
algorithm because of the fast early abort it conducts. If we want better compression
ratios we use gzip as the first algorithm.

Summary

This chapter summarized the results of this thesis. The lack of flexibility when choosing how to
compress data in ZFS has been circumvented with the implementation of two new features.
Tasks for future work have been presented to improve the prototypical implementation and to
evaluate and integrate new compression algorithms by the time they are implemented in ZFS.

http://fastcompression.blogspot.de/2015/01/

83

Bibliography

[1] J. Bonwick, M. Ahrens, V. Henson, M. Maybee, and M. Shellenbaum. The
Zettabyte File System. In Proc. of the 2nd Usenix Conference on File and Storage
Technologies, 2003.

[2] L. P. Deutsch. Deflate compressed data format specification version 1.3, 1996.

[3] R. Elling. ZFS tutorial, June 2009. Slides of a presentation given at USENIX "09,
June 14-19, University of California, San Diego, Chicago.

[4] GZIP is not enough! https://www.youtube.com/watch?v=whGwmOLky2s,
Oct. 2013. [Online; accessed 3-February-2015; Minute 14 — 16].

[5] D. A. Huffman et al. A method for the construction of minimum redundancy
codes. proc. IRE, 40(9):1098-1101, 1952.

[6] Delays - Information on the various kernel delay / sleep mechanisms. https:
//www.kernel.org/doc/Documentation/timers/timers—howto.txt.

[Online; accessed 3-February-2015].

[7] N. Kimura and S. Latifi. A survey on data compression in wireless sensor
networks. In Information Technology: Coding and Computing, 2005. ITCC 2005.
International Conference on, volume 2, pages 8-13. IEEE, 2005.

[8] C. Krintz and S. Sucu. Adaptive on-the-fly compression. Parallel and Distributed
Systems, IEEE Transactions on, 17(1):15-24, 2006.

[9] LZ4 compression. http://wiki.illumos.org/display/illumos/LZ4+
Compression, Feb. 2013. [Online; accessed 9-January-2015].

[10] LZ4 — Extremely Fast Compression Algorithm. https://code.google.com/
p/1z4/. [Online; accessed 11-February-2015].

[11] LZ4-HC: High Compression LZ4. http://fastcompression.blogspot.
de/2011/09/1z4-hc-high-compression-lz4-version-is.html, Sept.
2011. [Online; accessed 21-February-2015].

[12] N. Megiddo and D. S. Modha. ARC: A self-tuning, low overhead replacement
cache. In FAST, volume 3, pages 115-130, 2003.

85

Chapter Bibliography

[13] N. Megiddo and D. S. Modha. One up on LRU. login—-The Magazine of the USENIX
Association, 28:7-11, 2003.

[14] H. Meuer, E. Strohmaier, J. Dongarra, and H. Simon. Top 500 list. Electronically
published at http://www.top500.0rg/lists/2010/11,2014.

[15] S. Microsystems. ZFS on-disk specification draft. Technical Report, Sun Microsys-
tems, 2006.

[16] OpenVPN Source Code. https://github.com/OpenVPN/openvpn/blob/
release/2.3/src/openvpn/lzo.c. [Online; accessed 19-February-2015].

[17] OpenZFS History. http://open-zfs.org/wiki/History, May 2014. [On-
line; accessed 6-January-2015].

[18] O. Rodeh, J. Bacik, and C. Mason. BTRFS: The Linux B-tree filesystem. ACM
Transactions on Storage (TOS), 9(3):9, 2013.

[19] C.N. Taylor and S. Dey. Adaptive image compression for wireless multimedia
communication. In Communications, 2001. ICC 2001. IEEE International Conference
on, volume 6, pages 1925-1929. IEEE, 2001.

[20] D. Vatolin, I. Seleznev, and M. Smirnov. Lossless video codecs comparison 2007.
Inf. téc., Graphics & Media Lab (Video Group) of Moscow State University, 2007.

[21] B. Welton, D. Kimpe, J. Cope, C. M. Patrick, K. Iskra, and R. Ross. Improving i/o
forwarding throughput with data compression. In Cluster Computing (CLUSTER),
2011 IEEE International Conference on, pages 438—445. IEEE, 2011.

[22] Wikipedia. Festplattenlaufwerk — Geschwindigkeit. http://de.wikipedia.
org/wiki/Festplattenlaufwerk#Geschwindigkeit. [Online; accessed
11-February-2015].

[23] Wikipedia. Mark Kryder — Kryder’s Law. http://en.wikipedia.org/
wiki/Mark_Kryder#Kryder.27s_Law. [Online; accessed 11-February-2015].

[24] R. Wolski, N. T. Spring, and J. Hayes. The network weather service: a distributed
resource performance forecasting service for metacomputing. Future Generation
Computer Systems, 15(5):757-768, 1999.

[25]]J. Ziv and A. Lempel. A universal algorithm for sequential data compression.
IEEE Transactions on information theory, 23(3):337-343, 1977.

86

Appendices

87

List of Acronyms

ACE Adaptive Compression Environment
APl .. Application Programming Interface
ARC Adaptive Replacement Cache
Btrfs ... B-tree File system
CPU Central Processing Unit
DMU ... Data Management Unit
DSL .. Dataset and Snapshot Layer
DV A Data Virtual Address
EU European Union
OXt Extend File System
OZiD it GNU zip
HDD .. Hard disk drive
HFS+ ... Hierarchical File System Plus
HTML ... Hypertext Markup Language
HTTP ... Hypertext Transport Transfer Protocol
DD Identifier
LFU Least Frequently Used
LLOC ... Logical Lines of Code
LRU .. Least Recently Used
LVM Logical Volume Manager
LZ77 Lempel-Ziv Compression
LZMA . Lempel-Ziv-Markov chain algorithm
LZO ... Lempel-Ziv-Oberhumer
LZRW . Lempel-Ziv Ross Williams
NTFS ... New Technology File System
NWS Network Weather Service
PAPIl Performance Application Programming Interface
QL Quantization Level
RAID ... Redundant Array of Independent Disks
RAM Random-access memory
RAPL ... Running Average Power Limit
RLE ... Run-Length Encoding
SCP Secure Copy
SFTP Secure File Transfer Protocol
SPA Storage Pool Allocator

89

Chapter . List of Acronyms

SPL Solaris Porting Layer
SSH Secure Shell
TCO Total Cost of Ownership
UMTS ... Universal Mobile Telecommunications System
URE ... Unrecoverable Read Error
VB Virtual Block Size
VDEV .. Virtual Device Driver
VES Virtual File System
VPN Virtual Private Network
WWW World Wide Web
ZAP e ZFS Attribute Processor
ZFS Zettabyte File System
ZIL ZFS Intent Log
ZIO .. ZFS Input / Output Framework
ZLE Zero-Length Encoding
P ZFS POSIX Layer

90

List of Figures

21

2.2
2.3

24
2.5

2.6

3.1

51
5.2
5.3

6.1

6.2

6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10

Deflate compression example. Consists of two steps: LZ77 compression
(line 1 — 2) and Huffman coding (line 2 — 3). Example taken from [4]. . 22
Areas of responsibilty for traditional file systems (left) and ZFS (right). 24
Basic overview of the layered ZFS architecture and where its most

important components canbe found.o 26
Copy-on-write process of writinganew block. 28
An example VDEV that is based on 2 concatenated 250 GB disks that
are mirrored with another 500 GB disk (example taken from [1]). 30
Visualization of the ZFS input/output pipeline. For the sake of simplic-
ity, some intermediate stages were omitted. Basedon [3]. 31

How ZFS should decide whether or not to compress a newly created
tile. The colors of the components refer to the layers of ZFS as seen in
Figure 2.3 (yellow=interface layer, blue=object layer, red=storage layer).
The “on” values of compression and compression_mode refer to

any compression algorithm or a valid mode respectively. 38
Calls from user space to ZFS will go throughthe VFS. 49
Call sequence to create, or write to, a filein ZFS. 50
Buffer synchronization. o0 0oL 51

Comparison of the nine different gzip compression levels (% increase

compared to level 1) when compressing 1inux.tar. 64
Comparison of the nine different gzip compression levels (% increase

compared to level 1) when compressing random.dat. 65
Impact of block sizes when compressing linux.tar. 66
Impact of block sizes when compressing 1inux. 67
Energy spent compressing 1inux.tar underload and idle. 68
Time spent compressing 1inux.tar under load andidle. 69
Energy consumption of trying to compress random.dat 70
Time spent compressing 1inux during load and idle. 71
Energy consumption of compressing 1inux during load and idle. . . . 72
Comparison of adaptive block compression with gzip-1 and LZ4 when

compressing linux.tar underload /idle.. 74

91

Chapter List of Figures

6.11 Comparison of adaptive block compression with gzip-1 and LZ4 when

compressing linux underload /idle. 75
6.12 Comparison of adaptive block compression with gzip-1 and LZ4 when
compressing mixed.dat underload /idle.. 76
6.13 System utilization (CPU, power) and block compression times when
compressing mixed.dat withgzip-1. 77
6.14 System utilization (CPU, power) and block compression times when
compressing mixed.dat with adaptive mode archive. 77
6.15 Comparison of adaptive block compression with gzip-1 and LZ4 when
compressing TP04 under load /idle.. 78

92

List of Listings

51
52
5.3
54
5.5
5.6
57
5.8
5.9
5.10

5.11

5.12

5.13

5.14
5.15

Initialization of compression/checksum algorithm per file. 50
Block compressionin zio_write_bp_init (simplified). 52
Adding a new property (compression mode) toZFS. 52
Adding a callback for compression mode property changes. 53
Selecting the compression algorithm for the new file. 54
Mapping an extension to a list of compression algorithms. 54
Lookup table with example entries. 54
Looking up entriesinthetable. 55
Extracting the extension from the filename. 55
New members for zio_t which are used to exchange information

between the first and secondary blocks. 56
The first child will set io_first_childin the parent zio_t to false. 57

The first block calls ac_block_compress_select to determine which
algorithm should be used in the following and stores the result in the
parent’s zio_t. 57
The secondary blocks are waiting for the tests to finish in the beginning

of zio_write_bp_init. 58
Called by secondary blocks to determine if the first block is ready. . . . 58
Cost function using only unsigned integers. 59

93

List of Tables

1.1

3.1
3.2
3.3
34

6.1

Ratio, compression and decompression speed (in MB/s) of various

compression algorithms on an Intel Core i5-3340M with 2.7GHz [10]. . 10
Example file system scheme. L. 34
Important compression parameters. L. 36
Example file extensions. o0 0oL 40
Example extension lookup table. 41
Overhead due to testing blocks or passing through the file extension. . 73

95

Eidesstattliche Versicherung

Ich versichere, dass ich die Masterarbeit im Studiengang Informatik selbststandig
verfasst und keine anderen als die angegebenen Hilfsmittel — insbesondere keine im
Quellenverzeichnis nicht benannten Internet-Quellen — benutzt habe. Alle Stellen,
die wortlich oder sinngemafs aus Veroffentlichungen entnommen wurden, sind als
solche kenntlich gemacht. Ich versichere weiterhin, dass ich die Arbeit vorher nicht in
einem anderen Priifungsverfahren eingereicht habe und die eingereichte schriftliche
Fassung der auf dem elektronischen Speichermedium entspricht.

Ort, Datum Unterschrift

