
Masterarbeit

Modern Storage Stack with Key-Value
Store Interface and Snapshots Based on

Copy-On-Write Bε-Trees

vorgelegt von

Felix Wiedemann

Fakultät für Mathematik, Informatik und Naturwissenschaften
Fachbereich Informatik
Arbeitsbereich Wissenschaftliches Rechnen

Studiengang: M. Sc. Informatik
Matrikelnummer: 6323654

Erstgutachter: Prof. Dr. Thomas Ludwig
Zweitgutachter: Dr. Michael Kuhn

Betreuer: Dr. Michael Kuhn

Hamburg, den 11.01.2018



There are two hard problems in
computer science: cache invalidation,
naming things, and off-by-one errors.

– Leon Bambrick
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Abstract

The ever increasing gap between computational power and storage capacity on the one side
and storage throughput on the other side leads to I/O bottlenecks in many applications.
To cope with huge data volumes, many storage stacks apply copy-on-write techniques.
Copy-on-write enables efficient snapshots and guarantees on-disk consistency. However,
a major downside of copy-on-write is potentially massive fragmentation as data is always
redirected on write. As fragmentation leads to random reads, the I/O throughput of
copy-on-write storage stacks suffers especially under random write workloads.
In this thesis, we will design, implement, and evaluate a copy-on-write storage stack

that uses Bε-Trees which are a generalisation of B-Trees and limit fragmentation by
design due to larger node sizes. The storage stack has an underlying storage pool which
consists of groups of storage devices called vdevs. Each vdev is either a single storage
device, a mirror of devices, or a group of devices with additional parity blocks so that a
storage pool improves performance and/or resilience compared to a single storage device.
In the storage pool, the data is protected by checksums. On top of the storage pool, we
use Bε-Trees to save all user data and metadata. The user interface of the storage stack
provides data sets which have a simple key-value store interface and save their data in
dedicated Bε-Trees. Each data set can be individually snapshotted as we simply use the
path-copying technique for the corresponding Bε-Tree.
In the performance evaluation, our storage stack shows its advantage over ZFS – a

mature copy-on-write storage stack – in a database workload. Our storage stack is not
only 10 times faster regarding small random overwrites (6.6MiB/s versus 0.66MiB/s) but
it also exhibits a much smaller performance degradation in the following sequential read
of data. While the sequential read throughput of ZFS drops by 82% due to the random
writes, our storage stack only incurs a 23% slowdown. Hence, limiting fragmentation by
design can be very useful for copy-on-write storage stacks so that the read performance
is higher and more consistent regardless of write access patterns.
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1. Introduction
Nowadays, the gap between computational power and storage capacity on the one hand
and storage throughput on the other hand increases constantly (see Figure 1.1). I/O
performance became the major issue in the recent decades as it is often the bottleneck.
Sequentially reading a large HDD takes many hours in 2017, as opposed to multiple
minutes 20 years ago. Regarding random access patterns, this ratio becomes worse as
the seek time of an HDD dominates the access time, and the seek time has only seen a
2-fold improvement in the last 20 years [Con17e].
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Figure 1.1.: Historical development of CPU performance, HDD capacity, and HDD
throughput relative to 1989 [Sch06; Con17d; Con17c; Con17f].

Data reduction techniques such as compression are becoming more popular since less
data results in better space utilization and this often yields higher I/O performance,
too. In particular, compression provides a trade-off between computational power and
the amount of I/O and, hence, can offset the mentioned gap. Nonetheless, we need new
concepts for saving data efficiently as the gap will likely increase in the foreseeable future.
Copy-on-write is such a new concept. With copy-on-write, we never overwrite active

data but redirect every write to a new location.1 When always used, the on-disk state
of this software is consistent at all times. Hence, copy-on-write is a solution for file

1This technique also known as redirect-on-write as copy-on-write actually means that the old data is
copied before overwriting it. We will use the two terms synonymously.
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systems checks which become infeasible due to the huge volume of data. In addition,
copy-on-write enables us to implement lightweight snapshots that can be used for efficient
incremental backups which also become infeasible otherwise. A downside of copy-on-write
is that it causes fragmentation as each write is relocated. Hence, the use of copy-on-write
leads to more random reads so that we have in turn lower read throughput, which we
want to avoid because of the mentioned gap.

Therefore, in this thesis, we will combine the copy-on-write technique with a fragmen-
tation limiting data structure – the Bε-Tree. We will build a general purpose storage
stack with support for multiple data sets and snapshots that provides data integrity and
resilience against disk failures. Additionally, we analyze and evaluate the implementation
against popular competitors used in production.

1.1. Outline
The thesis continues with the following chapters:

Background This chapter introduces technical and theoretical background to build data
structures for persistent storage. This includes the primary data structure for this
thesis, the Bε-Tree, and a list of key features for storage stacks.

Design This chapter presents the layered design approach of the storage stack of this
thesis and describes each layer in detail.

Comparison In this chapter, we compare the design against two popular storage stacks.
First, the Linux storage stack based on ext4, LVM, and RAID and second, ZFS.

Related Work We compare related work with our approach regarding modernizing
storage stacks and increasing the efficiency of storage stack layers.

Implementation In this chapter, we will focus on the Rust programming language in
which the storage stack is implemented and highlight some implementation details
and optimizations.

Evaluation Finally, we will evaluate the performance of this storage stack with different
workloads and compare the results against the Linux storage stack and ZFS.

Conclusion This chapter will summarize the results of this thesis.

Future Work In this chapter, we present possible extensions for the storage stack and
show possible directions for future work.

Usage Last but not least, this appendix is a quick start for using Rust and the storage
stack implementation.
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2. Background
In this chapter, we will introduce storage concepts and data structures. First, we will
present the “Disk Access Model” for analyzing data structures and algorithms that
save data on persistent storage. Afterwards, we introduce the B-Tree which is the most
commonly used data structure for persisting data. Then, we will introduce a generalization
of the B-Tree called Bε-Tree which will be the primary data structure for this thesis.
Finally, we define the term “storage stack” and list key features of modern storage stacks.

2.1. Disk Access Model
Modern computers tend to have a complex memory hierarchy with many levels which
exhibit vastly different performance characteristics (see Table 2.1). For analyzing the
theoretical performance of persistent data structures like B-Trees, we need a suitable but
much simpler model of a computer.

The Disk Access Model (DAM ) – also known as external memory model – introduced
by Aggarwal and Vitter in 1988 [AV88] is the standard model for analyzing persistent
data structures. It relies on the assumptions that the persistent memory levels are
multiple orders of magnitude slower than the volatile ones and that the data structure
is actually I/O bound. The modeled computer has a two level memory hierarchy: A
CPU with an attached cache of size M and a disk of unbounded size. The data transfer
between the cache and the disk operates with a block size B:

CPU +
Memory

B
B Disk

Figure 2.1.: DAM machine

The running time of an algorithm or data structure operation is defined as the number
of block transfers between cache and disk. Hence, this model emphasizes reducing the
number of disk accesses.

2.1.1. Shortcomings
Due to its simplicity, the Disk Access Model does not account for specific performance
characteristics of HDDs and SSDs: Most importantly, the block transfer cost is uniform
and does not depend on the access pattern.
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Memory Level Latency Throughput Size
L1 Cache 1 ns 900GiB/s 4x 64KiB
L2 Cache 4 ns 350GiB/s 4x 256KiB
L3 Cache 14 ns 190GiB/s 8MiB
RAM 65ns 20GiB/s 16GiB
SSD (SATA) 60 µs 500MiB/s 512GiB
HDD 15ms 200MiB/s 4TiB

Table 2.1.: Performance characteristics of various memory levels on a modern desktop
computer with an Intel E3-1225 v3 CPU, a Samsung SSD 850 EVO 500GB
MZ-75E500B and a Seagate Desktop HDD 4TB ST4000DM003 [Spe13;
Ins13; Was13].

Another aspect is choosing the optimal block size for an algorithm in practice. Com-
puters with different cache sizes and number of cache levels may require specific block
sizes for the algorithm to perform optimally. Hence, the algorithm needs to be optimized
for each computer individually. Also, each cache level might need a different block size
to perform optimally.
In the following we will analyze and discuss these aspects.

Access Patterns

In practice, HDDs and SSDs benefit from spatial locality. The total time needed for a
block transfer is the access time plus the transfer time. The access times of multiple
consecutive requests depend on the actual access pattern and can vary a lot – especially
on HDDs as an HDD may have to move its head to the correct position. Figure 2.2
shows the read and write throughput of a consumer HDD and SSD using sequential and
random access patterns with block sizes from 4KiB to 4MiB.

At 4KiB block size – which is the native sector size of the disk – the HDD has a very
low random read and write throughput with about 500KiB/s and 1MiB/s. Sequential
throughput at the same block size is about two orders of magnitude higher than random.
As the block size increases the gap closes. With 4MiB block size, the difference is only
about 40%.

Regarding the read performance of the SSD, the situation is similar but less pronounced.
At 4KiB, sequential access is only about three times faster than random access. At
4MiB block size, both random read and sequential read have a throughput of 510MiB/s
and nearly max out the SATA interface.
The write throughput of the SSD is the same for both access patterns at 4KiB and

8KiB. At larger block sizes, the sequential write performance steadily increases up to
450MiB/s, but the random write performance of the SSD seems to be artificially capped
at 200MiB/s by the drive firmware – maybe to reduce the stress on the internal garbage
collection and wear leveling algorithms or to distinguish this consumer device from more
expensive SSDs.
As a conclusion, we see that the block size matters but also the access pattern plays
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Figure 2.2.: Read and write throughput of a 3.5“ 1TB 7200rpm HDDa and a SATA3
SSDb with varying block sizes.

aModel name: Seagate Desktop HDD 1TB ST1000DM003.
bModel name: Samsung SSD 850 EVO 500GB MZ-75E500B.
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a major role – even for SSDs. The latter part is not taken into account by the Disk
Access Model. Consequently, algorithms with the same runtime under the DAM but
with different access patterns may perform vastly different in practice. To cope with this
deficit, we will analyze the access patterns of the algorithms in this thesis in addition to
the runtime performance in the model.

Optimal Block Sizes

Choosing an optimal block size is a hard problem as the performance of algorithms
depends on many factors so that different computer systems require different block sizes.
The upside is that most factors do not have a strong influence on performance. According
to the Disk Access Model, only the last level of all levels in the memory hierarchy matters
as it is the slowest by a large margin. This last level is actually quite similar among
most computer systems as it consists either of HDDs or SSDs today.

Hence, an algorithm is often optimized for HDDs and SSDs separately, i.e. the algorithm
chooses a different block size. Another aspect is choosing different block sizes for different
workloads as the workload can be a major factor. Often, the actual user can manually
change the block size to tune the algorithm for their workload.

A general solution to this problem is the more advanced Cache-Oblivious Model (CO
Model) where – in contrast to the DAM – cache size and block size are not known to the
algorithm [Fri+99]. Hence, an algorithm which is optimal in the CO Model performs
good on every memory hierarchy and does not need any manual tuning.

2.2. B-Tree
The B-Tree is one of the most common index data structures for external memory today.
It was introduced by Bayer and McCreight in 1972 [BM70]. The following definition
of a B-Tree is based on [Rod07] and [Cor+09]. For a more in-depth introduction, see
Introduction to Algorithms, 3rd Edition [Cor+09].

From a high-level perspective, a B-Tree is a map from a totally ordered set of keys to
a set of values and provides the following operations which run in logarithmic time:

query(k) Returns the value of a key if present.

insert(k, v) Inserts a new key value pair.

delete(k) Deletes a key.

range-query(klow, khigh) Returns a sequence of key-value pairs that lie in the given
key range.

As the name suggests, a B-Tree is a tree and it has two node types: internal nodes and
leaves. Every internal node contains an ordered sequence of keys (ki) and a sequence of
child pointers (ci). There is exactly one more child pointer than keys. Every leaf node
contains an ordered sequence of key-value pairs ((ki, vi)).

12



Let N be the number of key-value pairs in the B-Tree and let t ≥ 2 be the minimum
degree of the internal nodes. The following structural invariants hold:

1. Every non-root node contains at least t− 1 keys and, hence, at least t children for
internal nodes. The internal root node contains at least 1 key and, thus, at least 2
children.

2. Every node contains at most 2t + 1 keys (and internal nodes have at most 2t + 2
children).

3. All leaf nodes have the same depth.

Figure 2.3 shows a conceptual overview. This variant of a B-Tree – no data in the
internal nodes – is also known as a B+-Tree and is the most common one in actual
implementations. Having no data in the internal nodes has two main benefits: First, the
range query algorithm simply needs to walk along the leaf nodes as the leaves contain all
key-value pairs. Second, the internal nodes can have a higher fanout so that caching the
internal nodes becomes more effective.

In the following we will describe how to implement the four mentioned operations, give
brief argumentation on correctness, and analyze their resource requirements and runtime
performance. We will use a top-down approach for fixing the structural invariants of the
tree due to an insertion or deletion – similar to [Rod07].

Pivots

Pivots . . .≥ t children . . . Pivots

Elements Elements. . .Θ(N
B

) leaves . . .

. . . . . .

... ...

B

B B

Figure 2.3.: B-Tree. Figure adapted from [Jan+15b]
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2.2.1. Operations
Query

Let k be the queried key. Starting at the root, apply the following recursive algorithm:

1. If the current node is an internal node, check for the largest i so that k ≤ ki. If
there exists a satisfying i, query ci for the key k. Otherwise, query the right-most
child.

2. If the current node is a leaf node, look for the corresponding key value pair and
return it if it exists. Otherwise, return nothing.

Correctness Because this algorithm walks down the tree w.r.t. the search order, it
finds the correct leaf and, hence, returns the correct result. As it does not modify the
tree, it cannot violate the invariants.

Insert

Let (k, v) be the key-value pair to be inserted. Starting at the root, apply the following
recursive algorithm:

1. If the root node has 2t + 1 keys, execute the operation Split and add a new node as
root node which is an internal node with this node and its new sibling as children
and the split pivot key (see Figure 2.4).

2. If this node is a leaf node, insert the key-value pair in this node so that the order
is maintained if the key does not exist yet. If the key exists, just replace its value.

3. Otherwise, it’s an internal node. Find the largest i so that k ≤ ki. If i exists, use
ci as child node. Otherwise, use the right-most children as child node.

4. If this child node has 2t + 1 keys, execute the Split operation on the child and
insert its right sibling as ci+1, shifting all children after it to the right. Insert the
pivot key as ki+1, shifting all pivot keys after it to the right. Go to step 3 again.

5. Go to step 2 with the child node as current node.

Correctness This algorithm walks down the tree w.r.t. the search order so that the
inserted key pair is in the correct leaf. It ensures that each node on this path has fewer
than 2t + 1 keys before visiting it – except the root node. As the parent nodes are not
full, their child nodes can be split if they are full and the key pair can be inserted into
the leaf without overflowing. Note that step 4 is executed at most once per level.
Hence, the algorithm does not violate the invariants 1 and 2. Only the first step in

the algorithm may violate invariant 3, but as it adds one tree layer above the previous
node all leaf nodes are still at the same depth, so the third invariant is not violated.

14
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Figure 2.4.: Splitting the internal root node of a B-Tree

Split

Given: A node.
Returns: A new sibling node and a pivot key.
Precondition: Node has 2t + 1 keys.
Postcondition: Both nodes have at most 2t keys.

1. If this node is an internal node, remove the keys kt+1, · · · , k2t+1 and the children
ct+2, · · · , c2t+2 from the node. Add a right sibling internal node to the node with
(kt+2, · · · , k2t+1) as pivot keys and (ct+2, · · · , c2t+2) as children. Use kt+1 as pivot
key for these two nodes in the parent.

2. If this node is a leaf node, remove the key-value pairs (kt+2, vt+2), · · · , (k2t+2, v2t+2)
and make a new right sibling leaf node which contains these (in the original order).
Use kt+1 as pivot key for these two nodes in the parent.

Correctness This algorithm obeys the search order because the new pivot key of the
two nodes divides the key space in two parts, where the left nodes belongs to the lower
part (≤) and the right node to the upper part (>). Splitting a node results in two nodes
at the same depth with at least t and at most t + 1 keys. Hence, it does not violate the
invariants.

Delete

Let k be the key to be deleted. Starting at the root, apply the following recursive
algorithm:

1. If this node is a leaf node, delete the corresponding key-value pair if present and
return.

2. Otherwise, it is an internal node. Find the largest i so that k ≤ ki. If i exists, use
ci as child node. Otherwise, use the right-most children as child node.

15



3. If this child has t− 1 keys, execute the Rebalance operation on child this node and
one of its direct siblings. If this is the root node and it has only one child, set the
child as root. Go to step 2 again.

4. Go back to Step 1 with the child node as current node.

Correctness This argumentation is very similar to the argumentation for the Insert
operation. The algorithm walks down the tree w.r.t. the search order so that it finds the
leaf to which the key belongs. It ensures that each node on this path has at least t keys
before visiting it – except the root node. As the parent nodes have one more key than
they must have, their child nodes can be merged by rebalancing and the key-value pair
can be deleted without underflowing. Note that step 3 is executed at most once per level.

Hence, the algorithm does not violate the first two invariants. In the second step, we
may change the depth of nodes by removing the root node, but all leaf nodes will still be
at the same depth.

Rebalance

Given: Two nodes which are direct siblings and their pivot key in the parent.
Returns: Either a new pivot key for the parent or a merged node.
Precondition: One of the nodes has t− 1 keys.
Postcondition: The two nodes (or the merged node) have at least t keys.

1. If they are internal nodes: Append the parent’s pivot key and the pivot keys of the
right node to the pivot keys of the left node. Append the right node’s children to
the left node’s children.

2. If they are leaf nodes: Append the key-value pairs of the right node to the key-value
pairs of the left node.

3. If the right node has had at most t keys, return the left node as the merged node.

4. If they are internal nodes: Let x be the number of keys in the left node. Move the
upper bx

2c keys and the upper bx
2c+ 1 children from the left node to the right node.

Remove the upper most key from the left node and return it as pivot key.

5. If they are leaf nodes: Move the upper half of the key-value pair sequence of the
left node to the right node. Return the largest key in the left node as pivot key for
the parent.

Correctness This algorithm obeys the search order because keys and children are not
reordered during the operation but only moved between the two nodes. If the two nodes
have been merged, they had at least 2t− 2 and at most 2t− 1 keys due to the condition
in step 3. Hence, the number of keys in the merged node is in bounds. Otherwise, the
nodes will be rebalanced and both nodes have in total at least 2t and at most 3t keys.
By splitting the number of keys evenly between both nodes, they have at least t keys

16



and clearly fewer than 2t keys. So the number of keys is in bounds for the rebalance
case, too.

Range Query

Let (klow, khigh) be the queried key range. Starting at the root, apply the following
recursive algorithm:

1. If the current node is a leaf node, return all key-value pairs that are in the queried
range.

2. Otherwise, the current node is an internal node.

3. Find the largest i so that ki < klow or set i to 0 if no such i exists.

4. Find the smallest j so that kj ≥ khigh or set j to the number of pivot keys.

5. Call this algorithm for each child in (ci, · · · , cj) and aggregate the results.

Correctness This algorithm recursively descends to all children whose key range deter-
mined by the pivot keys overlaps with the requested range. Hence, this algorithm visits
all leaves that may contain key-value pairs in the given key range.

2.2.2. Resource and Runtime Analysis
The query operation walks down the tree from the root to a leaf and needs access to two
nodes at the same time – a parent node and its child node. Therefore, the runtime of
this operation is bounded by 2h where h is the height of the B-Tree.
Regarding the insert and delete operation, we also have algorithms that walk down

the tree, but we have a bound of 3h as they might need to split or rebalance nodes and,
hence, need three nodes: the parent and two children.
In summary, the resource requirements have very low bounds for all operations. We

will now show that the operations are also “fast” by bounding the height h of B-Trees.

Theorem 2.2.1. The height h of a B-Tree is at most 1 + logt
N
2 where N ≥ 1 is the

number of key-value pairs in the B-Tree.

Proof. Due to the invariants, the root node contains at least 1 key and all other nodes
contain at least t− 1 keys. Hence, a B-Tree with height h has at least 2 nodes on depth
1, 2t nodes on depth 2, 2t2 nodes on depth 3, and so on. Therefore, there are 2th−1 leaf
nodes. As each leaf node has at least 1 key, we have the following inequality:

N ≥ 2th−1

By simple algebra, we get logt
N
2 ≥ h− 1.
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We assume that the keys and the child pointers have a constant size so that we can
set t ∈ Θ(B) (if we fill the nodes up to the block size B). Hence, h ∈ O(logBN) holds.
It follows that all presented B-Tree operations have a runtime bound of O(logBN). As a
last proof, we will show that the query operation is asymptotically optimal.

Theorem 2.2.2. For comparison based index data structures, the lower bound for the
query operation is Ω(logB(N)).

Proof. Essentially, we need to find the correct position for inserting our element in an
ordered sequence of N elements so that the sequence remains ordered after the insertion.
The position has a range of [1, N + 1] and has log2N + 1 bits of information. If we fetch
a block from the disk, it contains c · log2B bits of information where c is a constant.
Therefore, we need to fetch at least d log2N+1

c·log2B
e ∈ Θ(logBN) blocks to find the correct

position.

2.2.3. Evaluation
As shown in the analysis, B-Trees have good performance in theory because all operations
run in asymptotic logarithmic time. Additionally, we have seen that there are not any
large constants hidden in the asymptotic analysis: Every node is at least half full, every
operation needs at most two nodes per level. This results in a good performance in
practice for a many workloads. Especially for random queries, B-Trees are very fast.
Another aspect is the complexity of implementing the shown operations which is

reasonably low. Due to its simplicity and its age, the B-Tree is well understood. In [Gra11],
Graefe discuss many advanced B-Tree concepts and techniques such as concurrency
control, optimized representations of B-Tree nodes, variable-length data, and efficient
compression of nodes.

For optimizing the B-Tree for certain workloads, we have two tuning parameters: The
obvious block size B which controls the B-Tree node size and the non-obvious node size
bounds. The chosen node size bounds are used for an easy analysis and can be relaxed
so that nodes may contain less keys. This helps avoiding costly splits and rebalances at
the cost of space utilization and node fanout. For more information, see the discussion
in [Rod07].

The B-Tree node size is a trade-off parameter for range query and (random) query/insert
performance. Large nodes have a high fanout and many entries in the leaves so that
range queries are fast. But (random) queries and random inserts have a huge read and
write amplification as each operation results in one leaf node read or write (for B-Trees
that are not tiny). Small nodes have low fanout and less entries so that the tree has a
higher depth which directly affects all operations. In practice, a cache is used for the
tree which will hold most of the internal nodes so that most operations just need one
I/O. Therefore, most implementations have quite small node sizes per default:
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• Btrfs: 16KiB1

• PostgreSQL: 8KiB2

• Ext4/XFS: 4KiB3

These node sizes result in good query performance, reasonably good insert performance,
and bad range query performance as range queries suffer when the tree is aged. As
already mentioned in Section 2.1, the Disk Access Model does not depict that the I/O
performance depends on the actual access pattern in practice. When the tree is still
young, many leaf siblings will be written next to each other on the disk so that a range
query involves less random seeking while reading these leaves. Hence, it benefits from
the good sequential read performance in this case. As the tree ages, some leaf nodes will
be rewritten to other places on the disk. Now, a range query depends on random read
performance which is especially low on HDDs.
Random inserts still have a high write amplification for small values. For example,

if we insert many 20 byte values with random keys, we need at least one node write
(the leaf node) per value which results in a write amplification factor of about 200 for a
node size of 4KiB. It is an inherent downside of B-Trees that inserts are as expensive
as queries. This does not need to be the case as we will see in the next section that
introduces Bε-Trees – a refinement of B-Trees with a potentially much higher range query
and insert performance while maintaining the optimal query performance.

1Since Linux 3.12 (see man mkfs.btrfs).
2Compile time default page size. Each B-Tree node is stored in one page.
3Block size. Each B-Tree node is stored in one block. Ext4 actually uses H-Tree for indexing which is
a B-Tree derivative.
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2.3. Bε-Tree
Brodal and Fagerberg analyzed the trade-off between insert and query performance in
[BF03]. As B-Trees already have an asymptotically optimal query performance, it is
interesting to know whether the insert performance can be optimized without losing the
optimal query performance. The paper shows two lower bound trade-offs and also proves
that these bounds are tight by providing data structures that match these bounds.

Figure 2.5.: Trade-off curve between query and insert performance for comparison based
index data structures [BF03]

In Figure 2.5, we see the resulting trade-off curve. The axes depict the number of I/Os
required per operation. The three solid lines denote the performance of data structures
that match the trade-off curve. From left to right: truncated buffer tree (a variant of
the buffer tree [Arg95]), Bε-Tree, and the B-Tree. As the curve suggests, the Bε-Tree
has a much higher insertion performance than the B-Tree without sacrificing query
performance.

We will now give an introduction to Bε-Trees similar to the B-Tree as they are derived
from the B-Tree and provide the same operations. For a more detailed overview, see “An
introduction to Bε-Trees and write-optimization” [Ben+15].

Figure 2.6.: A Bε-Tree [Ben+15]

A Bε-Tree supports the same operations as a B-Tree: query, insert, delete, and range-
query. It also builds on a similar tree structure, but with an important refinement: In
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a Bε-Tree, each internal node has an associated buffer (see Figure 2.6). The tuning
parameter ε ∈ (0, 1) selects how much space the buffer and the pivot keys occupy. (For
a B-Tree, we essentially have ε = 1.) In these buffers, a Bε-Tree keeps messages that
encode updates to an underlying leaf. The key to improving the insert performance is to
delay the actual insertions by keeping them in buffers until they are eventually applied to
the leaf. If we have a full buffer on insertion, we flush the buffer: We take the messages
that correspond to a child and insert them into the child’s buffer if it’s an internal node
or apply it to the leaf.

Let N be the number of key-value pairs in the Bε-Tree, B the block size, ε ∈ (0, 1), and
t ≥ 2 with t ∈ Θ(Bε) be the minimum degree of the internal nodes. Let s ∈ Θ(B −Bε)
be maximum number of messages in internal nodes and u ∈ Θ(B) with s ≤ 2u the
minimum number of entries in the leaf nodes. The Bε-Tree has very similar structural
invariants to the B-Tree but with some additions for the buffers:

1. Every non-root internal node contains at least t − 1 keys and, hence, at least t
children. The root node contains at least 1 key.

2. Every internal node contains at most 2t keys.

3. Each buffer contains at most s messages.

4. Every non-root leaf node contains at least u entries.

5. Every leaf node contains at most 2u entries.

6. All leaf nodes have the same depth.

7. All messages for a key are on the single root-to-leaf path for this key w.r.t. the
search order.

We will now describe the operations on the Bε-Tree. We will start with the basic set
of query and insert to simplify the analysis. Later on, we will show how to implement
delete using insert and introduce upserts which enable fast updates to Bε-Trees.

2.3.1. Operations
Query

Let k be the queried key. Starting at the root, apply the following recursive algorithm:

1. If the current node is an internal node, collect all messages in the buffer that belong
to our search key k and select the next child to query w.r.t. the search order.

2. If the current node is a leaf node, look for the corresponding key-value pair and
apply all collected messages to it in reverse order (i.e. from old to new). Return
the result.
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Correctness By obeying the search order we find the corresponding leaf to our search
key. Due to invariant 7, we know that we have collected all messages for the search key
so that after applying these messages in order, we obtain the correct result.

Insert

1. If the node is an internal node with 2t keys or a leaf with 2u entries, execute the
Split operation on the node and add a new internal node as root node with an
empty buffer, the pivot key as single key, and the old root node and its sibling as
children.

2. If the root node is an internal node and its buffer contains s messages, execute the
Flush operation on it. If the root node has only one child, set the child as root
node, execute the Insert operation for each of the messages in the buffer, and go
back to step 1.

3. Insert the message if the root node is an internal node or apply the message to the
leaf node.

Correctness The algorithm inserts the message at the root node so that this message
is the “newest” message on the root-to-leaf path for this key. Before the insertion the
algorithm ensures that there is enough space in the root node by splitting in the leaf
node case or flushing in the internal node case.

Flush

Given: An internal node with t′ keys and s′ messages.
Precondition: t′ < 2t and s < s′ ≤ 2t+1

2t
s

1. Select a child node that has the most messages in the buffer in its key range.

2. If the child is a leaf, apply all these messages to the leaf, split if necessary, and
return.

3. If the child has 2t keys, execute the Split operation on the child node, insert the
sibling and the split key into this node as in the B-Tree case, and continue with
the child node that has the larger buffer in this node.

4. Move as many messages as possible into the corresponding child’s buffer without
violating the precondition for flushing the child node.

5. If the child node has more than s messages in its buffer, execute the Flush operation
on the child node.
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Correctness The algorithm flushes messages along the corresponding root-to-leaf paths.
By selecting a child with the most buffered messages and the pigeon hole principle, we
can guarantee that at least b s

2t
c messages have been selected and will be flushed so that

afterwards this node buffer contains at most s messages.
In the child leaf node case, we apply up to 2t+1

2t
s messages to the leaf. The resulting

leaf can have 0 to 4u entries so that one execution of rebalance or split fixes this anomaly.
Therefore, this node may gain or lose at most one child. Due to the precondition, the
node fanout invariants cannot be violated.
In the child internal node case, we flush the messages to the corresponding child’s

buffer. Because we split the child beforehand, it cannot overflow during the flush process.

Split

Given: A node.
Returns: A new sibling node and a pivot key.
Precondition: Either an internal node with 2t keys or a leaf with at least 2u and at most
4u entries.

1. Split the nodes as described in the B-Tree case.

2. If these are internal nodes, add all messages of the previous node into the buffers
so that messages with keys lower or equal to the pivot key belong to the left node’s
buffer and all other messages to the right one’s.

2.3.2. Resource and Runtime Analysis
As for B-Trees, the query operation walks along the root-to-leaf path and needs access
to a child node when examining the parent node – hence, at most two nodes at the
same time. Additionally, this operation collects all messages for the search key on this
path which can be up to s · h messages where h is the height of the Bε-Tree. Again, the
runtime of this operation is bounded by 2h.
The worst case runtime performance for the insert operation is also bounded by the

height: If all buffers overflow after flushing on the root-to-leaf path for this key, we have
to modify all nodes on this path and each of those nodes might split. Resource wise, the
insert operation needs at most three nodes at any time – in the case of a split.

Much more interesting is the amortized insertion performance of the Bε-Tree which
is significantly better compared to B-Trees. Due to the batched flushes of at least
b s

2t
c ∈ Θ(B1−ε) messages, L insertions result in O( L

B1−ε ) flushes per level. In total, we
have a cost of O(h L

B1−ε ) and respectively an amortized insertion cost of O( h
B1−ε ) which is

much lower than the worst case insertion cost of O(h).
The B-tree height theorem (and proof) (see Theorem 2.2.1) can be applied to Bε-Tree

without any modifications. This implies the following bound:

h ≤ 1 + logt
N

2 for N ≥ 1
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Before evaluating these results, we will first describe how to implement deletion for
Bε-Trees and introduce the upsert operation which benefits from Bε-Trees.

2.3.3. Deletion
As we use generic messages for insertions, we can also implement the delete operation by
message insertion. For the deletion of an element, we simply insert a tombstone message.
On query, this message will be applied to the previous value and just delete it. Note that
we do not actually delete the value in the leaf as this would be too expensive. The actual
deletion occurs eventually when the tombstone message is flushed to a leaf. As the leaves
can underflow when applying messages that delete data, we may have to rebalance nodes
when flushing. Rebalance can be implemented just like for B-Trees expect that we need
to rebalance the buffers of internal nodes as well.

Deleting elements by insertion implies that the delete operation has the same runtime
bounds as insertion for Bε-Trees.

2.3.4. Upsert
Many workloads involve a read-modify-write pattern. Mapping this pattern to B-Trees,
we have a query followed by an insert. In total, we have a cost of Θ(h) = Θ(logBN)
for this pattern. For Bε-Trees, we could use the same operations to implement this
pattern but this would result in the same performance as for B-Trees. In particular, we
cannot take advantage of the improved amortized insertion performance because of the
(dominating) query performance.

A solution to this problem is the upsert operation which encodes an update or insert
for a specific key. If the value of this key is already present, it will be updated, otherwise
it will be inserted. If the upsert does not depend on any state, we can encode this
operation as message and insert it into the tree. On query, the upsert message is applied
on-the-fly just like for the tombstone messages. Eventually, the messages will be flushed
to the leaf and the actual operation will be applied on the value.

With this concept, we can support the read-modify-write pattern on Bε-Trees with a
single insert operation and, hence, provide a significant speed up compared to B-Trees.

2.3.5. Evaluation
Putting all results together, Bε-Trees have a very good performance and seem superior to
B-Trees. Table 2.2 depicts the theoretical runtimes of B-Tree and Bε-Tree: The Bε-Tree
with ε = 0.5 has the same asymptotic worst case runtime as the B-Tree for all operations,
but improves amortized insert, upsert, and delete by a factor of

√
B. This results in

an asymmetry between query and insert performance and therefore the Bε-Tree is also
called a write-optimized data structure. Bε-Trees are especially suited for write heavy
workloads.

Regarding implementation complexity, a Bε-Tree is only slightly more complicated
than a B-Tree with the added buffers for internal nodes. As the Bε-Tree is still quite
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B-Tree Bε-Tree Bε-Tree with ε = 0.5

Tree height Θ(logBN) Θ(1
ε
logBN) Θ(logBN)

Query Θ(logBN) Θ(1
ε
logBN) Θ(logBN)

Insert, Upsert, Delete
(amortized) Θ(logBN) O( 1

εB1−ε logBN) O( 1√
B

logBN)

Insert, Upsert, Delete
(worst case) Θ(logBN) O(1

ε
logBN) O(logBN)

Table 2.2.: Theoretical comparison of B-Tree and Bε-Tree

young, it is not so well understood as the B-Tree. Many concepts for B-Trees should be
applicable to Bε-Trees due to their similarity though.
In practice, we have three tuning parameters for a Bε-Tree: node size bounds, node

size, and fanout. As for B-Trees, the presented node size bounds should be relaxed to
avoid too frequent splits and rebalances. For node size and fanout, we have a different
situation: While the node size was a trade-off parameter for range query and (random)
query/insert performance in B-Trees, the insert performance significantly benefits from
larger nodes in Bε-Trees. So only (random) queries tend towards smaller nodes. Hence,
most Bε-Tree operations favor a much larger node size as we have seen for B-Trees. If we
increase the node size from 4KiB to 4MiB, the theoretical insert performance suggests
that we have a speed up of 32 for insert. Range queries perform much better with larger
node sizes too as we need much less seeks.
There is only one implementation of Bε-Trees used in production the author knows

of which is PerconaFT [Per17].4 This implementation has a node size up to 4MiB and
a fanout from 4 to 16. By the pigeon hole principle, this ensures that on each flush at
least 256KiB of data are moved. Due to this invariant, writes are efficient on typical
storage devices and the maximum write amplification is limited to acceptable levels.
All in all, the Bε-Tree maintains the worst case performance of a B-Tree, but has a

much better amortized insert and upsert performance. In combination with larger node
sizes, we can expect to improve insert performance by one or two orders of magnitude
compared to B-Tree. Likewise range queries are also faster due to the larger nodes. In
practice, the query performance is expected to be slightly slower because of the increased
tree height.

Before describing how to build a key-value store using Bε-Trees, we will briefly compare
the Bε-Tree to another very common write-optimized data structure: the Log-Structured
Merge Tree (LSM).

4Before the acquisition of Tokutek by Percona in 2015, PerconaFT was also known as TokuFT.
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Data Structure Insert Upsert Query Range Query

Bε-Tree with ε = 0.5 logBN√
B

logBN√
B

logBN logBN + k
B

Bε-Tree logBN
εB1−ε

logBN
εB1−ε

logBN
ε

logBN
ε

+ k
B

B-Tree logBN logBN logBN logBN + k
B

LSM logBN
εB1−ε

logBN
εB1−ε

log2
BN

ε

log2
BN

ε
+ k

B

LSM + BF logBN
εB1−ε logBN logBN

log2
BN

ε
+ k

B

Table 2.3.: Amortized asymptotic runtime of operations for Bε-Trees, B-Trees, Log-
Structured Merge Trees (LSM) [ONe+96], and LSMs with Bloom filter (BF).
Based on [Ben+15]

2.3.6. Comparison of B-Tree, Bε-Tree, and LSM
Log-Structured Merge Tree is due to Patrick O’Neil in 1996 [ONe+96] and is the most
commonly used write-optimized index data structure today. There are multiple variants
of LSMs, but all of them feature a very good insert performance and mediocre query per-
formance without optimizations. Table 2.3 compares the amortized asymptotic runtime
of various operations. Without a Bloom filter, LSMs have inferior query performance
compared to Bε-Trees and B-Trees. But with a Bloom filter, LSMs cannot provide a
fast upsert operation. In addition, the range query performance is inferior. Compared
to B-Trees, LSMs improve on insert performance, but lose on query performance. In
contrast, Bε-Trees strictly improve compared to B-Trees.

In practice, LSMs need background work to function. It can be quite tricky to ensure
that the background work is done fast enough as “[. . . ] existing log structured techniques
improve write throughput but sacrifice read performance and exhibit unacceptable latency
spikes” [SR12]. Bε-Trees do not need any background work and, hence, are probably
easier to implement and tune for high performance.

2.4. Storage Stack
A storage stack is a stack of software layers and hardware components for managing
data. At the top layer, a storage stack provides an interface to manage the data. Most
of the time, this is a POSIX-compatible filesystem. At the bottom of the stack, there
are multiple storage devices such as hard disks and SSDs. There are a number of key
features every storage stack should provide:

Scalable performance The throughput of the storage stack should increase nearly
linear with the number of underlying storage devices. Depending on the actual
configuration, this might affect only read or write throughput.

Data redundancy There are many hardware components in every storage stack that
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may fail: storage controllers, cables, and most notably hard disks. Regarding hard
disks, recent studies suggest that up to 10% per year experience failures [Bai+08].
Therefore, a storage stack needs to save data redundantly so that it is resilient
against disk failures. As the disk capacity keeps growing faster than the disk
throughput, the demand for double or triple redundancy rises [Lev10]. Especially
during reconstruction data loss is quite likely as “[a] significant number (8% on
average) of corruptions are detected during RAID reconstruction” [Bai+08]. Hence,
the storage stack should support at least double parity.

Multiple data sets The available space of storage stack should be partitionable into
multiple data sets so that the user can group their data into logically separated
sets.

Dynamic configuration The storage stack should be configurable after the initial cre-
ation. This involves adding more storage devices and managing data sets such as
creating and deleting data sets and changing their size.

Snapshots Each data set should be snapshottable on its own so that the state of a
data set at a specific point in time can be preserved. This is especially useful for
preventing data loss due to deleting or overwriting data by accident. It should be
possible to create multiple snapshots and to rollback a data set to an older state
specified by a snapshot. Regarding good space efficiency, the snapshots should be
copy-on-write.

Easy administration The storage stack administration should be easy and the adminis-
trative commands should prevent accidental misuse and data loss. This includes
for example comprehensive documentation, command completion on the shell, and
an option to “dry run” commands.

There are also features which are less commonly implemented in older storage stacks
but are very appreciated today due to the ever increasing data volume:

Data integrity The storage stack should guarantee data integrity by checksumming
data. Checksum mismatches occur as often as 0.5% per disk and year [Bai+08].
Without checksumming data, these data losses remain undetected.

On-disk consistency Due to the increasing data volumes, the runtime of filesystem
checks increases drastically. If a storage stack (or filesystem) can guarantee on-disk
consistency, no such checks are needed so that the startup time after a crash is
greatly reduced.

Clones A clone is a writable snapshot. Together with copy-on-write, clones enable
efficient data sharing, for example between multiple VMs which are based on the
same disk image.
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Send/Receive The term send/receive stands for transferring data sets or snapshots to
another storage pool. Due to copy-on-write snapshots storage stacks can compute
the delta between snapshots very efficiently and, hence, significantly reduce the
amount of data transferred. This feature is very useful for incremental data backups.

Caching A storage stack could cache “hot” data on separate fast storage devices such
as SSDs to increase the performance. Especially, the latency of read requests can
be reduced when fetching data from SSDs instead of hard disks.

Sharing free space between data sets For administrators, it is very convenient when
all data sets share their space on an underlying storage pool so that the free space
of each data set does not need to be managed by hand.

Quota Likewise, it is useful when the storage stack accounts the space used by users,
groups, or projects so that the data consumption can be limited by quotas.

Compression The storage stack should support the transparent compression of user
data as this is a very simple but effective data reduction technique.

Authenticated encryption As an extension to data checksumming, a storage stack could
use authenticated encryption to provide confidentiality and authenticity of the data
in addition to the data integrity. Because the storage stack has to save a checksum
per data block anyway, adding metadata for encryption does not involve a huge
overhead in metadata size or management. This feature is very useful for mobile
computer as it protects against loss or theft. In contrast to full disk encryption,
this concept guarantees authenticity of the data.

In the next chapter, we will introduce the storage stack of this thesis and then in
the following chapter, we will present two very popular storage stacks and compare the
design of these two against the design of this storage stack.
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3. Design
In this chapter, we will describe and discuss how to build a storage stack with key-value
store interface using the Bε-Tree as the basic building block. The presented storage
stack provides data integrity and supports advanced techniques such as multiple data
sets, snapshots, and multiple underlying storage devices using different strategies such
as striping, mirroring, and parity. We will start off with a short notation definition for
describing interfaces and a conceptual overview over the layered storage stack. Then,
each layer of the storage stack will be described in more detail.

3.1. Notation
Throughout the Design chapter, we will use a notation for interfaces and types which is
based on the syntax of the Rust programming language. We have three different kinds
of passing a object to function: by-value, by-reference, and by-mut-reference. These
are represented by T, &T, and &mut T. By-value parameters transfer the ownership of
the object T. By-reference and by-mut-reference pass a reference to the callee. When
using by-reference and by-mut-reference, the owner retains the ownership. We can only
construct a by-mut-reference to an object if we have unique, mutable access to the object.
When accepting by-reference, the object may not be mutated by the callee. Function
signatures are declared as follows:

Interface
function_name(name: Type) -> ReturnType
f2(p1: &T, &mut U) -> &mut V

The first line declares a function named function_name which has one parameter
with the name name and the type Type. The function will take the ownership of value
passed as parameter name and returns a value of type ReturnType whose ownership is
transferred to the caller. The second line defines a function f2 with two parameters
which are passed as references. The object of type T passed as parameter p1 may not
be modified by f2, but the object passed as the second unnamed parameter may be
modified by f2. The caller retains the ownership of both objects. f2 returns a mutable
reference to an object of type V which may be modified by the caller. The caller does
not own the object.
A struct definition looks like the following:
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Type
struct StructName {

field_name: FieldType,
AnonymousFieldType,

}

Note that the anonymous field types are solely used for convenience and Rust does
not actually support unnamed fields. In addition to structs, Rust also supports tagged
union types whose instances are one of the defined variants:

Type
enum EnumName {

VariantOne,
VariantTwo(FieldType),

}

3.2. Conceptual Overview
This storage stack uses multiple layers to reduce the complexity of the design and to
simplify the reasoning for each component (see Figure 3.1). Many concepts shown in this
chapter are heavily based on ZFS which will be presented in detail later on in Section 4.2.

At the bottom of the storage stack, we have the Vdev Layer (short for virtual device)
and the Storage Pool Layer (SPL). The vdevs are responsible for reading and writing
data to the disks. A vdev can either be a single disk, a mirror of multiple disks, or
a group of disks with parity data – similar to RAID5 and raidz1 in ZFS. The SPL is
responsible for striping the data over the vdevs. Like for ZFS, the lower layer already
makes use of checksums to provide data integrity and advanced data recovery options.
The SPL provides a block device like interface but with checksums.

On top of this interface is the Data Management Layer (DML). The DML handles
generic objects which are identified by an object reference. The DML caches often
accessed objects and tracks modifications of objects. Modified objects will be written
back when needed. Write back includes compression and allocation of disk space. The
DML employs the redirect-on-write technique. For allocation, the DML calls an allocation
handler which provides access to the allocation bitmaps.

The Tree Layer manages multiple Bε-Trees. Each Bε-Tree node is tracked as a DML
object. Each Bε-Tree has a message based key-value interface with byte sequences as
keys and values. The length of keys and values and the size of messages is limited to
reasonable sizes: A key should be at most 1024 bytes long. Values and messages should
be at most 128KiB of data. Each message may contain arbitrary data and execute
arbitrary code on application to data. Additional to querying data for a key and inserting
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Figure 3.1.: Layer concept of the key-value store

a message for a key, the tree also provides a range query and a range delete operation
which are more efficient for large key ranges.

The top-most Database Layer is built on top of the Bε-Trees. This layer manages
multiple data sets which can be individually snapshotted. Each data set provides a
key-value store interface and is represented by a Bε-Tree. Likewise, snapshots also provide
a (read only) key-value store interface and are represented by a snapshot of the data
set’s Bε-Tree. There is also a root Bε-Tree in which the allocation bitmaps and the
information about the data sets and the snapshots are stored.
There are two key concepts of this storage stack: First, we will use the Bε-Tree as

the sole index data structure to again reduce the complexity of this design. Having to
manage only one data structure greatly reduces the amount of code in the implementation.
Second, by applying the path-copying technique [Dri+86], we have copy-on-write Bε-Trees
which enable efficient snapshots.

In contrast to the two presented storage stacks later on, this storage stack does not
provide a POSIX compatible filesystem interface. A POSIX filesystem has many opera-
tions which must be supported and strict semantics regarding atomicity of concurrent
reads and writes. Additionally, userspace filesystem implementations are quite slow due
to the context switching and mode switching overhead as the kernel has to switch to our
userspace filesystem process for each syscall. See [VTZ17] for a detailed performance
analysis of FUSE, the userspace filesystem framework used on Linux. Due to the com-
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plexity and the performance issues, this storage stack will instead export a key-value
store like interface which is still very similar to a filesystem but with a much smaller and
cleaner interface.

In the rest of this chapter, we will focus on each layer to depict and discuss the design
and implementation in greater detail.

3.3. Vdev Layer

As already mentioned in the introduction, the Vdev Layer is responsible for reading and
writing data from/to one or more block devices. It operates on 4KiB block size and
provides the following interface to the upper layers, excluding error handling for brevity:

Interface
read(size: Block, offset: Block, Checksum) -> Data

scrub(size: Block, offset: Block, Checksum) -> Data
write(Data, offset: Block)
flush()
actual_request_size(size: Block) -> Block
size() -> Block

Block is an unsigned integer which denotes either a size or an offset in multiples of the
block size. Data is a pointer to a byte sequence with a length that is a multiple of the
block size. A read request will read the data located at the given offset, verify the data
with the given Checksum data and return size blocks of data. A scrub request is very
similar but it guarantees that all data blocks corresponding to this request are actually
read and verified. A write request will write actual_request_size(data.size) blocks
of data to the given offset. flush will flush any caches and size returns the size of
the vdev.
This interface has two significant differences to the block device interface. First, a

read request includes a checksum of the data so that the data integrity can be verified by
the vdev. Second, if a vdev needs any additional data such as parity data, it is visible to
the upper layer due to the actual request size. In combination with redirect-on-write in
the upper layers, this enables a RAID5 implementation without the “RAID5 write hole”
as we will see later on.
In the following we will describe three actual vdev implementations: single, mirror,

and parity1. A single vdev only manages a single block device as underlying storage. A
mirror will mirror all data to the underlying block devices. Last but not least, parity1
will stripe data to the underlying block devices and use parity data to be resilient against
one faulty block device.

32



3.3.1. Single Vdev
The implementation of the single vdev is straightforward. As this vdev does not need
any additional data per request, actual_request_size always returns the given size.
The rest of the operations will be directly mapped to the block device operations:

read Perform a read with size and offset on the underlying block device and verify
the returned data with Checksum.

scrub Same as read.

write Write the data to the given offset on the block device.

flush Call flush on the block device.

size Query the size in blocks of the block device.

3.3.2. Mirror Vdev
The mirror vdev consists of at least two block devices and mirrors the data to all block
devices. It has the same size as the smallest underlying block device. If a mirror vdev
consists of n block devices, it is resilient against n− 1 faulty block devices.

actual_request_size returns the given size as this vdev does not need any additional
data. The rest of the operations is slightly more tricky to implement compared to the
single vdev:

read Select any block device and try to perform a read with size and offset on the
block device and verify the returned data with the Checksum. On success, return
the data. Otherwise sequentially try to read from the other block devices and verify
the data. If any read and verify succeed, try to rewrite all failed block devices and
then return the data.

scrub Similar to read, but read from all block devices and verify all data blocks.

write Write the data to the given offset on all block devices. This operation succeeds
if at least one write operation succeeds.

flush Call flush on all block devices.

size Query the size in blocks of the block devices and return the minimum.

3.3.3. Parity1 Vdev
The parity1 vdev consists of at least three block devices and stripes the data with
additional parity blocks so that it is resilient against one faulty block device. This vdev is
very similar to RAID5, but with two major differences: The offsets are not remapped to
hide the parity data but the parity data location is visible to the upper layer. In addition,
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the stripe width is not fixed and depends on the data size so that each request is always
a full stripe. The upper layer has to call actual_request_size prior to writing data to
determine the actual size on disk for a specific data size. On each read or write request,
the vdev has to calculate the geometry of the stripe with the given offset and size and
with the disk count.

Example: Table 3.1 shows a parity1 vdev with 5 disks. Each stripe is depicted by a
different color. As we have five disks, we need one parity block per four data blocks.
For this implementation, the parity blocks for every stripe are located on the disk at
which the stripe begins. If we have a stripe with a number of data blocks which are not
a multiple of four, we lose some space efficiency – like for the second stripe. Regarding
the mapping between data segments and stripes, the first stripe corresponds to a data
segment of 8 blocks at offset 0. The second stripe is a data segment of three blocks at
offset 10. The last stripe is a 10 block data segment at offset 21.

In the following we will show how to calculate the stripe geometry for a request, how
to build the parity, and how to recover data. Afterwards, we sketch how to implement
the vdev interface. In the end, we discuss possible extensions to this concept.

Stripe Geometry

Let B be the sequence of data blocks for the request, s be the data size (in blocks), o the
offset, and n the number of disks. With these parameters, we can calculate the stripe
geometry using p the number of parity blocks required and q the number of disks which
have long data chunks.

p := d s

n− 1e

q :=

s mod n− 1 if s mod n− 1 6= 0
n− 1 otherwise

di := (o + i) mod n

oi := bo + i

n
c

si :=

p if i ≤ q

p− 1 otherwise

Bi := B[ôi..ôi + si] where ôi :=
i−1∑
j=1

sj

di, oi, si represent the i-th disk index, disk offset, and size where disk d0 contains the
parity data of size s0 at offset o0. Likewise, the disks with the index d1 to dn−1 contain
the data chunk Bi of size si at offset oi. Hence, the concatenation of the data chunks
from the disk with index d1 to dn−1 is the actual data.
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Disk Block
Offset Disk 1 Disk 2 Disk 3 Disk 4 Disk 5

0 P0 D0 D2 D4 D6
1 P1 D1 D3 D5 D7
2 P0 D0 D1 D2 P0
3 D0 D1 D2 P0 D0
4 D1 P0 D0 D3 D6
5 D8 P1 D1 D4 D7
6 D9 P2 D2 D5 −

Table 3.1.: Example block layout for a parity1 vdev consisting of five disks. Each
stripe is depicted by a different color. (Inspired by a blog post of Matthew
Ahrens [Ahr])

Parity Generation and Recovery

The parity data blocks P are generated by xor-ing all disk data chunks: P := ⊕n−1
i=1 Bi.

If we want to recover the data chunk of a failed disk with index dj, j > 0, we can xor
the parity blocks with the remaining data chunks:

Bj := P ⊕ (⊕j−1
i=1 Bi)⊕ (⊕n−1

i=j+1Bi)

After recomputing Bj, we can verify the data using checksum. If the verification fails,
at least one other disk returned faulty data and we have to give up.

During the scrub, the disk with index d0 might fail which contains the parity data for
this stripe. In this case, we have to recompute and rewrite the parity data.

If all read operations succeed, but the data does not match the checksum, we can try
a combinatorial reconstruction: For each data disk, we assume that it failed and try to
reconstruct the data using the normal recovery process. If the checksum matches for any
of these, we know which disk returned faulty data, and we can proceed as before.

Implementation

This is the only vdev for which actual_request_size does not return the given size as
we have to save additional parity data:

actual_request_size(s) = s + p where p := d s

n− 1e

read Reconstruct the stripe geometry and read all data chunks (but not the parity
blocks). If the checksum verification succeeds, return the data. Otherwise fetch
the parity blocks and try to recover the data. If this succeeds, try to rewrite the
failed block device and then return the data.

scrub Similar to read, but always fetch and verify the parity blocks.
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write Derive the stripe geometry, build the parity blocks, and write the data and the
parity to disk. This operation succeeds if at most one write operation fails.

flush Call flush on all block devices.

size Query the size in blocks of the block devices and return the minimum multiplied by
the number of disks.

Possible Extensions

The concept of parity1 can be extended to vdevs with more than one parity disk per
stripe so that these vdevs are resilient against multiple faulty block devices. A downside
of multiple parities is that generating parties beyond the first parity is not trivial and
becomes significantly more computing intensive. For more information, see [Anv07]
which gives an introduction to the Linux RAID6 implementation.

Due to the increased complexity in generating parities and recovering from errors, the
implementation is left to future work.

3.4. Storage Pool Layer
The Storage Pool Layer is a rather thin layer that manages one or more vdevs. The
vdevs are handled like a JBOD, i.e. they are an independent group of vdevs. This layer
roughly provides the same interface as the Vdev Layer, but with a different offset type:
the DiskOffset. This type includes a vdev ID and a block offset so that this layer knows
on which vdev the data resides. The upper layer is responsible for sharding the data
across all vdevs for good performance.

Contrary to vdevs, this layer also guarantees sequential ordering for reads and writes
on the same DiskOffset so that no barriers are needed for most operations of the upper
layer.
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3.5. Data Management Layer
The Data Management Layer (DML) manages objects for the upper layer and is respon-
sible for caching these objects in memory, tracking the modifications to objects, and the
write-back of modified objects. This layer uses copy-on-write, i.e. it will never overwrite
active data. Additionally, it supports compressing the on-disk objects.
An unmodified, on-disk DML object is represented by an ObjectPointer :1

Type
struct ObjectPointer {

DiskOffset,
compressed_size: Block,
Compression,
Checksum,
Generation,
Info,

}

This structure contains all information needed to read the object from disk (DiskOffset,
compressed_size, and Checksum) and unpacking the object from the data (Compression).
The Generation field is used by the upper layer for tracking the age of an object. The
Info can be used to tag the object with additional information.
The upper layer can access DML objects by a handle called ObjectReference. This

handle is an enumeration type and represents the states of an object in which it was
encountered at the last access (i.e. it is lazily updated):

Type
enum ObjectReference {

Unmodified(ObjectPointer),
Modified(ModifiedNodeId),
InWriteback(ModifiedNodeId),

}

So, a DML object can be either unmodified, modified, or in write-back. In the
unmodified case, the object is identified by the ObjectPointer. In the other cases, it is
identified by a ModifiedNodeId which is just a unique number for each modified node.
An important invariant of the ObjectReference is that there is only one ObjectReference
pointing to a mutable object.

1The ObjectPointer is very similar to the block pointer in ZFS.
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Figure 3.2.: DML object state cycle

The states of an ObjectReference correspond to the actual object state in the cache
of the DML. The object states can change according to the state cycle (see Figure 3.2).
Every DML object starts in the Modified state. From this state, it transitions into the
state InWriteback by starting the write-back to disk. Then, it can be either stolen (if
mutable access to the object is requested during the write-back) or the write-back finishes
and the object is now unmodified. Unmodified objects can be evicted from the cache
and fetched into the cache. Finally, if mutable access is requested, the object transitions
back into the modified state.

In the cache, objects are tracked with a unique key called CacheKey. This struct can
be derived from an ObjectReference and is defined as follows:2

Type
enum CacheKey {

Unmodified(DiskOffset),
Modified(ModifiedNodeId),
InWriteback(ModifiedNodeId),

}

As the ObjectReference is lazily updated, we encounter situations where the object is
not present in the cache under the corresponding CacheKey. Due to the object state
cycle, we can identify into what states the object must have transitioned: If the object
was unmodified and is not present, it must have been evicted from cache and we can fetch
it. If the object was modified and is not present, it transitioned to the InWriteback state.
If the object was in that state and is not present, the write-back must have finished. The
object cannot be stolen as this ObjectReference is the only one pointing to the object by
the ObjectReference invariant.

2Note that the DiskOffset is a unique identifier for unmodified objects as this layer will never overwrite
active data due to copy-on-write.
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Despite the quite complex state handling, the interface provided by this layer is simple,
again excluding error handling for brevity:

Interface
insert(Object, Info) -> ObjectReference
get(&mut ObjectReference) -> &Object
get_mut(&mut ObjectReference) -> &mut Object
remove(ObjectReference)
evict()
write_back(&mut ObjectReference) -> ObjectPointer
try_get(&ObjectReference) -> Option<&Object>
try_get_mut(&ObjectReference) -> Option<&mut Object>

Note: Option<T> is either a T or null.
If the upper layer intends to modify an object, it has to call try_get_mut or get_mut

so that the DML can track that this object is modified and needs to be written back
to disk later on. A write-back can be forced by calling the write_back method which
returns an ObjectPointer. The upper layer should regularly call evict to evict excessive
cache entries. try_get and try_get_mut are similar to get and get_mut, but only need
an immutable reference to the ObjectReference and fail if the corresponding object is not
in the correct state or not present in cache.
As the DML needs additional information about the objects, the upper layer has to

implement the following interface for the objects:

Interface
get_size_in_bytes(&Object) -> Integer
pack(&Object) -> Data
unpack(Data) -> Object
get_child_obj_refs(&mut Object) -> Iterator<&mut ObjectReference>

A DML object may contain references to other objects which can be accessed by the
DML by calling get_child_obj_refs. On write-back, the DML has to ensure that the
dependent objects are written back beforehand as the on-disk object will contain the
ObjectPointers of its children.

Before the actual write-back of an object can happen, the DML has to allocate space
first as we do not overwrite active data. The whole space of the Storage Pool Layer is
partitioned into segments which are identified by an SegmentId. Each of these segments
has an allocation bitmap which represents the free space in this segment at a block
granularity. The upper layer is responsible for persisting these allocation bitmaps. Hence,
this layer needs a callback for reading and updating allocation data which is provided by
the Allocation Handler. This handler provides the following interface:
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Interface
get_allocation_bitmap(SegmentId) -> Bitmap
allocate_at(DiskOffset, Size)
copy_on_write(&ObjectPointer)
current_generation() -> Generation

The callback get_allocation_bitmap shall return the segment bitmap where each
active block is marked as in use. The DML calls allocate_at on allocation so that
the upper layer can update the bitmap. When a DML object transitions to Modified
via Modify or Stolen (see Figure 3.2), the DML calls copy_on_write to signal that an
object will be copied for modification. The upper layer has to decide whether the old
object is still in use (for example, due to a snapshot). If it is not in use, it must free
the allocated space. Note that this space is not immediately available for allocation as
the data is still active until the upper layer’s state has been synchronized to disk. The
last callback current_generation shall return the current generation of the upper layer.
On write-back, the DML will query the current generation and saves it in the generation
field of the ObjectPointer of the object.

3.5.1. Implementation
In the following we will outline how to implement this layer’s interface and give short
notes on correctness. The correctness of the algorithms is closely related to the object
state cycle.

get(&mut ObjectReference) -> &Object

1. Check whether the object is in the cache. If present, return the object.

2. If the ObjectReference is in Unmodified state, fetch the object, insert it into the
cache, and return the object.

3. Call drive_state_transition and go back to step 1.

Note If an object is not in Unmodified state, it must be cached. As the ObjectReference
is lazily updated, it may not reflect the actual state of the object. Hence, if the object is
not present and the ObjectReference is not in Unmodified state, the ObjectReference is
not up-to-date and we can call drive_state_transition to update it.

drive_state_transition(&mut ObjectReference)

Precondition: ObjectReference is not in Unmodified state and the object is not present
in the cache.
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1. If the ObjectReference is in InWriteback state, get the ObjectPointer of the written
back object identified by the ModifiedNodeId and transit to the Unmodified state.

2. If the ObjectReference is in Modified state, transit to InWriteback state.

Note If the precondition is satisfied, the ObjectReference is not reflecting the object
state and needs to be updated. Due to the “unique access to ObjectReference” invariant,
the Modify and Steal transitions cannot occur concurrently. Therefore, there is only one
possible object state transition. After up to two calls, the ObjectReference state will
match the state of the object. (Modified → InWriteback → Unmodified)

get_mut(&mut ObjectReference, Info) -> &mut Object

1. If the ObjectReference is in Modified state: If the object is in the cache, return the
object. Otherwise call drive_state_transition.

2. If the ObjectReference is in InWriteback state and not present in the cache, call
drive_state_transition.

3. If the ObjectReference is in Unmodified state:
• If the object is not present in the cache, fetch the object.
• Call the handler callback copy_on_write.

4. Allocate a new ModifiedNodeId.

5. Change the CacheKey of this object and the ObjectReference to Modified using the
new ModifiedNodeId.

6. Return the object.

Note After the first step, the object cannot be in Modified state. After the second step,
the object is either in Unmodified state or it is in InWriteback state and present in cache.
After the third step, the object is present in cache. In step 5, the object state transitions
via Modify or Steal. Therefore, the object is in Modified state.

If the object was Unmodified, copy_on_write will be called immediately. Otherwise,
the object was InWriteback and the copy_on_write call will be called by evict.

evict()

1. Select a new object in the cache for eviction. Return if all objects have been already
selected.

2. If the object is in Unmodified state, remove the object from the cache and return.

3. If the object is in InWriteback state, go back to step 1.
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4. Call handle_write_back. Go back to step 1 if the write-back is unsuccessful.

5. Check if the object is still present in the cache.

6. If yes, save the ObjectPointer identified by the ModifiedNodeId.

7. If not, call copy_on_write.

Note The algorithm ensures that objects are only evicted if they are in Unmodified
state. If an object is in Modified state, we will try to write back the object to disk via
the handle_write_back call. This might fail if the object points to other objects which
are not in Unmodified state. After the write-back, we check if the object is still present
under the same key. If it is not, it must have been stolen. In this case, we will call
copy_on_write as the get_mut cannot have done this due to the missing ObjectPointer.

handle_write_back(CacheKey, &mut Object) -> ObjectPointer

Precondition: CacheKey must be in Modified state.

1. Call Object.get_child_obj_refs(). For each ObjectReference:
a) If in Unmodified state, continue.
b) If not present in the cache, call drive_state_transition and go to step a.
c) Otherwise signal an unsuccessful write-back because of the child identified by

the ObjectReference.

2. Change the CacheKey to InWriteback.

3. Pack the object and compress the data.

4. Allocate.

5. Write the data to disk.

6. Return ObjectPointer.

Note Before writing back an object, we check whether all objects referenced by this
object are in Unmodified state. This involves updating outdated ObjectReferences.

write_back(&mut ObjectReference) -> ObjectPointer

1. If the ObjectReference is in the state Modified and the object is not present in
cache, call drive_state_transition.

2. If in the state InWriteback: If present in cache, wait for write back. Call
drive_state_transition.

3. If in the state Unmodified, return the ObjectPointer.
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4. Retrieve a mutable reference to theObject from the cache and call handle_write_back.

5. If the write-back was successful, transit the ObjectReference to the state Unmodified
and return the ObjectPointer.

6. Otherwise, call write_back with the child’s ObjectReference and go back to step 4.

Note After the first two steps, the ObjectReference is up-to-date. If the object is not
in Unmodified state, we try to write back the object. If this fails due to modified child
objects, we can call write_back on these. The precondition is satisfied as we have unique,
mutable access to the ObjectReference of the parent object and the ObjectReference
invariant guarantees that the parent is the sole owner of the child ObjectReference.

3.5.2. Concurrency Control
If we want concurrent access to DML objects, we only need to protect the ObjectReferences
with locks. If we use read-write locks for ObjectReferences, we can call try_get and
try_get_mut as shortcuts before calling get and get_mut. This increases the efficiency
and concurrency if the object is present in cache as these calls only need read access to
the ObjectReference.

3.6. Tree Layer
The Tree Layer implements Bε-Trees on top of the DML layer. Each Bε-Tree node is
represented as a DML object. Each Bε-Tree is identified by a TreeId which is chosen by
the upper layer. The TreeId is injected as ObjectInfo into each DML object that belongs
to the tree. A Tree object holds an ObjectReference to the root node of the tree and each
internal node holds ObjectReferences to its child nodes. This layer does not provide an
Allocation Handler for the DML.

The Bε-Tree holds key-value pairs in the leaves and key-message pairs in the internal
node buffers. Keys, values, and messages are arbitrary byte sequences and transparent
to this layer. Keys are ordered lexicographic. The upper layer provides a message action
which defines the message behavior:

Interface
apply(Key, Message, Option<Value>) -> Option<Value>
apply_to_leaf(Key, Message, Option<Value>) -> Option<Value>
merge(Key, upper: Message, lower: Message) -> Message

Note: Option<Value> is either a Value or null.
apply will be called during queries whenever a message has to be applied to the

optional underlying value. When a message is flushed to a leaf, the messages will
be transformed into an optional value by calling apply_to_leaf. When a message is
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inserted into an internal node which already contains a message for the key, the messages
are merged with merge. All in all, the upper layer has full control over the message
functionality and can even execute code when a message is finally applied to a leaf which
might be useful for lazy accounting.

This layer provides a default implementation of a message action which supports the
following message types:

insert(Data) Unconditionally overwrites the value with Data.

delete Unconditionally deletes the value.

upsert(offset: Integer, Data) Either inserts Data into the value if present or
constructs a new value. Data will be located at the given offset. The value will
be zero padded to offset.

This layer provides the following interface, again excluding error handling for brevity:
Interface

new(TreeId) -> Tree
open(TreeId, TreePointer) -> Tree
sync(Tree) -> TreePointer
insert(Tree, Key, Message)
get(Tree, Key) -> Option<Value>
range(Tree, KeyRange) -> Iterator
range_delete(Tree, KeyRange)

A Tree can be created with new or an existing tree can be opened with open. The
upper layer has to pass a TreePointer to open which contains an ObjectPointer to
the root node. This pointer can only be acquired by calling sync beforehand which
writes all nodes of this tree to disk. Hence, the upper layer is responsible for saving
the TreePointer on sync so that this tree can be reopened later on. Using insert, we
can insert messages into the tree. For retrieving values, there are two methods: get
and range. get retrieves a single value and returns null if it is not present. range can
be used for iterating over key-value ranges and is more efficient than calling get many
times. Deletion of entries can be accomplished by inserting deletion messages. This
needs support for a special message type in the message action of the upper layer which
unconditionally deletes values. When deleting a range of keys, calling range_delete
will be much more efficient than inserting one deletion message per key.

3.6.1. Bε-Tree Improvements
This implementation of a Bε-Tree vastly differs from the original description of a Bε-Tree
in Section 2.3 and contains many improvements so that the Bε-Tree can be used more
easily and efficiently in practice.
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Variable-Sized Data

The implementation supports variable-sized keys, values, and messages. For the node size,
we use the actual on-disk space a node consumes. This is a very natural way of defining
a node’s size as transferring data from and to disk is the dominating cost. Compared
to uniform sizes, this allows for greater flexibility for the upper layer and better space
efficiency if the data size significantly differs among keys and/or values.

Message Merging

Due to the message action interface, we can merge any two messages into one message.
This increases the space efficiency when a value for a specific key is often updated: In the
case of inserting many small messages with the same key into the tree, these messages
can be merged into one message. If these messages only overwrite data, the final message
will be as small as the last message. Additionally, we only have to save at most one
message per key in each internal node which simplifies the Bε-Tree data structures and
algorithms.

Retroactive instead of Proactive Policies

Instead of proactively flushing and splitting a node, we fix a too large or too small node
after the operation. As we pin a modified node in memory during these operations,
the too large node cannot be written back to disk in the meanwhile so that we never
write anomalous nodes. Fixing the invariants after an operation occurred simplifies the
algorithms and makes them easier to understand.

Tree Shrinking

For Bε-Trees, the support of delete operations was only outlined in Section 2.3. This
implementation actually supports rebalance between nodes and the shrinking of the tree.
To simplify the algorithms, only leaf nodes will be rebalanced. Internal nodes with too
low fanout will be merged unconditionally.
Additionally, a range of keys can be deleted very efficiently with the range_delete

operation which is implemented by walking the parts of the tree that might contain keys
in the given range. If the algorithm can conclude that a subtree only contains keys which
are in the range, the whole subtree will be deleted. On subtree deletion, leaf nodes do
not have to be fetched from disk which yields a huge performance boost over a naive
implementation.

Relaxed Node Size Bounds

Rebalancing and merging nodes is quite expensive because we have to fetch and modify
the sibling node. Therefore, we increase the allowed node size bounds so that the
maximum node size is four times the minimal node size. With these larger bounds,
rebalances and merges occur less often.
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Tree Walk before Insertion

This optimization relies on caching. Previously, we always inserted messages at the root
node and then flushed messages down the tree. When inserting many messages into the
same key range, this will result in many flushes into the same subtree over and over again.
In this implementation, we will walk down the tree as long as the nodes are already
modified and do not contain a message with the same key and then insert the message
into the final node. This is efficient as we already have to “pay the cost” for modified
nodes: fetching the node and writing it back to disk. This optimization is especially
useful for large sequential insertions because the whole path down to the leaf will be
modified and the messages would have been flushed to the leaves anyway.

Node Split Depends on Minimum Flush Size

The second optimization also improves sequential insert performance by increasing the
fanout of internal nodes and, hence, decreasing the tree depth. Previously, we used
a proactive split policy by splitting nodes with at least 2t entries before inserting or
flushing to the node. Keeping the internal nodes’ fanout at a reasonable level of Θ(Bε)
allowed us to guarantee a minimum flush size of Θ(B1−ε). This is the key to the good
insertion performance of the Bε-Tree.
But this minimum flush size can be guaranteed without splitting internal nodes at a

fixed upper limit before flushing. Instead of that, we handle too large internal nodes as
follows: We examine the largest child buffer of the internal node. If its size is at least
the configurable minimum flush size, we will flush this buffer. Otherwise, we will split
this node. So regarding configuration, we replaced the upper bound for internal node
size by the minimum flush size.
When we use this concept, the tree will dynamically shape according to the write

pattern and, hence, it will automatically optimize itself for the workload. If we use
sequential insertion, the corresponding tree part will be very wide as the internal nodes
in this tree part can maintain the required minimum flush size even when their fanout is
very high. Simultaneously, the tree will maintain a low fanout on random insertions so
that the tree still offers a good random insertion performance. This optimization also
benefits random point query performance after a sequential insertion because of the high
fanout and low tree depth.

Concurrency Control

The Tree Layer can be used concurrently. For better concurrency, each ObjectReference
and each tree node is protected by a read-write lock. Most of the time, only read locks
are needed for the ObjectReference as the ObjectReference will be in the correct state
and the tree node will be cached. Only insert and range_delete need to write lock
tree nodes as they are the only two operations that modify tree nodes. Therefore, this
simple concept enables highly concurrent access to this layer.
When we walk down a tree, we use lock coupling [BS77]. Lock coupling means that

we lock the child node before unlocking the parent node. This guarantees that the tree
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path is valid and cannot be modified by others in between. Additionally, lock coupling is
deadlock free.

Configurable Parameters

The tree parameters are configurable. The following parameters are available:

MIN_LEAF_NODE_SIZE The minimum leaf node size in bytes. Below this threshold, a
leaf node will be merged or rebalanced. Defaults to 1MiB.

MAX_LEAF_NODE_SIZE The maximum leaf node size in bytes. Above this threshold, a leaf
node will be split. This should be at least four times larger than MIN_LEAF_NODE_SIZE.
Defaults to 4MiB.

MAX_INTERNAL_NODE_SIZE The maximum internal node size in bytes. Above this thresh-
old, we flush or split an internal node. Defaults to 4MiB.

MIN_FLUSH_SIZE The minimum flush size in bytes. Below this threshold, we will not
flush the internal node but split it. Defaults to 256KiB.

MIN_FANOUT The minimum fanout. Below this threshold, an internal node will be merged.
Defaults to 4 children.

The fanout threshold at which an internal node may be split, can be calculated by
dividing the maximum internal node size by the minimum flush size. Additionally, the
following invariant must hold:

2 · MIN_FANOUT ≤
⌈MAX_INTERNAL_NODE_SIZE

MIN_FLUSH_SIZE

⌉

This equation ensures that if an overflowed internal node cannot be flushed, the
resulting nodes of the split have at least the minimum fanout. If this equation is not
satisfied, there can be overflowed internal nodes that can be neither flushed nor split.

3.6.2. Implementation
get(Tree, Key) -> Option<Value>

1. Get the root node.

2. If the current node is an internal node:
a) Select the child that corresponds to our search key.
b) If this buffer contains a message for the key, append it to our message list.
c) Fetch the child node and go back to step 2.

3. Otherwise, it is a leaf node.
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4. Retrieve the value for the key if present.

5. Apply all messages in our messages list in reverse order to the value.

6. Return the final value.

Notes This algorithm walks down the tree along the path that corresponds to the key.
Every message for this key must be on this path. Hence, we can collect all relevant
messages. The messages have a chronological order: Messages that are located in a
subtree of a node must be older than messages in the respective node. Therefore, we can
apply the messages that we have seen on this path in reverse order so that we recover
the current state of the value for this key.

insert(Tree, Key, Message)

1. Get the root node in mutable state.

2. While the current node is an internal node, does not contain a message for the key,
and the corresponding child node for the key is in mutable state, set the child node
as current node.

3. Insert the message into the current node. Merge or apply the message if needed.

4. If the current node is an internal root node and has only one child, flush all messages
to the child node and set the child node as root node and current node.

5. While the current node is too large:
a) If the node is a leaf, split the node, select the larger one as current node, and

continue the loop.
b) Otherwise, the node must be an internal node.
c) Select the largest child buffer of this node.
d) If this buffer is smaller than the minimum flush size, split the current node,

select the larger one as current node, and continue the loop.
e) Get the child node in mutable state.
f) If the child node is an internal node with too low fanout, merge it with a

sibling, and continue the loop.
g) Flush all messages in the child buffer to the child node. Merge or apply the

messages if needed.
h) If the child node is a leaf and too small, merge or rebalance with sibling.
i) If the child node is a leaf: While the child node is too large, split the child

node and select the larger node as child.
j) Set the child node as current node.
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Notes The first two steps in this algorithm are the “Tree Walk before Insertion”
optimization described beforehand. Then the message is inserted into a node on the path
corresponding to the key. We retain the invariant that the messages are chronological
ordered because we do not skip a node which already contains a message with the same
key. The main complexity of this method belongs to the repairing of the tree state.
Basically, we walk the tree from the current node downwards by pushing the messages of
too large nodes to child nodes. If we cannot maintain the minimum flush size on flushing
from an internal node, we split this node. This is the “Node Split Depends on Minimum
Flush Size” optimization. Leaf nodes are split, merged and rebalanced as needed.

range(Tree, KeyRange) -> Iterator

The iterator returned by this operation is defined as follows:
Type

struct RangeInterator {
Buffer,
low_key: Key,
high_key: Key,
done: bool,

}

Buffer is a buffered sequence of key-value pairs. Initially, the buffer is empty, low_key
and high_key are set according to the given key range, and done is false. The iterator
pops key-value pairs from the head of the buffer. If the buffer is empty and done is false,
we fill the buffer with the following algorithm:

1. Walk the tree along the path corresponding to the low_key.

2. Collect all messages along that path.

3. Save the key range of this path if present. The range is defined by the last seen
left and right pivot keys for the nodes on the path.

4. Discard all messages outside of this key range.

5. Merge the leaf entries with the collected messages ordered by key into the key-value
buffer by applying the messages in reverse order.

6. Discard all buffer entries outside of the range of low_key and high_key.

7. If we have seen a right pivot key, set low_key to the successor of this key.

8. Otherwise, set done to true.

9. If low_key is higher than high_key, set done to true.
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Notes The iterator maintains an unvisited key range. On buffer fill, we collect the
data that belongs to the leftmost root-to-leaf path in the key range and then update the
key range accordingly. As this path may contain messages or data which is outside of
the range, we have to trim the buffer. If the last right pivot key on this path is higher or
equal to high key of the key range, we are finished as the tree does not contain anymore
data in the key range.

Note that in this case it is not sufficient to check that the buffer is empty after executing
the buffer fill algorithm because the buffer can be empty due to the fact that the selected
root-to-leaf path may contain no live data because of deletion messages.

range_delete(Tree, KeyRange)

• Call range_delete_inner with the root node in mutable state.

range_delete_inner(MutableNode, KeyRange)

1. If this node is a leaf, remove all entries in the key range, and return.

2. Otherwise, this node is an internal node.

3. Remove all messages in the given key range from the buffer.

4. Select all child nodes that belong to the key range.

5. Call range_delete_inner for the leftmost and rightmost child node.

6. Remove the subtrees that belong to the child nodes between the leftmost and
rightmost child node.

Notes This algorithm walks the tree and visits all subtrees that may contain data in
the key range. If an internal node has at least three children that are in the key range,
the data of the inner children is contained in the key range and, hence, the child nodes
can be removed without any further checks.

sync(Tree) -> TreePointer

1. Call the DML method write_back with root node ObjectReference.

Notes The write-back algorithm ensures that all child nodes of the root node will be
written back to disk before the write-back of the root node.
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3.7. Database Layer
The Database Layer manages multiple data sets and snapshots. Data sets and snapshots
provide a key-value store interface, i.e. they are maps from byte sequences to byte
sequences. Each data set uses a Bε-Tree to save its data. A snapshot of a data set is
just a snapshot of the corresponding Bε-Tree. Additionally, there is a root Bε-Tree that
holds the allocation bitmaps and the metadata. This layer also saves a Superblock on
the underlying storage pool which contains the TreePointer of the root Bε-Tree so that
this database is persistent.
This layer has the following interface, again excluding error handling for brevity:

Database Interface
open(Configuration) -> Database
create(Configuration) -> Database
open_dataset(&mut Database, Name) -> Dataset
create_dataset(&mut Database, Name) -> Dataset
snapshot_dataset(&mut Database, &mut Dataset, Name)
delete_dataset(&mut Database, Dataset)
sync(&mut Database)

Dataset Interface
get(&Dataset, Key) -> Option<Data>
insert(&Dataset, Key, Data)
delete(&Dataset, Key)
range(&Dataset, KeyRange) -> Iterator
range_delete(&Dataset, KeyRange)
open_snapshot(&mut Dataset, Name) -> Snapshot
delete_snapshot(&mut Dataset, Snapshot)

Snapshot Interface
get(&Snapshot, Key) -> Option<Data>
range(&Snapshot, KeyRange) -> Iterator

A database can be opened or created. Both calls accept a Configuration parameter
which specifies the configuration of the Storage Pool Layer, i.e. which block devices are
grouped into vdevs of what type. Then the user can use the Database object to manage
data sets which can be opened, created, deleted, and snapshotted. Each data set is
identified by a unique name which is a byte sequence. Each snapshot is identified by
the corresponding data set and name. With the Dataset and Snapshot objects, we
can actually retrieve data by calling get and range which are directly mapped to the
corresponding Tree Layer operations. Snapshots are read-only, but data sets provide

51



insert, delete, and range_delete. This layer has the invariant that each existing
Dataset and Snapshot object points to different data sets and snapshots.
Before outlining the implementation of this layer, we will focus on some important

details. Internally, a data set is identified by a DatasetId which is an integer. A snapshot
belongs to a data set and the Generation in which it was created. The Generation
is an integer which will be bumped on each sync of the Database. This layer uses the
Generation field of the DML ObjectPointer to track the age of the tree nodes. Hence,
we know the “birth” generation of each tree node. As snapshots are identified by their
creation generation, we can check quickly whether a tree node cannot be used by a
snapshot.

This layer also uses the TreeId of the Tree Layer for the tree nodes which is just the
DatasetId of the data set to which the tree node belongs. Therefore, the Allocation
Handler of this layer knows to which data set a DML object belongs.

3.7.1. Superblock
This layer reserves two blocks at the beginning of each vdev to have two slots to save
the Superblock. The Superblock contains the TreePointer of the root Bε-Tree and
is self-checksummed. At the end of sync, one of the two slots will be updated with
the current Superblock on every vdev depending on whether the current Generation
is odd or even. On open, all slots are read and the intact Superblock with the highest
Generation will be used.
The outlined open implementation is correct because this layer guarantees that

if there is a Superblock with a correct checksum on disk, the corresponding trees
have been committed to disk successfully. (For details, see the implementation of
sync(&mut Database).)

3.7.2. Root Bε-Tree
As already mentioned, the root Bε-Tree contains the allocation bitmaps and metadata for
data sets and snapshots. In the following we show how the data is laid out as key-value
pairs in the Bε-Tree. As the keys are actually byte sequences, we have to use an encoding
for key types which are not already byte sequences. For integers, we simply use big
endian encoding as the lexicographic order of the bytes of a big endian encoded integer
matches the order of the integer. Therefore, the integer order will be preserved in the
tree. We use a single byte (denoted by XX) as prefix to avoid key collisions.
The root Bε-Tree contains the following key -> value maps:

Last used DatasetId 00 -> <DatasetId>
As the DatasetId have to be unique, we have to save the last used DatasetId.

Allocation Bitmaps 00 <SegmentId> -> <Bitmap>
For each allocation segment, we save the corresponding bitmap identified by the
SegmentId. The bitmap has a zero byte for each unallocated block and a 1 byte
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for each allocated block. We have to use one byte per bit as the upsert message
has only byte granularity.

Data set name lookup table 01 <Data set name> -> <DatasetId>
With this table we can lookup the corresponding DatasetId for a given data set
name. Having a separate short identifier for data sets results in shorter keys for
the following key-value pairs.

Data set metadata 02 <DatasetId> -> <DatasetData>
We save the following struct which contains all metadata about a data set:

Type
struct DatasetData {

previous_snapshot: Option<SnapshotId>,
data_set_tree: TreePointer

}

Snapshot name lookup table 03 <DatasetId> <Snapshot name> -> <SnapshotId>
For looking up the SnapshotId for a given snapshot name.

Snapshot metadata 04 <DatasetId> <SnapshotId> -> <SnapshotData>
For each snapshot, we save the following metadata:

Type
struct SnapshotData {

previous_snapshot: Option<SnapshotId>,
snapshot_tree: TreePointer

}

Dead list 05 <DatasetId> <Generation> <DiskOffset> -> <DeadListData>
The dead list of each data set tracks DML objects which are dead in the data set
but still in use by snapshots. Each dead list entry corresponds to the data blocks
of a DML object. The key contains the Generation in which the DML object
died and its DiskOffset. Due to the key’s layout, the dead list is sorted by the
generation. The value contains the following data:

Type
struct DeadListData {

size: Block,
birth: Generation

}

The dead lists will be filled by the Allocation Handler whenever a DML object is
not in use anymore by a data set, but it is still in use by at least one snapshot. On
snapshot deletion, we walk the dead list and actually deallocate the blocks of DML
objects which are solely used by the deleted snapshot.
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3.7.3. Allocation Handler
We provide an Allocation Handler as the allocation bitmaps are persisted in the root
Bε-Tree of this layer. The implementation exploits a side effect of copy-on-write storage
stacks: We have an essentially free snapshot of the last synced state. This aspect will be
used in get_allocation_bitmap as it retrieves the previous allocation bitmap.

get_allocation_bitmap(SegmentId) -> Bitmap

1. Retrieve the allocation bitmap for this segment from the current tree and the
previously synced tree and bitwise-OR these two bitmaps.

2. In the resulting bitmap, mark the on-disk blocks of the root node of the old root
tree as used if appropriate.

Notes By definition, this function shall return a bitmap where active blocks are marked
as used. Active blocks are blocks which contain data that we may not override. Hence,
blocks are active when they are currently allocated or have been deallocated in this
generation, i.e. an active block is either currently allocated or was allocated in the
previous generation. Therefore, we can simply bitwise-OR the allocation bitmap from
the current root Bε-Tree and the bitmap from the previously synced root Bε-Tree to
build such a bitmap.

As the allocation bitmap of the old root tree misses the allocation of its own root node,
we mark its blocks as used. (See the sync(&mut Database) implementation for more
details on this inconsistency)

allocate_at(DiskOffset, Size)

1. Insert an upsert message into the root Bε-Tree that updates the allocation bitmap
of the segment corresponding to the given DiskOffset.

copy_on_write(&ObjectPointer)

1. Check whether the data set of this object has a latest snapshot and that this
snapshot is older than the object, i.e. the snapshot’s generation is equal or greater
than the object’s birth generation.

2. If there exists such a snapshot, we insert the on-disk blocks of this object to the
dead list of the data set. The Generation in the key for the dead list is the current
Generation.

3. Otherwise, we insert an upsert message into the root Bε-Tree that deallocates the
blocks by updating the corresponding allocation bitmap.
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Notes Every time a tree node is copied for modification, we have to check whether we
need its block on disk, i.e. the corresponding data set has at least one snapshot which
uses this block. If the block was born before the latest snapshot was created, the block
must be in use by this snapshot because otherwise, it would have been deallocated before
the snapshot creation.

3.7.4. Implementation
open(Configuration) -> Database

1. Find the newest intact Superblock as described in Section 3.7.1.

2. Open the root Bε-Tree given by this Superblock.

Notes As outlined, it is guaranteed that if we see a Superblock with a correct checksum,
the corresponding state has been committed to disk successfully. Hence, the newest
intact Superblock corresponds to a consistent on-disk state.

create(Configuration) -> Database

1. Overwrite all Superblock slots with zeros.

2. Create a new root tree for this database.

3. Allocate two blocks at the beginning of each vdev.

4. Call sync(&mut Database).

Notes We have to erase old Superblocks that are potentially existing on disk so that
they cannot be selected accidentally in an open call later on.

sync(&mut Database)

1. Write back all open data set trees.

2. For each modified data set, update the TreePointer in the metadata.

3. Write back the root tree.

4. If this write-back included any nodes other than the root node, go back to step 3.

5. Ensure that all writes have been committed to disk by flushing the Storage Pool
Layer.

6. Update the corresponding Superblock.

7. Flush the Storage Pool Layer again.

8. Bump the generation.
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Notes When we write back a tree, we have to allocate for every modified node. Hence,
the allocation data in the root tree will be updated. This results in a feedback loop if we
write back the root tree. Therefore, after finishing the write-back of the root tree, the
on-disk state is missing some allocations that occurred during the write-back. At least
the root node allocation is missing as the allocation occurs after the root node has been
packed and (optionally) compressed so that we know its exact on-disk size. But we can
limit the number of missing allocations: The repeated write-back of the root tree in step
3 and 4 guarantees that the allocation bitmaps are up-to-date except for the allocation
of the root node itself. To fix this inconsistency, the Allocation Handler is responsible for
marking the on-disk part of the root node of the previously synced root tree as allocated.

snapshot_dataset(&mut Database, &mut Dataset, Name)

1. Check that there is no snapshot with the same name for this data set.

2. Write back the data set tree.

3. Use the current generation as the SnapshotId.

4. Save the snapshot metadata.

5. Insert the name into the snapshot lookup table.

6. Update the data set metadata to reflect the new snapshot.

7. Call sync(&mut Database).

Notes Snapshot creation is very lightweight and only needs a sync operation.

delete_snapshot(&mut Dataset, Snapshot)

1. If this is the newest snapshot, update the data set metadata and set the data set’s
previous snapshot to the previous snapshot of this snapshot.

2. Remove the snapshot name entry in the lookup table.

3. Remove the snapshot metadata entry.

4. Walk the dead list of this data set from the birth generation of this snapshot plus
one to the birth generation of the next snapshot.

5. For each dead list entry, check whether the block was born after the previous
snapshot has been created.

6. If yes, delete this list entry and deallocate this block.
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Notes On snapshot deletion, we have to deallocate all dead blocks that are in use by
this snapshot but not by any other snapshots. Clearly, these blocks were born before this
snapshot and died after this snapshot. The following two additional conditions guarantee
that a block is not in use by any other snapshot:

Born after the previous snapshot Otherwise, this block must be still in use by the
previous snapshot.

Died before the next snapshot Otherwise, this block must be still in use by the next
snapshot.

Hence, we filter the dead list for blocks that match these conditions and deallocate these
blocks.

delete_dataset(&mut Database, Dataset)

1. Walk the data set tree and deallocate every node.

2. Deallocate every block in the dead list of this data set.

3. Remove the dead list, the snapshot metadata, and the snapshot name lookup table.

4. Remove the data set metadata and the name entry in the data set lookup table.

Notes Every data block referenced by a data set belongs to a tree node either in the
current data set tree or the tree node is referenced by a dead list entry. Hence, this
algorithm deallocates exactly every block referenced by this data set in step 1 and 2.
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4. Comparison Against Existing
Storage Stacks

In this chapter, we introduce and analyze the Linux storage stack as a mature solution
and ZFS as a modern approach. Both storage stacks will be compared against the storage
stack design presented in this thesis. In this comparison, we especially focus on data
integrity, usability, the implementation of snapshots, and overall efficiency of the storage
stacks.

4.1. Linux Storage Stack
We will start off with the typical Linux storage stack which mainly consists of the
logical volume manager LVM on top of a RAID. At first, we will give an overview of
this stack. Before we compare the design of this stack against our design, we describe
two components of the Linux storage stack in detail as their implementation vastly
differs compared to our storage stack: the RAID functionality and the implementation
of snapshots.

4.1.1. Conceptional Overview
Traditionally, the storage stack on Linux consists of POSIX filesystems at the top, a
logical volume manager in between, and either hardware RAID controllers or a software
RAID at the bottom of the stack (see Figure 4.1).

FilesystemFilesystem Filesystem

Logical Volume Manager

Hardware/Software RAID Solution

RAID5

HDDHDDHDD HDD HDD

RAID5

HDDHDDHDD HDD HDD

Figure 4.1.: Linux storage stack
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The bottom layer manages many hard disks which are combined into logical units
called RAIDs. Depending on its RAID level, a RAID provides either better performance,
reliability, or both compared to a single disk. This layer exports a block device interface
to access the data on the underlying RAIDs – i.e. a linear space of data which can be
read and written in blocks (mostly 512 bytes) with a sync operation.
On top of the RAID sits a logical volume manager such as LVM. This layer has one

or more underlying block devices called physical volumes which are combined into a
volume group. The volume group provides logical volumes which again have a block
device interface. Hence, this layer subdivides the lower block device(s) into multiple
smaller block devices. In contrast to static partitioning, the LVM allows for dynamic
creation, growing, and shrinking of the logical volumes and, hence, is much more flexible.
Additionally, LVM can snapshot logical volumes and supports clones, too.

Finally, on top of each LVM logical volume we have POSIX filesystems in the storage
stack such as ext4 or XFS.

4.1.2. RAID Levels
There are four commonly used RAID levels which define the behavior of a RAID group:

RAID0 The data is striped in fixed chunk sizes across all disks in this unit. If one disk
fails, the data is lost.

RAID1 The data is mirrored in fixed chunk sizes across all disks in this unit. If all disks
fail, the data is lost.

RAID5 The data is striped in fixed chunk sizes with an additional parity data chunk
per stripe across all disks in this unit. The location of the parity data depends on
the data offset so that the parity data is evenly distributed among the disks. If a
disk fails, we can read the parity data chunk to recompute the missing data in the
stripe. If two disks fail, the data is lost.

RAID6 Similar to RAID5, but with two parity data chunks per stripe. Hence, if three
disks fail, the data is lost.

RAIDx0 RAIDx0 such as RAID10, RAID50, and RAID60 is not a RAID level per se,
but stands for striping data among multiple RAIDs of the same kind – i.e. it is a
RAID0 on top of other RAIDs. If an underlying RAID fails, the data is lost.

Example: The RAID5 groups shown in Figure 4.1 use the space of one disk in each
stripe for parity blocks and, thus, are resilient against one disk outage per group. The
data of the LVM will be striped across both groups which is also known as RAID50.

4.1.3. LVM Snapshots
With LVM, we can create copy-on-write snapshots of individual logical volumes. The
snapshot data will live in a separate logical volume whose space has to be preallocated
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but it can be dynamically resized. For each snapshot, LVM keeps track of modifications
of the original logical volume since the snapshot creation in an exception table. Before a
block will be overwritten by a write in the logical volume, LVM copies the previous data
block to the snapshot’s logical volume and inserts an entry into the exception table. If
the snapshot has not enough space to save the data block, the snapshot will be disabled
and becomes unusable.
Note that since Linux 3.2 there is also support for thin provisioning pools in LVM.

These pools handle snapshots of thinly provisioned logical volumes quite differently than
the described approach [TOO16; Dev17b].

4.1.4. Design Comparison
The concepts of both the Linux storage stack and our storage stack have a layered
approach where multiple components are stacked on top of each other. In the Linux
storage stack, every layer besides the top most layer provides a block device interface.
In contrast, each layer of our storage stack exposes a different interface. First, a block
device interface with additional checksums at the Vdev and Storage Pool Layer, then
an object-based interface at the Data Management Layer, and finally, a key-value store
interface at the Tree and Database Layer. Hence, these layers are more tightly integrated
and more dependent on each other while the layers of the Linux storage stack have a
simpler API surface. These design decisions result in many important differences between
the two storage stacks which we will now discuss in greater detail.

Customizability

The Linux storage stack is customizable for different needs because each lower layer can
be easily removed or replaced. This is possible because of the identical layer interfaces.
Regarding our storage stack, each layer is dependent on its bottom layer by design. This
flexibility of the Linux storage stack might come in handy if we only need a portion of
the functionality, for example snapshots. In that case, we could only use some layers
and, hence, reduce the complexity of the whole setup.
For example in the evaluation (see Chapter 7), we do not use snapshots or multiple

data sets and therefore, we do not need the LVM layer of the Linux storage stack. By
removing this layer, the benchmark setup becomes easier.

Convenience and Robustness

As already mentioned, the Linux storage stack consists of independent layers. Therefore,
each layer is managed by a different set of tools. The hardware RAID-controller can
be managed by a vendor supplied command line tool, the Linux software RAID is
administrated via mdadm, LVM can be configured by using the lvm program, and each
filesystem has specific mount options and a filesystem check program. This is inconvenient
for the administrator who has to remember the different programs and command line
options. Additionally, the administrator has to use multiple programs for a single task.

61



For example, creating a new filesystem on top of LVM consists of multiple steps: Creating
a new logical volume, creating a new filesystem on top of this logical volume, adding an
entry to the fstab file, and finally mount the filesystem. Each step involves a separate
program. Managing snapshots has a similar complexity. In contrast, our storage stack
can create a new data set or a new snapshot using a single API call. Thus, it is much
easier to use.
Another aspect is the robustness of the snapshot implementation. As outlined in

Section 4.1.3, the LVM snapshot implementation is susceptible to outages. If the adminis-
trator did not dedicate enough space for a snapshot, the snapshot may become unusable
if the original logical volume receives too many writes. This is highly inconvenient and
error-prone. Our design has no such issues with respect to snapshots.
Also the robustness against failures is a major difference between these two storage

stacks. Our storage stack guarantees that the state on disk is always consistent due to its
copy-on-write principle. Hence, it does not need any check after a crash or power outage.
Contrary to this, every layer in the Linux storage stack might have an inconsistent state
on disk and for each layer different actions need to be taken. Each filesystem may be
checked with its specific fsck program, LVM provides vgcheck and pvcheck, and the
RAID needs a resync to synchronize the data on the disks – this process is also called
scrubbing.

Metadata Overhead

Regarding the Linux storage stack, the simplicity of the interfaces between each layer
implies some downsides. For example, the LVM and each filesystem have to manage
allocations. The LVM allocates multiple blocks of the underlying block device to upper
block devices and each filesystem allocates block of the underlying block device to the
file data of an inode. This results in doubled costs and complexity for allocations and is
due to the block device interfaces.

In our design, the upper layers are agnostic of the actual location of data contrary to
the block device interface. For example, it is transparent for the Tree Layer where the
tree nodes are located on disk. This allows the Data Management Layer to decide where
to write the data as it can be written anywhere. Hence, only one layer is actually in
charge of allocating disk space to data blocks. This results in less overhead for allocations
in terms of computation, disk space, and management.

Snapshot Efficiency

The LVM snapshot implementation is rather simple and limited by the layer interfaces.
As already brought up, each LVM snapshot needs a separate preallocated logical volume
to which the data is copied on every write to the original logical volume. In turn, this
means that the write throughput on the logical volume depends on whether the logical
volume has snapshots as each write to the logical volume is preceded by a copy for each
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existing snapshot.1 Even if we only have one snapshot, the write throughput is effectively
limited to at most one third in theory. Practically, this limitation is much more severe
with a 10-fold to a 100-fold slowdown [Dok14].

Besides that, the LVM may even copy data which is not in use by a snapshot because
this layer may not know whether a data block was actually in use by the filesystem at
that point in time.

All in all, it is obvious that LVM snapshots are designed for short term snapshots, for
example for taking a consistent backup of a logical volume.
As our storage stack is designed around copy-on-write, it has native support for

snapshots. Because each overwrite will be redirected to unused space, having a snapshot
for data set simply means that we do not deallocate (logical) overwritten data. Hence,
our design does not have any of the issues listed above. Instead, the major issue is
freeing unused data blocks on snapshot deletion. This is solved rather efficiently with
the dead list as explained in the Section 3.7.4. Still, deleting snapshots is more complex
and expensive compared to LVM, but this trade-off is definitely worth the effort.

Data Integrity

A severe disadvantage of the Linux storage stack is the missing data integrity in the
whole concept. The RAID layer can only protect against failing disks that report an
error for the operation. If a disk signals a successful read but returned wrong data,
the upper layer may detect this with checksums but there is no way to repair the data
despite the RAID may having a mirror or parity chunks because the RAID cannot verify
the integrity of the data read.
Additionally, system failures are critical for RAIDs, too. The RAID-controller and

each hard disk have a write cache for better performance which may not be flushed to
disk on power failure. On the next read of these blocks, we have a mismatch between
mirrors or the data chunks and the parity chunks like in the previous described case.
Likewise, as we cannot verify the integrity of the blocks, we cannot repair this case. Even
without write caches, this may occur as we cannot atomically write to multiple disks.
For RAID5, this problem is also known as the “RAID5 write hole” which is the time
frame in which the parity chunks do not match the data chunks. As mentioned, a RAID
can be resynced after a failure, but this operation may corrupt intact data as the layer
cannot know which chunk is corrupt. This is especially a problem when it comes to silent
data corruption. Recent studies suggest that “RAID reconstruction discovers about 8%
of the checksum mismatches in nearline disks” [Bai+08].
On contrary, our storage stack includes data integrity by design. Every data block

is protected by a checksum. Except for the Superblock, this checksum is stored in the
upper block that references the block. Thus, the state of our storage stack builds a
Merkle tree [Mer87] so that we can verify the correctness of every referenced data block
by solely having an intact Superblock and walking down the tree – this operation is

1An approach to avoid this linear slowdown of the write throughput is to chain the exception tables of
snapshots so that each block will be copied only once. However, this involves a linear slowdown of
the read throughput of snapshots and the snapshots will depend on their ancestors.
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called scrubbing. Compared to saving the checksum inside the data, this approach also
detects identity discrepancies which can be caused by lost or misdirected writes (see
[Bai+08, Section 2.3] for more details).

To sum up, our storage stack fully protects the data’s integrity, but the Linux storage
stack cannot provide data integrity by design.

4.2. ZFS
After analyzing the Linux storage stack, we will now look at ZFS which is a much
more modern approach to designing storage stacks. ZFS provides POSIX compatible
filesystems and block devices on top of a storage pool and solves most of the problems
mentioned in the previous section. Again, we give an design overview first, and then
focus on details regarding snapshots and allocation. Afterwards, we compare ZFS to our
design.

4.2.1. Conceptional Overview
Once more, ZFS [Bon+03] uses a layered approach (see Figure 4.2). The innovation of
ZFS are the reinvented layer interfaces. Compared to the Linux storage stack, the layer
interfaces are aligned to the actual needs of each layer. Together with copy-on-write, this
is the key to a powerful, feature rich, and efficient storage stack.
The bottom layer, the Storage Pool Allocator (SPA), replaces the RAID layer but

the SPA has a much richer interface than the usual block device interface of a RAID
layer. The SPA combines block devices into logical units called virtual devices – short
vdevs. The data of the storage pool will be spread over the virtual devices. Each virtual
device can either be a single block device, a mirror of two or more devices, or a raidz1,
raidz2, or raidz3 which build a group with single, double, or triple parity respectively.
The functionality and the data layout of raidz is very similar to the parity1 vdev of our
design as every data block is a whole stripe that will be distributed across the disks of a
raidz group. There are also other special purpose vdevs – for more information, see man
8 zpool.

As the name of the SPA suggests, this layer handles allocations, but also variable block
sizes, compression, and checksumming. Each data block read and written by the SPA is
identified by a block pointer which contains the offset on disk, the compressed size, the
checksum, and some other metadata. With the checksum in the block pointer, the SPA
can verify the integrity of the data blocks on disk and, hence, does not suffer from the
described downsides of RAIDs. In a disk group with parity, it even has the possibility to
recover from a read which returned wrong data by applying a combinatorial reconstruction
of the data and parity blocks (for details of this functionality, see Section 3.3.3).
Using the rich interface of the SPA, the Data Management Unit (DMU) implements

an even richer interface. The DMU is a transactional object store with support for
atomic operations, multiple object types, and multiple data sets which support snapshots
and clones. Finally, on top of the DMU, the ZFS POSIX Layer implements a POSIX-
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compatible filesystem. Due to the powerful transaction mechanisms of the DMU, this
layer is rather thin.
All in all, ZFS is as flexible as the Linux storage stack, but has less overhead and

additionally provides data integrity, efficient snapshots, and much more features which
are beyond the scope of this short introduction to ZFS. We will now focus on how ZFS
handles snapshots and allocations.

ZFS POSIX Layer (ZPL)

Data Management Unit (DMU)

Storage Pool Allocator (SPA)

ZRAID1

HDDHDDHDD HDD HDD

ZRAID1

HDDHDDHDD HDD HDD

Figure 4.2.: Simplified ZFS storage stack

4.2.2. Snapshots
Similar to our design, the internal state of ZFS consists of many tree structures which
are referencing each other. The tree nodes are identified by block pointers. With the
checksum in the block pointer, the trees again form a Merkle tree [Mer87] with a single
self-checksummed block at the top: the Uberblock. Also, ZFS has a notion of generations.
Every time the on-disk state is updated, ZFS commits a transaction group which is
identified by a logical timestamp.

Using these building blocks, the implementation of snapshots is straightforward. Again,
ZFS applies the path-copying technique [Dri+86] to all trees. Hence, for supporting
snapshots, ZFS just has to not deallocate data blocks if a data set has a snapshot.
Instead, these blocks will be saved in a data structure called dead list so that ZFS can
easily enumerate the data blocks that have to be deallocated if a snapshot is deleted.

4.2.3. Allocation
Because ZFS is a redirect-on-write filesystem, it does not overwrite active data and needs
to allocate on every write. Likewise, on logical overwrite, ZFS has to potentially free the
old data blocks. Therefore, the allocation subsystem is much more stressed compared
to other filesystems that overwrite data and, thus, allocating needs to be very efficient
for ZFS. To achieve this goal, ZFS includes some tricks and techniques which we will
present in the following.
First of all, each vdev of a ZFS storage pool is split into about 200 independent

segments called metaslabs. Each metaslab has an associated space map which tracks
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the free space in this metaslab on sector granularity.2 On every allocation request, the
SPA allocates space in a metaslab and the space map will be updated on the next
commit. Likewise on every deallocation, the SPA needs to update the corresponding
space map. As the SPA can decide where to allocate blocks, it tries to allocate from
the same metaslab so that less space maps have to be updated. Additionally, the space
maps have an optimized representation on disk. Instead of a simple bitmap, a space
map is a logical log of operations and ZFS appends a log entry for each allocation and
deallocation. This turns allocating into an efficient sequential workload. If a space map
becomes too large with many overlapping allocations and deallocations in the log, it will
be condensed and the whole log will be rewritten which is also very efficient.
However, deallocations still emit a random workload. On an aged storage pool, it

is highly likely that every space map needs to be updated on a sync due to many
deallocations scattered across the pool. Therefore, ZFS needs to issue about 200 small
random I/Os per vdev and sync for updating the space maps.

4.2.4. Design Comparison
As indicated in the introductions, the overall design of ZFS and our storage stack is very
similar:

1. Both storage stacks use copy-on-write which enables consistent on-disk state and
efficient snapshots.

2. Both have a special pointer type for referencing disk blocks – the ObjectPointer
and the block pointer. These pointers includes a checksum of the referenced data
so that the data integrity can be verified.

3. Both use trees as primary data structure so that the whole storage pool forms
a Merkle tree. Hence, the whole storage pool’s consistency and integrity can be
easily verified.

4. The lower layer of both storage stacks avoids read-modify-write cycles for RAID
vdevs by having a dynamic stripe width so that every write is a full stripe write.

The main difference between both implementations is that ZFS is much more feature
rich. However, most of ZFS’s features could be easily supported by our storage stack
because of the similarities between both designs. Nonetheless, there are some notable
differences between both designs as we will see in the following.

Allocation

Allocation metadata is handled very differently in both designs. On the one hand, ZFS
uses specialized data structures for saving the free space information on disk: the log-
structured space maps. On the other hand, our storage stack simply saves bitmaps in a
Bε-Tree and inserts upsert messages to update the bitmaps on allocation or deallocation.

2The granularity can be controlled by the ashift parameter on pool creation.
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Despite the sophisticated concept of ZFS, synchronizing the space maps can still
be a burden. On the OpenZFS Developer Summit 2017, Dimitropoulos presented a
tiny benchmark that simulates a write intensive workload. The analysis of the I/O
distribution during this benchmark shows that a non-negligible portion (25%) of all
I/Os are due to space map updates [Dim17]. The proposed solution is to flush only one
instead of all space maps per synchronization and add another log in front of the space
maps (which are logs itself). Then, both allocations and deallocations emit a sequential
workload. Altogether, the ZFS concept to handling allocations efficiently becomes quite
complex.
By using a Bε-Tree, our design is much simpler and still efficient in practice. As

analyzed previously, Bε-Trees ingest random workloads very fast. Furthermore, the
entries of a Bε-Tree stay mostly logically ordered. The fragmentation is limited by the
leaf node size and the tree height, as for each key there is exactly one root-to-leaf path in
a Bε-Tree on which messages can reside. Hence, the Bε-Tree is very suited for allocation
workloads as the bitmaps are read in sequential order and written in sequential and
random order.

Fragmentation

In ZFS, all user data blocks are written as separate units to disk and are identified by a
block pointer. As ZFS does not support rewriting a block pointer, ZFS cannot move
data on disk. Therefore, the position of the data is fixed upon the first write. This
leads to fragmentation of user data. On a large write to a file, the data blocks will be
allocated and laid out on disk in the order the write were issued. Hence, the file data
block will be in sequential order when we have a sequential workload. But if we have
a random workload, the file data will become heavily fragmented. Thus, a following
sequential read of the file will emit a random I/O workload. Likewise, file data becomes
fragmented when portions of the file are overwritten during a longer period of time as
ZFS is a copy-on-write filesystem.
Our design handles the storage of user data differently: the data is inlined into a

Bε-Tree. Therefore, the fragmentation is again limited – as is the case for the allocation
bitmaps. Hence, sequential reads have only a fairly limited slowdown due to fragmentation
regardless of the write access pattern. However, random writes are probably slower
compared to ZFS as the user data has to be moved downwards the tree and is copied
multiple times during this process. All in all, our approach is a trade-off of write speed
for read speed. As noted in the comparison of B-Trees and Bε-Trees, this trade-off should
be beneficial for most workloads as the read speedup is larger than the write slowdown.

Snapshot Deletion

Both designs keep track of deleted blocks in dead lists. Our design has one dead list
per data set which is ordered by death time. ZFS, however, keeps multiple dead lists
per snapshot. On snapshot deletion, we have to walk a large part of the dead list and
delete some of the entries. So, we sequentially read a part of the dead list and randomly
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insert deletion messages into the dead list which is reasonably efficient with a Bε-Tree.
In contrast, ZFS just deletes all entries on one dead list of the snapshot and appends all
other dead lists of this snapshot to dead lists of the next snapshot. The approach of ZFS
should be much more efficient and significantly speeds up the deletion of large snapshots.

Reusability

ZFS is a large, full-blown filesystem in the kernel space. Therefore, the reusability of
ZFS and its code is quite limited. But our implementation is a userspace library which
can be easily included into other projects. Also, each layer can be used as a base for
external code. Regarding ZFS, the DMU can be accessed separately, but it is still in
the kernel space and the DMU has been tightly designed around the needs of the upper
layers of ZFS.
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5. Related Work
There is much related work regarding the improvement of storage stacks and especially
the top-most layer: the filesystem. In a practical sense, ZFS [Bon+03] improved and
reinvented the whole storage stack at the beginning of the century as we discussed in
Section 4.2. By using copy-on-write and adapting the interfaces of the layers to their
needs, ZFS becomes a feature rich, pooled storage stack with efficient snapshots and
strong data integrity.
Also, the Stratis project [Gro17] aims to provide a better user experience for the

Linux storage stack. The goal of Stratis is a single simple-to-use interface that hides the
complexity of using various independent layers in a storage stack.
Aside from ZFS and Stratis as practical work, there is also ongoing scientific work

on improving the top-most layer of storage stacks. In the following we will focus on
two aspects: improving the filesystem efficiency by using novel data layouts on disk and
replacing the filesystem by a simpler low level user interface such as a key-value store
interface.

5.1. Filesystem Efficiency
Today, filesystems provide good efficiency when reading or writing large files. But often,
filesystem operations on small data can be very slow – most notably metadata operations
on files or operations that traverse the directory hierarchy. Due to the small data, each
operation involves a high overhead. Also, traversing the directory hierarchy is a sequential
operation as we have to look up the parent before we can descend to the child.
Many workloads have multiple metadata operations on logical associated filesystem

objects, but most filesystems cannot speed up these workloads as the metadata is not
laid out on disk to exploit the accesses. Mature filesystems, such as ext4, do group
metadata on disk using heuristics, however this is not sufficient.

Hence, we have to avoid fragmentation of the metadata and need a sequential on disk
layout of filesystem objects w.r.t. the logical order of the data. Surely, most filesystems
already have such layouts for the data of large files. But we also need optimized layouts for
the directory hierarchy such as a sequential layout of directories and inodes corresponding
to the trace of a depth-first search.

A first step regarding this goal is the TokuFS presented in [Esm+12]. This userspace
filesystem uses a Bε-Tree in which the data of filesystem objects is indexed by the
filesystem path to the object. Like our design, the file data is inlined into the tree. These
simple adoptions show impressive improvements. TokuFS has a much higher throughput
in file creation and scanning compared to ext4 with a 9-fold speed up on creation and a
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25-fold speed up on scanning. However, TokuFS has a major downside: renaming a file
involves moving the file’s data in the Bε-Tree as it is indexed by the file path.
TableFS [RG13] is a similar approach to increasing the efficiency as it uses a log-

structured merge tree and indexes each directory entry by the parent’s inode number and
the directory entry name. It achieves similar but less pronounced speed ups compared to
the results of TokuFS.

At last, we will introduce BetrFS which is regularly improved and is the successor to
TokuFS.

5.1.1. BetrFS
The first version of BetrFS is presented in [Jan+15a]. Contrary to TokuFS, BetrFS is
a kernel filesystem for Linux. Thus, BetrFS can avoid the huge overhead of userspace
filesystems. BetrFS uses the same data layout as TokuFS except for the internal block
size of file data which has been increased from 512 bytes to 4KiB. The conducted micro
write benchmark shows the potential of using a Bε-Tree. Executing 1000 4 bytes micro
writes within a 1GiB file is around 100 times faster with BetrFS compared to ext4, XFS,
Btrfs, and ZFS. Still, the first BetrFS has the same huge overhead on file renaming as
TokuFS and a write amplification of two for every operations due to write-ahead logging.
Additionally, deleting files involves reading the file data.

To address the issues, BetrFS 0.2 [Yua+16] includes three enhancements. First, the
write-ahead log overhead is avoided by introducing late-binding to data which is directly
located in tree nodes. Second, they implemented a new range-delete operation for the
Bε-Tree that does not have to read stale leaf nodes.
The third enhancement is the most interesting one. They introduced the zone-tree

schema that avoids file renaming overhead without sacrificing the performance of the
previous BetrFS version. This new schema is a hybrid between the full file path as index
and inode numbers. Instead of using the full file path, BetrFS 0.2 groups the directory
tree dynamically into zones which are identified by a number. Then, the filesystem
objects are indexed by their zone ID and their path in that zone. As zones are limited
in their data size, large files will have their own zone. With BetrFS 0.2, renaming a
directory entry is an operation local to the specific zone and, hence, the amount of work
is limited. Benchmarks show that BetrFS 0.2 retains the performance best cases of its
predecessor while file renaming is at most 4 times slower than ext4. Likewise, the file
deletion and write throughput is very competitive.
In the latest paper involving BetrFS, Conway et al. analyze the impact of aging for

filesystems [Con+17]. Aging denotes the performance degradation of filesystem over
their lifetime. As already mentioned, filesystems may place data suboptimally. This
occurs especially when many filesystem operations are executed over longer periods of
time. The findings in this paper are noteworthy. When using application workloads, all
production filesystems analyzed exhibit massive slow downs of up to 50 times. However,
“BetrFS exhibits essentially no aging” [Con+17]. Therefore, optimizing the data layout
really pays off.
Despite the missing support for directory hierarchies, our storage stack has a very
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similar approach compared to BetrFS (and TokuFS). Both concepts use the Bε-Tree and
save user data inlined into the tree to reduce indirections. BetrFS has a block size of
4KiB whereas we use a block size of 128KiB. The underlying Bε-Tree implementation of
BetrFS is however much more mature as it uses the database engine TokuDB [Per18;
Per17] which is ACID compliant, supports transactions, and features a write-ahead log.
Also, BetrFS provides a filesystem interface and not a simpler key-value store interface
as we do.

5.2. Low Level User Interfaces
Another approach for improving the performance and usability of storage stacks is
to replace the top-most layer: the POSIX-compatible filesystem. Especially for HPC
applications, a full-blown POSIX filesystem is often not needed and even becomes a
burden. For distributed filesystems, the strong POSIX consistency semantics require
a distributed locking mechanism which often limits the performance due to increased
communication needs. Some HPC filesystems solve this issue by relaxing the POSIX
semantics such as OrangeFS [Koz+14].

A more extensive approach is to replace the filesystem interface by simpler interfaces
with a smaller API surface and less consistency semantics. Similar to the NoSQL
databases that provide interfaces which are more suited for specific workloads than SQL
databases, a storage stack can export a key-value store interface instead of a filesystem
when a key-value store is suitable for certain workloads. Tucana [Pap+16] is a key-value
store whose data structure is based on Bε-Trees. Compared to HBase and Cassandra
from the Hadoop ecosystem which are based on log-structured merge trees, Tucana has
lower CPU overhead and a 2- to 10-fold higher throughput in the Yahoo Cloud Serving
Benchmark. Their findings suggest that Bε-Trees are competitive to LSMs which are
still much more popular today.

5.2.1. DAOS
DAOS (Distributed Asynchronous Object Storage) is a distributed storage stack with a
key-array store interface and support for multi-tier storage systems and byte-granular
persistent storage [Dev17a; Lof+16; Lom+16; Dil17; LZ13].
Its key feature is extreme scalability. In contrast to the previously presented storage

stacks, DAOS is tailored for HPC applications but like most storage stacks, DAOS has
multiple layers. The top-most and optional IO Dispatcher (IOD) layer is responsible
for data rearrangement and data processing between the compute nodes and actual
storage nodes. It provides burst buffers to absorb the I/O peaks of HPC workloads and
a transaction mechanism so that a checkpoint of the HPC application is not visible to
others until the checkpoint has been written successfully.

The next layer is called DAOS and provides a parallel file system interface. Through
this interface, a user can access the actual data in a consistent, global view. The DAOS
layer manages multiple containers which are a hierarchical namespace for objects which
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in turn are either blobs or multi-dimensional arrays. By using arrays instead of blobs,
the DAOS layer can automatically stripe the underlying data among multiple storage
nodes for better performance. The transactions of the IOD layer are implemented with
epochs and copy-on-write at the DAOS layer so that there can be multiple versions of
the same object.
The bottom layer is the Versioning Object Storage Device (VOSD) layer. This layer

provides access to the storage devices and is actually quite similar to the other presented
storage stacks. A first prototype even used ZFS at the VOSD layer [Lof+16].
All in all, the design of DAOS describes a concept regarding how to scale out our

storage stack for distributed, parallel usage such as for HPC. Like our storage stack,
DAOS is implemented in the userspace as this simplifies the overall implementation and
it should also provide a performance benefit compared to a full implementation in the
kernel.

72



6. Implementation
In this chapter, we introduce the systems programming language Rust which is used for
the whole storage stack implementation. In particular, we will analyze the benefits of
using Rust and also compare Rust against other popular systems programming languages.
Afterwards, we will have a look at interesting details of the implementation – such as
how the I/O is actually performed – and performance optimizations.

6.1. The Rust Programming Language
The implementation of the storage stack is completely written in Rust. Rust is a systems
programming language whose first stable version was released in 2015. Rust’s distinctive
feature compared to other systems programming languages is that it guarantees memory
safety and thread safety without the need for an intrusive runtime such as a garbage
collection. Hence, it is especially suited as a replacement for C or C++. Having these
safeties, we can program more fearlessly without worrying about dereferencing dangling
pointers, having invalidated iterators, accessing uninitialized memory, and so forth.

In addition to its safety guarantees, Rust also has other noteworthy features such as its
powerful type system which can prevent logic bugs at compile time as we will see later on.
Likewise, Rust encourages the resource acquisition is initialization (RAII) principle and
has integrated concepts for error handling. Furthermore, Rust provides object-oriented
programming (OOP) based on traits, zero cost abstractions, pattern matching, and type
inference. The ecosystem of Rust includes an easy-to-use build tool and package manager,
unit tests, automated documentation generation, and much more.
For more information, see the Rust website: https://www.rust-lang.org

6.1.1. Rust Compared to Other Popular Languages
In this section, we want to compare Rust to other programming languages which are often
used for systems programming: C, C++, and Go. Neither of these languages guarantee
memory safety or thread safety.1 So, developing multi-threaded software can be very
challenging in these languages as data races might occur which result in hard-to-debug
Heisenbugs, i.e. bugs that seem to disappear when debugged because the bug’s behavior
depends on the program’s environment. This also makes refactoring of code difficult

1Despite being a very young systems programming language, Go is neither memory nor thread safe.
See [Sta] for more details.
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because each refactoring might introduce concurrency bugs. In the following we will take
a closer look at other useful features besides safety that the other languages are missing.

C

The widely-used C systems programming language is a very old language that barely
provides any abstractions at all. It only has a very basic type system which allows
the user to declare structures. Due to the missing generics, many C libraries have the
notorious void pointer in their interfaces and rely on the casting to the correct type.
Likewise, the error handling story of C is very basic. Most functions return an integer
which indicates the success or error of the function call. Often, the error handling is
forgotten and the error will be ignored by accident. For example, the error propagation
of file systems and storage drivers in Linux 2.6 has been analyzed and the findings
are astonishing: “1153 calls (13%) drop an error code without handling it” [Gun+08].
Additionally, C makes it hard to ensure that certain actions are performed on exiting a
code block such as unlocking a mutex. As error handling often introduces multiple exit
paths, this becomes very tricky.

On the other hand, Rust solves all of these problems. It provides high-level abstractions,
including generics, due to its type system and the handling of errors is enforced by Rust
so that the mistakes cannot happen. Also, Rust provides RAII guard types that ensure
that, for example, mutexes are unlocked.

C++

C++ has many improvements compared to C: It supports OOP based on classes and
inheritance for better abstractions, RAII for avoiding resource leaks, and templates for
generic programming. Still, C++ does not need a runtime and, hence, C++ is often
used in embedded programming projects.
Nonetheless, Rust has some advantages over C++. First, the C++ templates are

mainly more powerful C macros and do not have static type checking so that the code
has to be type checked on each instantiation. Additionally, Rust includes a package
manager that makes it easier to reuse code of other people. Also, the type system of
Rust is much more powerful so that some invariants of specific types – such as “can be
only be used exactly once” – can be enforced by the type system which prevents bugs.
Regarding OOP, Rust encourages composition over inheritance – as recommended by
[Gam+95].

Go

Go is very similar to C but with interfaces, better error handling concepts, native
coroutines, a package manager, and automated memory management with a garbage
collection. Like C, its type system does not support generics, except for the basic array,
map, and slice types. Also, Go encourages to avoid concurrency issues by the usage of
messages passing between coroutines. This concurrency concept might not be convenient
for some problems and, still, Go is not thread safe as already mentioned. In addition,
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the runtime needed for the garbage collection makes Go unsuitable for embedded or low
level programming as opposed to Rust.

6.1.2. Preventing Bugs with Rust
Considering the following excerpt of the Storage Pool interface definition, we will see
how Rust’s type system prevents bugs:

1 /// A `StoragePoolLayer` which manages vdevs
2 /// and features a write-back queue.
3 pub trait StoragePoolLayer: Send + Sync {
4 type Checksum: Checksum;
5

6 /// Reads `size` blocks from the given `offset`.
7 /// Verifies the data with `checksum`.
8 fn read(
9 &self ,

10 size: Block<u32>,
11 offset: DiskOffset,
12 checksum: Self::Checksum,
13 ) -> Result<Box<[u8]>, VdevError>;
14

15 // other associated types and functions...
16 }

In line 3, we declare the new trait and already specify that for a type that implements
this trait, every instance is Send and Sync, i.e. it can be safely sent to other threads
and shared with other threads. Line 4 declares an associated type that has to satisfy the
Checksum trait. This type is chosen by the implementation of this trait. Afterwards,
we declare the function read that every Storage Pool has to implement. This function
either returns an owned sequence of bytes on success or an error on failure.

This interface prevents the following kind of bugs: Using the newtype pattern [Con16b],
we ensure that every caller knows that the size parameter specifies the size in blocks
and not, for example, in bytes. Likewise, the offset is of type DiskOffset which is
just an unsigned integer, but the type guarantees certain invariants on this integer. Last
but not least, the third parameter checksum must be of the Checksum type that this
implementation supports so that no accidental type confusion is possible. The return
type Result is a sum type which enforces that the function either succeeds or fails. The
caller has to check for a potential error. If the functions fails, there is no possibility to
accidentally access the data block pointer and, hence, uninitialized memory. Also, the
type for the read byte sequence is Box<[u8]> which specifies that the caller is responsible
for deallocating it afterwards.

The implementation of the whole storage stack uses these safety measures all over the
place and these measures have prevented countless of bugs during multiple refactorings.
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6.2. Implementation Details
Now, we will have a look at the actual implementation of the storage stack. As its design
has already been described in Chapter 3 and its structure is very similar to the design,
we will focus on interesting implementation details instead of walking through the code.

6.2.1. Performing I/O
A very important aspect of the implementation is how it actually performs the disk
I/O as the I/O interface can be performance limiting. Hence, choosing the “right” I/O
interface is the key to good performance. In Linux userspace, we have multiple I/O
interfaces to choose from:

Sync I/O Simply call the synchronous I/O syscalls pread and pwrite from the client
thread. The thread will be suspended until the I/O has been executed.

Linux Async I/O The Linux kernel provides its own asynchronous I/O interface. With
the io_submit syscall, we can queue multiple I/Os which will be executed asyn-
chronously and maybe simultaneously. With the io_getevents syscall, we can
query or wait for completed I/Os.

POSIX Async I/O The POSIX standard also defines an asynchronous I/O interface.
Glibc which is the default C library on Linux, implements this interface by executing
synchronous I/O syscalls on a thread pool.

Sync I/O with Thread Pool Similar to the glibc, we can also use our own thread pool
to offload synchronous I/O syscalls.

The implementation needs an I/O interface which allows us to execute multiple I/Os
in parallel so that we can exploit the performance of many HDDs. Especially parity1
vdevs needs this as each request to this vdev will be split into multiple smaller I/Os –
one for each disk in the group. Hence, the Sync I/O interface is unsuitable as it serializes
the I/O requests.
A small benchmark which measured the latency for six read I/Os issued to six disks

indicated that the Linux Async I/O interface actually has a 10% higher latency compared
to the “poor man’s” asynchronous I/O interfaces. Also, the interface is much more
complex to use and lacks support for fsync [Cor16]. Hence, this interface was not
examined any further.

So we remain with two I/O interfaces whose implementations are nearly identical. The
implementation uses the Sync I/O with Thread Pool interface as its implementation is
very easy in Rust because Rust already supports synchronous I/O in its standard library
and there are Rust packages that provide thread pools which can be managed very easily.

6.2.2. Guaranteeing Invariants
As mentioned in Chapter 3, the ObjectReference type has an invariant:
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There is only one ObjectReference pointing to a mutable object.

Because the algorithms of the Data Management Layer rely on this fact, it is important
to guarantee this invariant to prevent bugs. Likewise, the Data Management Layer
interface has many functions which need a unique, mutable access to objects. With Rust,
we can easily implement the invariants for these types and interfaces as we will see in
the following.
Rust has a concept of ownership and borrowing and uses these concepts to enforce

the following rule: For each object, there is either shared immutable access or unique,
mutable access.2 So, if our interface requires mutable access to the objects, Rust already
guarantees that this access is unique. Now, to guarantee the ObjectReference invariant,
we only need to preventing cloning of ObjectReference objects. As the objects of types
are not cloneable by default in Rust, this is essentially a freebie in Rust.

6.2.3. Cache
The design does not further specify what kind of cache shall be used and leaves this as
an implementation decision. The implementation uses the simple CLOCK cache [Cor68].
CLOCK is similar to Second Chance and is a 1-bit approximation to the popular LRU
cache. The CLOCK cache consists of a circular list which contains the cache entries
and each cache entry has an associated reference bit. Its advantages is the low overhead
compared to LRU: Whereas LRU needs to update a linked list structure on each cache
access, CLOCK simply sets the associated reference bit. On eviction, we walk the circular
list and inspect each cache entry. First, we inspect the cache entry at the head of the
list. If its reference bit is not set, this entry will be evicted. Otherwise, the reference bit
will be reset and the circular list is advanced by one so that the head of the list is now
the tail of the list. On insertion, the cache entry is appended to the tail of the list.
This cache implementation should be sufficient with respect to performance. Many

modern caches focus on low overhead and scan resistance such as the ARC [MM03]
used in ZFS. Scan resistance means that first, a cache can detect when an operation
involves inserting many cache entries which are used only once, for example when a file
is sequentially read. Second, the cache protects more frequently accessed cache entries
from eviction due to the insertion of the cache entries from the scan operation. This
should result in an overall higher hit ratio. But scan resistance is probably not important
for us because of the following.
For tree structures, it is important that the upper levels of the tree are cached.

Regarding our implementation, a typical scan operation is the Bε-Tree range query. But
the range query implementation regularly accesses the upper nodes of the tree as it
repeatedly walks root-to-leaf paths. Hence, the reference bits of the upper tree nodes are
often “refreshed”. Therefore, scan resistance is not an important feature as we solely use
Bε-Trees as data structures.

2Otherwise, there would be shared, mutable state which is the root of all evil with respect to thread
safety.
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6.2.4. Deadlock Avoidance
The design describes a (possibly) circular usage of the Database Layer, the Data Man-
agement Layer, and the Allocation Handler. As the implementation uses locks for tree
nodes, this can lead to deadlocks. The following scenario shows that this is actually
possible:

An insertion into the root tree locks the root node and inserts the message.
As the (internal) root node overflows, some messages shall be flushed to a
child node. As the child was unmodified beforehand, the Allocation Handler
receives the callback copy_on_write so that the blocks of the old child node
can be deallocated. The Allocation Handler wants to update the allocation
bitmaps and this leads to an insertion into the root tree which needs to lock
the root node. At this point, the thread deadlocks.

As the implementation must be deadlock free, this deadlock has to be avoided. This is
achieved by breaking up the cycle: Instead of directly inserting the deallocation messages
that occur in copy_on_write calls, the Allocation Handler will delay these messages.
This has no effect on allocations later on if the node was written in a previous generation
as its blocks may not be overwritten in this generation. The implementation ensures
that the delayed messages are inserted before the next sync.

6.3. Optimizations
The implementation includes some basic optimizations to improve the performance which
will be presented in the following.

6.3.1. Zero-Copy Leaf Nodes
The implementation uses the bincode [Con17a] format to serialize data for on-disk storage.
Despite the fact that bincode is a space efficient binary format, profiling showed that the
data serialization comes at a significant overhead: During large range queries, about 30%
of the runtime of the library is consumed by the library function memcpy which moves
data around in memory. memcpy is used when deserializing keys, messages, and values in
the tree nodes.
To avoid the deserialization overhead, the implementation has a special on-disk data

structure for leaf nodes so that leaf nodes do not have to be deserialized if the node is
not modified. Reading a leaf node in this data structure does not involve any data copies
at all – hence, it is called zero-copy. The data structure is a sorted, packed key-value
list with all fields in little endian so that a typical computer architecture can efficiently
execute all leaf nodes operations on this data structure.

With this optimization, the CPU usage in the micro benchmark dropped significantly
and memcpy only accounts for 2% of the total runtime.
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6.3.2. Prefetch
For range queries, the implementation has a simple prefetching mechanism: Every time,
the algorithm does the root-to-leaf walk, the immediate right leaf sibling will be prefetched
if it exists. Despite the simplicity, this optimization shows decent improvements for range
queries in a micro benchmark: On a single disk, the throughput improves by a factor of
1.5. On striping with two disks, we gain a speed up of 4.

Still, the prefetching could be more aggressive and fetch multiple nodes in parallel,
but due to the increased complexity this was not investigated any further.

6.3.3. Vdev Selection
Last but not least, there are multiple spots where the implementation can choose between
multiple vdevs to perform an I/O. The mirror vdev, for example, can read data from any
of the mirrors. Likewise at the storage pool level, we can allocate and write to any of the
top-level vdevs. “Intelligent” decisions of vdevs at these spots can result in significant
speed ups.

Ideally, the algorithms should make informed decisions based on the current utilization
of the underlying devices like ZFS does for example. The implementation uses simpler
algorithmic decision making as it is nontrivial to compute the utilization of devices. The
mirror vdev will read from a device depending on the offset requested. Every 32MiB
the preferred device changes so that a mirror HDD has a high utilization on sequential
reads. At storage pool level, the top-level vdevs are selected in a round-robin fashion for
allocations.
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7. Evaluation
In this chapter, we evaluate the performance of the three present storage stacks: our
storage stack, ZFS, and ext4 on top of an MD device (Linux software RAID). We
will analyze the scaling of sequential throughput with increasing disk counts, the write
throughput of our storage stack with different cache sizes, and finally, we will run a
realistic database workload with random writes and sequential reads.

7.1. Methodology
All benchmarks are conducted on a server with a quad-core E3-1225 v3 @ 3.2GHz
CPU and 12GiB RAM. Six Seagate ST3500418AS 500GB HDDs are connected to the
computer via an LSI SAS3081E-R SAS HBA controller. The server runs Debian 9.3 with
Linux 4.12.13 and ZFS on Linux 0.7.3. The used Rust compiler was rustc 1.24.0-nightly
(f9b0897c5 2017-12-02). Fio 2.16 was used as the benchmark program.

The following configurations were tested:

db The storage stack of this thesis compiled with the mentioned Rust compiler in release
mode and with the default cache size of 256MiB except where otherwise specified.

ZFS A ZFS storage pool with default settings except where otherwise specified.

ext4 An ext4 filesystem on top of a MD device. The ext4 filesystem has been created
with the appropriate stride and stripe_width options so that ext4 can exploit
the underlying disk configuration. Also, lazy_itable_init and lazy_journal_-
init were deactivated so that the filesystem is fully initialized before the first
mount.

For testing the proposed storage stack, a fio engine has been written which directly
calls the functions of the storage stack library. For ext4 and ZFS, the default psync
engine has been used which opens a file on the filesystem and uses pread and pwrite
to perform I/O. On ext4, the file will be preallocated with posix_fallocate. On ZFS,
ftruncate is used instead as ZFS on Linux does not support preallocation.

7.2. Storage Stack Scaling
The first benchmark analyzes the scaling of sequential I/O throughput with increasing
disk counts. In theory, striped configurations scale linearly with the number of disks and
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RAID5 scales linear with the number of data disks, i.e. number of disks minus one. For
mirrors, the read throughput scales linearly, but the write throughput slightly decreases.

As workload, this benchmark reads and writes data sequentially with a 128KiB block
size. The following configurations are used: Striping with 1 to 6 disks, RAID5 with 3 to
6 disks, and mirror with 1 to 3 disks. The results are depicted in Figure 7.1, Figure 7.2,
and Figure 7.3. Now, we will analyze the results.

7.2.1. Striping
Starting off with the ext4 read performance on striped disks, we can already see a near
perfect scaling. From one to two and two to three disks, the performance is within 5%
of the perfect scaling. Beyond three disks, ext4 even exhibits a perfect scaling. Write
performance looks very similar at first. For two and three disks, the performance is
within 10%, and for four and five disks, it scales perfectly. But for six disks, the write
performance falls off dramatically as we already have the same throughput with four
disks. There is no obvious reason why the ext4 write performance does not scale beyond
five disks. Admittedly, this configuration is not common in practice.
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Figure 7.1.: Sequential read and write scaling at 128KiB block size with striping across
1 to 6 disks.

Next, we look at the performance of ZFS. Similar to ext4, the read and write per-
formance scales a little less for two and three disks than the scaling beyond three
disks. Nonetheless, ZFS shows a very steady scaling up to six disks for read and write
throughput.

As last candidate, we have our storage stack whose performance scaling is not steady
at all and the overall performance is mediocre compared to ext4 and ZFS. Beginning with
the read performance, we can see that our storage stack has a much lower throughput
with about 95MiB/s for one disk compared to the competitors whose throughput is
about 125MiB/s. Interestingly, the tide turns with two striped disks. Now, our storage
stack has the best read performance even though ext4 is just 1MiB/s slower. With three
disks, we gain only about 10% and beyond that the read performance falls off. Regarding
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the write performance, the throughput is about the same as ext4’s and scales very well
up to four disks. With five or six disks, it stagnates.
All in all, ext4 and ZFS show a good sequential read and write performance with

striped disks. The write performance of our storage stack is also very good. The read
performance however requires further analysis. The extraordinary read throughput with
two disks is probably due to the optimizations presented in Section 6.3. As the immediate
sibling of a leaf node is prefetched and the node are striped in a round-robin fashion
on write-back, our storage stack fetches exactly one node from each of the two disks
in parallel. This results in a perfect utilization of both disks. For striping across more
disks, we probably need to prefetch multiple nodes in parallel. It is not clear why the
read performance falls off with five or six disks instead of stagnating. A short follow up
benchmark indicates that increasing the number of I/O threads in the thread pool does
not influence the read performance fall-off.

7.2.2. RAID 5
Regarding RAID5, ext4 again shows good read throughput and a near perfect scaling.
The write throughput is considerably slower and also scales less well. However, this is
expected due to the parity overhead on write. The read throughput of ZFS is overall very
steady scaling and a little less compared to ext4. Regarding the write throughput, ZFS
starts with a higher throughput at three disks compared to ext4, but falls off drastically
and stagnates at six disks.
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Figure 7.2.: Sequential read and write scaling at 128KiB block size with RAID5 across 3
to 6 disks.

Surprisingly, our storage stack exhibits the highest write performance. Especially at
lower disk counts, our storage stack is remarkably faster. At higher disk counts, the
margin decreases as the write performance does not scale well beyond four disks. The
read throughput is again quite low as ext4 is about 50% faster. In contrast to striping,
the read throughput scales up to six disks.
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All things considered, the throughput and scaling with RAID5 is very similar to striping.
Again, ext4 comes out on top and ZFS is a very competitive runner-up. Likewise, our
storage stack has superior write performance but mediocre read performance.

7.2.3. Mirror
As the last scaling benchmark, we will look at the performance of mirrors. The results
are depicted in Figure 7.3.
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Figure 7.3.: Sequential read and write scaling at 128KiB block size with a mirror across
1 to 3 disks.

Regarding the write performance, all storage stacks have a similar throughput. Likewise,
each storage stack exhibits a slight slow down of about 10% per added mirror disk.
Regarding read performance, ext4 does not scale at all with multiple mirror disks while
ZFS and our storage stack have a speed up of about 35% compared to the single disk
case.

Looking at the typical case, a mirror of two disks, ZFS excels at the read throughput
with about 170MiB/s compared to about 125MiB/s for ext4 and our storage stack.

7.3. Write Throughput with Different Cache Sizes
With the second benchmark, we evaluate the influence of the cache size on write
throughput in our storage stack. As we cache dirty nodes and insert new data at the
root node, a larger cache allows us to better layout incoming data in the tree before
accessing the disk. Hence, random write workloads should gain a higher throughput with
a larger cache. For the sequential workload, we will use 128KiB as block size. For the
random workload, we use the following block sizes: 4KiB, 128KiB, 1MiB, and 4MiB.
We will test the write throughput for each of these access patterns with the following
cache sizes: 256MiB, 512MiB, 1GiB, 2GiB, and 4GiB. This benchmark uses only a
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single disk so that scaling issues do not influence the result. In the following, we will
analyze the results which are depicted in Figure 7.4.
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Figure 7.4.: Write throughput with different access patterns and cache sizes from 256MiB
to 4GiB.

The cache size does not benefit the sequential write throughput at all. Regarding the
random write throughput, we see notable improvements with larger cache sizes. For
4KiB block size, the average throughput gain is about 7.5% per cache size doubling and
respectively 34% in total. At 128KiB block size, we see the highest gain with 16.5% per
step and 85% in total. With larger block sizes, the gain falls off and is only about 5%
per doubling for 1MiB and 1.5% for 4MiB.

Coming to a conclusion, there is a notable throughput gain for smaller block sizes and
random access patterns. For larger block size, there is a gain but not as pronounced. As
expected, sequential workloads are not affected at all. Hence, for random workloads with
small block sizes, it is wise to increase the cache size as it is defaults to 256MiB. Note
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that the cache size negatively affects the sync performance. After an intensive write
phase, the cache is full of dirty nodes which have to be written back to disk prior to the
sync which takes a long time if the cache is large.

7.4. Database Workload
The last benchmark simulates a database workload. On insertions or updates of tuples,
databases tend to issue a large number of small random writes because the tuples are
typically not in the same order as the database’s index. (Otherwise, we do not need an
index in the first place.)

With a high volume of small random writes, a database workload shows the influence
of these writes on data layout and fragmentation. This benchmark involves three phases.
First, a 20GiB file will be written sequentially so that the data blocks have a perfect
layout. Then, we will issue random writes of 8KiB block size so that in total 5GiB of
the file will be overwritten. Finally, we sequentially read the file with 128KiB block size.
Caches are emptied after each phase. As in the case of the cache size benchmark, we
only use a single disk.

For copy-on-write storage stacks such as ZFS and our storage stack, this workload can
lead to excessive fragmentation due to the small partial overwrites which will in turn
lead to mediocre sequential read performance. For ZFS, we additionally benchmark with
a record size set to 8KiB so that ZFS can avoid read-modify-write cycles. This is also
recommended in practice [Con16a]. The results are depicted in Figure 7.5.
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Figure 7.5.: Database workload. First, a 20GiB file is sequentially written with 128KiB
block size. Then, the file is partially overwritten (5GiB in total) with
a random access pattern and 8KiB block size. Finally, the file is read
sequentially with 128KiB block size. “ZFS8k” stands for ZFS with record
size set to 8KiB.

Ext4 again shows a decent performance in this benchmark. In the random write phase,
ext4 issues a large number of random I/Os but due to the default settings of Linux,
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2.4GiB of dirty data will be cached in the page cache. Hence, a huge number of I/Os
can be reordered to increase the performance so that resulting write throughput is about
4.7MiB/s. As ext4 overwrites the data in place and, thus, no fragmentation occurs, the
final read is also very fast with 122MiB/s.
ZFS has a slight sequential write throughput decrease with a record size of 8KiB

instead of the default 128KiB. In the random write phase, the write throughput is
only about 0.66MiB/s. Hence, ZFS must issue lots of small random I/Os. The smaller
record size does not influence the performance. The final read is very slow with about
21.5MiB/s considering that ZFS has shown a throughput of 125MiB/s for sequential
data in the first benchmark. With 8KiB record size, ZFS even is about 500KiB/s slower
compared to the default settings. The low read throughput of ZFS is due to the fact that
the file data becomes heavily fragmented on disk because of the small random writes.
Finally, our storage stack has a high write throughput of 6.6MiB/s in the second

phase and a good read throughput of 71MiB/s in the final phase. As the Bε-Tree is a
write-optimized data structure, it can ingest random writes very well. Hence, our storage
stack achieves a high write throughput even with small random writes. At the same
time, the sequential read throughput does not suffer that drastically like for ZFS because
we limit the maximum possible fragmentation of the file data. With the default settings,
the nodes of the Bε-Tree have a fanout between 4 and 16 and a size between 1MiB and
4MiB. Hence, the tree’s height is about 5 for this workload. Assuming we can cache a
full root-to-leaf path, a sequential read of this tree’s data needs between 1.3 and 0.26
seeks per MiB and less than one seek per 2MiB on average. Due to the low number of
seeks needed, the throughput is correspondingly high.

This benchmark shows the benefits of having a write-optimized data structure. Com-
pared to ZFS, our storage stack is not only 10 times faster in the write phase, but also
about 3 times faster in the read phase. Ext4 is also quite fast in the write phase due to
the excessive write caching. The low performance of ZFS in the write phase is probably
not due to the writes of the actual data but due to metadata and/or allocation overhead
which might involve a large number of small random reads and writes.

7.4.1. Conclusion
As outcome of these benchmarks, we have the following conclusions:

Ext4 is the winner for sequential workloads

This result is not surprising at all considering that ext4 is the only storage stack tested
that is not using copy-on-write and uses extents. Hence, ext4 has the lowest overhead
which results in good sequential performance.

The sequential performance of ZFS is very competitive

With the design of ZFS in mind, the overall performance of ZFS is impressive. Espe-
cially, the quite consistent scaling indicates a well-thought-out code base for sequential
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workloads.

Our storage stack exhibits an exceptionally high sequential write throughput

Surprisingly, our storage stack has the highest sequential write throughput. This is
probably due to a larger block size which increases the overall efficiency. The Linux
software RAID uses a chunk size of 512KiB by default and ZFS uses block sizes up to
128KiB. In contrast to this, our storage stack uses node sizes ranging from 1MiB to
4MiB. Especially for parity generation, the larger block size should be beneficial.

Our storage stack does not scale beyond 4 disks for sequential writes

This may be due to the I/O interface used and requires further investigation.

Our storage stack has mediocre sequential read performance

Probably, the prefetching is not aggressive enough. We have to prefetch multiple nodes
at the same time. Also, offloading this work to a background thread might help.

Read throughput of mirrors does not scale well

The proclaimed linear scaling of read throughput did not occur. Astonishingly, ext4 on
top of the Linux software mirror does not scale at all which is a missed optimization.
Regarding ZFS and our storage stack, a two disk mirror does improve read throughput
but only by 35%. Adding a third disk does not improve the read throughput any further.

Our storage stack’s random write throughput slightly benefits from large caches

For small block sizes and especially for 128KiB, we can have a decent performance
increase of up to 40% by doubling or quadrupling the default cache size of 256MiB.

Our storage stack shines at random (over-)write workloads

The last benchmark shows that limiting fragmentation by design can matter. While the
read throughput of ZFS greatly decreased from 122MiB/s to 21.5MiB/s, our storage
stack only went from 91.5MiB/s to 71MiB/s as it retains the sequential data layout
much better. Hence, it is possible to build copy-on-write storage stacks that prevent
excessive fragmentation by design.
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8. Conclusion
In this thesis, a storage stack has been designed, implemented, and evaluated. At first, we
looked at the theoretical background of building index data structures for persisting data
on disk. Besides the common B-Tree, we presented the Bε-Tree which is a generalization
of the former. The Bε-Tree is a write-optimized data structure which, unlike the B-Tree,
caches data in its internal nodes before flushing parts of it to a subtree. Due to this
technique, the Bε-Tree has a very good insertion performance and can use larger nodes
than the B-Tree which results in better utilization of the disk’s bandwidth. Also, we
defined a list of key features that a storage stack should support.
Using the Bε-Tree as basic building block, we presented a storage stack design in a

layered approach with a key-value store interface. The bottom layers, the Vdev Layer
and the Storage Pool Layer, are responsible for striping data among multiple disks and
providing redundancy to protect against disk failures. Due to the use of checksums, the
Vdev layer can detect and repair corrupt data even if the underlying disks return wrong
data. On top of the Storage Pool Layer is the Data Management Layer that handles
generic objects which may contain references to other objects. The Tree Layer implements
a Bε-Tree by using the DML objects as tree nodes. The top-most Database Layer provides
data sets which save their data inlined into Bε-Trees. By using copy-on-write, the storage
stack can easily provide snapshots of the data sets and, in addition, the on-disk state is
always consistent.
Then, this storage stack was theoretically compared to the Linux storage stack and

ZFS where it had an outstanding snapshot efficiency compared to LVM and an integrated
concept of limiting the data fragmentation in contrast to ZFS.

The latter was also practically evaluated in benchmarks including ext4, ZFS, and the
storage stack of this thesis. Despite not being on a par with the competition, our storage
stack provided decent sequential performance. In a database workload which can result
in heavy data fragmentation for copy-on-write storage stacks, our storage stack excelled
by being several times faster than its direct competitor ZFS.

All in all, we have seen how to build a modern copy-on-write storage stack with support
for many convenient features. Using copy-on-write as an enabler for important features
such as snapshots and on-disk consistency comes normally at the price of excessive
fragmentation for certain workloads. We have successfully avoided this issue by using
the Bε-Tree which inherently limits fragmentation.
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9. Future Work
In this chapter, we will look at possible extensions to and optimizations of the implemen-
tation of the storage stack. Also, other directions for future work with this storage stack
are stated. At the end, we will take a look at proposed future work regarding the Bε-Tree.

9.1. Extensions to the Implementation
The storage stack of this thesis is still missing many key features mentioned in Section 2.4.
Most of them can be implemented quite easily because of certain design choices. Also,
there are some obvious extensions and optimizations. In the following we will discuss
the features and sketch the implementation for some of these.

Double-Parity and Beyond Our Vdev Layer only provides a single parity vdev but
this can be easily extended to provide vdevs with multiple parity blocks per stripe. The
complicated part is the parity generation and recovery as the single parity with XOR is
just a special case and the mathematics behind parities is quite complex. See [Pla97] for
an excellent introduction into Reed-Solomon coding with an arbitrary number of parities.

Accounting Currently, the implementation does not account any space information. It
would be very useful to add space accounting for data sets and snapshots so that the
user can see the space consumption of each data set and snapshot. The implementation
is straightforward and solely requires to count block (de)allocations and block deaths for
every data set.

Better Prefetching As outlined in Chapter 7, the sequential read throughput could be
increased by a better prefetching algorithm which prefetches multiple nodes in parallel.

Clones Similar to ZFS and LVM, the implementation should support clones, i.e. writable
snapshots. This feature can be implemented by a list of clones for each snapshot and a
new property of every data set called origin which is the snapshot of origin if appropriate.
If a snapshot has a clone, it may not be deleted. If a data set is a clone, it does not
deallocate blocks but always appends these to its dead list. This concept results in fully
functional clones that even can be snapshotted or cloned.
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Rollback We should support the rollback of a data set to a specified snapshot. This
involves deleting newer snapshots and deallocating all blocks that were allocated after
the snapshot was created.

Authenticated Encryption We can provide transparent authenticated encryption per
data set quite easily by encrypting each DML object individually and adding correspond-
ing fields to the ObjectPointer. However, the implementation also needs to provide
flexible encryption key management.

Send/Receive Like ZFS, the implementation should support the sending/receiving of
data sets and snapshots to/from other storage pools. This feature needs to enumerate
changes to a data set and a stream representation for these changes and other nontrivial
extensions to the storage stack. The generation field of the ObjectPointer will be very
useful here as it shows how old a DML object is so that the change set can be very
efficiently determined.

Scrub The implementation contains an unfinished implementation for scrubbing data
as now, we can only scrub data of an DML object. The Tree Layer needs a method for
walking a Bε-Tree with the possibility of pruning subtrees. On top of this interface, the
Database Layer could walk trees that correspond to data sets and snapshots and, hence,
scrub their data.

Pool Expansion For now, the storage pool of a Database object is fixed after creation
and cannot be expanded. A trivial expansion which should be supported is to add
another top-level vdev to the storage pool. No further actions are needed except adding
it to the corresponding data structures in the Storage Pool Layer.

Partial Leaf Nodes The implementation has a high read amplification for small random
reads as a whole leaf node has to be fetched on cache miss. By splitting leaf nodes into
smaller parts and checksumming each of these, we could fetch only the relevant part of
the leaf.

9.2. Integration into the HPC Environment
Many HPC applications dump checkpoints of the program state in regular intervals so
that in case of an interruption the computation can be resumed without losing too much
time. Today, this checkpoint dumping is typically implemented by writing to a filesystem
so that each checkpoint is a separate file. With an integration of our storage stack, the
application could instead write its data dump to a data set and then snapshot it. This
has the advantage that the data is logically grouped together and checkpoints can be
easily enumerated.
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9.3. Support for Open-Channel SSDs
Normal SSDs include a Flash Translation Layer (FTL) which is an abstraction layer
that provides a block device interface. The FTL abstracts from the complex internal
geometry of the SSD and certain restrictions to write operations. It provides a logical
block mapping and is responsible for wear leveling and garbage collection. With the
FTL, an SSD can be used as a direct replacement for an HDD. However, the FTL comes
at a cost of unpredictable overhead.
There is ongoing work to provide a Linux subsystem called LightNVM which makes

use of Open-Channel SSDs which do not have an included FTL [BGB17]. Compared
to the Linux storage stack, our storage stack already avoids the overhead of multiple
mapping tables in different layers. With LightNVM, we could avoid another mapping
table – namely the FTL. It would be interesting to see how this will affect the overall
performance and especially latencies. First attempts with application-driven FTLs seem
promising [Gon+16].

9.4. Extensions to the Bε-Tree
We also propose two possible research topics for the Bε-Tree itself due to the high
potential in the underlying basic idea of Bε-Trees which is incorporating the possibility
of delaying work until necessary into the design of a data structure.

9.4.1. Snapshotting Tree Parts
One aspect of the Bε-Tree that increases efficiency is that we use less indirections. For
example, the value of a key-value pair is inlined into the tree instead of saving a pointer
to the actual value in tree. This allows us to avoid another seek on disk. However, we
are still using multiple Bε-Trees for multiple data sets as the snapshot granularity is a
whole Bε-Tree for now due to the path-copying technique.

Hence, an interesting research subject is how we can snapshot a part of a Bε-Tree –
for example given by a key range. Snapshotting the whole tree like before would be
quite inefficient due to the fact that we now also keep a snapshot of every other part of
the tree. One approach would be to snapshot the whole tree and then on every node
death we efficiently decide whether the tree node actually contains data needed for this
snapshot.

9.4.2. Combining Copy-On-Write with Extents
On the one hand, modern filesystems often use extents to reduce overhead. For example,
ext4 allocates up to 128MiB extents to large files instead of blocks with the default size
of 4KiB. Hence, we have a metadata efficiency increase by up to five orders of magnitude.
Also, extents decrease the allocation overhead and result in less fragmentation with
the delayed allocation technique. On the other hand, modern filesystems like ZFS use
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copy-on-write to implement important features such as snapshots. The downsides of
copy-on-write are increased fragmentation and allocation overhead as it needs to allocate
on every write.

Combining these two concepts seems like an obvious choice for modern storage stacks
but this is highly complicated. Btrfs, a modern filesystem with copy-on-write extents, has
problems with excessive fragmentation on database workloads [Con17b]. The suggested
solution is to turn off copy-on-write which is clearly not what we would want to do.
So, designing a storage stack with copy-on-write extents is a non-trivial task. The

main design question for copy-on-write extents is what should happen when an extent is
partially overwritten. There are two possible approaches:

Copy the extent On partial overwrite, we duplicate the affected extent and overwrite
the corresponding part.

Split the extent into parts On partial overwrite, we split the extent into two or three
separate extents where one extent exactly covers the overwritten range. Now, we
essentially have a full overwrite.

The potential downsides of both approaches are either a huge space and write amplification
or excessive fragmentation and management overhead. The key is to balance between
these two approaches. If there is only a small amount of changes to an extent, the second
approach is better. If there is enough data to justify the copy of the extent, the first
approach is better.
Btrfs uses the second approach exclusively, but the user can activate a background

garbage collection called autodefrag which detects when there are a large number of small
writes to a file and will copy heavily fragmented file parts to new extents.

A possibly better solution is to delay small writes before touching the extents at all
and only update an extent if there is a large amount of changes. This could be achieved
with a special data structure derived from the Bε-Tree. Large writes are written as extent
and small writes are inlined into the tree. If an internal node contains too much data, it
will flush its data to the children. At the leaf level, all extents are non-overlapping. If a
leaf is too large, we can either write out leaf data as new extents or split the leaf.

The critical aspect is the flush condition as we need to balance between fragmentation
and space amplification. If an internal node is not large by itself but it contains large
extents, a flush is probably beneficial nonetheless.

This concept essentially uses the first approach but enough writes are delayed to justify
the copy of the extent.
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A. Usage
In this chapter, we will provide a quick start for using Rust and look at two small examples
regarding how to use the storage stack implementation with Rust and C.

A.1. Installing and Using Rust
Rust’s official installer is rustup. Rust can be installed with the following shell command
on Unix-like platforms:1

curl https://sh.rustup.rs -sSf | sh

Then, we want to switch the default Rust compiler to the nightly rust compiler as the
implementation uses many unstable features which are only available in nightly compilers.
To do so, execute the following command: rustup default nightly. After changing
the working directory to the source directory of the implementation, we can now execute
the following commands:

cargo build This command builds the project in debug mode. Cargo will automatically
fetch and build all dependencies listed in the Cargo.toml file.

cargo build --release Similar to the preceding command but builds in release mode.

cargo test Builds and runs all tests of the project.

cargo doc --open Builds the web-based documentation and opens it in a web browser
window afterwards.

A.2. Quick Start
Now, we will build two small example applications that use the storage stack – one using
Rust, one using C.

A.2.1. Example with Rust
We will start with Rust. First, we use cargo to create a new application project:
cargo init --bin small_example

1For other installation options, see https://rustup.rs.
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[package]
name = "small_example"
version = "0.1.0"
authors = ["Felix Wiedemann <1wiedema@informatik.uni-hamburg.de>"]

[dependencies]
betree_storage_stack = { path = "../betree_storage_stack" }
error-chain = "0.11"

Figure A.1.: Cargo.toml of the quick start example

Then, we declare the dependencies in the Cargo.toml file of project as seen in
Figure A.1. The path to the storage stack implementation probably has to be adjusted.
The second dependency is a package for error handling and will be automatically fetched
by cargo from the Rust package registry https://crates.io.
Now, we still need the actual code. For the main.rs file see Figure A.2. Finally, we

can run the program by executing cargo run:

$ cargo run
[ ... cargo builds the program ... ]
Value of foo is [72, 101, 108, 108, 111, 44, 32, 87, 111, 114, 108, 100, 33]

A.2.2. Example with C
For the C version, we need to build the library first by executing cargo build in the
source directory of the storage stack. This will build a static library and a dynamic
library. Our C code is presented in Figure A.3. We can build it with gcc as following:

$ gcc -L betree_storage_stack/target/debug small_c_example.c \
-l:libbetree_storage_stack.a -lpthread -ldl -o small_c_example

And now, we can execute the program:

$ ./small_c_example mirror ./small_example/target/debug/file{0,1}
The value of the key 'foo' is: Hello, World!
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// Link to extern dependencies
extern crate betree_storage_stack;
#[macro_use]
extern crate error_chain;

// Import types
use betree_storage_stack::{Configuration, Database, Error};

// The storage pool configuration notation is similar to ZFS.
const CFG_STR: &str = "mirror ./file1 ./file2";

fn run() -> Result<(), Error> {
let cfg = Configuration::parse_zfs_like(CFG_STR.split_whitespace())?;

// Create a new database with a storage pool given by our configuration.
let mut db = Database::create(&cfg)?;

// Create a new data set with the given name.
// Would fail if already existing.
db.create_dataset("test-ds".as_bytes())?;

// Open a data set given by the name.
let ds = db.open_dataset("test-ds".as_bytes())?;

// Insert/overwrite a new key-value pair.
ds.insert(

"foo".as_bytes(),
&[72, 101, 108, 108, 111, 44, 32, 87, 111, 114, 108, 100, 33],

)?;

// Retrieve a key-value pair.
match ds.get("foo".as_bytes())? {

Some(v) => println!("Value of foo is {:?}", &v[..]),
None => println!("The key foo does not exist"),

}

db.close_dataset(ds)?;
db.sync()?;
Ok(())

}

// This macro from error-chain defines a main function
// which executes the run function and handles potential errors.
quick_main!(run);

Figure A.2.: main.rs of the quick start example
105



#include <stdio.h>
#include "betree_storage_stack/bindings.h"

int handle_err(err_t *e) {
puts("Failed due to:");
betree_print_error(e);
betree_free_err(e);
return 1;

}

int main(int argc, const char *const *argv) {
if(argc < 2) {

puts("Usage: <PROG> <CFG STRING>");
return 1;

}
argv += 1;
argc -= 1;
err_t *e = NULL;
cfg_t *cfg;
if((cfg = betree_parse_configuration(argv, argc, &e)) == NULL)

return handle_err(e);
db_t *db;
if((db = betree_open_db(cfg, &e)) == NULL)

return handle_err(e);
betree_free_cfg(cfg);
ds_t *ds;
if((ds = betree_open_ds(db, "test-ds", 7, &e)) == NULL)

return handle_err(e);
byte_slice_t x;
if(betree_dataset_get(ds, "foo", 3, &x, &e) == 0) {

printf("The value of the key 'foo' is: %.*s\n", x.len, x.ptr);
betree_free_byte_slice(&x);

} else if (e == NULL)
printf("There is no value for the key 'foo'\n");

else
return handle_err(e);

if(betree_close_ds(db, ds, &e))
return handle_err(e);

betree_close_db(db);
return 0;

}

Figure A.3.: C quick start example
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