
A Numerical Approach to Nonlinear
Regression Analysis by Evolving

Parameters

Masterarbeit
im Arbeitsbereich Wissenschaftliches Rechnen, WR

Prof. Dr. Thomas Ludwig

Department Informatik
MIN-Fakultät

Universität Hamburg

vorgelegt von
Christopher Gerlach

am
29.06.2017

Gutachter: Prof. Dr. Thomas Ludwig

Dr. Michael Kuhn

Abstract

Nonlinear regression analysis is an important process of statistics and poses many
challenges to the user. While linear models are analytically solvable, nonlinear
models can in most cases only be solved numerically. What many numeric methods
have in common, is that they require a proper starting point to reach satisfactory
results. A poor choice of starting values can greatly reduce the convergence speed
or in many cases even result in the algorithm not to converge at all. This the-
sis proposes a genetic numerical hybrid method to approach the problem from a
nontraditional angle. The approach combines genetic algorithms with traditional
numeric methods and proposes a design suitable for massive parallelization with
GPGPU computing. It is shown that the approach can solve a large set of practical
test problems without having to specify any starting values and that is fast enough
for practical use, utilizing only consumer grade hardware.

III

IV

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Outline . 3

2 Background 5
2.1 Linear Algebra . 5

2.1.1 Real Numbers Assumption 6
2.1.2 Notation and Terminology 6
2.1.3 Singular Value Decomposition 7
2.1.4 Moore-Penrose Pseudoinverse 8

2.2 Regression Analysis . 8
2.2.1 Notation And Terminology 9
2.2.2 Nonlinear Regression . 9
2.2.3 Gauss-Newton Algorithm . 12

2.3 Genetic Algorithms . 13
2.4 General-Purpose GPU Computing 16

2.4.1 History . 16
2.4.2 Technologies . 17

3 Related Work 19
3.1 The Starting Value Problem . 19
3.2 Traditional Methods . 20
3.3 Hybrid Approach . 21

3.3.1 Concept . 21
3.3.2 Restrictions . 22

4 The Parameter Evolution Approach 25
4.1 Overview . 25

4.1.1 Requirements . 25
4.1.2 Goals . 27
4.1.3 Concept . 27

4.2 The Evolution Layer . 30
4.2.1 Chromosome . 32
4.2.2 Genetic Operators . 33
4.2.3 Encoding . 34

V

Contents

4.3 The Evaluation Layer . 37
4.3.1 Nonlinear Least Squares . 38

4.4 The Computation Layer . 42
4.4.1 Singular Value Decomposition 43

5 Implementation 47
5.1 Overview . 47

5.1.1 Custom Implementation vs. Libraries 48
5.1.2 Generictiy vs. Polymorphism 49
5.1.3 GPGPU vs. CPU . 50

5.2 C++ AMP . 51
5.2.1 Basics . 51
5.2.2 Tiling . 52

5.3 Evolution Layer . 53
5.3.1 Binary Chromosome . 53
5.3.2 Population . 55
5.3.3 Genetic Operators . 56
5.3.4 Genetic Solver . 59
5.3.5 Nonlinear Regression Description 61
5.3.6 Encoding . 63

5.4 Evaluation Layer . 64
5.4.1 Regression Model . 64
5.4.2 Nonlinear Regression Solver 66
5.4.3 Linear System Solver SVD 70

5.5 Computation Layer . 71
5.5.1 Model Evaluator . 71
5.5.2 Jacobi Rotation SVD . 72

6 Evaluation 75
6.1 Setup . 75

6.1.1 Objectives . 75
6.1.2 Subjects . 77
6.1.3 Conditions . 80

6.2 Results . 82

7 Conclusion 89

8 Outlook 91

A Evaluation Results 93

B Performance Analysis Results 99

Bibliography 109

VI

List of Figures

2.1 Workflow of the genetic process. 14
2.2 X-band antenna of the NASA ST5 spacecraft. The shape was found

by genetic algorithms to create the best radiation pattern. 15

4.1 The Evolution Evaluation Computation (EEC) layer structure for
nonlinear regression problems. 29

4.2 Evolution layer of the Parameter Evolution approach. 31
4.3 Evaluation layer of the Parameter Evolution approach. 37
4.4 Computation layer of the Parameter Evolution approach. 42
4.5 The Jacobi Rotation SVD algorithm as it is defined in the Handbook

of Linear Algebra. 44

6.1 Population scaling for number of successes (100%). 84
6.2 Relative speedups of an AMP accelerator to the CPU. 85
6.3 Population scaling for the increase in computation time. 86
6.4 Population scaling for the increase in computation time. 87

VII

List of Tables

6.1 The highest number of successes for every combination of encoding
and NRA method. 83

A.1 Success rates of the PE approach for a series of test problems.
This test case used the discretized encoding and the Levenberg-
Marquardt Algorithm. Each test was repeated 10 times for different
population sizes and generation limits. The values are color-coded
percentiles for the number of successes. The rightmost column con-
tains the results of the control configuration, which is equivalent to
guessing a set of starting values 131072 times. 94

A.2 Success rates of the PE approach for a series of test problems. This
test case used the discretized encoding and the Modified Levenberg
Algorithm. Each test was repeated 10 times for different population
sizes and generation limits. The values are color-coded percentiles
for the number of successes. The rightmost column contains the
results of the control configuration, which is equivalent to guessing
a set of starting values 131072 times. 95

A.3 Success rates of the PE approach for a series of test problems.
This test case used the logarithmic encoding and the Levenberg-
Marquardt Algorithm. Each test was repeated 10 times for different
population sizes and generation limits. The values are color-coded
percentiles for the number of successes. The rightmost column con-
tains the results of the control configuration, which is equivalent to
guessing a set of starting values 131072 times. 96

A.4 Success rates of the PE approach for a series of test problems. This
test case used the logarithmic encoding and the Modified Levenberg
Algorithm. Each test was repeated 10 times for different population
sizes and generation limits. The values are color-coded percentiles
for the number of successes. The rightmost column contains the
results of the control configuration, which is equivalent to guessing
a set of starting values 131072 times. 97

VIII

List of Figures

B.1 Mean running times of the PE approach for a series of test problems.
This test case used the discretized encoding and the Levenberg-
Marquardt Algorithm. Each test was repeated 10 times for different
population sizes and generation limits. The values are the mean
running times in milliseconds. They are color-coded from green (0
ms) to red (300000 ms). The rightmost column contains the results
of the control configuration, which is equivalent to guessing a set of
starting values 131072 times. 100

B.2 Mean running times of the PE approach for a series of test prob-
lems. This test case used the discretized encoding and the Modified
Levenberg Algorithm. Each test was repeated 10 times for different
population sizes and generation limits. The values are the mean
running times in milliseconds. They are color-coded from green (0
ms) to red (300000 ms). The rightmost column contains the results
of the control configuration, which is equivalent to guessing a set of
starting values 131072 times. 101

B.3 Mean running times of the PE approach for a series of test problems.
This test case used the logarithmic encoding and the Levenberg-
Marquardt Algorithm. Each test was repeated 10 times for different
population sizes and generation limits. The values are the mean
running times in milliseconds. They are color-coded from green (0
ms) to red (300000 ms). The rightmost column contains the results
of the control configuration, which is equivalent to guessing a set of
starting values 131072 times. 102

B.4 Mean running times of the PE approach for a series of test prob-
lems. This test case used the logarithmic encoding and the Modified
Levenberg Algorithm. Each test was repeated 10 times for different
population sizes and generation limits. The values are the mean
running times in milliseconds. They are color-coded from green (0
ms) to red (300000 ms). The rightmost column contains the results
of the control configuration, which is equivalent to guessing a set of
starting values 131072 times. 103

B.5 Mean running times of the PE approach for two test problems of
different size. Each test was repeated 10 times for different paral-
lelization methods, as well as for different population sizes, genera-
tion limits and floating point precisions. The values are the mean
running times in milliseconds. They are color-coded from green (0
ms) to red (300000 ms). 104

B.6 Relative speedups of the PE approach for two test problems of differ-
ent size. Each test was repeated 10 times for different parallelization
methods, as well as for different population sizes and floating point
precisions. The values specify the relative speedup in computation
time of a parallelization method compared to the CPU. They are
color-coded from red (smallest value) to green (largest value). . . . 105

IX

List of Figures

B.7 Population scaling of the PE approach for two test problems of dif-
ferent size. Each test was repeated 10 times for different paralleliza-
tion methods, as well as for different population sizes and floating
point precisions. The values specify the scaling of the computation
cost in regards to the population size. They are color-coded from
red (largest value) to green (smalles value). 106

X

Chapter 1

Introduction

This master’s thesis is based on the bachelor’s thesis Numerical Evolution – Us-
ing Genetic Hybrid-Methods to Solve Nonlinear Regression Problems by the same
author[1].

The main goal of that thesis was to verify the validity of a hybrid approach to
tackle the starting value problem of nonlinear regression analysis. The general
idea of the proposed approach was to utilize genetic algorithms to optimize the
starting value problem of traditional nonlinear regression methods.

By implementing a proof of concept, it was shown that the approach is viable
in solving nonlinear regression problems of a specific form, consisting of up to 40
parameters. This thesis proposes a generalization of the approach, aiming to lift
its restrictions, optimize it, and testing it on non-generated problems.

Because this work is a direct follow-up of another work, there are some overlaps in
regards to the necessity to provide background and introductory information. This
introduces the potential problem of self-plagiarism when both works are created
by the same author. Self-plagiarism or text recycling is a topical issue and views
on the acceptability of this practice are highly disputed. However, many available
guidelines – such as the ones from the Committee on Publication Ethics (COPE)[2]
– state it as unproblematic if the content in question is neither the main part of
the work (e.g. republishing empirical data) nor presented in a misleading way.

In the spirit of academic honesty, the author would like to explicitly clarify that the
following background chapters in this work are revised versions of similar chapters
in the groundwork:

• 2.2.2 Nonlinear Regression

• 2.3 Genetic Algorithms

Additional references to the groundwork are treated in the same way as references
to those of any other author.

1

Chapter 1. Introduction

1.1 Motivation

Nonlinear regression analysis is an important part of a statisticians toolbox. Al-
though many regression problems in practice are linear – or can be converted to
linear problems by applying transformations to the data – nonlinear dependencies
are still very common and are even starting to take a more important role as com-
plexity in data in many practical problems rises every day.

This poses several challenges to the statistician. Not only can nonlinear dependen-
cies be modeled in countless ways, methods to solve nonlinear regression problems
also require a lot of contextual knowledge and experience to be applied successfully.

An important aspect of nonlinear optimization problems is that they are gen-
erally not analytically solvable by nature. Contrary to linear ones, for which a
closed solution is guaranteed to exist, nonlinear dependencies in most cases can
only be extracted numerically. As with numerical methods in other mathematical
fields, most nonlinear regression methods require a starting point to initiate the
iterative process.

Determining good starting values is crucial to achieve satisfying results. Depend-
ing on how well the starting values are selected, a method might converge to a
global extreme point, get stuck at a suboptimal solution, or will not even converge
at all.

Transtrum et al. in their 2010 paper Why are Nonlinear Fits to Data so Chal-
lenging? [3] state:

”The estimation of model parameters from experimental data is aston-
ishingly challenging. A nonlinear model with tens of parameters, fit
(say) by least squares to experimental data, often demands weeks of
human guidance to find a good starting point;”

This problem gets even more severe when there are doubts about how to model
the data. Because starting values may differ from model to model, they have to be
determined again every time a new model is chosen. Transtrum et al. continue to
stress that this can become a serious obstacle to progress, especially in situations
where the statistician may want to automatically generate and explore a variety
of models.

At the time of writing, the starting value problem or initial guess problem re-
mains to be an ongoing issue. Although there have been several advancements
over the past decades to mitigate the problem, there currently is no silver bullet
solution that leads to satisfying results in every situation.

This master’s thesis proposes a nontraditional approach to the starting value prob-
lem that is able solve a wide variety of practical nonlinear regression problems.

2

1.2. Outline

1.2 Outline

This thesis is organized in the following chapters:

1. Introduction

2. Background

3. Related Work

4. The Parameter Evolution Approach

5. Implementation

6. Evaluation

7. Conclusion

8. Outlook

After the introduction, chapter 2 provides the fundamental concepts and defini-
tions this thesis is based on. It includes a brief summary of some concepts of
linear algebra, and an introduction to nonlinear regression analysis and genetic
algorithms. Because one of the goals of this thesis is to examine the benefits of
utilizing massive parallelism for the approach, the background chapter also in-
cludes an overview of current GPGPU technologies.

Before the approach is introduced, chapter 3 formally defines the starting value
problem and shows how it was traditionally approached in the past. Additionally,
the chapter also provides an overview of the Hybrid Approach, on which the ap-
proach of this thesis is based on.

Chapter 4 then proposes a nontraditional approach to the starting value prob-
lem. This is done by first analyzing the disadvantages of the methods presented
in the previous chapter and then defining a set of requirements an ideal solution
should comply to. Based on these requirements, the chapter continues by formally
defining the goals of this thesis, which include a set of properties the approach
should hold. The remainder of the chapter presents a detailed description of the
approach and each of its individual parts.

After its formal description, chapter 5 presents an overview of an exemplary imple-
mentation of the approach. While chapter 4 describes the approach on an abstract
level, this chapter discusses the less obvious details and challenges of actually im-
plementing the approach for practical use. Specifically, a significant chunk of the
chapter shows how the approach can utilize massive parallelism with the usage of
C++ AMP.

3

Chapter 1. Introduction

To assess whether the approach actually satisfies the goals that are defined in
chapter 4, the exemplary implementation is used to analyze its properties. The
results of that evaluation, along with a description of the setup, are presented in
chapter 6.

The thesis concludes by assessing whether the goals of the thesis were actually
met. It is also briefly discussed how the approach could be improved and how it
could be used in practice.

4

Chapter 2

Background

The previous chapter provided a brief description of the problem the approach
proposed in this thesis is trying to solve and the motivation to do so.

The next step would be to formally define the starting value problem and to take a
look at related work and examine how it is typically handled in practice. However,
to make the thesis also accessible to readers who are less familiar with regression
analysis and genetic algorithms, it is necessary to first take a look at the required
background information relevant to the topics covered in this thesis.

The first section covers some basic topics in the mathematical subfield of linear al-
gebra, while the second section provides a basic introduction to regression analysis
in general and nonlinear regression in particular. Afterwards, the chapter con-
cludes with an introduction to genetic algorithms as well as GPGPU computing,
which are both being used in the approach proposed in this thesis.

2.1 Linear Algebra

Although regression analysis is a part of statistics, its mathematical descriptions
are largely based on concepts from the field of linear algebra (LA). The following
section provides a brief summary of those concepts that are essential to the under-
standing of nonlinear regression analysis. The goal is to not only introduce some
maybe lesser known concepts to the reader, but also to describe the notation and
terminology used in this thesis. Note that this summary still assumes some basic
prior understanding of linear algebra and is probably not sufficient for people who
are not familiar with it at all. If the reader does not feel comfortable after reading
what is presented here, there is a wide variety of literature that provides a proper
introduction to the topic.

Most definitions in this chapter are taken from the Handbook of Linear Algebra[4].

5

Chapter 2. Background

2.1.1 Real Numbers Assumption

Before starting to define anything, it should be emphasized that all mathematical
definitions in this thesis are restricted in a mathematical sense. As with other
mathematical areas, many ideas from linear algebra can be defined for arbitrary
algebraic structures with certain properties. To be as general as possible, many
textbooks define concepts from linear algebra either for arbitrary fields or for the
field of complex numbers C.

However, because regression analysis is usually applied to real valued data, all
mathematical definitions used in this thesis will be defined with the assumption of
the field of real numbers R.

2.1.2 Notation and Terminology

A common hindrance in communicating mathematical concepts is that notations
and terminology are not always universal. This is especially true in linear algebra,
where authors may use very different conventions when referring to vectors, ma-
trices or other concepts. For this reason, this section will provide a brief summary
of the fundamental components of linear algebra, along with their corresponding
notation.

Matrices and Vectors

This thesis uses the following notation for vectors and matrices:

• Vectors are denoted as bold, lower-case letters (e.g v)

• Vector entries are denoted as indexed lower-case letters (e.g. vi)

• Matrices are denoted as bold, upper-case letters (e.g. A)

• Matrix entries are denoted as double indexed lower-case letters (e.g. aij)

Identity Matrix

The identity matrix I is the neutral element of the matrix multiplication:

A · I = A

Note that in this thesis, I is used exclusively for the identity matrix and for nothing
else.

Inverse Matrix

The inverse matrix is the inverse element of the matrix multiplication:

A ·A−1 = A−1 ·A = I

6

2.1. Linear Algebra

Diagonal Matrix

A matrix A is diagonal, if aij = 0 for every i 6= j.

For example:

A =

1 0 0

0 2 0

0 0 3

Unitary Matrix

A matrix is unitary, if its transpose is also its inverse:

A ·Aᵀ = Aᵀ ·A = I

Hermitian Matrix

A matrix is hermitian, if it is equal to its own transpose:

A = Aᵀ

2.1.3 Singular Value Decomposition

In linear algebra, a matrix decomposition or matrix factorization is the represen-
tation of a matrix as a product of matrices. These matrices often exhibit certain
properties that are beneficial to a particular set of problems. There are many
different types of matrix decompositions, each with their individual areas of appli-
cation. The theorem of the SVD states that a matrix A can be factorized into a
product of three matrices:

A = U ·Σ · V ᵀ,

where:

• U is a m×m unitary matrix

• Σ is a m× n positive diagonal matrix

• V ᵀ is the transpose of a n× n unitary matrix V

There are many different algorithms for calculating the SVD, which differ greatly
in terms of efficiency and numerical stability.

7

Chapter 2. Background

2.1.4 Moore-Penrose Pseudoinverse

A pseudoinverse of a matrix is a generalization of the inverse matrix. A generalized
inverse has some properties of the inverse, but not necessarily all of them. Such
a matrix can then be used in situations where an inverse is needed, but may be
difficult to determine.

Its most widely known representative is the Moore-Penrose pseudoinverse, which
was independently described by E.H. Moore in 1920, Arne Bjerhammar in 1951 and
Roger Penrose in 1955. In fact, the Moore-Penrose pseudoinverse is so prevalent
in this context, that it is often used synonymously with the term pseudoinverse,
without any further specification. This practice is also be applied here.

A pseudoinverse A+ of a matrix A is defined as a matrix satisfying all of the
following criteria:

1. AA+A = A

2. A+AA+ = A+

3. (AA+)T = AA+

4. (A+A)ᵀ = A+A

The first property specifies thatAA+ does not need to be a general identity matrix,
but has to map all its column vectors to itself. The second property necessitates
A+ to be a weak inverse of the multiplicative semigroup, while the third and fourth
property requires AA+ as well as A+A to be hemertian.

The Moore-Penrose Pseudoinverse has many areas of application, one of which
is the solution of systems of linear equations.

2.2 Regression Analysis

In statistics, regression analysis (RA) describes a process to estimate the rela-
tionship among variables. The goal is to determine the dependencies between a
dependent variable or response variable and one or more independent variables or
predictor variables in regards to a specific mathematical model. It has a wide range
of applications, but is mostly used for prediction and forecasting[5].

A simple example from economics is that of a used car salesman, who is interested
in the question of the expected sales price of a particular vehicle – the response
variable – dependent on factors such as the cars mileage, its age and the num-
ber of previous owners – the predictor variables. Using regression analysis, this
relationship can be modeled based on records of past sales. A response and its
corresponding predictors are also referred to as a data point.

8

2.2. Regression Analysis

There exist a lot of different regression techniques, all with their own advantages,
disadvantages and areas of use. What follows is a brief introduction to the subfield
of nonlinear regression analysis and the notation and terminology used in this the-
sis. For a more deeper look into the techniques presented here, the author would
like to refer the readers to the wide variety of literature about this topic, such as
[6] or [7].

2.2.1 Notation And Terminology

Regardless which specific method is used, a general regression model for a single
data point can be written as

y = f(x,θ) + Z,

where f is the model function with (unknown) parameters θ and y is the response
variable for a vector x of associated predictor variables. Additionally, Z denotes
a random variable that is used to model potential uncertainty in the data points,
which is often caused by measurement errors and noise.

For a set of data points, this definition can be extended to

y = f̂(X,θ) +Z, (2.1)

where f̂ is the vector-valued model function and y is the vector of all response
variables for the matrix X of all associated predictor variables.

The input matrix X – also sometimes referred to as regressor – is a K × N
matrix of predictor variables,

X =

x0

...

xk

 =

x0,0 · · · x0,N
...

. . .
...

xK,0 · · · xK,N

,
where K denotes the number of data points and N refers to the number of predic-
tor variables.

The goal of regression analysis is to determine the unknown parameters θ, such
that 2.1 is approximated as close as possible.

2.2.2 Nonlinear Regression

One particular challenge of regression analysis is to determine the form of the
model function f . In some areas of application, such as physics, chemistry or biol-
ogy, the form can often be determined by theoretical considerations[5]. However,

9

Chapter 2. Background

this is not always the case, especially in applications of regression analysis in which
the measured data is not based on a theoretical model. In those cases, the form of
the model has to be determined by manually examining the data, which requires
a lot of experience and intuition from the experimenter and gets increasingly dif-
ficult the more variables and parameters are present in the regression. Regardless
of what particular method is used, the general form of the model can be divided
into two categories: linear and nonlinear models.

Looking back at the used-car example above, one feasible model could be

f(xk,θ) = θ1 · x1 + θ2 · x2 + θ3 · x3.

This model is linear, because it is linear in all three parameters θj. Another possible
model could be

f(xk,θ) = eθ1·x1+θ2·x2+θ3·x3 .

This model is nonlinear in all parameters. However, using a process called data
transformation[8], the regression function can be converted into the linear model

f t(xk,θ) = log y = θ1 · x1 + θ2 · x2 + θ3 · x3.

Data transformations make the family of linear models very flexible and are of-
ten used avoid nonlinear dependencies when possible. Transformation of the data
might also have other benefits, like increasing the stability of regression methods.
However, it should be noted that data transformations can get quite complex and
that sometimes transformation can decrease the quality the results. Some trans-
formations change the model function in such a way, that strictly speaking another
problem is optimized, whose minima do not necessarily have to coincide with those
of the original problem.

In addition to transformations, the xj’s in a linear model can also include squares,
cross products, higher powers and more, without changing the linearity of the
model. The important requirement is that the expression must be linear in the
parameters.

Transforming a nonlinear model into a linear model is not always possible. The
model function f could also look like

f(xk,θ) = xθ11 + θx22 + θ3 · x3.

Here, f is nonlinear in the parameters θ1 and θ2. Because it is not possible to
linearize this model by means of suitable transformations, it can also be described

10

2.2. Regression Analysis

as intrinsically nonlinear.

Nonlinear dependencies tend to be used when they are either suggested by the-
oretical considerations or to build known nonlinear behavior into a model. And
even when a linear approximation might work well, a nonlinear model may still be
used to retain a clear interpretation of the parameters.

Regression problems with strictly nonlinear dependencies fall into the domain of
nonlinear regression analysis (NRA).

Method of Nonlinear Least Squares

To estimate the parameter vector θ, the research of regression analysis produced
a wide variety of different procedures over the past few decades. These methods
differ in their effectiveness and efficiency. One of the simplest and most commonly
used estimators is the method of nonlinear least squares (NLS)[9]. This method
finds its optimum when the sum of squared residuals S (from here on referred to
as the sum of squares (SoS) or diffsum)

S(θ) =
K∑
k=1

r2k. (2.2)

is a minimum. Each residual corresponds to one of K sets of (measured) data
points. A residual rk is hereby defined as the difference between the actual values
of the response variable yk and the value predicted by the model function f , with
respect to the current guess of parameters θ

rk = yk − f(xk,θ).

This way, the method of least squares turns the optimization problem of f into
a minimization problem of S. The minimum value of S occurs when its first
derivative S ′ is zero. Since non-trivial models contain more than one parameter,
the derivative is actually the gradient of S

S(θ)′ =

(
n∑
i=1

r2i

)′
=
∂S

∂θ
= 2

∑
i

ri ·
∂ri
∂θ

= 0 (j = 1, . . . , n).

In a nonlinear system, the derivatives ∂S
∂θ

are functions of both the predictor vari-
ables and the parameters and therefore do not have an analytical or closed solution.
Instead, initial values must be chosen for the parameters. Then, the parameters
are refined iteratively, that is, the values are obtained by successive approximation.

Applying a first order Taylor expansion to S yields

11

Chapter 2. Background

Ŝ(θ) = S(θh) + ∇ᵀS(θh) · (θ − θh) +
1

2
∇2S(θh) · (θ − θh)ᵀ.

This leads to the update rule

θh − θh+1 = δθ = −∇2S(θh)−1 ·∇S(θh). (2.3)

This rule is the multidimensional case of the popular Newton method as it is used
in optimization, and constitutes the basis for many more refined methods like the
Gauss-Newton and Levenberg-Marquardt algorithms.

2.2.3 Gauss-Newton Algorithm

Although the update rule (2.3) already provides a valid method to minimize the
nonlinear least squares problem, it is difficult to compute due to the inverse of the
Hessian ∇2S(θh)−1. Using the so called Gauss-Newton or small-residual approxi-
mation, the Hessian can also be written like[10]

∇2S(θh) =
∑
m

(
∂rm
∂θµ
· ∂rm
∂θν

+ rm ·
∂2rm

∂θµ∂θnu

)
≈
∑
m

∂rm
∂θµ
· ∂rm
∂θν

= (JᵀJ)µν ,

where J denotes the Jacobian matrix of the residual vector r. Inserting this into
(2.3) and additionally using ∇S(θh) = JT · r yields:

δθ = (JᵀJ)−1 · Jᵀ · r (2.4)

⇔ (JᵀJ) · δθ = Jᵀ · r (2.5)

Because Jᵀ · J is symmetrical and positive definite, a decomposition method like
a Cholesky, QR or SVD decomposition can be used to calculate δθ[11].

This leads to the Gauss-Newton algorithm, which involves the following steps:

1. Guess appropriate starting parameters for θ

2. Compute the current values for the Jacobian J and the residual vector r

3. Perform an update as directed by (2.5)

4. Repeat steps (2) to (3) until the algorithm meets one of the defined stopping
rules

The Gauss-Newton algorithm is often used as a basis for more advanced methods,
such as the popular Levenberg-Marquardt algorithm, which is discussed in more
detail in chapter 4.

12

2.3. Genetic Algorithms

2.3 Genetic Algorithms

The term genetic algorithm (GA) describes a subclass of the so called evolution-
ary algorithms (EAs), which include a number of metaheuristic methods to solve
optimization problems. Evolutionary algorithms are inspired by the process of
biological evolution, such as reproduction, mutation, recombination and selection.
They include, among others, the fields of genetic and evolutionary programming,
gene expression programming, neuroevolution and genetic algorithms. Genetic al-
gorithms in particular mimic the process of natural selection. Although a wide
range of EAs have been around since the 1950’s, John H. Holland is often credited
for the popularization of GAs in the late 1980’s and early 1990’s[12].

Although actual implementations of GAs can differ on a case by case basis, the so
called genetic process (GP) generally consist of the following components:

1. Generate a random starting population P of genetic chromosomes Ci

2. Evaluate and calculate the fitness of each chromosome C1, ..., Cn out of P

3. Use a selection method to select chromosomes out of P

4. Use the crossover and mutation operators to create a new generation P̂ of
chromosomes Ĉ1, ...Ĉn

5. Set P = P̂

6. Repeat (2) to (5) until the desired result or a stopping rule is reached

Each chromosome represents an encoded solution to a particular optimization prob-
lem. The chromosomes are only decoded in step (2), when the fitness for each
chromosome is set. Because the chromosomes that are used to build the next pop-
ulation are selected based on their fitness, each generation should on average be
fitter than the last one. This procedure is repeated until an appropriate result is
found or a stopping rule is met. The algorithm usually terminates when a prede-
fined number of generations were produced.

A simple example to demonstrate the basic principle behind genetic algorithms
is to find the square root of an integer number. Although analytical solutions for
this problem exist – and are undeniably more efficient – it is an inverse problem,
where calculating the square is much simpler than calculating the square root. In
this example, the fitness of each chromosome can be determined by calculating the
square of the encoded number and then determining the difference to the number
the square root is attempted to be found for. For example, when the looking for
the square root of 25, the fitness could be calculated as follows:

13

Chapter 2. Background

Determine fitness of each
individual

Select chromosomes

Create new population
using genetic operators

Stopping
rule

reached?

Result

no

yes

Next generation

Figure 2.1: Workflow of the genetic process.

decode(C1) = 2

decode(C2) = 7

⇒ fitness(C1) = |2 · 2− 25| = |4− 25| = 21

⇒ fitness(C1) = |7 · 7− 25| = |49− 25| = 24

Note that without negation, C2 would have a higher fitness value than C1, although
it is farther away from the optimal solution. This is a common issue when the

14

2.3. Genetic Algorithms

optimization problem consists of minimizing a difference and can be rectified by
negating the fitness values, before assigning them to the chromosomes.

Figure 2.2: X-band antenna of the NASA ST5 spacecraft. The shape was found by genetic
algorithms to create the best radiation pattern.

One advantage of genetic algorithms is that they only operate on the raw encoded
data, which makes them independent of an analytical solution of the problem they
are optimizing. The only requirement is that each encoded result must be assess-
able in a gradual fashion. Intermediate results that differ in quality also have to
differ in their fitness values. For example, problems that have a big solution do-
main, but whose results can only be evaluated to be correct or false, are unsuitable
for genetic algorithms.

Because the usage of GAs potentially involves a lot of solution evaluations, each
evaluation should also be considerably low in computational cost. For this reason,
GAs are often used for inverse problems, which are easy to verify, but where ana-
lytical solutions are either exponentially expensive or do not exist at all[13]. Figure
2.2 shows a popular and recent example, where genetic algorithms were used to
find the best radiation pattern of a X-band antenna used by the NASA within the
Space Technology 5 mission in 2006.

The genetic process, including each of its individual components, is discussed in
more detail in chapter 4.

15

Chapter 2. Background

2.4 General-Purpose GPU Computing

The term General-purpose GPU computing (GPGPU) refers to the usage a graphics
processing unit (GPU) to perform computation that is traditionally done on a CPU.
A good introduction to the topic is given in the book C++ AMP: Accelerated
Massive Parallelism with Microsoft Visual C++[14] by Kate Gregory and Ade
Miller.

2.4.1 History

The idea of GPGPU began to attract popular interest when it became clear to
many people that the so called free lunch had ended. The term refers to the ex-
pansive growth of hardware development that started with the introduction of the
so called personal computer around 1975. For around 30 years computers not only
became more popular, but also cheaper and fast every year; with every chip having
higher clock speeds, more cache and better performance than the generation before
it. This meant that slow software was not necessarily such a big problem, because
already six months later, new CPUs could potentially be so much faster to make
performance a non-issue.

Around the year 2005, manufactures began to encounter physical limitations in
their CPU designs. Although they were still able to increase the number of tran-
sistors, issues such as proper dissipation of the heat from the chip resulted in much
lower differences in clock speeds between generations compared to the years before.
At this point in time, microprocessor companies such as Intel began to introduce
the concept of multicore CPUs, which aimed to increase the overall performance
by distributing the overall load to individual computation units.

Although multiple cores increase the performance of a multithreaded system by
asynchronously processing multiple tasks at the same time, they rarely load a CPU
to even more than 50%. To use the full potential of a multi-core CPU, the software
has to be parallel-aware, which means that is has to include algorithms that can
be efficiently parallelized. This is rarely the case for most conventional software.

On the other hand, software that is parallel-aware often times almost scales di-
rectly with the number of cores, meaning that doubling the number of cores would
also roughly double the performance. However, even years later, CPUs with more
than four cores were very rare and usually restricted to data centers. At the same
time, hardware vendors began to develop GPUs with dozens, hundreds and now
even thousands of cores. Although these cores are very different from CPU cores
and are not suited for asynchronous computing, they allow the utilization of mas-
sive parallelism when used properly. This lead to the concept of heterogeneous
computing (HC), which refers to the general idea of using different types of pro-
cessors together and distributing the workload to the one that is best suited for
the corresponding type of computation. The term GPGPU computing refers to

16

2.4. General-Purpose GPU Computing

the combination of a CPU and a GPU.

2.4.2 Technologies

Very early on, GPGPU computing was only possible by using APIs designed for
graphics rendering. But the fast-growing interest in the topic quickly lead to
the development of several technologies over the past 10 years that are specifically
designed for HC in general and GPGPU computing in particular. What follows is a
short overview of the most popular developments, together with a brief description
of their advantages and disadvantages.

OpenCL

The Open Computing Language (OpenCL) is an open C-like programming language
based on the Open Graphics Library (OpenGL) and developed by the Khronos
Group[15]. Contrary to other technologies, OpenCL imposes no restrictions on the
specific graphics cards or hardware, and is available on a variety of platforms. This
means that an OpenCL program is not bound to be used on a GPU and can also
be parallelized on other suitable hardware. As with OpenGL, many (free) tools are
available to write, test and debug OpenCL applications. The main disadvantage
is that because it is cross-platform, cross-hardware and even cross-language, it is
not as easy to use as other solutions.

CUDA

The Compute Device Unified Architecture (CUDA)[16] refers to a GPGPU-specific
programming language developed by Nvidia, who also manufacture CUDA-specfic
hardware. The full name of the language is CUDA C, which like OpenCL also
is a C-like language. However, compared to OpenCL, CUDA C provides higher-
level abstractions and in recent years has moved closer to C++ rather than C.
The main advantage of CUDA is that the language allows simpler GPU invocation
syntax and also to share code between the CPU and the GPU. CUDA is under
active development still continues to gain new features and libraries. The main
disadvantages of CUDA is its restriction to Nvidia hardware.

Direct3D

The term Direct3D refers to a number of technologies for graphics programming
for Windows[17]. One part of Direct3D is the DirectCompute API, which specif-
ically supports GPGPU computing. DirectCompute is based on the High Level
Shader Language (HLSL), which is mostly used in game development. The main
disadvantage of DirectCompute is that it is restricted to being used on Windows.

17

Chapter 2. Background

C++ AMP

The C++ Accelerated Massive Parallelism (AMP)[18] is an open specification by
Microsoft that describes a native programming model for data parallelism. Al-
though Microsoft’s own implementation is based on DirectX 11 and is therefore
limited to Windows, the standard being open means that C++ AMP can theoret-
ically be implemented on any platform. For example, in 2014, AMD released an
implementation for Linux.

Aside from the already mentioned disadvantages, all of the aforementioned tech-
nologies require a programmer to not only learn a new API, but also a new pro-
gramming language. Additionally, OpenCL and DirectCompute lack C++ ab-
stractions such as type safety and genericity.

C++ AMP on the other hand consists mostly of library code and only a small
extension of the C++ language. Although C++ AMP code cannot use the full
feature set of C++, it is fully compatible with it, while still being able to use many
high-level concepts, such as genericity, type-safety, classes, function overloading or
lambda functions.

SYCL

The C++ Single-source Heterogeneous Programming for OpenCL (SYCL)[19] is
an open specification for a cross-platform abstraction layer for OpenCL, developed
by the Khronos Group. Its main goal is to allow full usage of OpenCL, using only
standard C++. It would mitigate many of the mentioned disadvantages of OpenCL
and could potentially also completely supersede C++ AMP as a technology that
provides high-level access to massive parallelism. Unfortunately, at the point in
time this thesis was started, no implementation of SYCL was available publicly
available.

18

Chapter 3

Related Work

The previous chapter provided an overview of the general concepts this thesis is
based on. But before introducing the approach of this work, it is important to
examine how the starting value problem was tackled in the past.

This chapter is divided into three parts. After the starting value problem is for-
mally defined, the second section provides a brief overview of traditional methods
and strategies that are currently used or were used in the past to solve the same
problem. Then, the third section shows how the Hybrid Approach attempted to
tackle the problem from a non-traditional angle.

3.1 The Starting Value Problem

Although it should be clear to most readers by now what the starting value prob-
lem is, it is formally defined here to avoid any confusion.

In nonlinear regression analysis, the starting value problem refers to the fact that
most nonlinear regression methods have to be initialized with a set of starting val-
ues for the regression parameters. For example, recalling 2.2.3, the Gauss-Newton
algorithm was described as follows:

1. Guess appropriate starting parameters for θ

2. Compute the current values for the Jacobian J and the residual vector r

3. Perform an update as directed by (2.5)

4. Repeat steps (2) to (3) until the θ the algorithms meets one of the defined
stopping rules

The update rule was given as

JᵀJ · δθ = Jᵀ · r. (3.1)

19

Chapter 3. Related Work

In this case, the starting value problem refers to the initial choice of the parameter
vector θ.

Because the starting values can have a major impact on the effectiveness of the
algorithm, a good choice of starting values is vital to achieve satisfactory results.

3.2 Traditional Methods

There have been several approaches proposed over the years to tackle the starting
value problem. These range from general best-practices or useful principles, over
model specific strategies, to heuristic approaches that derive promising starting
values from the raw data. Many of these approaches are also often already imple-
mented in statistical software, such as STATA, the MINPACK library or packages
for the statistical programming language R.

One of the most cited source regarding this topic are the five principles proposed
by Bates et al.[20], which are based in part on work by Ratkowsky[21]. The first
two of these principles recommend to interpret the model function and its deriva-
tives analytically or graphically. This is the most basic form of data analysis and
refers to what is casually described as looking at the data. In the last three prin-
ciples the authors describe methods to transform the model function, reduce the
dimensions of the problem (also known as peeling) or inspect it for the possibility
of conditional linearity. These techniques all aim to simplify the model in some
way, with the goal to make the estimation of starting values easier.

These principles turned out to be very useful in practice and are generally applica-
ble to nonlinear regression problems. However, because they are only guidelines,
they do not guarantee success. Because they rely heavily on human interpretation,
the effectiveness of these approaches are also highly dependent on the experience
of the person applying them. While an expert statisticians might be able to just
see good starting values in the plotted data, a novice might not. This makes it
also difficult to implement automated versions of these methods. Additionally, the
difficulty of applying these approaches scales with the complexity of the problem.
Models with more than ten parameters are not uncommon and might make these
approaches unfeasible in practice, while data with more than one variable might
make visual analysis a lot more difficult.

Aside from those principles, there also haven been numerous strategies proposed
in the past to determine starting values for specific model functions. For example,
Seber et al. recommend to start with zero for all parameters in logistical models[7].
Schnute et al. described an approach for a special kind of exponential models de-
veloped when fitting the growth models of fish[22]. These kind of approaches make
starting values less of an issue, but are restricted to a subset of model functions
and cannot be extended to other problems. However, this specialization for specific

20

3.3. Hybrid Approach

model types makes them also more suitable to be implemented in an automated
way in statistical software.

3.3 Hybrid Approach

In addition to traditional methods, there also exist some nontraditional approaches
to the starting value problem, which often (partially) use heuristic methods instead
of strictly mathematical ones. One of these methods is the Hybrid Approach, which
uses genetic algorithms combined with numerical NRA methods to solve the start-
ing value problem.

The Hybrid Approach is a genetic numerical hybrid method. It was proposed
by this author in 2014 in his own bachelor’s thesis Numerical Evolution – Using
Genetic Hybrid-Methods to Solve Nonlinear Regression Problems, as an attempt
to tackle the starting value problem in a non-traditional way.

3.3.1 Concept

The general idea of using soft-computing methods in regression analysis had its
origins in work on the project Validation of Air Traffic Scenarios On The Example
Of The Hamburg Airport, as part of the Cluster Of Excellence – Project Efficient
Airport 2030 by the city of Hamburg, Germany. The project was a cooperation of
several institutions, including the Hamburg University of Technology, the Hamburg
division of the German Aerospace Center, as well as the University of Hamburg.
One of the goals of the project was to develop a formal model that could be used
to estimate the number of passengers the airport has to expect to handle each year.

Using conventional methods – such as regression analysis – turned out to be chal-
lenging, due to the high dimensionality of the information, potential nonlinear de-
pendencies, as well as the general problem of proposing an arbitrary model without
any basis aside from the raw data. A missing theoretical basis and potential nonlin-
ear parameters generally make it difficult to propose a model and a high amount of
variables increases the difficulty of visual inspection and therefore finding reason-
able starting values. To allow an automated approach that could evaluate several
models in a row without having to manually determine the starting values, it was
proposed to investigate the effectiveness of applying genetic algorithms to solve
the regression problems without relying on any traditional methods at all.

Although a variant of that approach turned out to be able to solve nonlinear regres-
sions of a particular form of up to 10 parameters, they had an upper limit above
which they yielded unsatisfactory results. It was also necessary to use relatively
big population sizes, which lead to much slower execution times in comparison to
conventional numerical methods.

21

Chapter 3. Related Work

As a consequence of the aforementioned results, the author concluded that a de-
sired approach would have the following properties:

1. Efficient enough for automated testing

2. Independent of starting values

3. Independent of contextual knowledge

Because the third point would necessitate automated model construction – which
is a very complex field of research in itself – the approach was restricted to conform
to 1. and 2.

The approach can be summarized by the following train of thought: When viewing
the starting value problem through a lens of abstraction, it can conceptually also
be seen as a search for a viable combination of starting parameters within a certain
parameter space. This means, it can also be interpreted as an optimization prob-
lem of finding starting points from which a convergence to a satisfactory extreme
point is possible. Because genetic algorithms are agnostic about the problem they
are optimizing, they can also be used to optimize the starting values of a given
nonlinear problem.

The approach can be summarized by the following steps:

1. Encode the parameters of a nonlinear regression problem into the chromo-
somes of a genetic algorithm

2. Create a random initial population of starting values

3. Evaluate each chromosome by using its encoded parameters as starting values
for a classical numerical method, such as the Gauss-Newton or Levenberg-
Marquardt algorithm

4. Use its optimized parameters to calculate the sum of squares and use it to
set the fitness of each individual chromosome

5. Use genetic operators to create a new population, which should on average
contain better starting values than the previous one

6. Repeat steps 3 to 5 until satisfactory convergence is achieved

3.3.2 Restrictions

Although it was shown in the evaluation that the approach is generally viable, it
has several drawbacks. Most prominently, it is restricted to a class of so called
Misc Regression models, which were defined as

22

3.3. Hybrid Approach

f(x,θ) = y = f1 + ...+ fn,

where each term fi refers to one of the following parts

fi(xi, θj) = θj · xi (linear influence)

fi(xi, θj) = θj · log xi (logarithmic influence)

fi(xi, θj, θj+1) = θj · x
θj+1

i (exponential influence)

fi(xi, θj, θj+1) = θj · θxij+1 (power influence).

This restriction was primarily caused by technical limitations. Due to their struc-
ture, Misc Regression models are a lot easier to implement than arbitrary model
functions and also allow a simple computation of the partial derivatives, without
having to use a computer algebra system. Additionally, this class of problems was
also suggested by the data of the airport project.

However, as was acknowledged in the bachelor’s thesis itself, the class of Misc
Regressions is highly restrictive, since only a small number of regression problems
actually have that kind of form. In fact, because only very few test problems could
be modeled at all, the Hybrid Approach was only tested on generated and highly
artificial problems.

The third major drawback is the performance. Because it is a CPU-only solu-
tion, larger regression problems can take up to an hour to complete, which makes
it unfeasible for many practical applications.

23

Chapter 3. Related Work

24

Chapter 4

The Parameter Evolution
Approach

The previous chapter provided an overview of several traditional strategies and
techniques to tackle the starting value problem. It also showed how the Hybrid
Approach attempted to solve it from a nontraditional angle.

By using the presented methods as a basis, this chapter proposes a novel, nontra-
ditional approach to the starting value problem. This is done by first summarizing
the advantages and disadvantages of the approaches from the previous chapter
and by deriving a set of requirements an ideal solution should comply to. These
requirements serve as a basis to define the goals of this thesis, which are then used
to construct the approach.

4.1 Overview

Before the approach can be proposed, it is necessary to discuss the rationale behind
it and to define the terms under which it will be constructed. This is done by
first assessing the existing approaches to the starting value problem – which were
presented in the last chapter – and discussing their advantages and disadvantages.
On this basis, a set of requirements is derived, which the approach proposed in
this thesis shall comply to. Secondly, the goals of the thesis are formally defined.
These goals specify what this work is trying to achieve and will be verified in the
evaluation. Finally, the general concept of the approach is summarized, before it
is discussed in more detail in the following sections of this chapter.

4.1.1 Requirements

To properly convey what the approach proposed in the thesis is trying to achieve,
it is necessary to first assess the properties of the existing approaches to the same
problem. The previous chapter provided an overview over related work together
with their advantages and disadvantages.

25

Chapter 4. The Parameter Evolution Approach

Although it was shown that conventional methods can achieve good results under
certain circumstances, they also all have some drawbacks that can be summarized
as follows:

• No method can be universally applied to all problems

• None of them are fully automated and still require some input from the user

• Some of them are highly dependent on the skills of the user

These are all problems the Hybrid Approach was aiming to solve. Although it
was shown that the Hybrid Approach is a promising alternative to conventional
methods, it also has some shortcomings:

• It is restricted to a small subset of nonlinear models

• It was only tested on generated problems

• It is too slow for more complex problem

Merging the shortcomings of both traditional methods and the Hybrid Approach
leads to the following desired properties of an ideal method:

1. It should be applicable to all problems

2. It should be suitable for automated testing and not require problem specific
configurations

3. It should be fast enough for manual and automated testing

Note that these requirements are ideals which an optimal solution would fulfill in
every situation. A practical solution probably will not reach complete compliance
with these specifications. Additionally, requirements 2. 3. are also dependent on
the context. Assessments of terms like ”fast enough” or ”suitable” might vary
depending on the user and the situation.

26

4.1. Overview

4.1.2 Goals

Because the Hybrid Approach works in principle and showed some promising re-
sults in its evaluation, it is desirable to further investigate the genera idea. The
approach in this thesis is based on a similar concept, but aims to generalize its ap-
plicability and mitigate its drawbacks. The formal goals of this thesis are defined
as follows:

I. Propose an approach to solve nonlinear regression problems independent of
starting values with the following properties:

(i) It is applicable to a wide variety of practical problems

(ii) It is suitable for automated use and does not require any additional
configuration

(iii) It is suitable for massive parallelism with GPGPU computing and fast
enough for practical use

II. Propose and examine different strategies to improve the success rate of the
approach

III. Propose a possible implementation for the approach

IV. Design and perform an evaluation that can verify goals I. and II.

4.1.3 Concept

To provide an alternative to the repertoire of existing methods and strategies to
tackle the starting value problem, this thesis proposes a generalization and ex-
tension of the Hybrid Approach. The goal is to built upon the promising basic
idea and to transform it from a proof of concept into a fully developed approach
and thereby mitigating its shortcomings and providing solutions for the problems
documented in the original bachelor’s thesis.

Because the Hybrid Approach was proposed as a proof of concept, it was only
very loosely defined. Recalling 3.3.1, the basic steps of the HA were described as
the following:

1. Encode the parameters of a nonlinear regression problem into the chromo-
somes of a genetic algorithm

2. Create a random initial population of starting values

3. Evaluate each chromosome by using its encoded parameters as starting values
for a classical numerical method, such as the Gauss-Newton or Levenberg-
Marquardt algorithm

4. Use its optimized parameters to calculate the residual and use it to set the
fitness of each individual chromosome

27

Chapter 4. The Parameter Evolution Approach

5. Use genetic operators to create a new population, which should on average
contain better starting values than the previous one

6. Repeat steps 3 to 5 until satisfactory convergence is achieved

Although this description covers all essential steps, it is a strong simplification. In
reality, each step has its own intricacies and challenges. Even though such a brief
description was sufficient for a proof of concept, it not suitable for an in depth
discussion of its individual parts.

To make the approach of this thesis easier to assess, it is broken down into the
following three layers:

1. Evolution Layer

2. Evaluation Layer

3. Computation Layer

The Evolution Layer contains all components related to genetic algorithms. This
is where the chromosomes of the current generation are selected according to their
fitness value, to create a new population by applying the genetic crossover and
mutation operators.

To determine the fitness of each chromosome, they have to be decoded and evalu-
ated. The evaluation specifies the point at which the approach leaves the domain
of the genetic algorithms and the chromosome content is being contextualized for
the individual problem. All this is done in the Evaluation Layer.

Finally, the evaluation of each chromosome usually encompasses more or less com-
plex calculations. While Evaluation Layer describes the overarching mechanisms
that are necessary to evaluate the chromosome data, the actual computations are
done in the Computation Layer.

The reader may have noticed that the last three paragraphs do not mention the
starting value problem or (nonlinear) regression at all. This is because the Evo-
lution Evaluation Computation (EEC) layer structure is not bound to regression
analysis and could potentially also be used for other types of problems. This idea
is explored briefly in the Outlook section of this thesis.

Because of this, using the approach to solve the starting value problem of non-
linear regression problems, can be seen as an instantiation of the more broad EEC
concept.

As an explanatory metaphor, the proposed method can then be thought of as
a set of starting parameters wandering from the top layer to the bottom layers

28

4.1. Overview

and back, to then evolve into new parameters with which the cycle is started
anew. This is repeated until satisfactory convergence or a specified stopping rule
is reached.

Figure 4.1: The Evolution Evaluation Computation (EEC) layer structure for nonlinear regres-
sion problems.

Figure 4.1 visualizes this metaphor. Initially, a set of starting parameters are
generated by creating a random population of chromosomes. To set the fitness

29

Chapter 4. The Parameter Evolution Approach

value, the encoded parameter data is decoded and then crosses the barrier of the
Evolution Layer to the enter the Evaluation Layer, where they are used as start-
ing values for a nonlinear regression algorithm. The regression method itself also
transforms the parameters, by sending them to the computation layer where the
calculations of each iteration are performed. The iterations are being repeated,
until a stopping rule is reached. Afterwards, the result parameters of the NRA
method are encoded into the chromosomes, while the summed square difference
are set as the fitness value. The chromosomes are then being selected according
to the selection strategy and evolve into a new generation of encoded parameters,
with which the cycle begins anew until the maximal generation count is reached.
This process is applied to every chromosome of the population.

Because of this metaphor, the instantiated EEC approach for the starting value
problem of nonlinear regression analysis will be referred to as Parameter Evolution
(PE).

What follows is a detailed description of each layer of the PE approach.

4.2 The Evolution Layer

The Evolution Layer contains all the parts related to genetic algorithms. In GA
terminology, this is denoted by the term genetic process. This layer is also the
place where the Parameter Evolution begins, advances and where it is decided
when the whole PE algorithm stops.

Figure 4.2 shows how the iterative structure of the genetic process for the PE
approach looks like. Each iteration operates on the current population of chro-
mosomes, each containing a set of encoded parameters for the current nonlinear
regression problem. In the case of the first iteration, where there is no current
population, the chromosomes are created by generating random data.

The next step is to evaluate the current population of chromsomes. But before
the encoded parameters contained within the chromosomes can be evaluated, they
have to be decoded. Because the genetic process operates on raw binary data,
any imaginable encoding could be used to represent the parameters. However,
although the type of encoding has no effect on the genetic process, it has a major
impact on the effectiveness of the approach. This is covered later in greater detail.

At this point, the encoded parameters cross the layer boundary to be evaluated.
An advantage of the EEC structure is that it is not necessary at this point to spec-
ify how exactly the evaluation is performed. All that matters is that some kind
of evaluation takes place, and that afterwards all chromosomes have their fitness
value set, based on the viability of the parameters encoded within them.

30

4.2. The Evolution Layer

Figure 4.2: Evolution layer of the Parameter Evolution approach.

Here, the PE approach deviates from the traditional design of genetic algorithms.
Usually, the evaluation only goes one way. This means that it is a read-only opera-
tion, which only determines the fitness value of a chromosome based on its contents,
but does not alter the data in any way. In fact, from a software development point
of view, a chromosome is often implemented as a value type, meaning that its state
cannot change after its creation. This is analogous to the original metaphor of
genetic algorithms, which is modeled after the real-life genetic processes, in which
the DNA does not change within a living organism. Instead, the chromosomes of
descendants are always new chromosomes, which are created based on the DNA
of the parents.

If one were to strictly follow the original GA metaphor, the genetic process would
only set the fitness value of the chromsomes by using the error value returned from
the evaluation layer. However, aside from the minimized error value, a nonlinear
regression algorithm also returns the approximated result parameters. These pa-
rameters themselves can of course also be used again as starting values. It seems
reasonable to assume that when the fitness value is high (i.e. the error is low), the

31

Chapter 4. The Parameter Evolution Approach

result parameters will even further increase the quality of the encoded chromosome
data. This assumption was indeed confirmed for the Hybrid Approach. Therefore,
the chromosomes are not only decoded, the result parameters are also encoded
after the evaluation.

Provided the maximal generation count is not exceeded, the next step in the ge-
netic process is to create a new population by applying the genetic operators. First,
a number chromosomes are selected by using a specific selection strategy. These
chromosomes act as the parents for the next generation. There have been a lot
of different selection methods proposed over the years and the EEC structure is
not limited to any specific one. Some of these strategies are discussed later. The
parents are then used as an input to the crossover operation to create children
chromosomes, which are in turn applied to the mutation operator. As with the
selection, there are many different ways these operations can be implemented.

When the maximal generation count is reached, the algorithm ends and the best
parameters can be extracted from the chromosome with the highest fitness.

4.2.1 Chromosome

The genetic chromosome is the most basic component of a genetic algorithm. It
contains a solution to a particular problem in an encoded representation. The
way this solution is encoded may differ from problem to problem. Although not
necessarily required, they are classically represented as strings of binary data.

A simple example is the case of a single 32-bit integer number. When using binary
chromosomes, one possible choice of storing the data is to use the trivial encoding.
The trivial encoding just uses the systems internal binary representation of values
to encode the data. For 32-bit integers the raw chromosome data could look like
this

C1 = etrivial(42) = 000000000000000000000000001010102

C2 = etrivial(−73) = 111111111111111111111111101101112,

where etrivial denotes the trivial encoding function.

However, in practice the trivial encoding is rarely used, because it usually ex-
hibits bad convergence properties.

A set of chromosomes is called a population, while a specific population is also
referred to as a generation. Chromosomes are the operands to the genetic opera-
tors, which are used to create the next generation of chromosomes in the genetic
process.

32

4.2. The Evolution Layer

4.2.2 Genetic Operators

There are usually three types of genetic operators within the genetic process: The
selection of chromosomes, the creation of chromosomes by the crossover operation
and the subsequent mutation of the new chromosomes.

Selection

The selection strategy of a genetic algorithm determines which chromosomes are
used as the parents for the new generation. The way the chromosomes are se-
lected can differ greatly from method to method, although every strategy uses the
fitness value of the chromosomes in one form or another. Exclusively using only
the best chromosomes of a population is often not desirable, because GAs tend to
prematurely converge when the chromosomes within a population are too similar.
The choice of the selection method can have a big influence on the convergence
properties of a genetic algorithm. Research in genetic algorithms has produced a
great number of strategies over the years. A detailed description and analysis of
several methods is presented by Blickle et al[23].

Popular selection methods are:

• Tournament Selection (TS): Randomly chooses a number of chromo-
somes and selects the one with the best fitness. The number of competitors
can often be configured

• Roulette Selection: (RS): Randomly selects a chromosome while the
probability to select a specific individual is proportionally tied to its fitness.
A chromosome that has a fitness twice as high as that of another, is also
twice as likely to be chosen

• Linear Rank Selection (LRS): Randomly selects a chromosome while the
probability to select a specific individual is tied to a relative fitness. The LRS
uses the absolute fitness values only to sort the population. The probability
to choose a specific chromosome then only depends on the relative position
of each chromosome to another. An individual in a specific position always
has the same probability to be chosen, independently of its absolute fitness
value

Because the effect of a strategy can differ from problem to problem, it is often
difficult to determine which type of selection is optimal for a particular case. For
this reason, finding a suitable method is usually done empirically.

Crossover

The crossover operator creates new chromosomes by combining bit sequences taken
from chromosomes of the parent generation. This usually is a binary operation,
but there also exist approaches that use three or more operands. The behavior of

33

Chapter 4. The Parameter Evolution Approach

the operator can sometimes further be configured to provide additional function-
ality. For example, some implementations allow the user to specify whether the
crossover points should be fixed or dynamic.

Using the crossover operator, the two chromosomes C1 and C2 could be used to
create a new chromosome

C1 = etrivial(42) = 000000000000000000000000001010102

C2 = etrivial(−73) = 111111111111111111111111101101112

c(C1, C2) = Ĉ1 = 111111111111111100000000001010102,

where c is a fixed crossover operator, which combines the first and last 16 bits of
the input chromosomes to create a new one.

Mutation

The final operator is the mutation of a chromosome. Mutations are used to intro-
duce a little bit of random variety to the chromosomes to ensure sufficient diversity
within the population. Similar to the crossover method, the mutation sometimes
can be configured to accept fixed or non-fixed mutation points. Additionally, often
a mutation rate can be set that specifies the probability of a mutation to occur.
Although there exist different methods of how the actual mutation is performed,
the most popular one is to just flip one or more bits of a chromosome.

The mutation operator is usually applied after the crossover operation to the newly
created chromosomes

Ĉ1 = 111111111111111100000000001010102

m(Ĉ1) = 111111111111111100001000001010102,

where m is a mutation operator, which flips a single bit.

4.2.3 Encoding

When using genetic algorithms, one of the most influential parts to achieving sat-
isfying convergence is the choice of how to encode the data into the chromosomes.
Because the genetic operators work on the raw chromosome content, the distribu-
tion of the data has a major impact on what kind of solutions are constructed for
the next generation.

Recalling 4.2.1, a four byte chromosome could look like this:

C = 110000000100100100001111110110112

34

4.2. The Evolution Layer

What these four bytes represent and what encoding is reasonable, is highly depen-
dent on the type of optimization problem the genetic algorithm is used for. In the
PE approach, the chromosomes contain a set of parameters in the form of floating
point numbers. One of the most straightforward ways to represent floats is to just
use the IEEE 754[24] standard, which in many cases is the native representation
in software and hardware:

dIEEE 754(110000000100100100001111110110112) ≈ −3.1415927

However, this representation is actually not well suited for the use with genetic
algorithms, because changing just a single bit can result in either a dramatically
different encoded value or almost no change at all, depending on where it occurs:

dIEEE 754(111000000100100100001111110110112) ≈ −5.7952157 · 1019

dIEEE 754(110000000100100100001111110110102) ≈ −3.1415925

To achieve any kind of convergence, the genetic process is based on the assumption
that the likeness of all chromosomes within a population correlates with the simi-
larity of the encoded solutions. The general idea is to start with a heterogeneous
population – which means a great diversity of solutions – and then iteratively work
towards a more homogeneous population of fitter chromosomes, thereby converg-
ing on an (optimal) solution.

A good encoding has the desired property of being robust to changes in the data;
meaning that the solution only drastically changes when there is also a drastic
change in the chromosome’s content.

Discretization

One way of encoding floating point data into chromosomes is to use a discretization
method. The discretized encoding presented here, maps a floating point value
within a certain range to an area of bits

edisc(x, xmin, xmax) = wMax ·
(x− xmin)

(xmax − xmin)
,

ddisc(w, xmin, xmax) =
w

wMax

· (xmax − xmin) + xmin,

where x refers to a floating point value within the range xmin and xmax and the
maximal representable value of xMax, while w denotes a word of n bytes with the
maximal representable value of wMax.

This encoding has several advantages and was successfully used in the implementa-
tion of the Hybrid Approach. Not only does it exhibit good distribution properties,
it also allows some adaptability through its range selection. Being able to restrict

35

Chapter 4. The Parameter Evolution Approach

the encoded data to a minimal and maximal value, guarantees that every new
chromosome only contains data within a certain range. This greatly increases the
chances of convergence in those cases where it is known in advance that certain so-
lutions are invalid because they are too big or too small. Even in those cases where
it is difficult to estimate a restriction, it is still often possible to roughly estimate
the orders of magnitude that are sensible. Just excluding very big or small values –
e.g everything above 1050 or below 10−50 – can already lead to much better results.
Restricting the range also means that multiple binary representations are mapped
to the same value. This increases the robustness of the encoding and results in the
chromosomes being more stable for only small changes of data. The encoding can
also easily be extended to use a specific binary size. This allows multiple values to
be encoded into a single word of n bytes.

Logarithmic

Although the discretized encoding was successfully used with the Hybrid Approach,
it has some major flaws in representing certain values. Because the distribution
of data is uniform, every value is represented with roughly the same amount of
bits. This is problematic, because many regression problems have rather small
parameters with values between 0 and 1, and thus need a much finer resolution in
that range compared to for example 10 and 100. This issue did not occur during
the evaluation of the Hybrid Approach, because the generated test problems did
not contain very small parameters.

This could be rectified by just changing the minimal and maximal value for those
parameters to the required range. However, if there were an easy way to determine
the range of a parameter, the starting value problem would not be an issue. Even
roughly estimating the range usually necessitates a manual analysis of the data.
This would violate the requirement that was defined in goal I.(ii), which stated
that the PE approach should not require any kind of problem-specific configuration.

As an improvement to the discretized encoding, this thesis also proposes a logarith-
mic encoding. This type of encoding does expand upon the discretized encoding by
performing an additional logarithmic transformation before discretizing the value:

elog(x, xmin, xmax) = edisc(log10 (abs (x)), 31, xmin, xmax) ∨ (sgn (x) · 231),

dlog(w, xmin, xmax) = (w ∧ 231) ∨ 10ddisc(w,31,xmin,xmax)

The general idea is to transform the value to a x = 10x̂ representation and store
x̂ instead of x itself. Although this encoding has the potential weakness of using
a single dedicated bit for the sign – which can easily be flipped – it should also
provide additional stability by being able to cover the same range of the discretized
encoding with an overall much smaller value.

36

4.3. The Evaluation Layer

Note that the logarithmic encoding requires a variant of ddisc that allows to also
specify a binary size.

4.3 The Evaluation Layer

The Evaluation Layer contains all parts relevant to the evaluation of the chromo-
somes.

Figure 4.3: Evaluation layer of the Parameter Evolution approach.

Figure 4.3 shows the layer for the PE approach. The evaluation begins by using
the parameters as starting values for a traditional nonlinear regression method.
The methods covered here are all based on the nonlinear least-squares approach.
Although they are different in detail, they all share a similar iterative structure.
The evaluation layer hereby only describes the individual steps, while the tech-
niques used to do the actual computation are part of the Computation Layer. As
with most parts of the PE approach, there is no requirement for a specific NRA al-
gorithm. However, similar to the chromosome encoding, not all variants are suited

37

Chapter 4. The Parameter Evolution Approach

for the PE approach and the choice can have a major impact on the overall success
rate of the whole method.

After the NLS method has terminated, the Evaluation Layer returns the lowest
residual error and the parameters with which it was attained.

4.3.1 Nonlinear Least Squares

The PE approach is not limited to using a specific nonlinear regression method.
Any iterative algorithm suitable for nonlinear regression analysis, that is based on
specifying initial parameters, can be used. However, the methods that are pre-
sented here are all based on the nonlinear least squares approach as presented in
2.2.2. The main reason for this choice is that they were used in the evaluation of
the Hybrid Approach and therefore already have been confirmed to be suited to
the approach presented here. They are also among the most popular NRA meth-
ods and can be applied to a wide variety of problems, which is required to fulfill
goal I.(i).

In particular, this thesis focuses on the Levenberg-Marquardt and the Modified
Levenberg algorithms.

Levenberg-Marquardt And Modified Levenberg Algorithm

The Levenberg-Marquardt Algorithm (LMA) is based on the Gauss-Newton algo-
rithm presented in 2.2.3. Although the GNA has good convergence properties
when the initial guess is near a minimum, the method diverges if it is too far away
or if the matrix JᵀJ is ill-conditioned. One of the several approaches to improve
the Gauss-Newton algorithm was made by Kenneth Levenberg in 1944[25]. He
suggested to add an dampening-term to the update rule (2.5)

(JᵀJ + λI) · δθ = Jᵀ · r. (4.1)

The non-negative dampening factor λI is adjusted at each iteration. If the reduc-
tion of the sum of squares S is insufficient in the residual, λ can be increased giving
a step closer to the descent direction of the gradient, whereas if the convergence
rate is high, a low value brings the method closer to the Gauss-Newton algorithm.
In 1963, Donald Marquardt further improved the method by scaling each compo-
nent of the gradient according to the curvature, so that there is larger movement
along the direction where the gradient is smaller[26]. This avoids slow convergence
in the direction of a small gradient. He replaced the identity matrix I, with the
diagonal matrix consisting of the diagonal elements of JᵀJ

(JᵀJ + λ · diag(JᵀJ)) · δθ = Jᵀ · r. (4.2)

38

4.3. The Evaluation Layer

At this point, the PE approach again diverges to an unusual path. Traditionally,
Marquardt’s update rule 4.2 is considered to be a straight up improvement over
Levenberg’s 4.1, because it increases the amount of movement in directions where
convergence is certain. However, if the starting values are bad, using Maquardt’s
rule can lead to instability and numerical problems. In most conventional uses
of the LMA, this a non-issue, because the starting values need to be manually
selected and are usually not completely off. For this reason, a statistician usually
prefers a much faster converging method to one that is only better in rare cases.

The PE approach on the other hand favors different characteristics. Bad starting
values are almost guaranteed to happen in the first few generations and because
the results are encoded and used for the next generation of starting values, stability
is much more important. Additionally, it is not critical if a set of starting values
does not fully converge in a single run of the NRA algorithm, because the process
is repeated multiple times.

For this reason, the PE approach also explores the viability of using Levenberg’s
update rule in addition to the one from Marquardt. Because the method is not
exactly the same as the Levenberg algorithm, it will be referred to by the name
Modified Levenberg Algorithm (MLA).

Because they only differ in the update rule, both algorithms can be described
as follows:

1. Guess appropriate starting parameters for θ

2. Compute the current values for the Jacobian J and the residual vector r

3. Do an update as directed by either (4.1) (MLA) or (4.2) (LMA)

4. Evaluate the error of the new parameter vector

5. If the error has increased, then retract the step and increase λ by a constant
factor

6. If the error has decreased as a result of the update, then accept the step and
decrease λ by a constant factor

7. Repeat steps (2) to (6) until the θ is at the desired accuracy or the algorithm
meets one of the defined stopping rules

Both algorithms share three essential operations that have to be applied on every
iteration:

1. Update the residual vector

2. Update the Jacobian matrix

3. Update the parameter vector

39

Chapter 4. The Parameter Evolution Approach

Residual Update

Recalling 2.2.2, the residuals were described as a vector r with each entry defined
as

rk = yk − f(xk,θ),

with yk and xk referring to the k’th data point, θ to the parameter vector and f
to the model function.

To perform the residual update, each entry rk has to be calculated for every data
point k with the parameter vector of the h’th iteration of the NLS algorithm

r = y − f̂(X,θh),

where y and X describe all data points, θh the h’th parameter vector and f̂ the
vector-valued model function.

Jacobian Update

The Jacobian Ĵ is the matrix of all first-order partial derivatives of a vector of
functions f . In the context of regression analysis, this means that the model
function f can be instantiated with every data point k, therefore defining f as a
K-vector of functions

fk(θ) := f(xk,θ)

f(θ) :=

f0...
fk

.
This leads to the definition of the Jacobian as

Ĵ =

[
∂f

∂θ1
· · · ∂f

∂θM

]
=

∂f1
∂θ1

· · · ∂f1
∂θM

...
. . .

...
∂fK
∂θ1

· · · ∂fK
∂θM

.
However, when using the Jacobian in NRA methods, the term actually refers to
the matrix of calculated Jacobian entries

J =

 Ĵ1,1(θh) · · · Ĵ1,M(θh)
...

. . .
...

ĴK,1(θh) · · · ĴK,M(θh)

,
where θh are the parameters of the h’th iteration of the NRA algorithm.

40

4.3. The Evaluation Layer

Parameter Update

One crucial aspect of both the LMA and MLA is how to perform the update of the
parameter vector θ. The update rule of the MLA algorithm was given as follows

(JᵀJ + λ · I) · δθ = JT · r. (4.3)

To apply the update, the equation has to be solved for δθ. Substituting B for
(JᵀJ + λ · I) yields

(JᵀJ + λ · I) · δθ = Jᵀ · r
B · δθ = Jᵀ · r

B−1 ·B · δθ = B−1 · Jᵀ · r
I · δθ = B−1 · Jᵀ · r

δθ = B−1 · Jᵀ · r.

At this point a problem arises, because not every matrix is invertible. Quite to the
contrary, most matrices B that occur in the LMA or MLA algorithms are singular,
meaning that they are not invertible.

One way to solve this problem is to use the Moore-Penrose pseudoinverse B+

of the matrix instead of the actual inverse B−1. The parameter update δθ can
then be calculated as

δθ = B+ · Jᵀ · r
δθ = (JᵀJ + λ · I)+ · Jᵀ · r.

There are several ways the pseudoinverse can be constructed, most prominently
by using either a Cholesky or QR decomposition of the matrix. These methods
have the advantage that they are comparatively cheap to compute and still stable
enough for many practical applications. However, because in the PE approach
the first generation of chromosomes usually contains bad starting values, the de-
composition is very sensitive to numerical problems and the stability provided by
those methods is usually insufficient. This was confirmed in the evaluation of the
Hybrid Approach, where it was shown that the stability of the used decomposition
method is vital and that only the singular value decomposition was able to solve
more difficult problems. For this reason, this thesis will only focus on the SVD,
although the PE approach can in principle also be used with a different method.

After the SVD of the matrix B has been obtained, the psuedoinverse can be
determined by

B+ = V Σ+U ᵀ,

41

Chapter 4. The Parameter Evolution Approach

where Σ+ is the pseudoinverse of Σ, which can be determined by replacing every
non-zero diagonal entry by its reciprocal and afterwards transposing the resulting
matrix.

4.4 The Computation Layer

The Computation Layer contains those parts of the PE approach that are per-
forming the actual computations on the data. The vast majority of work is done
here.

Figure 4.4: Computation layer of the Parameter Evolution approach.

Figure 4.4 shows how the computation layer of the PE approach looks like. Con-
trary to the other layers, the components of this layer are not all part of the same
process. Aside from the SVD algorithm, which is one of the most important parts
of the approach, it is rather thin from a theoretical point of view, because most
components just perform the actual calculations from each step of the NRA algo-
rithm.

The computation layer is discussed in greater detail in the next chapter, when
the approach is implemented.

42

4.4. The Computation Layer

4.4.1 Singular Value Decomposition

Aside from its performance, other important properties of a numerical algorithm
are its stability, accuracy and robustness. The exact definitions of the last three
terms vary and often depend on the context. In numerical linear algebra, the sta-
bility generally refers to the difference between the true solution of a problem and
the solution approximated by the algorithm[27].

An algorithm is considered stable, when it is less affected or can even damp out
small errors in the input data, while an instable algorithm might magnify the er-
rors. Additionally, an algorithm is considered robust when it does create similar
results for very small changes in the input data. Finally, the accuracy of an al-
gorithm refers to the chances of introducing errors caused by numerical problems,
such as rounding or insufficient floating point precision.

In this thesis, these three terms are referred to as the numerical properties of an
algorithm. The numerical properties of an algorithm are considered good, when it
has a high accuracy and is stable and robust.

The numerical properties of the methods used in the PE approach are vital to
achieve good results. Because the initial starting values will most likely be poor,
it is important that the NRA method does converge to something, even if it is a
bad solution. If the numerical properties are bad, the NRA method might produce
invalid floating point values – also known as not a number (NaN) values – which
must be prevented at all costs, because they cannot be used as parents for a new
generation of parameters.

As mentioned in chapter 2.1.3, there are several ways of how the SVD can be
calculated. The Handbook of Linear Algebrar (HLA) alone lists seven algorithms
to obtain the SVD of a matrix[28], which differ greatly in their efficiency and nu-
merical properties.

One of the most widely used methods is the calculation by Householder reduction
to bidiagonal form. It is implemented in many popular tools, such as MATLAB
oder MAPLE, due to its efficiency compared to other methods, while still having
sufficient numerical properties for most problems. However, due to the require-
ments for maximal numerical stability, it is not ideal for the PE approach.

Instead, this approach will use the Jacobi Rotation SVD, which is considered to be
among the best algorithms in regards to numerical properties, while at the same
time also being one of the most computationally expensive variations.

The algorithm is defined in the HLA as follows:

43

Chapter 4. The Parameter Evolution Approach

Figure 4.5: The Jacobi Rotation SVD algorithm as it is defined in the Handbook of Linear
Algebra.

Although many parts of the algorithm are straightforward, one crucial detail is
not specified. In step 6 b., the work matrix B has to be updated by applying a
left and a right rotation to itself. The corresponding angles θ and φ have to be
determined by solving the linear system

[
d1 0

0 d2

]
=

[
cos θ − sin θ

sin θ cos θ

]
·

[
bi,i bi,j

bj,i bj,j

]
·

[
cosφ sinφ

− sinφ cosφ

]
, (4.4)

where d1 and d2 have to be positive values.

44

4.4. The Computation Layer

There are several ways to solve this. One option is based on the theorem that any
2× 2 matrix can be decomposed into a rotation, a nonuniform scale, and another
rotation[29]:[

bi,i bi,j

bj,i bj,j

]
=

[
cos θ sin θ

− sin θ cos θ

]
·

[
d1 0

0 d2

]
·

[
cosφ sinφ

− sinφ cosφ

]ᵀ
Because the two rotation matrices are unitary – i.e. their transpose is also their
inverse – the equation can be rearranged to 4.4.

The rotation angles θ and φ, as well as the diagonal entries d1 and d2, can be
determined as follows:

E =
bi,i + bj,j

2
, F =

bi,i − bj,j
2

, G =
bj,i + bi,j

2
, H =

bj,i + bi,j
2

Q =
√
E2 +H2, R =

√
F 2 +G2

d1 = Q+R, d2 = Q−R

a1 = atan2 (G,F), a2 = atan2 (H,F),

θ =
a2 − a1

2
, φ =

a2 + a1
2

45

Chapter 4. The Parameter Evolution Approach

46

Chapter 5

Implementation

The previous chapter introduced the PE approach as a nontraditional method to
solve the starting value problem. The approach was presented as an instantiation
of the EEC layer structure.

After the PE approach was described from a theoretical point of view, this chapter
presents an exemplary implementation of the approach. This is done by going
through each layer and presenting those components that are critical to the ap-
proach, thereby discussion the individual challenges of implementing it in such a
way that it complies with the goals set in the previous chapter.

5.1 Overview

The EEC is not only beneficial to structure and visualize the PE approach, it is
also helpful in developing the architectural design of its implementation.

What follows is a description of all important components within each layer of
the PE approach. However, due to the size and complexity of the implementation,
it is not feasible to describe every component in detail. Instead, many components
will be presented in a more general and at times simplified way. These descrip-
tions in some cases differ in details from the actual implementation used in the
evaluation. Please note that although the components share some similarities with
those described for the Hybrid Approach, they are completely redesigned and not
part of the Soft Computing Framework library that was used to implement the HA.

As with the Hybrid Approach, the PE approach is implemented in C++; a lan-
guage that is well suited for the approach, due to its focus on high performance in
combination with higher-level abstractions.

To make the source code listings more readable, they are usually presented as
abridged versions of the original implementations. Constructors and assignment
operators in class declarations are usually omitted, unless they are of particular

47

Chapter 5. Implementation

interest. Additionally, functions are shown without const qualifiers in the param-
eters. Additional omissions are denoted by ellipses in the source code.

5.1.1 Custom Implementation vs. Libraries

Before designing anything, it is paramount to first assess what software compo-
nents are required and to determine whether the needed functionality is already
implemented in any existing library. Using libraries over a custom implementation
can have several advantages. Unless a library is brand-new or is very niche and
has only few users, it is usually less error-prone, because it stems from a more
mature codebase that has already been tested by several people. Additionally, a
library might have been developed by experts in the corresponding fields and it
is very unlikely that a custom solution outperforms something that has been in
development for several years – or in some cases decades. This is especially true
for hybrid solutions like the PE approach that consist of several components from
different fields of research, which are already quite complex on their own.

Due to the division in several layers, it is pretty straight-forward to determine
the necessary components of the PE approach; which in many cases can basically
be taken directly from the figures of each individual layer from the previous chapter.

On the top-level, the required functionality can be summarized as follows:

• A genetic algorithm, including its required sub components

• The nonlinear regression methods LMA and MLA

• A representation of the regression model

• Vectors and matrices, including their operations

• The Jacobi SVD method

Even though there are some excellent libraries for each of these points, no combi-
nation fits the requirements of the PE approach. This is mainly due to the unusual
nature of the approach, which requires very fine control over specific parts of the
implementation. There are also certain aspects of the approach that go against the
paradigms some of these methods are based on. For example, most GA libraries
provide no way to encode data into a chromosome and instead implement them
as value types. The NRA libraries have a similar problem in that they are usually
not designed for maximal numerical stability, which is an important attribute for
the PE approach. Other parts, such as the MLA method, are not available at all
in popular libraries.

However, the biggest problem poses the desired support for massive parallelism
using GPU acceleration. What all of the current GPGPU solutions have in com-
mon, is that they are using a custom language to program the kernel of the GPU

48

5.1. Overview

program. C++ AMP offers some advantages in this respect, because it is based on
a subset of C++. But even with AMP, it is not possible to simply reuse existing
libraries on the GPU. Although there exist some libraries for OpenCL and espe-
cially CUDA that offer some of the needed functionality, they are also not suited
for the PE approach, because they are designed for a different area of application.
Usually, the motivation to use GPGPU computing over CPU computing is that
a single problem gets too large to be solvable efficiently on a CPU. The GPGPU
algorithm then splits the problem into independent chunks that can be computed
in parallel. The PE approach on the other hand aims to utilize the GPU to com-
pute a great number of comparatively small problems at once. For example, this
is why the PE approach does not benefit from using GPU implementations for the
computation of the SVD, because those are usually designed to be applied to a
single very large matrix with several thousand rows and columns, instead of many
relatively small matrices in parallel. Additionally, many of the GPGPU imple-
mentations are themselves experimental and do not provide the quality or support
needed for being incorporated into a bigger project.

After some thorough consideration, these reasons lead to the decision of using
a custom implementation rather than third-party libraries.

5.1.2 Generictiy vs. Polymorphism

As was shown in chapter 4, the PE approach has an abstract structure and con-
tains many parts that can be filled with different implementations for the particular
methods and techniques that are used by the general algorithm.

From a software development point of view, there are several ways this can be
reflected within the implementation. An obvious option to abstract from a partic-
ular implementation is to use polymorphism. This would allow the core components
to work on interface classes and to provide the user with the option to specify an
arbitrary implementation with the desired functionality. However, because the
implementation of the PE approach is done in C++, another option is to use
genericity or generic programming. Through the usage of templates, C++ allows
classes and functions to be parameterized with additional types and values. It is
important to note that although the two techniques share a subset of common use,
they are not intended to solve the exact problems and generally have very different
areas of applications.

The main difference between the two techniques is that polymorphism gets re-
solved at run time, while templates are resolved at compile time. This results in
both advantages and disadvantages, depending on the area of application. Poly-
morphism uses virtual functions, which are only known at the point of invocation.
This allows functionality to be changed while the program is running. But the
very reason that it not known what particular function is called not only intro-
duces overhead for the lookup, it also prevents many types of code optimizations

49

Chapter 5. Implementation

by the compiler (e.g.inlining). Templates on the other hand are resolved at com-
pile time and therefore cannot be changed after the program was built. However,
because the types are known, the compiler can resolve the function calls and can
use all types of optimization at its disposal. This difference can have a significant
impact on performance critical applications.

A necessary condition to choose genericity over polymorphism is that there is no
need to interchange or mix components during run time; which is the case for the
PE approach. Another important factor to consider is that C++ AMP is based
on a subset of the C++ language that does not allow virtual functions to be used.
This means that every component intended to be used with C++ AMP would
require to be implemented without polymorphism anyway.

For this reason and because the implementation of the PE approach is performance
critical, the implementation will rely on genericity instead of polymorphism.

5.1.3 GPGPU vs. CPU

The reader may have noticed that although exploring the feasibility of GPGPU
computing is one of the goals of this thesis, there has been little mention of it up
to this point. The reason for this is that the PE approach itself is not specific to
any kind of hardware. Everything described in the previous chapter could also be
implemented and parallelized on a CPU.

However, because the genetic process is comparatively cheap, the vast majority
of the work is done in the evaluation of the current population, which is roughly
the same type of work for every single chromosome. And since populations can
consist of hundreds or even thousands of chromosomes, the PE approach has the
potential to greatly benefit from massive parallelism using a GPU.

Additionally, it is important to consider the intended area of application of the
PE approach. Although the argument from the last paragraph means that the
approach can also be parallelized very well on a big CPU cluster – with potentially
even more cores than a GPU – it is rarely the case that a statistician has access to
such hardware; mainly because conventional nonlinear regression methods meth-
ods do not require nearly as much computational prowess. Consumer grade GPUs
on the other hand are comparatively cheap, with costs of generally less than 1000
US Dollars, even for the high-end models. Even if the consumer variants are not
sufficient – for example because a higher double-precision performance is needed –
professional GPUs are still a lot more affordable when compared to a computing
center.

50

5.2. C++ AMP

5.2 C++ AMP

Section 2.4 provided an overview of some available technologies to utilize GPGPU
computing, including their advantages and disadvantages. The main reason why
the implementation of the PE approach is using C++ AMP over the other meth-
ods, is its compatibility with C++. Because the PE approach is heterogeneous,
there is a constant transfer of data between the CPU and GPU. Being able to use a
single language greatly reduces the complexity of integrating the GPU interaction
into the other parts of the software. Additionally, being able to use higher level
concepts, such as genericity and lambdas, makes it easier to design the GPGPU
components.

It is also important to note that although C++ AMP is mostly used for GPGPU
computing, it is agnostic about the specific hardware it runs on. Instead, AMP
uses the concept of an accelerator. An accelerator can be a GPU, but it could also
refer to different types of hardware, such as a computation cluster or a FPGA. In
Microsoft’s implementation of AMP, an accelerator can be any DirectX 11 com-
patible physical device or even a suitable virtual accelerator, such as Microsoft’s
Windows Advanced Rasterization Platform (WARP). WARP emulates DirectX 11
on a CPU, while trying to utilize vector instructions as much as possible. This
makes AMP very flexible in benefiting from different types of hardware. Unless
otherwise specified, AMP will always use the default accelerator, which in most
cases is the most power physical device available. If no physical accelerator can
be used, either because none is installed or it is not capable of DirectX 11, AMP
will automatically use WARP as a fallback option. This guarantees that an AMP
program can be executed, even if no physical accelerator is present.

5.2.1 Basics

One advantage of AMP is that it is comparatively easy to use and to integrate into
a C++ program. Provided the compiler has an AMP implementation, a simple
example can be expressed by only a few lines of code.

Listing 5.1: C++ AMP example: Function that adds the values of two arrays

1 #inc lude <amp . h>
2 us ing namespace concurrency ;
3

4 void add_arrays (i n t n , i n t ∗ pA , i n t ∗ pB , i n t ∗ const pC)
5 {
6 array_view<int , 1> a (n , pA) ;
7 array_view<int , 1> b (n , pB) ;
8 array_view<int , 1> c (n , pC) ;
9

10 parallel_for_each (c . extent , [=] (index<1> idx) r e s t r i c t (amp)
11 {
12 c [idx] = a [idx] + b [idx] ;
13 }) ;
14 }

Listing 5.1 shows a simple example of a function that adds the values of two arrays.

51

Chapter 5. Implementation

The accelerator code – the so called kernel – is specified as an argument to the
parallel for each function in the concurrency namespace. The kernel can be
specified as a pointer to a standalone function, a reference to a functor or as a
lambda function, as shown in this example. Note that this is the complete code
that is necessary for add arrays to be called from within a C++ program and for
the kernel to be executed on an accelerator. Unless otherwise specified, AMP will
automatically execute each kernel argument of a parallel for each call on the
default accelerator.

Another important aspect to note is that the example does not contain any explicit
copy operations, which specify when which data is transferred to the accelerator
and back. Instead, the data is transfered implicitly, by using the array view

type. An array view is a wrapper class for raw data pointers or containers from
the C++ standard library. Because the variables a, b and c are captured by the
lambda (as specified by the [=] syntax), the array view automatically transfers
the data to the accelerator. When the variables go out of scope – which in C++
calls the destructor of the class – AMP automatically detects that the content
of c has changed and synchronizes the data to the memory location pointed to
by pC. This allows effortless data transfers without having to manually handle
synchronization. However, it should be noted that using array view is optional
and that AMP also offers manual control over copy and synchronization operations.

Finally, the example shows one of the only two keywords C++ AMP adds to
the language. The expression restrict(amp) specifies that the definition of the
lambda is intended for AMP use, meaning that it can be executed on an acceler-
ator. Every function that is called from the kernel, either directly or indirectly,
has to be qualified this way. In doing so, the user communicates to the com-
piler that the function conforms to the restrictions AMP imposes on accelerator
code[30]. Violating any of those restrictions will result in a compiler error. Most
of the restrictions are based on actual physical differences many accelerators have
compared to CPUs. For example, a GPU usually does not have a call stack in the
classical sense. It is therefore not possible to perform recursion the same way as on
the CPU. Additionally, although GPUs have global memory, they usually do not
support the concept of a heap, which means that everything that relies on dynamic
memory allocation cannot be used. This includes language features such as virtual
functions, function pointers, polymorphism and others. The restrict keyword can
also be specified as restrict(cpu) and restrict(cpu, amp). Because it is part
of the signature of a function, the keyword can be used to overload functions and
use the corresponding version depending on whether it is called from within or
from without an AMP kernel.

5.2.2 Tiling

By default, C++ AMP will automatically determine how many threads are ex-
ecuted in parallel. This is often not ideal, because the amount of threads that

52

5.3. Evolution Layer

can effectively run concurrently is strongly dependent on the actual hardware and
AMP only works on the abstract concept of an accelerator. To provide addition-
ally flexibility to the developer, AMP offers a functionality known as tiling. Tiling
allows the user to explicitly specify how many threads are executed at once.

Listing 5.2: C++ AMP example: Tiled function that adds the values of two arrays

1 #inc lude <amp . h>
2 us ing namespace concurrency ;
3 constexpr i n t TileSize = 32 ;
4

5 void add_arrays_tiled (i n t n , i n t ∗ pA , i n t ∗ pB , i n t ∗ pC)
6 {
7 array_view<int , 1> a (n , pA) ;
8 array_view<int , 1> b (n , pB) ;
9 array_view<int , 1> c (n , pC) ;

10

11 parallel_for_each (c . extent . tile<TileSize>() ,
12 [=] (tiled_index<TileSize> tidx) r e s t r i c t (amp)
13 {
14 c [tidx . global [0]] = a [tidx . global [0]] + b [tidx . global [0]] ;
15 }) ;
16 }

Listing 5.2 shows how the kernel of the first example can be modified to use tiling.
Both functions only differ in the usage of the tiled index instead of the regular
index. Tiling is usually used to divide a larger problem into smaller parts that
are then processed in parallel. This is different from the PE approach, where all
chromosomes are evaluated totally independent from one another.

However, tiling also allows the usage of tile static memory. Like CPUs, many
accelerators, most prominently GPUs, have several levels of caches to speedup
memory access. But contrary to a CPU, usually not all caches are utilized au-
tomatically. Instead, the caches are programmable, allowing a much more finer
control of how the caches are used. To use the programmable cache in AMP, a
variable can be qualified by using the keyword tile static. A tile static variable
is shared among all threads of the current tile.

Taking full advantage of the tile static memory is a complex topic and can have
significant impacts on the performance.

5.3 Evolution Layer

The implementation of the evolution layer encompasses components that have to
do with the genetic process. All components presented here are directly based on
the theoretical description of the layer in the previous chapter.

5.3.1 Binary Chromosome

There are many ways to implement a genetic chromosome. A common and sim-
ple variant is to use strings to store the data as single bytes. However, because

53

Chapter 5. Implementation

strings store the data as characters, they make it more difficult to access it in
greater chunks. This can hamper efficiency, especially on a 64-Bit CPU that could
potentially process eight bytes at once. Although there are ways to mitigate this
problem, it as a cleaner solution to implement a proper BinaryChromosome class
that uses register-sized chunks to store the binary data.

Listing 5.3: Abridged interface of the BinaryChromosome class

1 s t r u c t BinaryChromosome

2 {
3 // type d e f i n i t i o n s
4 us ing word_type = uint64 ;
5 // (. . .)
6

7 // con s t ru c t o r s and de s t ru c t o r
8 BinaryChromosome () ;
9 template <typename RNG> BinaryChromosome (size_t size , RNG& rng) ;

10

11 // comparison ope ra to r s
12 bool operator == (const BinaryChromosome& rhs) const ;
13 bool operator < (const BinaryChromosome& rhs) const ;
14

15 // a c c e s s o r s
16 size_t size () const ;
17 void setFitness (double fitness) ;
18 double fitness () const ;
19 word_type getWord (size_t begin , size_t count) const ;
20 void setWord (size_t begin , size_t count , word_type word) ;
21

22 // i t e r a t o r s
23 // (. . .)
24

25 // g ene t i c operator h e l p e r s
26 void mutate (size_t index) ;
27 void swap_range (BinaryChromosome& rhs , size_t first , size_t last) ;
28

29 pr i va t e :
30

31 // members
32 std : : vector<word_type> _words ;
33 size_t _size ;
34 double _fitness ;
35 } ;

Listing 5.3 shows an abridged interface of the BinaryChromosome class. Note how
the data gets stored word-wise in a dynamic data structure. An alternative variant
would be to use an array to create a fixed-size chromosome. The chromosome can
either be default-constructed, in which case its data gets zeroed out, or it can be
created with random data using the constructor template. The template parame-
ter specifies the type of the random number generator (RNG) that is used to create
the data. This can be useful in certain applications where higher quality RNGs
are required.

Note that the chromsome does not include the functionality to encode or decode
data. The reason for this is that the encoding depends on a particular problem
and including it here would mean that the chromosome would be coupled to the
PE approach. Instead, the chromosome provides functions to access the raw data.
These functions use bit-masks and bit-shift operations to extract or write specific

54

5.3. Evolution Layer

ranges of the content. As was mentioned in 4.2.1, chromosomes are often imple-
mented as value types in regards to their content and do not allow manipulation of
the data. But because the PE approach needs to encode the parameters into the
chromsomes, the class also offers a setWord function in addition to the getWord

function to read the data.

Aside from being able to set the fitness of the chromosome, it also provides helper
functions for the genetic operators. They allow to perform in-place crossover and
mutation operations, without having to use the accessor functions to read and
write the data manually.

Finally, the BinaryChromosome also allows the usage of iterators to access the
raw data. This functionality is primarily useful for the implementation of some of
the genetic operators.

5.3.2 Population

The Population class represents a generation of chromosomes.

Listing 5.4: Abridged interface of the Population class

1 template <typename ChromosomeType>
2 s t r u c t Population

3 {
4 // type d e f i n i t i o n s
5 us ing chromosome_type = ChromosomeType ;
6 // (. . .)
7

8 // s e t t e r s and g e t t e r s
9 void setGeneration (size_t generation) ;

10 void setMaxPopulationSize (size_t maxSize) ;
11 size_t maxPopulationSize () const ;
12 size_t populationSize () const ;
13 size_t generation () const ;
14

15 // chromosomes
16 template <typename . . . Params> void add (Params&&... params) ;
17 void clear () ;
18 bool contains (const chromosome_type& chromosome) const ;
19 void erase (iterator it , iterator end) ;
20 void remove (const chromosome_type& chromosome) ;
21

22 // i t e r a t o r s
23 // (. . .)
24

25 // index operator
26 chromosome_type& operator [] (size_t index) ;
27

28 pr i va t e :
29

30 // members
31 size_t _maxPopulationSize ;
32 size_t _currentGeneration ;
33 std : : vector<chromosome_type> _chromosomes ;
34 } ;

Listing 5.4 shows an abridged interface of the Population class. Note that the
class does not rely on a specific chromosome type, but instead offers a template

55

Chapter 5. Implementation

parameter that can be used to specify which chromosome variant is used. This al-
lows the population to work with arbitrary chromosome implementations, instead
of being restricted to the BinaryChromosome.

Because the class is essentially a container for chromosomes, its functionality is
pretty straightforward. Aside from providing setters, getters, iterators and an in-
dex operator to access the individual chromosomes, also offers functions to add
new chromosomes to the population. The add function is templated, to allow the
in-place construction of new chromosomes, using a C++ technique called perfect
forwarding.

5.3.3 Genetic Operators

The genetic operators will only be described very briefly, because they are direct
implementations of the corresponding methods described in 4.2.2.

Selection

As was stated before, there are several different algorithms for chromosome selec-
tion. Each selection class thereby represents one of those methods.

Listing 5.5: Abridged interface of the RouletteSelection class

1 template <typename PopulationType>
2 s t r u c t RouletteSelection

3 {
4 // a c c e s s o r s
5 void setPopulation (PopulationType& population)
6

7 // s e l e c t chromosomes
8 template <typename RNG>
9 chromosome_type select (RNG& rng) const ;

10 template <typename RNG>
11 std : : vector<chromosome_type> select (size_t count , RNG& rng) const ;
12

13 pr i va t e :
14

15 // members
16 const PopulationType∗ _populationPtr ;
17 } ;

Listing 5.5 shows the abridged interface of the RouletteSelection class as an
example for a selection implementation. The class is templated to be usable
with arbitrary population types. Other selection methods have a similar inter-
face, although they might provide additional functions for configuration. For
example, the LinearRankSelection allows to set a selective pressure, while the
TournamentSelection can be configured to use a certain number of competitors.

To select chromosomes the user has to set the corresponding population and use
one of the select functions. Selection algorithms usually involve the use of ran-
dom numbers and as with the BinaryChromosome, the functions are templated so
that the user can specify the RNG type.

56

5.3. Evolution Layer

Crossover

The Crossover class represents the crossover part of the genetic process. It is used
to create new chromosomes.

Listing 5.6: Abridged interface of the Crossover class

1 s t r u c t Crossover

2 {
3 // c on f i g u r a t i on
4 void setMinXops (size_t minXop) ;
5 void setMaxXops (size_t maxXop) ;
6 void setPossibleXops (const std : : vector<size_t>& xops) ;
7 template <size_t N> void setPossibleXops (size_t(&xops) [N]) ;
8 void setFixedXops (const std : : vector<size_t>& xops) ;
9 template <size_t N> void setFixedXops (size_t(&xops) [N]) ;

10 void setXoPropability (double p) ;
11 void setToggleXopsProbability (double p) ;
12 // (. . .)
13

14 // c r o s s ov e r
15 template <typename ChromosomeType , typename RNG>
16 auto createChildren (ChromosomeType parent1 , ChromosomeType parent2 , RNG& rng)
17 −> std : : pair<ChromosomeType , ChromosomeType>;
18

19 pr i va t e :
20

21 // he lpe r f unc t i on s
22 template <typename RNG>
23 void determineXops (size_t chromosomeSize , RNG& rng) ;
24

25 // type d e f i n i t i o n s
26 typede f std : : pair<size_t , size_t> XoRange_t ;
27

28 // members
29 // (. . .)
30 std : : vector<XoRange_t> _xoRanges ;
31 } ;

Listing 5.6 shows an abridged version of the Crossover class interface. With
smaller problems it is often sufficient to use a single point or two point crossover
with either random or fixed crossover points (xops). To offer some flexibility, the
Crossover class can be configured with via a wide variety of options. The number
of crossover points is a random value between the minimal and maximal crossover
settings. Additionally, the user can configure a probability that determines whe-
ther the crossover point is actually used or not. Although there are many different
ways to apply crossover, the evaluation of the Hybrid Approach suggests that the
actual method used does not have a significant impact on the effectiveness of the
optimization, unless way too many or way too few crossover points are used in
regards to the chromosome size.

To create a new pair of children based on two parents, the user can call the
createChilden function, which is again templated to work with arbitrary chro-
mosome types. As with the selection, the used RNG type can also be specified as
a template argument.

57

Chapter 5. Implementation

Listing 5.7: Definition of the of the createChildren function in the Crossover class

1 template <typename ChromosomeType , typename RNG>
2 auto Crossover : : createChildren (ChromosomeType parent1 , ChromosomeType parent2 ,
3 RNG& rng) −> std : : pair<ChromosomeType , ChromosomeType>
4 {
5 // c r e a t e (new) c r o s s ov e r po in t s (xops)
6 determineXops (parent1 . size () , rng) ;
7

8 // c r e a t e the o f f s p r i n g s
9 f o r (const std : : pair<size_t , size_t> xo : _xoRanges)

10 {
11 parent1 . swap_range (parent2 , xo . first , xo . second) ;
12 }
13

14 // re turn the o f f s p r i n g s
15 r e turn std : : make_pair (std : : move (parent1) , std : : move (parent2)) ;
16 }

Listing 5.7 shows how the children are created. The internal function determineXops

creates a set of crossover ranges based on the current configuration. The deter-
mined crossover ranges are then swapped, using the helper function of the chro-
mosome.

Mutation

The Mutation class represents the mutation part of the genetic process. It is used
to introduce some random variation to the chromosomes to keep a generation from
becoming too homogeneous.

Listing 5.8: Abridged interface of the of the Mutation class

1 s t r u c t Mutation

2 {
3 // c on f i g u r a t i on
4 void setMinMups (size_t minMup) ;
5 void setMaxMups (size_t maxMup) ;
6 void setMutationPropability (double p) ;
7

8 // mutate
9 template <typename ChromosomeType , typename RNG>

10 ChromosomeType mutate (ChromosomeType chromosome , RNG& rng) const ;
11

12 pr i va t e :
13

14 // members
15 // (. . .)
16 } ;

Listing 5.8 shows an abridged version of the Mutation class. There a many different
variants to implement the mutation algorithm. Like the Crossover class, the
Mutation class provides a way to configure how the mutation is performed. The
user can then use mutate to mutate a chromosome. The function will determine
the number of mutation points (mups) based on the configuration and flip the
corresponding bits accordingly. Analogous to he Crossover class, the Mutation

can be used with arbitrary chromosome and RNG types.

58

5.3. Evolution Layer

5.3.4 Genetic Solver

The GeneticSolver class represents an implementation of the Genetic Process.

Listing 5.9: Abridged interface of the GeneticSolver class

1 template <typename S , typename C , typename M , typename RNG = std : : mt19937_64>
2 s t r u c t GeneticSolver

3 {
4 // type d e f i n i t i o n s
5 us ing selection_type = S ;
6 us ing crossover_type = C ;
7 us ing mutation_type = M ;
8 us ing rng_type = RNG ;
9

10 // a c c e s s o r s
11 void setPopulationSize (size_t size) ;
12 size_t populationSize () const ;
13 void setNumberOfGenerations (size_t num) ;
14 size_t numberOfGenerations () const ;
15

16 mutation_type& mutation () ;
17 crossover_type& crossover () ;
18 selection_type& selection () ;
19

20 // s o l v e problem
21 template <typename DescType>
22 typename DescType : : chromosome_type solve (const DescType& desc) ;
23

24 pr i va t e :
25

26 // i n i t i a l populat ion
27 template <typename DescType>
28 auto createInitialPopulation (const DescType& desc)
29 −> typename DescType : : population_type ;
30

31 // members
32 rng_type _rng ;
33 selection_type _selection ;
34 crossover_type _crossover ;
35 mutation_type _mutation ;
36 size_t _numberOfGenerations ;
37 size_t _populationSize ;
38 } ;

Listing 5.9 shows an abridged version of the GeneticSolver interface. Following
the paradigm of generic design, the component is a class template, which allows all
essential parts of the Genetic Process to be specific via template arguments. This
allows the GeneticSolver to be used with arbitrary optimization problems, which
are not only not limited to the PE approach, but also not limited to regression
problems in general.

The user can create a GeneticSolver object and use the corresponding acces-
sors to configure the specified Selection, Crossover and Mutation methods, as well
as the size of each population and the maximal generations the solver should evolve
before termination.

After the solver has been configured, the user can start the Genetic Process by
calling the solve function. This function is invoked with an arbitrary genetic
description object, that contains the functionality needed to evaluate the chro-

59

Chapter 5. Implementation

mosomes. In the PE approach, this is the NonlinearRegression Description

type.

Listing 5.10: Definition of the solve function of the GeneticSolver class

1 template <typename S , typename C , typename M , typename RNG>
2 template <typename DescType>
3 auto GeneticSolver<S , C , M , RNG > : : solve (const DescType& desc)
4 −> typename DescType : : chromosome_type
5 {
6 // type d e f i n i t i o n s
7 us ing desc_type = DescType ;
8 us ing chromosome_type = typename DescType : : chromosome_type ;
9 us ing population_type = typename DescType : : population_type ;

10

11 // i n i t i a l i z a t i o n
12 population_type currenPopulation = createInitialPopulation (desc) ;
13 chromosome_type fittestChromosome = desc . createRandomChromosome (_rng) ;
14

15 // c r e a t e the gene ra t i on s
16 f o r (size_t i = 1 ; i <= _numberOfGenerations ; ++i)
17 {
18 // c r e a t e a new populat ion
19 population_type tmp (_populationSize , i) ;
20

21 // t r a n s f e r the very best chromosome to the next gene ra t i on (unchanged)
22 tmp . add (∗ currenPopulation . begin ()) ;
23

24 // c r e a t e new chromosomes with c r o s s ov e r & mutation
25 _selection . setPopulation (currenPopulation) ;
26 whi le (tmp . populationSize () < _populationSize)
27 {
28 std : : vector<chromosome_type> selected = selection . select (2 , _rng) ;
29 std : : pair<chromosome_type , chromosome_type> offsprings =
30 _crossover . createChildren (std : : move (selected [0]) ,
31 std : : move (selected [1]) , _rng) ;
32 tmp . add (_mutation . mutate (std : : move (offsprings . first) , _rng)) ;
33 tmp . add (_mutation . mutate (std : : move (offsprings . second) , _rng)) ;
34 }
35 tmp . erase (std : : begin (tmp) + _populationSize , std : : end (tmp)) ;
36

37 // eva luate a l l chromosomes in the populat ion
38 desc . evaluatePopulation (tmp) ;
39

40 // s o r t the chromosomes by f i t n e s s
41 std : : sort (std : : begin (tmp) , std : : end (tmp) ,
42 is_fitter_than<chromosome_type >()) ;
43

44 currenPopulation = std : : move (tmp) ;
45 fittestChromosome = ∗currenPopulation . begin () ;
46 }
47

48 r e turn fittestChromosome ;
49 }

Listing 5.10 shows the definition of the solve function. Note that the types used
for the chromosomes and the population are provided by the description. This
allows the user to have additional flexibility when creating a description for an
individual problem. Otherwise the function is a straightforward implementation
of the generic process shown in figure 2.1.

60

5.3. Evolution Layer

5.3.5 Nonlinear Regression Description

Because genetic algorithms are supposed to be agnostic about what exactly they
are optimizing, it is necessary to introduce a separate component that encapsulates
the necessary functionality and information that is needed by the genetic process,
but that is specific to a particular problem. This is achieved by introducing the
concept of genetic descriptions. As the name suggests, a description class describes
a genetic optimization problem and is used by the GeneticSolver to evaluate the
chromosomes.

The NonlinearRegression Description represents the description of a nonlinear
regression problem.

Listing 5.11: Abridged interface of the NonlinearRegression Description class

1 template <typename Traits , typename NumericSolver>
2 s t r u c t NonlinearRegression_Description

3 : pub l i c Regression<Traits>, pub l i c RegressionParameterConfig<Traits>
4 {
5 // s t a t i c cons tant s
6 s t a t i c const size_t NumVariables = Traits : : NumVariables ;
7 s t a t i c const size_t NumParameters = Traits : : NumParameters ;
8

9 // type d e f i n i t i o n s
10 us ing traits_type = Traits ;
11 us ing fp_type = typename Traits : : fp_type ;
12 us ing chromosome_type = typename Traits : : chromosome_type ;
13 us ing population_type = typename Traits : : population_type ;
14 us ing result_type = typename Traits : : result_type ;
15 us ing model_type = typename Traits : : model_type ;
16 us ing solver_type = NumericSolver ;
17 us ing encoding_type = encoding_type ;
18

19 // con s t ru c t o r s and de s t ru c t o r
20 NonlinearRegression_Description (model_type model) ;
21

22 // eva lua t i on
23 void evaluateChromosome (chromosome_type& chromosome ,
24 result_type∗ result) const ;
25 void evaluatePopulation (population_type& population) const ;
26

27 pr i va t e :
28

29 // decode/ encode
30 void decode (std : : vector<fp_type>& parameters ,
31 std : : vector<fp_type>& diffSums , population_type& population) const ;
32 void encode (population_type& population ,
33 std : : vector<fp_type>& parameters , std : : vector<fp_type>& diffSums) const ;
34

35 // s o l v e
36 void solve (int32 populationSize ,
37 std : : vector<fp_type>& parameters , std : : vector<fp_type>& diffSums) const ;
38

39 model_type _model ;
40 } ;

Listing 5.11 shows and abridged version of the NonlinearRegression Description

interface. The class is templated with two type parameters. The Traits type is a
helper class that contains all the types that are necessary for the genetic process.
This is where the user can specify, among other things, which chromosome and

61

Chapter 5. Implementation

population types are used in the genetic process. In particular, the traits type
allows the specification of the type of encoding that is used to read and store the
chromosome data.

The second template parameter NumericSolver, specifies which nonlinear regres-
sion algorithm is used. Not only allows the parameter to select the particular NRA
method, such GNA, LMA or MLA algorithms, but also to choose between a CPU
and AMP implementation of the solver.

The traits type also contains the fp type (floating point type) that is used within
the nonlinear regression evaluation. Obvious choices are float or double, but
the generic design would also allow any other compatible floating point type to be
used, including custom types with higher precision. The choice of the fp type can
have a major impact to both accuracy and performance of the PE approach.

Finally, the description also holds the nonlinear regression model. However, be-
cause it is first used in Evaluation Layer, it is described in more detail when
discussing the types regarding the regression implementation.

The central functionality of the NonlinearRegression Description class is the
ability to decode and evaluate chromosomes.

Listing 5.12: Definition of the evaluatePopulation function in the
NonlinearRegression Description class

1 template <typename Traits , typename NumericSolver>
2 void NonlinearRegression_Description<Traits ,
3 NumericSolver > : : evaluatePopulation (population_type& population) const
4 {
5 const int32 populationSize =
6 s t a t i c c a s t <int32>(population . populationSize ()) ;
7 std : : vector<fp_type> parameters ;
8 std : : vector<fp_type> diffSums ;
9 parameters . resize (populationSize ∗ _numParameters) ;

10 diffSums . resize (populationSize) ;
11

12 // decode a l l chromsomes
13 decode (parameters , diffSums , population) ;
14

15 // s o l v e r e g r e s s i o n f o r each proposed s e t o f parameters
16 solve (populationSize , parameters , diffSums) ;
17

18 // encode a l l chrosomes
19 encode (population , parameters , diffSums) ;
20 }

Listing 5.12 shows the definition of the evaluatePopulation function. First, all
chromosomes are decoded and the contained parameters written into a dedicated
container. Note that the parameters are stored sequentially in single data struc-
ture. This means that in the case of a regression model with three parameters,
every consecutive three values belong to a single chromosome. The parameters
are then passed to the solve function, which calls the NumericSolver to use
the parameters as starting values in the corresponding NRA algorithm. The pa-

62

5.3. Evolution Layer

rameter container in the solve function is an in-out parameter and contains the
result parameters of the NRA methods when the function returns. The parame-
ters are then encoded into the chromosomes of the population, which is essentially
the reverse operation of the decode function. Although it is not explicitly shown
here, it should be noted that the encode and decode functions utilize OpenMP to
parallelize their corresponding operations for the whole population.

5.3.6 Encoding

As stated in the previous chapter, the choice of encoding plays a major role in the
effectiveness of genetic algorithms in general and the PE approach in particular.
To prevent having to implement a new description type for every variation, the
encodings are implemented as their own helper types, which can be specified to
the NonlinearRegression Description via the Traits parameter.

Listing 5.13: Implementation of the DiscretizedEncoding class

1 template <typename FP>
2 s t r u c t DiscretizedEncoding

3 {
4 s t a t i c FP decode (uint64_t word , FP minValue , FP maxValue , size_t binarySize)
5 {
6 r e turn minValue + (maxValue − minValue) ∗ (s t a t i c c a s t <FP>(word)
7 / (˜ s t a t i c c a s t <uint64>(0) >> (64 − binarySize))) ;
8 }
9

10 s t a t i c uint64_t encode (FP value , FP minValue , FP maxValue , size_t binarySize)
11 {
12 const uint64 maxPossibleValue = (binarySize == 64) ?
13 (std : : numeric_limits<uint64 > : : max ()) :
14 (s t a t i c c a s t <uint64>(1) << binarySize) ;
15 const FP factor = maxPossibleValue / (maxValue − minValue) ;
16

17 r e turn s t a t i c c a s t <uint64>(factor ∗ (value − minValue)) ;
18 }
19 } ;

Listing 5.13 shows the definition for the DiscretizedEncoding class. This is a
straight up implementation of the definition that was given in 4.2.3, with the only
difference that it uses 64 bit integers as words as opposed to 32 bit. Note that this
variant provides the option to specify a binary size, because this is a requirement for
the logarithmic encoding. It also allows the the floating point type to be specified
using the FP template parameter.

63

Chapter 5. Implementation

Listing 5.14: Implementation of the LogarithmicEncoding class

1 template <typename FP>
2 s t r u c t LogarithmicEncoding

3 {
4 s t a t i c FP decode (uint64_t word , FP minValue , FP maxValue)
5 {
6 auto value = word & 0x7FFFFFFFFFFFFFFF ;
7 auto sign = word & 0x8000000000000000 ;
8

9 r e turn sign | std : : pow (s t a t i c c a s t <FP>(10.0) ,
10 DiscretizedEncoding<FP> : : decode (value , minValue , maxValue , 63)) ;
11 }
12

13 s t a t i c uint64_t encode (FP value , FP minValue , FP maxValue)
14 {
15 auto word = DiscretizedEncoding<FP> : : encode (std : : log10 (std : : abs (value)) ,
16 minValue , maxValue , 63) ;
17 auto sign = value & 0x8000000000000000 ;
18 word |= sign ;
19

20 r e turn word ;
21 }
22 } ;

Listing 5.14 shows the definition for the LogarithmicEncoding class. This again
is a direct implementation of the formal definition. Similar to what was shown in
4.2.3, the logarithmic encoding is implemented by using the discretized encoding
with an additional logarithmic transformation. It is important to note the bit
operations on the floating point values are based on the assumption that the FP

type complies to the IEEE 754 floating point standard. This is verified at compile
time by a static assert instruction; which is omitted here to improve readability.

5.4 Evaluation Layer

The implementation of the evaluation layer encompasses all components related to
nonlinear regression analysis. Contrary to the evolution layer, some crucial com-
ponents cannot directly be derived from what was presented in chapter 4. This
has primarily to do with the intricacies of implementing mathematical concepts.
Although the regression model function and its derivatives are comparatively sim-
ple to define and handle from theoretical point of view, they pose a few challenges
to an implementation in software.

5.4.1 Regression Model

One challenging aspect of the PE approach is the question of how to make the
regression model available to the NRA method. Not only does the computation
of the residual require access to the regression function, many nonlinear regression
algorithms are so called derivative-based methods, meaning that they also require
the partial derivatives of the regression function for every parameter θj. In case
of the LMA and MLA methods used in this implementation, they are required to
update the Jacobian matrix in every iteration.

64

5.4. Evaluation Layer

Usually, the regression model could be implemented by using a model interface.
A user could then implement that interface for every model he or she wants to
use. An even simpler solution would be to use an array of function pointers, which
would refer to both the regression function and its derivatives. However, as was
mentioned in 5.2, AMP-restricted code does not allow virtual functions or function
pointers in general, because an accelerator has no concept of a call stack that can
be used to invoke functions in the traditional sense. Instead, all functions have to
be known at compile time.

One possible solution for this problem is to use a tuple data structure. In generic
programming, a tuple is a static container for elements of different types. Although
the C++ standard library contains a tuple class in the form of std::tuple, it
cannot be used because its implementation is not AMP-restricted. Even though
properly implementing a tuple is not a trivial matter, a simplified version can be
written with a comparatively little amount of code.

Listing 5.15: Abridged interface of the Tuple class

1 template <typename . . . >
2 s t r u c t Tuple ;
3

4 template <>
5 s t r u c t Tuple<>
6 {
7 Tuple () = de f au l t ;
8 } ;
9

10 template <typename T , typename . . . Ts>
11 s t r u c t Tuple<T , Ts . . . > : Tuple<Ts . . . >
12 {
13 us ing base_type = Tuple<Ts . . . > ;
14

15 Tuple (T&& f) r e s t r i c t (cpu , amp) ;
16 template <typename = std : : enable_if_t<s i z e o f . . . (Ts) >= 1>>
17 Tuple (T&& f , Ts&&... fs) r e s t r i c t (cpu , amp) ;
18

19 template < i n t Idx>
20 auto& get () r e s t r i c t (cpu , amp) ;
21

22 __declspec (align (4)) T _t ;
23

24 pr i va t e :
25

26 template <int , typename>
27 s t r u c t Tuple_Element ;
28

29 template < i n t Idx , typename U , typename . . . Us >
30 s t r u c t Tuple_Element<Idx , Tuple<U , Us ...>>
31 : Tuple_Element<Idx−1, Tuple<Us ...>> {} ;
32

33 template <typename U , typename . . . Us>
34 s t r u c t Tuple_Element<0, Tuple<U , Us ...>>
35 {
36 us ing type = Tuple<U , Us . . . > ;
37 } ;
38 } ;

Listing 5.15 shows an abridged interface of the Tuple class. It uses several tech-

65

Chapter 5. Implementation

niques of template meta-programming to handle the individual elements of poten-
tially different types. Because the actual implementation is rather technical and
specific to C++, it will be omitted here. The important aspect to take away is that
the tuple can be constructed with a templated constructor and that the elements
can be accessed by using the get function along with the corresponding index of
the element.

Listing 5.16: Construction of a regression model by using the tuple

1 // c r e a t e model
2 auto f = [] (fp_type t_0 , fp_type t_1 , fp_type x_0) r e s t r i c t (cpu , amp)
3 {
4 r e turn t_0 ∗ pow (x_0 , t_1) ;
5 } ;
6

7 auto d0 = [] (fp_type /∗ t 0 ∗/ , fp_type t_1 , fp_type x_0) r e s t r i c t (cpu , amp)
8 {
9 r e turn pow (x_0 , t_1) ;

10 } ;
11

12 auto d1 = [] (fp_type t_0 , fp_type t_1 , fp_type x_0) r e s t r i c t (cpu , amp)
13 {
14 r e turn t_0 ∗ pow (x_0 , t_1) ∗ log (x_0) ;
15 } ;
16

17 auto model = make_amp_tuple (std : : move (f) , std : : move (d0) , std : : move (d1)) ;

Listing 5.16 shows how a tuple can be used to create a regression model. The
example defines the regression function f as well as its partial derivatives as func-
tion objects, which are created by using lambda functions. These function objects
are then used to construct a tuple object. Note that the lambda functions are
restricted to both AMP and CPU usage. This example is taken from the testing
environment that is used in the evaluation of the PE approach, which is presented
in chapter 6.

With the usage of a generic computer algebra system, the derivatives could even
be determined at compile time, so that the user would only have to define the
regression function to create a regression model.

5.4.2 Nonlinear Regression Solver

The main part of the regression layer is the component that represents a nonlin-
ear regression algorithm. For this, the PE approach introduces the concept of a
nonlinear regression solver.

Listing 5.17 shows an abridged interface of the NonlinearRegression Amp class.
This class represents the AMP version of an NRA solver that provides implemen-
tations for both the LMA and MLA methods. Which method is used can be –
among other things – specified by the corresponding entry in the traits type, which
is passed as a template argument to the class. It should be noted that a lot of
details are omitted in this description and that the actual declaration contains
several definitions of aliases and helper types that are used in the implementation.

66

5.4. Evaluation Layer

Listing 5.17: Abridged interface of the NonlinearRegression Amp class

1 template <typename Traits>
2 s t r u c t NonlinearRegression_Amp

3 {
4 s t a t i c const i n t TileSize = 32 ;
5

6 // member f unc t i on s
7 template <typename Model>
8 s t a t i c void solve (i n t populationSize , std : : vector<fp_type>& diffSums ,
9 std : : vector<fp_type>& parameters , std : : vector<fp_type>& ys ,

10 std : : vector<fp_type>& xs , Model& model) ;
11

12 pr i va t e :
13

14 // (. . .)
15

16 s t a t i c void solve_step0_init (tiled_index& tidx ,
17 array_view<fp_type , 1>& diffSums ,
18 array_view<fp_type , 2>& parameters ,
19 TileData& td) r e s t r i c t (amp) ;
20

21 template <typename Model>
22 s t a t i c void solve_step1_update (Model& model ,
23 ys_container& ys ,
24 xs_container& xs ,
25 TileData& td) r e s t r i c t (amp) ;
26

27 s t a t i c void solve_step2_solve (tiled_index& tidx ,
28 i n t numDataPoints ,
29 TileData& td) r e s t r i c t (amp) ;
30

31 template <typename Model>
32 s t a t i c void solve_step3_propose (Model& model ,
33 ys_container& ys ,
34 xs_container& xs ,
35 TileData& td) r e s t r i c t (amp) ;
36

37 s t a t i c void solve_step4_exit (tiled_index& tidx ,
38 TileData& td ,
39 array_view<fp_type , 1>& diffSums ,
40 array_view<fp_type , 2>& parameters) r e s t r i c t (amp) ;
41 } ;

As the name suggests, a NRA solver class can solve a particular nonlinear regres-
sion problem. The problem is passed to the solve function along with the data
points as well as the starting values that were decoded from the chromosomes in
the NonlinearRegression Description. The class does not contain any data
members, because an AMP-restricted lambda is not allowed to capture the this

pointer to the surrounding class object. For this reason, all functions are static
and the data has to be passed from function to function. To reduce the number of
parameters, some of the data is encapsulated in the the GlobalData and TileData

helper types.

It is important to note that the layout of the data can have a big impact on
the overall performance of parallelized code. In CPU code, collective data is often
encapsulated in structures and if there are several instances they can be stored in
an array. This approach is also referred to as an array of structures (AoS). In the
PE approach, this would be equivalent to encapsulating all the data relevant to the

67

Chapter 5. Implementation

evaluation of a single chromosome into a structure, and then creating an array of
those structures to hold the data of the complete population. The AoS approach
is beneficial for CPUs, because each CPU core has its own cache and only runs a
single thread at a time. This means that a large amount, if not all, of the data rel-
evant to the thread can conveniently be read from memory and stored in the cache.

GPUs on the other hand are designed to execute a number of threads in paral-
lel. Nvidia chips for example consist of several so called streaming multiprocessors
(SM) each of which can run 32 threads at once. For this reason, consecutive data
in the global memory is accessed in bulks of 32 · 4 bytes. This means that with
an optimal data layout, the data for all threads may be fetched with a single read
to the global memory. This can have a significant impact on the performance,
because global memory access on a GPU is comparatively slow. Therefore, well
designed GPU code should always try to minimize global memory accesses as much
as possible. For this reason, the data in the AMP code is stored in different arrays
of the specified floating point type. To make passing these arrays easier, they can
be bundled in a single instance of a structure. In contrast to the AoS approach,
this strategy is also known as structure of arrays (SoA).

Due to its complexity, it is not feasible to show the entire implementation of the
NonlinearRegression Amp class. Instead, listing 5.18 shows an abridged imple-
mentation of the solve function, to offer a rough overview of the calling hierarchy.
Variables denoted with the prefix v refer to array views of the corresponding data
containers. Because AMP does not allow the dynamic allocation of memory, all
working containers for temporary vectors and matrices have to be created on the
CPU and then captured by the kernel. All this data is stored in the gd variable
of the GlobalData type. Within each kernel, a variable td of the helper type
TileData is used to hold references to all data relevant to the current tile.

The first kernel initializes the solver by copying the parameters to the working
containers. The main loop then executes the actual NRA algorithm. Aside from
a few matrix operations, each step mostly delegates the computation to the cor-
responding components of the computation layer. Note that the loop runs for a
fixed amount of 50 iterations and currently does not use any kind of convergence
criterion for termination. The main reason for this is to provide comparable run-
ning times in the evaluation of the approach. Although using a convergence check
might improve the performance, it might also skew the individual measurements
because a ”lucky run” might terminate much faster than another. Additionally,
the PE approach does not necessarily need each evaluation to achieve maximal
convergence.

Note that the loop is not contained within the kernel, but is surrounding it. This to
ensure that the kernel does not take too much time. Because users usually do not
have a dedicated graphics card for GPGPU computing, they are often using the
same GPU for data processing that is also responsible for rendering the desktop

68

5.4. Evaluation Layer

environment of the operating system. Because a GPU cannot switch the currently
executed code as easily as a CPU can, an AMP kernel blocks the GPU until the
kernel hast returned. Because it is not possible to tell whether a piece of code
intentionally blocks the GPU, many modern operating systems have protection
mechanisms in place to prevent a lockup of the desktop environment. Windows
in particular uses a feature called Timeout Detection & Recovery (TDR), which
restarts the driver if it is not responding for more than 1.5 seconds. Although the
TDR limit can be increased, it is recommended to instead rearrange the code in
such a way that every kernel execution does not exceed the set time limit.

In addition to the AMP solver, the implementation also contains the a corre-
sponding solver for the CPU in the form of the NonlinearRegression CPU class.
The CPU variant uses an AoS approach and utilizes OpenMP to evaluate several
chromosomes at once. However, because it otherwise has a very similar general
structure as the AMP solver, it is omitted here.

Listing 5.18: Abridged implementation of the solve function in the NonlinearRegression Amp

class

1 template <typename Traits>
2 template <typename Model>
3 void NonlinearRegression_Amp<Traits > : : solve (i n t populationSize ,
4 std : : vector<fp_type>& diffSums , std : : vector<fp_type>& parameters ,
5 std : : vector<fp_type>& ys , std : : vector<fp_type>& xs , Model& model)
6 {
7 (. . .)
8 GlobalData gd (workIdx , slideIdx , lambda , diffSum , theta , r , J , Tmp , Tmp2) ;
9

10 parallel_for_each (ext , [&] (tiled_index tidx) r e s t r i c t (amp)
11 {
12 TileData td (tidx , gd) ;
13 solve_step0_init (tidx , v_diffSums , v_parameters , td) ;
14 }) ;
15

16 acc_view . wait () ;
17

18 // main loop
19 f o r (i n t h = 0 ; h < 50 ; ++h)
20 {
21 parallel_for_each (ext , [&] (tiled_index tidx) r e s t r i c t (amp)
22 {
23 TileData td (tidx , gd) ;
24 solve_step1_update (model , v_ys , v_xs , td) ;
25 solve_step2_solve (tidx , numDataPoints , td) ;
26 solve_step3_propose (model , v_ys , v_xs , v_parametersConfig , td) ;
27 }) ;
28 }
29

30 // copy data from working temporar i e s
31 parallel_for_each (ext , [&] (tiled_index tidx) r e s t r i c t (amp)
32 {
33 TileData td (tidx , gd) ;
34 solve_step4_exit (tidx , td , v_diffSums , v_parameters) ;
35 }) ;
36

37 v_diffSums . synchronize () ;
38 v_parameters . synchronize () ;
39 }

69

Chapter 5. Implementation

5.4.3 Linear System Solver SVD

In step 2, the NRA method has to perform the update of the parameter vector θ.
As was shown in 4.3.1, this requires to solve a difficult system of equations. Here,
this functionality is implemented in its own type instead of in the NRA algorithm,
to make it reusable in different contexts.

The LinearSystemSolverSVD is a functor type that can solve a system of lin-
ear equations of the form Ax = b, by using the singular value decomposition of
A. It is used in the parameter update of the NRA algorithm.

Listing 5.19: Implementation of the calling operator of the LinearSystemSolverSVD class

1 template < i n t M , i n t TS , typename FP>
2 void operator () (tiled_index<TS>& tidx , TiledContainer<TS , FP , 3>& Tmp ,
3 TiledMatrix<TS , FP>& A , TiledVector<TS , FP>& x ,
4 TiledVector<TS , FP>& b) r e s t r i c t (amp)
5 {
6 constexpr i n t TileStaticMemory = 32768;
7 constexpr i n t TileStaticEntries = M ∗ M ∗ TS ;
8 constexpr i n t TileStaticMatrix = TileStaticEntries ∗ s i z e o f (FP) ;
9 constexpr bool TileStaticSigma = TileStaticMatrix <= TileStaticMemory ;

10 constexpr bool TileStaticU = 2 ∗ TileStaticMatrix <= TileStaticMemory ;
11 constexpr bool TileStaticV = 3 ∗ TileStaticMatrix <= TileStaticMemory ;
12

13 // c r e a t e temporary matr i ce s and vec t o r s
14 t i l e s t a t i c FP U_ [TileStaticU ? TileStaticEntries : 1] ;
15 t i l e s t a t i c FP Sigma_ [TileStaticSigma ? TileStaticEntries : 1] ;
16 t i l e s t a t i c FP V_ [TileStaticV ? TileStaticEntries : 1] ;
17

18 TiledMatrix<TS , FP> U = TileStaticU ?
19 TiledMatrix<TS , FP>(tidx . local [0] , extent<3>(M , M , TS) , U_) :
20 Tmp . getSection (1) ;
21 TiledMatrix<TS , FP> Sigma = TileStaticSigma ?
22 TiledMatrix<TS , FP>(tidx . local [0] , extent<3>(M , M , TS) , Sigma_) :
23 Tmp . getSection (2) ;
24 TiledMatrix<TS , FP> V = TileStaticV ?
25 TiledMatrix<TS , FP>(tidx . local [0] , extent<3>(M , M , TS) , V_) :
26 Tmp . getSection (3) ;
27

28 // c a l c u l a t e : A = U ∗ Sigma ∗ VT
29 JacobiRotationSVD<M , TS>() (A , U , Sigma , V) ;
30

31 // c a l c u l a t e : Sigmaˆ+
32 f o r (i n t i = 0 , j = 0 ; i < rows (Sigma) ; ++i , ++j) {
33 get (Sigma , i , j) = rcp (get (Sigma , i , j)) ;
34 }
35 transpose (Sigma) ;
36

37 // c a l c u l a t e pesudo i nv e r s e o f A
38 transpose (U) ;
39 mul (V , Sigma , A) ;
40 mul (A , U , V) ;
41

42 // c a l c u l a t e x
43 mul (V , b , x) ;
44 }

Listing 5.19 shows the definition of the AMP version of the LinearSystemSolverSVD
calling operator, which essentially is a straight up implementation of what was
presented in 4.3.1. The template argument M denotes the number of regression
parameters, while TS is the tile size. An important detail is the automatic use

70

5.5. Computation Layer

of tile static memory. The computation of the SVD requires several matrices,
whose size in the case of the LMA and MLA is entirely dependent on the number
of parameters. Because the number of parameters is known at compile time, the
implementation can statically determine how many of the matrices can be stored
in the tile static memory. The TiledVector and TiledMatrix classes are based on
the array view type and can therefore either use the tile static memory if enough
is available or use the temporary matrices in the global memory as a fallback.

The computation of the SVD is then delegated to the JacobiRotationSVD class
– which is also a functor type – that uses the Jacobi rotation SVD method to
decompose a matrix.

5.5 Computation Layer

The implementation of the computation layer consists of all components related to
the actual calculation of the NRA algorithm. It includes a lot of implementation
details necessary to perform the various operations of the PE approach. For the
sake of brevity, only the most important components are covered here. Most no-
tably, it is not shown how matrix and vector operations are implemented, because
they are mostly straight up versions of common algorithms. Instead, this section
focuses on the evaluation of the regression model and the computation of the SVD.

5.5.1 Model Evaluator

Section 5.4.1 of the evaluation layer showed how the regression model can be repre-
sented as a tuple of lambda functions. Calling the stored functions requires another
heavy use of template meta-programming.

Listing 5.20 shows the implementation of the ModelEvaluator helper class, which
is called from the NRA algorithm to evaluate the model function. To perform
the evaluation, the regression function has to be called with the corresponding
arguments from the data container xk and the parameter vector θ. To do this,
the evaluator constructs an integer parameter pack that is passed to an internal
function. The deduced parameter pack can then be expanded to statically con-
struct the call for the correct number of parameters and predictor variables. The
DerivativesEvaluator, which is called from the NRA algorithm to update the
Jacobian, is implemented using the same general technique and is omitted here.

71

Chapter 5. Implementation

Listing 5.20: Implementation of the ModelEvaluator class

1 template < i n t NumVar , i n t NumPar>
2 s t r u c t ModelEvaluator

3 {
4 template < i n t TS , typename Model , typename FP>
5 auto operator () (Model& model , vector_view<const FP>& x ,
6 TiledVector<TS , FP>& theta , i n t workIdx) r e s t r i c t (amp)
7 {
8 r e turn (∗ t h i s) (model , x , theta , workIdx ,
9 std : : make_integer_sequence<int , NumVar>() ,

10 std : : make_integer_sequence<int , NumPar>()) ;
11 }
12

13 pr i va t e :
14

15 template < i n t TS , typename Model , typename FP , i n t . . . VarIdxs , i n t . . . ParIdxs>
16 auto operator () (Model& model , vector_view<const FP>& x ,
17 TiledVector<TS , F>& theta , i n t workIdx ,
18 std : : integer_sequence<int , VarIdxs . . . > ,
19 std : : integer_sequence<int , ParIdxs . . . >) r e s t r i c t (amp)
20 {
21 r e turn model (theta (workIdx , ParIdxs) . . . , x (VarIdxs) . . .) ;
22 }
23 } ;

Note that although the listing shows the AMP version of the evaluator, the CPU
version is implemented in a similar way.

5.5.2 Jacobi Rotation SVD

The JacobiRotationSVD is a functor class that computes the SVD decomposition
of a matrix. It is for the most part a direct implementation of what was shown in
section 4.4.1 and is primarily presented here for the sake of completeness.

Listing 5.21 shows the basic layout of the Jacobi SVD solver. One important
difference from the formal algorithm description is the stopping rule. Just like
the implementation of the NRA method, the SVD implementation uses a fixed
number of iterations instead of a convergence criterion. Again, this is primarily
for consistency reasons in the evaluation. Usually, the main loop would only run
until the desired accuracy is reached. Another interesting thing to note is that the
implementation works on both the CPU and on AMP. This is especially important
during the performance evaluation, to ensure that the most computational inten-
sive part of the approach executes the exact same code, regardless of where it runs.

The rotate function is omitted, because it is a straight implementation of the
algorithm presented in 4.4.1.

72

5.5. Computation Layer

Listing 5.21: Implementation of the JacobiRotationSVD class

1 template < i n t M , i n t TileSize>
2 s t r u c t JacobiRotationSVD

3 {
4 template <typename TMatrix1 , typename TMatrix2 ,
5 typename TMatrix3 , typename TMatrix4>
6 void operator () (TMatrix1& A , TMatrix2& U ,
7 TMatrix3& Sigma , TMatrix4& V) r e s t r i c t (cpu , amp)
8 {
9 // copy A in to Sigma , i n i t i a l i z e U and V

10 f o r (i n t i = 0 ; i < M ; ++i) {
11 f o r (i n t j = 0 ; j < M ; ++j) {
12 get (Sigma , i , j) = get (A , i , j) ;
13

14 i f (i == j) {
15 get (U , i , j) = 1 ;
16 get (V , i , j) = 1 ;
17 }
18 e l s e {
19 get (U , i , j) = 0 ;
20 get (V , i , j) = 0 ;
21 }
22 }
23 }
24

25 // s o l v e
26 f o r (i n t stop = 0 ; stop < 50 ; ++stop) {
27 f o r (i n t i = 0 ; i < M−1; ++i) {
28 f o r (i n t j = i + 1 ; j < M ; ++j) {
29 rotate (U , Sigma , V , i , j) ;
30 }
31 }
32 }
33

34 // zero out a l l e n t r i e s in Sigma except d iagona l
35 f o r (i n t i = 0 ; i < M ; ++i) {
36 f o r (i n t j = 0 ; j < M ; ++j) {
37 i f (i != j) {
38 get (Sigma , i , j) = 0 ;
39 }
40 }
41 }
42 }
43 } ;

73

Chapter 5. Implementation

74

Chapter 6

Evaluation

The last chapter provided an overview of a possible implementation of the PE
approach. In particular, it was shown how certain parts can be implemented to
use C++ AMP as a means to utilize massive parallelism.

The last remaining goal of the thesis is to use the aforementioned implementa-
tion to evaluate the approach. This chapter first describes under which conditions
the evaluation was performed. This is done by formulating a set of objectives,
which are used as a basis to define the subjects of the evaluation. After providing
a description of the testing environment, the remaining part of the chapter presents
a summary of the results.

6.1 Setup

The PE approach is a complex interplay between a lot of individual parts and
before it is possible to evaluate it, it is necessary to properly define what parts of
the approach should be evaluated, which ones should be fixed and under which
exact conditions the evaluation should take place.

To do this, the following sections are defining the following terms:

• Objectives: What is the evaluation supposed to achieve?

• Subjects: What is being evaluated?

• Conditions: How is being evaluated?

6.1.1 Objectives

The objectives are often formulated in the form of questions which shall be an-
swered by the evaluation. As stated in goal IV., the evaluation shall verify goals
I. and II., which were defined as follows:

75

Chapter 6. Evaluation

I. Propose an approach to solve nonlinear regression problems independent of
starting values with the following properties:

(i) It is applicable to a wide variety of practical problems

(ii) It is suitable for automated use and does not require any additional
configuration

(iii) It is suitable for massive parallelism and fast enough for practical use

II. Propose and examine different strategies to improve the success rate of the
approach

Although some of the objectives directly follow from these goals, other are not as
obvious and have to be extracted by dissecting each goal and subgoal into several
parts.

Before anything else becomes relevant, the most essential aspect of the evalua-
tion is to demonstrate that the approach indeed works in practice and is not just
a theoretical construct. After that, it is possible to assess the individual parts
to determine whether or not the properties of the approach meet the formulated
requirements of goal I..

One of those requirements is the applicability to a wide variety of practical prob-
lems. Demonstrating this applicability for the most part hinges on the selection of
the test problems that are being used in the evaluation. Although it is generally
not possible to cover all types of problems, it should be shown that the test prob-
lems at least cover a wide range of typical scenarios.

The subgoal regarding the suitability of the PE approach for automated use con-
sists of several parts and only some of them are relevant for the evaluation. A
necessary precondition for automated use of the approach is that this possibility is
allowed by its design. If an approach would explicitly require user input at certain
points of the execution, automation might not be achievable in principle. An eval-
uation only becomes relevant in this regard, when an approach offers some kind of
configuration. In that case, the evaluation can be used to determine whether or
not there is a combination of settings that allows automation in all or at least in
most scenarios. This is indeed the case for the PE approach.

Whether or not the approach is suitable for massive parallelism is also mostly con-
tingent upon its design and implementation. In theory, the PE approach should be
highly parallelizable, because there are a great number of chromosomes that can
be evaluated in the same way, while at the same time being totally independent
from one another. What an evaluation can do is to verify whether an approach
indeed benefits from parallelization and to determine how it scales with certain
types of hardware. Based on the performance measurements of the parallelized

76

6.1. Setup

approach, it is then possible to asses whether or not the running times are suffi-
cient for practical purposes.

In addition to goal I., which is mostly concerned about the general properties
of the approach, goal II. is about comparing different strategies and techniques
for certain parts of it. Because the PE approach is defined and implemented in
a generic way, there are a lot of parts that could be examined in greater detail
as part of an evaluation. However, due to the complexity of the approach, it is
not feasible to meticulously assess every single component. Instead, the evalu-
ation will focus on two aspects that are essential to the approach. The first is
the encoding that is used to store the starting parameters in the chromosome and
the second one is the choice of the regression method that is used to evaluate them.

These objectives can be summarized in the following questions:

A. Verification: Does the PE approach work in general?

B. Applicability: Is it applicable to a wide variety of practical problems?

C. Practicality: Is it fast enough for practical use?

D. Automation: Is there a configuration that makes it suitable for automated
use?

E. Scalability: How does the approach benefit from massive parallelism and how
does it scale on different hardware?

F. Analysis: How do the choice of encoding and regression methods affect the
success rate?

6.1.2 Subjects

The subjects define what quantities of data are collected and what criteria are used
to assess them in the context of the evaluation. Subjects usually can be derived
from the objectives.

Success Criterion

Both the verification and the applicability objectives require some measure of suc-
cess. This is not as trivial as it might appear. Although the LMA and MLA
methods presented in this thesis are based on the reduction of the least squares
error, it is usually not possible to achieve an error of zero, because almost all practi-
cal problems contain some forms of random noise or systematic errors in their data
points. Since the calculation of the least square error requires the specific values
of the corresponding set of parameters – the very thing the regression method is
trying to determine – it is usually not possible to know in advance what the error

77

Chapter 6. Evaluation

of an optimal solution would look like. In the evaluation of the Hybrid Approach
this problem was circumvented by using generated test problems, which have the
advantage that they can be created without any form of noise in such a way that
they are guaranteed to be solvable with a least squares error of zero. However, as
was stated in the conclusion of that approach, generated problems are also highly
artificial. Because one goal of this evaluation is to verify that the PE approach
works on a wide range of practical problems, generated data points cannot be used.

Another option in a situation like this is to use reference problems. There are
a lot of reference data sets available, which include verified solutions that can be
used to test and compare nonlinear regression methods. To comply with objective
B., a reference set used in this evaluation would have to be representative of a wide
variety of practical problems. One popular set that fulfills this criterion is the Non-
linear Regression Statistical Reference Data Set [31] from the National Institute of
Standards and Technology (NIST). Although a little outdated, the reference set is
still used in many publications in the field of statistics.

As stated in the background information:

”In ”An Evaluation of Mathematical Software That Solves Nonlinear
Least Squares Problems” (ACM Transactions on Mathematical Soft-
ware, vol. 7, no. 1, March 1981, pages 1-16), Hiebert notes that ”test-
ing to find a ‘best’ code is an all but impossible task and very dependent
on the definition of ‘best.’ ” Whatever other criteria are used, the test
procedure should certainly attempt to measure the ability of the code
to find solutions. But nonlinear least squares regression problems are
intrinsically hard, and it is generally possible to find a dataset that will
defeat even the most robust codes.”

The description further states:

”We have included both generated and ”real-world” nonlinear least squares
problems of varying levels of difficulty. The generated datasets are de-
signed to challenge specific computations. Real-world data include chal-
lenging datasets such as the Thurber problem, and more benign datasets
such as Misra1a. The certified values are ”best-available” solutions, ob-
tained using 128-bit precision and confirmed by at least two different
algorithms and software packages using analytic derivatives.”

This diversity of problems makes the NIST reference set very well suited for the
evaluation of the PE approach.

A success is hereby defined as a successful convergence to the reference solution of
a single problem within a 15% error. To quantify the success of a configuration for
the entire test suite, the number of successes refers to the amount of test problems
that were solved in either more than 50% or 100% of all iterations.

78

6.1. Setup

Control

To confirm that the PE approach actually works, it is not sufficient to just exam-
ine the success rate. Every empirical experiment needs some form of control to
compare the hypothesis (i.e. the approach) to random chance. In the case of the
starting value problem, this means that the approach has to be compared to just
guessing a set of starting values a certain number of times.

With the PE approach, this can be done by setting the number of generations
of the genetic process to zero. This means that the population is evaluated exactly
once, without participating in the genetic process. Because the first generation is
always randomly generated, this is equivalent of guessing the initial parameters
and at the same time guarantees that the control mechanism executes the same
evaluation code as the PE approach itself.

Running Time

Another essential objective of the evaluation is the question of practicality, as
stated in objective C. The PE approach is computationally very expensive and
because it is supposed to be suitable for practical use, it is vital to also analyze its
efficiency in addition to its effectiveness.

Performance analyses are often done by just measuring the running times. This
poses the potential problem of introducing errors, because on a standard computer
software seldom runs isolated on a system and other programs potentially could
interfere with the measurement. This is the reason why a proper performance
analysis usually involves a profiler. Profilers are tools specially designed to ana-
lyze the performance of a program. In many cases this is done by collecting so
called samples, when the software is actually executing on the CPU. This makes a
profiler analysis independent of the running time.

However, although the collection of CPU samples can be useful in many cases, the
actual running times are the very things that are essential to answer the question
of practicality. Additionally, the PE approach is supposed to utilize heterogeneous
computing and potentially does not exclusively run on a CPU.

Instead of using a profiler, the performance will be determined by cautionary mea-
suring the running times for each individual test problem. To mitigate fluctuations
due to interference with other software, the measurement will be repeated several
times to calculate the arithmetic mean. The approach is considered practical, if it
is able to solve many or all problems on common hardware in a reasonable amount
of time. Here, common hardware means consumer grade products that are widely
available, in contrast to specialist hardware or computer clusters, which usually
are a lot more expensive. Finally, what is considered a ”reasonable” amount of
time is usually subjective and dependent on the context of the problem. However,

79

Chapter 6. Evaluation

it seems sensible that an approach can be considered fast enough if it terminates
in under five minutes. This would be short enough to also queue multiple models
or problems in under one hour.

6.1.3 Conditions

The conditions describe the environment in which the evaluation is performed.
This includes both hard- and software, as well as the fixed configurations for those
parts of the approach that are not subjects of the evaluation.

Test Suite

In addition to all test problems from the nonlinear regression NIST data set, the
evaluation will also use three problems presented by Tvrdik et al[32], which were
deemed the most difficult by the author. The problems are Meyer & Roth Example
4 and 5, as well as Militky & Meloun Model IV.

In total, the test suite consists of 30 reference problems.

Hardware

The evaluation is performed on the following hardware:

• CPU: Intel i7 4770k [Quadcore at 4.1GHz]

• RAM: 16GB

• Internal GPU: Intel HD Graphics 4600

• Discrete GPU: Nvidia Geforce GTX 1080

All parts are consumer-grade components and fulfill the requirements of objective
C.. At the time of writing, the CPU is slightly outdated, while the discrete GPU
can be considered ”high-end”.

Configuration

Every layer of the PE approach contains several components that can be configured
in different ways or even entirely replaced with another implementation. Due
to the vast amount of possible combinations, it is not feasible to examine all of
them. Instead, the evaluation will focus on those parts that are deemed to be the
most important. This assessment is primarily based on the results of the Hybrid
Approach. The following aspects are part of the dynamic configuration:

• Population Size: 256, 512, 1024, 2048, 4096, 131072 (control only)

• Number of Generations: 5, 15, 25

80

6.1. Setup

• Encoding: Discretized, Logarithmic

• NRA Algorithm: Levenberg-Marquardt Algorithm, Modified Levenberg Al-
gorithm

The evaluation of the Hybrid Approach showed that the population size has a
significant impact on the success rate. This is not surprising, considering that a
greater diversity of possible solutions increases the chances of success. However,
since every chromosomes has to be evaluated, increasing the size of each generation
also directly influences the running time of the algorithm. Therefore, the popula-
tion size and the number of generations are important variables for the question
of how much effort it takes for the PE approach to produce satisfying results. The
most expensive configuration does evaluate 25 · 4096 = 102400 sets of starting
values. The size of the control population is chosen specially to be above that.

The motivation for the different encodings and NRA algorithms were already pre-
sented in sections 4.2.3 and 4.3.1 respectively.

All other components and options will be fixed in the evaluation. In particular,
the following list consists a of all remaining variables of the PE approach alongside
their corresponding settings:

• Genetic Layer:

– Selection: Roulette Selection

– Crossover Points: [5, 10]

– Mutation Points: [5, 10]

– Chromosome Binary Size: 64

– Encoding Range: ±[10−10, 1010]

• Evaluation Layer:

– Tile Size: 32 (Geforce GTX 1080), 128 (HD 4600)

– NRA Iterations: 50

• Computation Layer:

– Decomposition: Jacobi Rotation SVD

– SVD Iterations: 50

– Floating-Point Precision: Single, Double (selective)

The choices for the selection, crossover and mutation settings are based on the
evaluation results of the Hybrid Approach, where the configuration of the genetic
operators had little impact on the success rate. Other settings, such as the binary
size for the chromosomes or the max number of iterations of the NRA and SVD

81

Chapter 6. Evaluation

algorithm directly follow from their implementation and the motivations behind
them were already stated in chapter 5. The floating-point precision is fixed to
single precision for the success rate evaluation, but will be changed to double pre-
cision for specific problems, as well as the performance evaluation.

Both the discretized and the logarithmic encoding require to set an encoding range.
This is a critical setting, due to the requirement of goal (ii), which stated that the
approach must be usable on a wide variety of problems without changing the con-
figuration. It seems reasonable that the range specified above is sufficient for most
nonlinear regression problems. However, it still has to be stressed that there might
be some problems that require a different configuration of that setting.

Procedure

The evaluation is split into two parts: An examination of the success (rates) and
the performance.

The success evaluation is performed on the AMP solver using the Geforce GPU.
Because the CPU and the AMP solver use the exact same methods, it is not neces-
sary to compare them or different AMP accelerators in regards to the success rate.
To evaluate the success rates, the PE approach is tested on every one of the 30
reference problems of the test suite with all possible 60 combinations of the afore-
mentioned configuration and the control population. To ensure a certain degree
of stability in the results, each run is repeated 10 times. This leads to the success
rate, which refers to the percentage of successful runs out of the total 10 iterations.
Additionally, the success evaluation will also determine the mean running time for
every test run.

To assess the potential for parallelization and scalability, additional runs are also
performed on a comparatively small test problem (Bennett5) as well as a larger
one (Gauss1). Each of these problems will be evaluated using the most successful
encoding and regression method of the success rate evaluation. It will be repeated
10 times for every population size. In addition to using the Geforce GPU, all runs
are performed on the integrated Intel HD Graphics 4600 GPU of the CPU, as well
as the WARP Direct3D emulator that is mentioned in 5.1.3. To provide a point of
comparison, the approach also is evaluated using the CPU solver, which does not
use C++ AMP at all.

6.2 Results

The complete results of the evaluation are provided in appendix A and B. What
follows is a summary of the results.

82

6.2. Results

Success Rates

The success rates for all configurations are given in the tables A.1, A.2, A.3 and
A.3. They show the color-coded success rates of the PE approach for every problem
of the test suite for every configuration combination, along with the corresponding
number of successes.

Encoding NRA Method
Population Size /

Number of Generations
Precision

Successes

[PE Approach]

Successes

[Control]

Discretized LMA N/A Single 0/30 0/30

Discretized MLA N/A Single 0/30 0/30

Logarithmic LMA 4096/15 Single 17/30 0/30

Logarithmic MLA 4096/15 Single 27/30 1/30

Logarithmic MLA 4096/15 Double 30/30 3/30

Best Configurations - Number of Successes (100%)

Table 6.1: The highest number of successes for every combination of encoding and NRA method.

Table 6.1 shows the highest number of successes (100%) every combination of en-
coding and NRA method was able to achieve. What is immediately apparent, is
that the discretized encoding was not able to reliably solve a single one of the test
problems. In fact, tables A.1 and A.2 show that this encoding was not able to
successfully solve any problem of the test suite in any iteration. This is a very
surprising result, considering that encoding was successfully used in the evaluation
of the Hybrid Approach. To ensure that this is caused by the encoding itself and
not an implementation error, the encoding range was decreased for select problems
which indeed lead to an increase in the success rate.

The logarithmic encoding on the other hand performed much better, with over
half the problems solved when using the LMA solver and all but three problems
solved when using the MLA solver. After performing an additional test using dou-
ble precision, the combination of the logarithmic encoding and MLA method was
even able to solve all of the test problems. This confirms that some problems are
more sensitive to numerical problems than others.

These results achieve several objectives at once. First and foremost, they ver-
ify that the approach works in general – objective A. – because it reliably out-
performed the control population, which was only able to solve a few of the lower
difficulty problems by random chance. The results also show that the PE approach
is applicable to a wide range of different problems – objective B. – by being able
to solve every test problem in the test suite. Additionally, these results can be
achieved with a single configuration, which satisfies the automation objective D..

However, not all problems require such an expensive configuration. Chart 6.1
shows how the number of successes scale with the population size. Although this

83

Chapter 6. Evaluation

0

5

10

15

20

25

30

256 512 1024 2048 4096

Population Scaling for Number of Successes [100%]

Logarithmic, LMA, G5 Logarithmic, LMA, G15 Logarithmic, LMA, G25

Logarithmic, MLA, G5 Logarithmic, MLA, G15 Logarithmic, MLA, G25

Figure 6.1: Population scaling for number of successes (100%).

confirms the general assumption that the chance of success increases with a larger
population, the choice of encoding and the NRA method has a much greater im-
pact. Considering doubling the population size roughly increases the theoretical
computation cost by the same factor, the increase in success is not that impres-
sive. Furthermore, the number of generations does not seem to further improve
the success rate after 15 generations.

Running Times

The complete running times of the PE approach are given in tables B.1, B.2, B.3
and B.2.

They are color-coded based on their distance to the predefined limit of five minutes
(i.e. 300s = 300000ms). This means that a test run taking zero seconds would
be green, one taking two and a half minutes would be yellow and everything at or
above five minutes would be red. As can be seen in the aforementioned tables, even
the biggest problems with a lot of parameters and data points, took a lot less than
30 seconds to solve. This is a very impressive result, considering how many calcula-
tions have to be performed for each chromosomes in the PE approach. This easily
achieves objective C. and shows that although the PE approach is computationally

84

6.2. Results

a lot more expensive than traditional approaches, it is fast enough for practical use.

However, because high-end consumer-grade hardware might not always be avail-
able, it is also important to examine the performance on more moderate hardware.
Table B.5 shows the mean running times of the performance evaluation. As was
stated in the setup section, it consisted of two select test problems that were eval-
uated on different AMP accelerators and on the CPU. The runs were repeated 10
times for a set of population sizes and for both single and double floating-point
precision on the best performing configuration of the success evaluation.

Although the color-coding clearly shows a difference between the individual ac-
celerators and the CPU, even the slower solutions only exceed the five minute
limit with very large population sizes. In particular, with the exception of the
population size of 8192, only the CPU run on the difficult problem using double
precision took slightly more time.

0.00x

10.00x

20.00x

30.00x

40.00x

50.00x

60.00x

70.00x

256 512 1024 2048 4096 8192

Relative Speedups To CPU [Bennett5]

AMP - WARP
[Single]

AMP - GPU
Intel HD 4600
[Single]

AMP - GPU
Nvidia Geforce 1080
[Single]

AMP - GPU
Nvidia Geforce 1080
[Double]

Figure 6.2: Relative speedups of an AMP accelerator to the CPU.

To make the performance differences between the hardware more apparent, table
B.6 contains the speedups of each accelerator relative to the CPU. The correspond-
ing results for the Bennett5 problem are visualized in chart 6.2. It is obvious that
the difference between the Geforce GPU and the CPU is pretty significant, but also
every other accelerator outperforms the CPU. This highlights an important caveat
to these results. The only reason the WARP accelerator outperforms the CPU,
is that it uses vector operations to speedup the execution. While it is commend-
able that C++ AMP can fallback to a CPU-only solution and produce satisfying
results, it also shows that the CPU code is not as optimized as it could be. Due
to the overhead of the DirectX emulation, a vectorized CPU solver should at least
perform on-par with the WARP accelerator and probably be even faster. This
would not even need to be implemented by hand. For example, libraries, such as

85

Chapter 6. Evaluation

Intel’s Math Kernel Library (MKL), offer various algorithms for SVD decomposi-
tion with highly optimized vector instructions. However, even when being overly
generous and granting that the CPU performance could tripled, there would still
be significant advantages in using a GPU at larger population sizes.

0.00x

5.00x

10.00x

15.00x

20.00x

25.00x

30.00x

35.00x

256 512 1024 2048 4096 8192

Population Scaling [Bennett5, Single]

CPU
Intel i7 4770k

AMP - WARP AMP - GPU
Intel HD 4600

AMP - GPU
Nvidia Geforce 1080

Figure 6.3: Population scaling for the increase in computation time.

The reason for this is shown in table B.7, which contains the population scaling of
all accelerators. The corresponding data for the Bennett5 problem is visualized in
chart 6.3 and shows how much the computation time increases when the population
size is doubled. Even though all accelerators scale below the proportional factor,
all but the Geforce GPU require 1.5 × −2.0× the computation time for every in-
crease. The GTX 1080 on the other hand even with a population size of 8196 – an
increase by a factor of 32 – only requires 1.85 the computation time of the 256 size
population. This is not surprising, considering that GPU consists of 2560 physical
cores, which can all run in parallel[33]. The fact that the GPU scales so well,
shows that the AMP implementation does not contain any major flaws that pre-
vent the software from achieving a high amount of occupancy on the graphics card.

The only case where the AMP solver does not significantly outperform the CPU,
is the usage of double floating-point precision. This is a major flaw of consumer
grade GPUs, which are generally optimized for single precision computation and
often only have a fraction of the performance when using double precision. For
the Geforce card, the GPU is reduced to 1

32
’th of its single precision performance.

Modern CPUs on the other hand do only suffer a slight overhead when using dou-
ble precision, because their registers and FPUs are designed to handle 64-bit values.

However, chart 6.4 shows that the population scaling is barely affected by the
switching to double precision. This means that at sufficiently large population
sizes, a GPU might still outperform a CPU.

86

6.2. Results

0.00x

5.00x

10.00x

15.00x

20.00x

25.00x

30.00x

35.00x

256 512 1024 2048 4096 8192

Population Scaling [Gauss1, Bennett5, Double]

CPU
Intel i7 4770k [Gauss1]

AMP - GPU
Nvidia Geforce 1080 [Gauss1]

CPU
Intel i7 4770k [Bennett5]

AMP - GPU
Nvidia Geforce 1080 [Bennett5]

Figure 6.4: Population scaling for the increase in computation time.

87

Chapter 6. Evaluation

88

Chapter 7

Conclusion

Recalling chapter 4.1.2, the goals of this thesis have been defined as follows:

I. Propose an approach to solve nonlinear regression problems independent of
starting values with the following properties:

(i) It is applicable to a wide variety of practical problems

(ii) It is suitable for automated use and does not require any additional
configuration

(iii) It is suitable for massive parallelism with GPGPU computing and fast
enough for practical use

II. Propose and examine different strategies to improve the success rate of the
approach

III. Propose a possible implementation for the approach

IV. Design and perform an evaluation that can verify goals I. and II.

All of these goals were achieved.

With the Parameter Evolution approach, this thesis proposed a nontraditional
genetic hybrid method that can be used to reliably solve a wide variety of non-
linear regression problems, without having to specify a set of starting values for
a particular problem. It was shown how the approach can be implemented in a
generic design that allows individual components to be adapted in a flexible way.
It was also demonstrated how C++ AMP can be utilized as a means to achieve
massive parallelism. The evaluation revealed that the PE approach is applicable
to real life problems and that many of them can be solved in a matter of seconds.

The most prevalent drawback of the approach is that it gets significantly less valu-
able when double precision is required. Although most of the test problems could
still be solved below the time limit of five minutes, double precision performance

89

Chapter 7. Conclusion

is significantly lacking on most consumer-grade GPUs, which mitigates many dis-
advantages of using heterogeneous programming in the first place. However, if the
single precision performance is not sufficient, there are professional GPUs which
excel in double precision computing. Although they are a lot more expensive than
consumer cards, they might still be more cost-effective than alternative solutions
– e.g. computation clusters.

The reader may have noticed that the term ”nontraditional” was used several
times in this thesis. This is because the term has some significance in the broader
context of this work. The topic of nonlinear regression analysis was traditionally
mostly approached from a strictly mathematical angle. Only in the last several
years has the field of statistics been explored by non-mathematical approaches,
most notably machine learning methods.

This thesis contributes to this development by providing an alternative to strictly
mathematical methods. An important distinction is the focus on computation.
While a pure mathematical analysis of an approach might provide valuable in-
sights into the raw mechanics of a method, it usually does not consider its practical
implementation. Although the PE approach literally computes tens of thousands
of times the work of a traditional NRA method, it can still be valuable in prac-
tice when the computation can be sufficiently parallelized. As the PE approach
showed, the technologies for heterogeneous programming and massive parallelism
provide opportunities to approach problems in ways that might have been con-
sidered wasteful in the past. This might lead to surprising results. In the case
of the PE approach, it was shown that at least a certain amount of nonlinear
regression problems can be solved by using a single configuration without having
to determine any problem-specific options. This makes the approach suitable for
automatic queuing of several regression models, which is something that is not
possible with most conventional approaches.

90

Chapter 8

Outlook

There are several ways the PE approach can proceed from here. First and fore-
most, it was not compared to other (automatic) methods that attempt to solve
the starting value problem. Most notably, the statistical programming language R
– which is growing to become the new reference for statistical software – provides
an entire toolbox for nonlinear regression analysis, including a variety of so called
self-starter models [34][35].

However, there is a reason these methods were not used as a point of comparison
during the evaluation of the PE approach. Although many of them are referred to
as self-starting or automatic methods, most of them still require the user to specify
some kind of configuration to start. Because many of them only work on specific
models, it would have required to set several configurations for multiple different
methods to make a test suite comparable with the PE approach. Because this
would have meant including problem-specific information, which would have been
subjectively determined by an experimenter, it would have defeated the purpose
of comparing it to a fully automatic approach in the first place. Although a com-
parison could still provide some valuable insight, it would require an a elaborate
evaluation, to ensure that a comparison of the approaches is actually reasonable.

Another important thing to note is that the evaluation did not really reveal the
limits of the approach. By using double floating-point precision, the implementa-
tion was able to solve all 30 reference problems of the test suite in every iteration.
The main reason for this is the lack of difficult reference problems for nonlinear
regression analysis. Because many conventional methods rely on starting values,
they are often evaluated by just making the starting values more difficult. Aside
from the ones used in the evaluation, there are not many NRA reference sets avail-
able. This makes it difficult to estimate how the PE approach would perform on
larger and more difficult practical problems. One option would be to seek the as-
sistance of an experienced, professional statistician, to compare the PE approach
to conventional analysis in challenging, real life scenarios.

Finally, the PE approach itself provides a lot of potential for future improvement.

91

Chapter 8. Outlook

In principle, every generic part of the approach could be changed to something else.
There are some promising methods that could be examined in the approach. For
example, Transtrum et al. promise a NRA method with higher efficiency and accu-
racy than the Levenberg-Marquardt algorithm[36], while Drmac et al. proposed a
SVD algorithm that under certain circumstances is faster and more accurate than
the Jacobi Rotation SVD algorithm[37]. Another possibility would be to move
the implementation of the entire algorithm to C++ AMP, including the genetic
process, to further mitigate any GPU overhead.

92

Appendix A

Evaluation Results

93

Appendix A. Evaluation Results

P
o

p
u

la
ti

o
n

 S
iz

e
1

3
1

0
7

2

N
u

m
b

er
 o

f
G

en
er

at
io

n
5

1
5

2
5

5
1

5
2

5
5

1
5

2
5

5
1

5
2

5
5

1
5

2
5

0

L_
N

1
_M

2_
D

an
W

o
o

d
0

.0
0%

0
.0

0%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%

L_
N

1
_M

2_
M

is
ra

1a
0

.0
0%

0
.0

0%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%

L_
N

1
_M

2_
M

is
ra

1b
0

.0
0%

0
.0

0%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%

L_
N

1
_M

3_
C

h
w

ir
u

t1
0

.0
0%

0
.0

0%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%

L_
N

1
_M

3_
C

h
w

ir
u

t2
0

.0
0%

0
.0

0%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%

L_
N

1
_M

6_
La

n
cz

o
s3

0
.0

0%
0

.0
0%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

L_
N

1
_M

8_
G

au
ss

1
0

.0
0%

0
.0

0%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%

L_
N

1
_M

8_
G

au
ss

2
0

.0
0%

0
.0

0%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%

A
_N

1_
M

2_
M

is
ra

1c
0

.0
0%

0
.0

0%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%

A
_N

1_
M

2_
M

is
ra

1d
0

.0
0%

0
.0

0%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%

A
_N

1_
M

4_
R

o
sz

m
an

1
0

.0
0%

0
.0

0%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%

A
_N

1_
M

5_
K

ir
b

y2
0

.0
0%

0
.0

0%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%

A
_N

1_
M

5_
M

G
H

1
7

0
.0

0%
0

.0
0%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

A
_N

1_
M

6_
La

n
cz

o
s1

0
.0

0%
0

.0
0%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

A
_N

1_
M

6_
La

n
cz

o
s2

0
.0

0%
0

.0
0%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

A
_N

1_
M

7_
H

ah
n

1
0

.0
0%

0
.0

0%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%

A
_N

1_
M

8_
G

au
ss

3
0

.0
0%

0
.0

0%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%

A
_N

1_
M

9_
EN

SO
0

.0
0%

0
.0

0%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%

A
_N

2_
M

3_
N

el
so

n
0

.0
0%

0
.0

0%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%

H
_

N
1_

M
2_

B
o

xB
O

D
0

.0
0%

0
.0

0%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%

H
_

N
1_

M
3_

B
en

n
et

t5
0

.0
0%

0
.0

0%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%

H
_

N
1_

M
3_

Ec
ke

rl
e4

0
.0

0%
0

.0
0%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

H
_

N
1_

M
3_

M
G

H
1

0
0

.0
0%

0
.0

0%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%

H
_

N
1_

M
3_

R
at

42
0

.0
0%

0
.0

0%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%

H
_

N
1_

M
4_

M
G

H
0

9
0

.0
0%

0
.0

0%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%

H
_

N
1_

M
4_

R
at

43
0

.0
0%

0
.0

0%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%

H
_

N
1_

M
7_

Th
u

rb
er

0
.0

0%
0

.0
0%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

H
_

N
2_

M
3_

M
ey

e
rR

o
th

4
0

.0
0%

0
.0

0%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%

H
_

N
2_

M
3_

M
ey

e
rR

o
th

5
0

.0
0%

0
.0

0%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%

H
_

N
1_

M
4_

M
ili

tk
yM

e
lo

u
n

1
6

0
.0

0%
0

.0
0%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

N
u

m
b

er
 o

f
Su

cc
es

se
s

(>
 5

0%
)

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

N
u

m
b

er
 o

f
Su

cc
es

se
s

(1
00

%
)

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

2
5

6
5

1
2

1
0

2
4

2
0

4
8

4
0

9
6

Su
cc

es
s

R
at

es
 [

D
is

cr
et

iz
ed

, L
M

A
, S

in
gl

e
P

re
ci

si
o

n
]

T
a
b
le

A
.1
:

S
u

cc
es

s
ra

te
s

of
th

e
P

E
ap

p
ro

ac
h

fo
r

a
se

ri
es

o
f

te
st

p
ro

b
le

m
s.

T
h

is
te

st
ca

se
u

se
d

th
e

d
is

cr
et

iz
ed

en
co

d
in

g
a
n

d
th

e
L

ev
en

b
er

g
-M

a
rq

u
a
rd

t
A

lg
or

it
h

m
.

E
ac

h
te

st
w

as
re

p
ea

te
d

10
ti

m
es

fo
r

d
iff

er
en

t
p

o
p

u
la

ti
o
n

si
ze

s
a
n

d
g
en

er
a
ti

o
n

li
m

it
s.

T
h

e
va

lu
es

a
re

co
lo

r-
co

d
ed

p
er

ce
n
ti

le
s

fo
r

th
e

n
u

m
b

er
of

su
cc

es
se

s.
T

h
e

ri
gh

tm
os

t
co

lu
m

n
co

n
ta

in
s

th
e

re
su

lt
s

o
f

th
e

co
n
tr

o
l

co
n

fi
g
u

ra
ti

o
n

,
w

h
ic

h
is

eq
u

iv
a
le

n
t

to
g
u

es
si

n
g

a
se

t
o
f

st
a
rt

in
g

va
lu

es
1
3
1
0
7
2

ti
m

es
.

94

Appendix A. Evaluation Results

P
o

p
u

la
ti

o
n

 S
iz

e
1

3
1

0
7

2

N
u

m
b

er
 o

f
G

en
er

at
io

n
5

1
5

2
5

5
1

5
2

5
5

1
5

2
5

5
1

5
2

5
5

1
5

2
5

0

L_
N

1
_M

2_
D

an
W

o
o

d
0

.0
0%

0
.0

0%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%

L_
N

1
_M

2_
M

is
ra

1a
0

.0
0%

0
.0

0%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%

L_
N

1
_M

2_
M

is
ra

1b
0

.0
0%

0
.0

0%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%

L_
N

1
_M

3_
C

h
w

ir
u

t1
0

.0
0%

0
.0

0%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%

L_
N

1
_M

3_
C

h
w

ir
u

t2
0

.0
0%

0
.0

0%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%

L_
N

1
_M

6_
La

n
cz

o
s3

0
.0

0%
0

.0
0%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

L_
N

1
_M

8_
G

au
ss

1
0

.0
0%

0
.0

0%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%

L_
N

1
_M

8_
G

au
ss

2
0

.0
0%

0
.0

0%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%

A
_N

1_
M

2_
M

is
ra

1c
0

.0
0%

0
.0

0%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%

A
_N

1_
M

2_
M

is
ra

1d
0

.0
0%

0
.0

0%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%

A
_N

1_
M

4_
R

o
sz

m
an

1
0

.0
0%

0
.0

0%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%

A
_N

1_
M

5_
K

ir
b

y2
0

.0
0%

0
.0

0%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%

A
_N

1_
M

5_
M

G
H

1
7

0
.0

0%
0

.0
0%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

A
_N

1_
M

6_
La

n
cz

o
s1

0
.0

0%
0

.0
0%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

A
_N

1_
M

6_
La

n
cz

o
s2

0
.0

0%
0

.0
0%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

A
_N

1_
M

7_
H

ah
n

1
0

.0
0%

0
.0

0%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%

A
_N

1_
M

8_
G

au
ss

3
0

.0
0%

0
.0

0%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%

A
_N

1_
M

9_
EN

SO
0

.0
0%

0
.0

0%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%

A
_N

2_
M

3_
N

el
so

n
0

.0
0%

0
.0

0%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%

H
_

N
1_

M
2_

B
o

xB
O

D
0

.0
0%

0
.0

0%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%

H
_

N
1_

M
3_

B
en

n
et

t5
0

.0
0%

0
.0

0%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%

H
_

N
1_

M
3_

Ec
ke

rl
e4

0
.0

0%
0

.0
0%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

H
_

N
1_

M
3_

M
G

H
1

0
0

.0
0%

0
.0

0%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%

H
_

N
1_

M
3_

R
at

42
0

.0
0%

0
.0

0%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%

H
_

N
1_

M
4_

M
G

H
0

9
0

.0
0%

0
.0

0%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%

H
_

N
1_

M
4_

R
at

43
0

.0
0%

0
.0

0%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%

H
_

N
1_

M
7_

Th
u

rb
er

0
.0

0%
0

.0
0%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

H
_

N
2_

M
3_

M
ey

e
rR

o
th

4
0

.0
0%

0
.0

0%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%

H
_

N
2_

M
3_

M
ey

e
rR

o
th

5
0

.0
0%

0
.0

0%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%

H
_

N
1_

M
4_

M
ili

tk
yM

e
lo

u
n

1
6

0
.0

0%
0

.0
0%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

N
u

m
b

er
 o

f
Su

cc
es

se
s

(>
 5

0%
)

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

N
u

m
b

er
 o

f
Su

cc
es

se
s

(1
00

%
)

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

2
5

6
5

1
2

1
0

2
4

2
0

4
8

4
0

9
6

Su
cc

es
s

R
at

es
 [

D
is

cr
et

iz
ed

, M
LA

, S
in

gl
e

P
re

ci
si

o
n

]

T
a
b
le

A
.2
:

S
u

cc
es

s
ra

te
s

of
th

e
P

E
ap

p
ro

ac
h

fo
r

a
se

ri
es

o
f

te
st

p
ro

b
le

m
s.

T
h

is
te

st
ca

se
u

se
d

th
e

d
is

cr
et

iz
ed

en
co

d
in

g
a
n

d
th

e
M

o
d

ifi
ed

L
ev

en
b

er
g

A
lg

or
it

h
m

.
E

ac
h

te
st

w
as

re
p

ea
te

d
10

ti
m

es
fo

r
d

iff
er

en
t

p
o
p

u
la

ti
o
n

si
ze

s
a
n

d
g
en

er
a
ti

o
n

li
m

it
s.

T
h

e
va

lu
es

a
re

co
lo

r-
co

d
ed

p
er

ce
n
ti

le
s

fo
r

th
e

n
u

m
b

er
of

su
cc

es
se

s.
T

h
e

ri
gh

tm
os

t
co

lu
m

n
co

n
ta

in
s

th
e

re
su

lt
s

o
f

th
e

co
n
tr

o
l

co
n

fi
g
u

ra
ti

o
n

,
w

h
ic

h
is

eq
u

iv
a
le

n
t

to
g
u
es

si
n

g
a

se
t

o
f

st
a
rt

in
g

va
lu

es
1
3
1
0
7
2

ti
m

es
.

95

Appendix A. Evaluation Results

P
o

p
u

la
ti

o
n

 S
iz

e
1

3
1

0
7

2

N
u

m
b

er
 o

f
G

en
er

at
io

n
5

1
5

2
5

5
1

5
2

5
5

1
5

2
5

5
1

5
2

5
5

1
5

2
5

0

L_
N

1
_M

2_
D

an
W

o
o

d
10

0.
00

%
1

00
.0

0%
10

0.
00

%
10

0.
00

%
1

00
.0

0%
10

0.
00

%
1

00
.0

0
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

0.
00

%

L_
N

1
_M

2_
M

is
ra

1a
0

.0
0%

1
00

.0
0%

80
.0

0%
0.

00
%

90
.0

0%
10

0.
00

%
90

.0
0

%
10

0.
00

%
10

0.
00

%
10

0.
00

%
10

0.
00

%
10

0.
00

%
10

0.
00

%
10

0.
00

%
10

0.
00

%
0.

00
%

L_
N

1
_M

2_
M

is
ra

1b
10

0.
00

%
1

00
.0

0%
80

.0
0%

10
0.

00
%

1
00

.0
0%

10
0.

00
%

60
.0

0
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

0.
00

%

L_
N

1
_M

3_
C

h
w

ir
u

t1
30

.0
0%

90
.0

0%
10

0.
00

%
10

0.
00

%
1

00
.0

0%
10

0.
00

%
1

00
.0

0
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

0.
00

%

L_
N

1
_M

3_
C

h
w

ir
u

t2
80

.0
0%

1
00

.0
0%

50
.0

0%
10

0.
00

%
1

00
.0

0%
10

0.
00

%
1

00
.0

0
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

0.
00

%

L_
N

1
_M

6_
La

n
cz

o
s3

0
.0

0%
0

.0
0%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

L_
N

1
_M

8_
G

au
ss

1
0

.0
0%

0
.0

0%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%

L_
N

1
_M

8_
G

au
ss

2
0

.0
0%

0
.0

0%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%

A
_N

1_
M

2_
M

is
ra

1c
90

.0
0%

1
00

.0
0%

10
0.

00
%

10
0.

00
%

1
00

.0
0%

10
0.

00
%

1
00

.0
0

%
10

0.
00

%
10

0.
00

%
10

0.
00

%
10

0.
00

%
10

0.
00

%
10

0.
00

%
10

0.
00

%
10

0.
00

%
0.

00
%

A
_N

1_
M

2_
M

is
ra

1d
90

.0
0%

90
.0

0%
80

.0
0%

80
.0

0%
1

00
.0

0%
90

.0
0%

1
00

.0
0

%
10

0.
00

%
10

0.
00

%
10

0.
00

%
10

0.
00

%
10

0.
00

%
10

0.
00

%
10

0.
00

%
10

0.
00

%
0.

00
%

A
_N

1_
M

4_
R

o
sz

m
an

1
0

.0
0%

40
.0

0%
0.

00
%

0.
00

%
1

00
.0

0%
40

.0
0%

0.
00

%
60

.0
0%

90
.0

0%
0.

00
%

90
.0

0%
10

0.
00

%
30

.0
0%

10
0.

00
%

10
0.

00
%

0.
00

%

A
_N

1_
M

5_
K

ir
b

y2
0

.0
0%

0
.0

0%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%

A
_N

1_
M

5_
M

G
H

1
7

0
.0

0%
0

.0
0%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

30
.0

0%
10

.0
0%

0.
00

%
60

.0
0%

70
.0

0%
0.

00
%

A
_N

1_
M

6_
La

n
cz

o
s1

0
.0

0%
0

.0
0%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

A
_N

1_
M

6_
La

n
cz

o
s2

0
.0

0%
0

.0
0%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

A
_N

1_
M

7_
H

ah
n

1
0

.0
0%

0
.0

0%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%

A
_N

1_
M

8_
G

au
ss

3
0

.0
0%

0
.0

0%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%

A
_N

1_
M

9_
EN

SO
0

.0
0%

50
.0

0%
90

.0
0%

0.
00

%
0.

00
%

30
.0

0%
0.

00
%

20
.0

0%
40

.0
0%

0.
00

%
10

0.
00

%
90

.0
0%

0.
00

%
90

.0
0%

10
0.

00
%

0.
00

%

A
_N

2_
M

3_
N

el
so

n
0

.0
0%

0
.0

0%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

60
.0

0%
80

.0
0%

0.
00

%
90

.0
0%

10
0.

00
%

0.
00

%
90

.0
0%

10
0.

00
%

0.
00

%

H
_

N
1_

M
2_

B
o

xB
O

D
50

.0
0%

1
00

.0
0%

10
0.

00
%

10
0.

00
%

1
00

.0
0%

10
0.

00
%

1
00

.0
0

%
10

0.
00

%
10

0.
00

%
10

0.
00

%
10

0.
00

%
10

0.
00

%
10

0.
00

%
10

0.
00

%
10

0.
00

%
0.

00
%

H
_

N
1_

M
3_

B
en

n
et

t5
10

0.
00

%
0

.0
0%

0.
00

%
0.

00
%

0.
00

%
70

.0
0%

0.
00

%
20

.0
0%

0.
00

%
80

.0
0%

20
.0

0%
0.

00
%

10
.0

0%
90

.0
0%

70
.0

0%
0.

00
%

H
_

N
1_

M
3_

Ec
ke

rl
e4

0
.0

0%
0

.0
0%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

H
_

N
1_

M
3_

M
G

H
1

0
0

.0
0%

0
.0

0%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%

H
_

N
1_

M
3_

R
at

42
60

.0
0%

90
.0

0%
90

.0
0%

10
0.

00
%

90
.0

0%
10

0.
00

%
1

00
.0

0
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

0.
00

%

H
_

N
1_

M
4_

M
G

H
0

9
70

.0
0%

80
.0

0%
90

.0
0%

80
.0

0%
1

00
.0

0%
10

0.
00

%
1

00
.0

0
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

0.
00

%

H
_

N
1_

M
4_

R
at

43
0

.0
0%

0
.0

0%
0.

00
%

0.
00

%
0.

00
%

90
.0

0%
0.

00
%

0.
00

%
30

.0
0%

0.
00

%
80

.0
0%

60
.0

0%
20

.0
0%

90
.0

0%
10

0.
00

%
0.

00
%

H
_

N
1_

M
7_

Th
u

rb
er

0
.0

0%
0

.0
0%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

H
_

N
2_

M
3_

M
ey

e
rR

o
th

4
0

.0
0%

0
.0

0%
0.

00
%

0.
00

%
0.

00
%

40
.0

0%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

90
.0

0%
0.

00
%

70
.0

0%
10

0.
00

%
0.

00
%

H
_

N
2_

M
3_

M
ey

e
rR

o
th

5
0

.0
0%

1
00

.0
0%

50
.0

0%
80

.0
0%

90
.0

0%
10

0.
00

%
1

00
.0

0
%

10
0.

00
%

10
0.

00
%

90
.0

0%
10

0.
00

%
90

.0
0%

10
0.

00
%

10
0.

00
%

10
0.

00
%

0.
00

%

H
_

N
1_

M
4_

M
ili

tk
yM

e
lo

u
n

1
6

70
.0

0%
80

.0
0%

10
0.

00
%

90
.0

0%
1

00
.0

0%
10

0.
00

%
90

.0
0

%
10

0.
00

%
10

0.
00

%
10

0.
00

%
10

0.
00

%
10

0.
00

%
10

0.
00

%
10

0.
00

%
10

0.
00

%
70

.0
0%

N
u

m
b

er
 o

f
Su

cc
es

se
s

(>
 5

0%
)

9
12

11
11

13
14

12
14

14
13

16
17

12
19

19
1

N
u

m
b

er
 o

f
Su

cc
es

se
s

(1
00

%
)

3
7

5
7

10
11

9
12

12
11

13
13

12
13

17
0

2
5

6
5

1
2

1
0

2
4

2
0

4
8

4
0

9
6

Su
cc

es
s

R
at

es
 [

Lo
ga

ri
th

m
ic

, L
M

A
, S

in
gl

e
P

re
ci

si
o

n
]

T
a
b
le

A
.3
:

S
u

cc
es

s
ra

te
s

of
th

e
P

E
ap

p
ro

ac
h

fo
r

a
se

ri
es

o
f

te
st

p
ro

b
le

m
s.

T
h

is
te

st
ca

se
u

se
d

th
e

lo
g
a
ri

th
m

ic
en

co
d

in
g

a
n

d
th

e
L

ev
en

b
er

g
-M

a
rq

u
a
rd

t
A

lg
or

it
h

m
.

E
ac

h
te

st
w

as
re

p
ea

te
d

10
ti

m
es

fo
r

d
iff

er
en

t
p

o
p

u
la

ti
o
n

si
ze

s
a
n

d
g
en

er
a
ti

o
n

li
m

it
s.

T
h

e
va

lu
es

a
re

co
lo

r-
co

d
ed

p
er

ce
n
ti

le
s

fo
r

th
e

n
u

m
b

er
of

su
cc

es
se

s.
T

h
e

ri
gh

tm
os

t
co

lu
m

n
co

n
ta

in
s

th
e

re
su

lt
s

o
f

th
e

co
n
tr

o
l

co
n

fi
g
u

ra
ti

o
n

,
w

h
ic

h
is

eq
u

iv
a
le

n
t

to
g
u

es
si

n
g

a
se

t
o
f

st
a
rt

in
g

va
lu

es
1
3
1
0
7
2

ti
m

es
.

96

Appendix A. Evaluation Results

P
o

p
u

la
ti

o
n

 S
iz

e
1

3
1

0
7

2

N
u

m
b

er
 o

f
G

en
er

at
io

n
5

1
5

2
5

5
1

5
2

5
5

1
5

2
5

5
1

5
2

5
5

1
5

2
5

0

L_
N

1
_M

2_
D

an
W

o
o

d
10

0.
00

%
1

00
.0

0%
10

0.
00

%
10

0.
00

%
1

00
.0

0%
10

0.
00

%
1

00
.0

0
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

90
.0

0%

L_
N

1
_M

2_
M

is
ra

1a
10

0.
00

%
1

00
.0

0%
10

0.
00

%
10

0.
00

%
1

00
.0

0%
10

0.
00

%
1

00
.0

0
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

90
.0

0%

L_
N

1
_M

2_
M

is
ra

1b
10

0.
00

%
1

00
.0

0%
10

0.
00

%
10

0.
00

%
1

00
.0

0%
10

0.
00

%
1

00
.0

0
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

0.
00

%

L_
N

1
_M

3_
C

h
w

ir
u

t1
10

0.
00

%
1

00
.0

0%
10

0.
00

%
10

0.
00

%
1

00
.0

0%
10

0.
00

%
1

00
.0

0
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

0.
00

%

L_
N

1
_M

3_
C

h
w

ir
u

t2
10

0.
00

%
1

00
.0

0%
10

0.
00

%
10

0.
00

%
1

00
.0

0%
10

0.
00

%
1

00
.0

0
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

70
.0

0%

L_
N

1
_M

6_
La

n
cz

o
s3

10
0.

00
%

1
00

.0
0%

10
0.

00
%

10
0.

00
%

1
00

.0
0%

90
.0

0%
1

00
.0

0
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

0.
00

%

L_
N

1
_M

8_
G

au
ss

1
0

.0
0%

80
.0

0%
20

.0
0%

50
.0

0%
50

.0
0%

0.
00

%
0.

00
%

10
0.

00
%

60
.0

0%
10

0.
00

%
80

.0
0%

70
.0

0%
90

.0
0%

10
0.

00
%

90
.0

0%
0.

00
%

L_
N

1
_M

8_
G

au
ss

2
0

.0
0%

0
.0

0%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

50
.0

0%
60

.0
0%

50
.0

0%
0.

00
%

90
.0

0%
10

0.
00

%
0.

00
%

A
_N

1_
M

2_
M

is
ra

1c
10

0.
00

%
1

00
.0

0%
10

0.
00

%
10

0.
00

%
1

00
.0

0%
10

0.
00

%
1

00
.0

0
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

0.
00

%

A
_N

1_
M

2_
M

is
ra

1d
10

0.
00

%
1

00
.0

0%
10

0.
00

%
10

0.
00

%
1

00
.0

0%
10

0.
00

%
1

00
.0

0
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

0.
00

%

A
_N

1_
M

4_
R

o
sz

m
an

1
10

0.
00

%
1

00
.0

0%
10

0.
00

%
10

0.
00

%
1

00
.0

0%
10

0.
00

%
1

00
.0

0
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

0.
00

%

A
_N

1_
M

5_
K

ir
b

y2
10

0.
00

%
1

00
.0

0%
10

0.
00

%
10

0.
00

%
1

00
.0

0%
10

0.
00

%
1

00
.0

0
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

0.
00

%

A
_N

1_
M

5_
M

G
H

1
7

10
0.

00
%

1
00

.0
0%

10
0.

00
%

10
0.

00
%

1
00

.0
0%

10
0.

00
%

1
00

.0
0

%
10

0.
00

%
10

0.
00

%
10

0.
00

%
10

0.
00

%
10

0.
00

%
10

0.
00

%
10

0.
00

%
10

0.
00

%
0.

00
%

A
_N

1_
M

6_
La

n
cz

o
s1

0
.0

0%
0

.0
0%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

A
_N

1_
M

6_
La

n
cz

o
s2

40
.0

0%
70

.0
0%

90
.0

0%
10

0.
00

%
70

.0
0%

10
0.

00
%

1
00

.0
0

%
10

0.
00

%
70

.0
0%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

0.
00

%

A
_N

1_
M

7_
H

ah
n

1
90

.0
0%

70
.0

0%
80

.0
0%

60
.0

0%
70

.0
0%

50
.0

0%
90

.0
0

%
10

0.
00

%
10

0.
00

%
90

.0
0%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

0.
00

%

A
_N

1_
M

8_
G

au
ss

3
0

.0
0%

0
.0

0%
0.

00
%

0.
00

%
90

.0
0%

10
0.

00
%

0.
00

%
0.

00
%

90
.0

0%
0.

00
%

50
.0

0%
90

.0
0%

70
.0

0%
10

0.
00

%
10

0.
00

%
0.

00
%

A
_N

1_
M

9_
EN

SO
10

0.
00

%
1

00
.0

0%
10

0.
00

%
10

0.
00

%
1

00
.0

0%
10

0.
00

%
1

00
.0

0
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

0.
00

%

A
_N

2_
M

3_
N

el
so

n
10

0.
00

%
1

00
.0

0%
10

0.
00

%
10

0.
00

%
1

00
.0

0%
10

0.
00

%
1

00
.0

0
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

0.
00

%

H
_

N
1_

M
2_

B
o

xB
O

D
10

0.
00

%
1

00
.0

0%
10

0.
00

%
10

0.
00

%
1

00
.0

0%
10

0.
00

%
1

00
.0

0
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

0.
00

%

H
_

N
1_

M
3_

B
en

n
et

t5
80

.0
0%

0
.0

0%
60

.0
0%

10
0.

00
%

80
.0

0%
10

0.
00

%
80

.0
0

%
80

.0
0%

90
.0

0%
90

.0
0%

10
0.

00
%

90
.0

0%
10

0.
00

%
10

0.
00

%
10

0.
00

%
0.

00
%

H
_

N
1_

M
3_

Ec
ke

rl
e4

90
.0

0%
90

.0
0%

10
0.

00
%

90
.0

0%
1

00
.0

0%
10

0.
00

%
1

00
.0

0
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

0.
00

%

H
_

N
1_

M
3_

M
G

H
1

0
0

.0
0%

1
00

.0
0%

80
.0

0%
70

.0
0%

1
00

.0
0%

10
0.

00
%

1
00

.0
0

%
10

0.
00

%
10

0.
00

%
90

.0
0%

10
0.

00
%

10
0.

00
%

90
.0

0%
10

0.
00

%
10

0.
00

%
0.

00
%

H
_

N
1_

M
3_

R
at

42
10

0.
00

%
1

00
.0

0%
10

0.
00

%
10

0.
00

%
1

00
.0

0%
10

0.
00

%
1

00
.0

0
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

0.
00

%

H
_

N
1_

M
4_

M
G

H
0

9
10

0.
00

%
1

00
.0

0%
10

0.
00

%
10

0.
00

%
1

00
.0

0%
10

0.
00

%
1

00
.0

0
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

70
.0

0%

H
_

N
1_

M
4_

R
at

43
10

0.
00

%
80

.0
0%

10
0.

00
%

10
0.

00
%

1
00

.0
0%

10
0.

00
%

1
00

.0
0

%
10

0.
00

%
10

0.
00

%
10

0.
00

%
10

0.
00

%
10

0.
00

%
10

0.
00

%
10

0.
00

%
10

0.
00

%
0.

00
%

H
_

N
1_

M
7_

Th
u

rb
er

0
.0

0%
0

.0
0%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
0.

00
%

0.
00

%
50

.0
0%

70
.0

0%
0.

00
%

H
_

N
2_

M
3_

M
ey

e
rR

o
th

4
10

0.
00

%
1

00
.0

0%
10

0.
00

%
10

0.
00

%
1

00
.0

0%
10

0.
00

%
1

00
.0

0
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

60
.0

0%

H
_

N
2_

M
3_

M
ey

e
rR

o
th

5
10

0.
00

%
1

00
.0

0%
10

0.
00

%
10

0.
00

%
1

00
.0

0%
10

0.
00

%
1

00
.0

0
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

80
.0

0%

H
_

N
1_

M
4_

M
ili

tk
yM

e
lo

u
n

1
6

90
.0

0%
90

.0
0%

10
0.

00
%

10
0.

00
%

1
00

.0
0%

10
0.

00
%

1
00

.0
0

%
10

0.
00

%
10

0.
00

%
10

0.
00

%
10

0.
00

%
10

0.
00

%
10

0.
00

%
10

0.
00

%
10

0.
00

%
0.

00
%

N
u

m
b

er
 o

f
Su

cc
es

se
s

(>
 5

0%
)

23
25

25
25

26
25

25
26

27
26

27
27

27
28

29
6

N
u

m
b

er
 o

f
Su

cc
es

se
s

(1
00

%
)

19
19

21
22

22
24

23
25

23
23

25
24

24
27

27
0

2
5

6
5

1
2

1
0

2
4

2
0

4
8

4
0

9
6

Su
cc

es
s

R
at

es
 [

Lo
ga

ri
th

m
ic

, M
LA

, S
in

gl
e

P
re

ci
si

o
n

]

T
a
b
le

A
.4
:

S
u

cc
es

s
ra

te
s

of
th

e
P

E
ap

p
ro

ac
h

fo
r

a
se

ri
es

o
f

te
st

p
ro

b
le

m
s.

T
h

is
te

st
ca

se
u

se
d

th
e

lo
g
a
ri

th
m

ic
en

co
d

in
g

a
n

d
th

e
M

o
d

ifi
ed

L
ev

en
b

er
g

A
lg

or
it

h
m

.
E

ac
h

te
st

w
as

re
p

ea
te

d
10

ti
m

es
fo

r
d

iff
er

en
t

p
o
p

u
la

ti
o
n

si
ze

s
a
n

d
g
en

er
a
ti

o
n

li
m

it
s.

T
h

e
va

lu
es

a
re

co
lo

r-
co

d
ed

p
er

ce
n
ti

le
s

fo
r

th
e

n
u

m
b

er
of

su
cc

es
se

s.
T

h
e

ri
gh

tm
os

t
co

lu
m

n
co

n
ta

in
s

th
e

re
su

lt
s

o
f

th
e

co
n
tr

o
l

co
n

fi
g
u

ra
ti

o
n

,
w

h
ic

h
is

eq
u

iv
a
le

n
t

to
g
u
es

si
n

g
a

se
t

o
f

st
a
rt

in
g

va
lu

es
1
3
1
0
7
2

ti
m

es
.

97

Appendix A. Evaluation Results

98

Appendix B

Performance Analysis Results

99

Appendix B. Performance Analysis Results

P
o

p
u

la
ti

o
n

 S
iz

e
1

3
1

0
7

2

N
u

m
b

er
 o

f
G

en
er

at
io

n
5

1
5

2
5

5
1

5
2

5
5

1
5

2
5

5
1

5
2

5
5

1
5

2
5

0

L_
N

1
_M

2_
D

an
W

o
o

d
3

5
m

s
64

 m
s

11
1

 m
s

26
 m

s
72

 m
s

11
7

 m
s

30
 m

s
83

 m
s

13
5

 m
s

37
 m

s
10

1
m

s
16

5
m

s
50

 m
s

14
1

m
s

23
4

m
s

57
 m

s

L_
N

1
_M

2_
M

is
ra

1
a

3
0

m
s

70
 m

s
12

0
 m

s
29

 m
s

77
 m

s
14

5
 m

s
32

 m
s

86
 m

s
14

5
 m

s
39

 m
s

10
6

m
s

18
4

m
s

51
 m

s
14

9
m

s
28

2
m

s
53

 m
s

L_
N

1
_M

2_
M

is
ra

1
b

2
9

m
s

68
 m

s
12

2
 m

s
29

 m
s

78
 m

s
13

9
 m

s
32

 m
s

88
 m

s
14

9
 m

s
39

 m
s

11
3

m
s

19
9

m
s

52
 m

s
16

5
m

s
32

5
m

s
71

 m
s

L_
N

1
_M

3_
C

h
w

ir
u

t1
15

0
m

s
37

7
m

s
68

5
 m

s
15

2
m

s
40

2
m

s
75

2
 m

s
16

6
m

s
44

8
m

s
72

7
 m

s
17

4
m

s
47

1
m

s
76

9
m

s
19

1
m

s
52

6
m

s
89

0
m

s
38

6
m

s

L_
N

1
_M

3_
C

h
w

ir
u

t2
7

0
m

s
17

3
m

s
30

6
 m

s
68

 m
s

19
2

m
s

37
4

 m
s

73
 m

s
19

7
m

s
32

5
 m

s
81

 m
s

22
2

m
s

36
4

m
s

98
 m

s
26

9
m

s
43

0
m

s
16

1
m

s

L_
N

1
_M

6_
La

n
cz

o
s3

23
7

m
s

60
1

m
s

10
59

 m
s

23
2

m
s

62
6

m
s

10
97

 m
s

25
0

m
s

66
9

m
s

10
86

 m
s

25
2

m
s

67
0

m
s

10
94

 m
s

49
3

m
s

13
19

 m
s

21
53

 m
s

16
12

 m
s

L_
N

1
_M

8_
G

au
ss

1
73

5
m

s
1

91
4

m
s

34
30

 m
s

75
0

m
s

18
7

8
m

s
33

84
 m

s
75

6
m

s
20

0
6

m
s

33
08

 m
s

14
68

 m
s

39
82

 m
s

64
02

 m
s

22
43

 m
s

59
35

 m
s

97
78

 m
s

82
61

 m
s

L_
N

1
_M

8_
G

au
ss

2
74

4
m

s
1

96
1

m
s

33
20

 m
s

75
6

m
s

19
6

2
m

s
33

92
 m

s
75

5
m

s
20

2
2

m
s

32
53

 m
s

14
64

 m
s

39
62

 m
s

64
69

 m
s

22
38

 m
s

59
77

 m
s

10
40

8
m

s
82

40
 m

s

A
_N

1_
M

2_
M

is
ra

1c
2

7
m

s
72

 m
s

11
9

 m
s

33
 m

s
77

 m
s

12
6

 m
s

32
 m

s
86

 m
s

13
8

 m
s

42
 m

s
10

5
m

s
16

2
m

s
51

 m
s

14
6

m
s

24
8

m
s

53
 m

s

A
_N

1_
M

2_
M

is
ra

1d
2

8
m

s
73

 m
s

12
6

 m
s

31
 m

s
76

 m
s

13
0

 m
s

31
 m

s
86

 m
s

13
9

 m
s

43
 m

s
10

5
m

s
16

9
m

s
51

 m
s

14
5

m
s

27
2

m
s

62
 m

s

A
_N

1_
M

4_
R

o
sz

m
an

1
9

5
m

s
23

6
m

s
41

8
 m

s
94

 m
s

24
1

m
s

39
7

 m
s

95
 m

s
25

3
m

s
41

1
 m

s
10

5
m

s
27

0
m

s
42

7
m

s
12

3
m

s
33

9
m

s
55

2
m

s
30

1
m

s

A
_N

1_
M

5_
K

ir
b

y2
23

2
m

s
62

1
m

s
10

77
 m

s
24

8
m

s
63

7
m

s
10

65
 m

s
24

9
m

s
66

7
m

s
10

58
 m

s
25

8
m

s
68

2
m

s
10

68
 m

s
28

8
m

s
77

0
m

s
12

69
 m

s
12

97
 m

s

A
_N

1_
M

5_
M

G
H

1
7

15
4

m
s

41
1

m
s

71
5

 m
s

15
7

m
s

41
7

m
s

78
5

 m
s

16
1

m
s

43
3

m
s

68
2

 m
s

17
0

m
s

46
6

m
s

70
6

m
s

19
2

m
s

52
0

m
s

84
5

m
s

78
5

m
s

A
_N

1_
M

6_
La

n
cz

o
s1

25
0

m
s

62
6

m
s

11
19

 m
s

23
8

m
s

63
5

m
s

11
22

 m
s

24
7

m
s

66
9

m
s

10
54

 m
s

25
0

m
s

69
5

m
s

10
60

 m
s

49
2

m
s

13
11

 m
s

21
39

 m
s

16
07

 m
s

A
_N

1_
M

6_
La

n
cz

o
s2

25
3

m
s

62
6

m
s

11
16

 m
s

24
2

m
s

63
5

m
s

11
51

 m
s

25
4

m
s

66
9

m
s

10
84

 m
s

25
2

m
s

69
3

m
s

10
93

 m
s

50
1

m
s

14
64

 m
s

21
37

 m
s

16
19

 m
s

A
_N

1_
M

7_
H

ah
n

1
58

0
m

s
1

44
9

m
s

23
80

 m
s

54
9

m
s

14
6

7
m

s
24

91
 m

s
57

0
m

s
15

0
7

m
s

24
04

 m
s

10
80

 m
s

29
01

 m
s

47
21

 m
s

16
82

 m
s

46
80

 m
s

72
01

 m
s

62
54

 m
s

A
_N

1_
M

8_
G

au
ss

3
73

7
m

s
1

96
1

m
s

32
62

 m
s

75
6

m
s

19
6

9
m

s
34

48
 m

s
74

9
m

s
20

0
7

m
s

32
54

 m
s

14
57

 m
s

39
08

 m
s

63
90

 m
s

22
15

 m
s

63
95

 m
s

96
76

 m
s

82
66

 m
s

A
_N

1_
M

9_
EN

SO
92

5
m

s
2

34
3

m
s

37
71

 m
s

90
2

m
s

23
5

1
m

s
42

33
 m

s
90

4
m

s
24

1
1

m
s

39
62

 m
s

17
56

 m
s

46
86

 m
s

77
47

 m
s

26
51

 m
s

74
65

 m
s

11
61

0
m

s
10

04
7

m
s

A
_N

2_
M

3_
N

el
so

n
10

6
m

s
26

7
m

s
42

9
 m

s
10

2
m

s
27

2
m

s
48

5
 m

s
10

9
m

s
29

8
m

s
48

4
 m

s
12

0
m

s
32

4
m

s
50

1
m

s
12

7
m

s
39

1
m

s
56

9
m

s
25

5
m

s

H
_

N
1_

M
2

_B
o

xB
O

D
3

0
m

s
63

 m
s

10
0

 m
s

26
 m

s
68

 m
s

12
0

 m
s

28
 m

s
78

 m
s

14
0

 m
s

35
 m

s
95

 m
s

14
9

m
s

45
 m

s
14

3
m

s
20

8
m

s
53

 m
s

H
_

N
1_

M
3

_B
en

n
et

t5
12

6
m

s
32

3
m

s
51

1
 m

s
12

3
m

s
32

9
m

s
54

6
 m

s
13

3
m

s
35

7
m

s
58

6
 m

s
14

1
m

s
37

8
m

s
62

5
m

s
14

9
m

s
44

3
m

s
65

4
m

s
30

2
m

s

H
_

N
1_

M
3

_E
ck

er
le

4
6

0
m

s
15

8
m

s
25

0
 m

s
63

 m
s

16
4

m
s

25
9

 m
s

63
 m

s
17

1
m

s
28

2
 m

s
70

 m
s

19
0

m
s

31
4

m
s

83
 m

s
27

0
m

s
37

2
m

s
12

8
m

s

H
_

N
1_

M
3

_M
G

H
1

0
5

3
m

s
13

4
m

s
20

9
 m

s
51

 m
s

13
5

m
s

21
9

 m
s

54
 m

s
14

7
m

s
24

0
 m

s
61

 m
s

16
4

m
s

26
9

m
s

71
 m

s
23

9
m

s
32

4
m

s
11

8
m

s

H
_

N
1_

M
3

_R
at

42
4

7
m

s
12

3
m

s
19

5
 m

s
50

 m
s

12
7

m
s

21
4

 m
s

51
 m

s
13

4
m

s
22

4
 m

s
57

 m
s

15
5

m
s

25
4

m
s

67
 m

s
21

6
m

s
32

1
m

s
99

 m
s

H
_

N
1_

M
4

_M
G

H
0

9
8

5
m

s
21

7
m

s
35

2
 m

s
85

 m
s

22
1

m
s

36
2

 m
s

86
 m

s
23

2
m

s
38

1
 m

s
93

 m
s

24
9

m
s

40
8

m
s

10
4

m
s

33
1

m
s

46
7

m
s

26
7

m
s

H
_

N
1_

M
4

_R
at

43
8

8
m

s
22

7
m

s
37

2
 m

s
88

 m
s

23
1

m
s

39
7

 m
s

90
 m

s
24

2
m

s
40

0
 m

s
96

 m
s

25
9

m
s

42
5

m
s

10
9

m
s

35
8

m
s

48
3

m
s

28
0

m
s

H
_

N
1_

M
7

_T
h

u
rb

er
36

3
m

s
97

0
m

s
16

88
 m

s
37

2
m

s
97

7
m

s
15

91
 m

s
37

7
m

s
10

0
0

m
s

16
36

 m
s

72
6

m
s

19
30

 m
s

31
52

 m
s

11
43

 m
s

33
45

 m
s

49
67

 m
s

40
62

 m
s

H
_

N
2_

M
3

_M
ey

e
rR

o
th

4
5

4
m

s
14

1
m

s
25

6
 m

s
54

 m
s

14
5

m
s

23
7

 m
s

58
 m

s
15

5
m

s
25

4
 m

s
64

 m
s

17
3

m
s

28
4

m
s

79
 m

s
26

5
m

s
33

8
m

s
12

7
m

s

H
_

N
2_

M
3

_M
ey

e
rR

o
th

5
5

4
m

s
14

1
m

s
25

2
 m

s
56

 m
s

14
7

m
s

23
7

 m
s

57
 m

s
15

5
m

s
25

5
 m

s
64

 m
s

17
4

m
s

28
5

m
s

78
 m

s
27

3
m

s
33

9
m

s
12

8
m

s

H
_

N
1_

M
4

_M
ili

tk
yM

e
lo

u
n

1
6

9
0

m
s

22
2

m
s

36
8

 m
s

86
 m

s
22

9
m

s
37

3
 m

s
89

 m
s

23
7

m
s

39
3

 m
s

94
 m

s
25

7
m

s
42

9
m

s
10

8
m

s
31

9
m

s
47

8
m

s
26

8
m

s

2
5

6
5

1
2

1
0

2
4

2
0

4
8

4
0

9
6

M
ea

n
 R

u
n

n
in

g
Ti

m
es

 [
D

is
cr

et
iz

ed
, L

M
A

, S
in

gl
e

P
re

ci
si

o
n

]

T
a
b
le

B
.1
:

M
ea

n
ru

n
n

in
g

ti
m

es
of

th
e

P
E

ap
p

ro
a
ch

fo
r

a
se

ri
es

o
f

te
st

p
ro

b
le

m
s.

T
h

is
te

st
ca

se
u

se
d

th
e

d
is

cr
et

iz
ed

en
co

d
in

g
a
n

d
th

e
L

ev
en

b
er

g
-

M
ar

q
u

ar
d

t
A

lg
or

it
h

m
.

E
ac

h
te

st
w

as
re

p
ea

te
d

10
ti

m
es

fo
r

d
iff

er
en

t
p

o
p

u
la

ti
o
n

si
ze

s
a
n

d
g
en

er
a
ti

o
n

li
m

it
s.

T
h

e
va

lu
es

a
re

th
e

m
ea

n
ru

n
n

in
g

ti
m

es
in

m
il

li
se

co
n

d
s.

T
h

ey
ar

e
co

lo
r-

co
d

ed
fr

om
gr

ee
n

(0
m

s)
to

re
d

(3
0
0
0
0
0

m
s)

.
T

h
e

ri
g
h
tm

o
st

co
lu

m
n

co
n
ta

in
s

th
e

re
su

lt
s

o
f

th
e

co
n
tr

o
l

co
n

fi
g
u

ra
ti

o
n

,
w

h
ic

h
is

eq
u

iv
al

en
t

to
gu

es
si

n
g

a
se

t
of

st
ar

ti
n

g
va

lu
es

1
3
1
0
7
2

ti
m

es
.

100

Appendix B. Performance Analysis Results

P
o

p
u

la
ti

o
n

 S
iz

e
1

3
1

0
7

2

N
u

m
b

er
 o

f
G

en
er

at
io

n
5

1
5

2
5

5
1

5
2

5
5

1
5

2
5

5
1

5
2

5
5

1
5

2
5

0

L_
N

1_
M

2_
D

an
W

o
o

d
2

4
m

s
62

 m
s

13
2

 m
s

25
 m

s
67

 m
s

11
7

 m
s

29
 m

s
93

 m
s

14
0

 m
s

38
 m

s
94

 m
s

16
4

m
s

51
 m

s
14

2
m

s
21

4
m

s
68

 m
s

L_
N

1_
M

2_
M

is
ra

1
a

2
7

m
s

71
 m

s
13

3
 m

s
27

 m
s

75
 m

s
13

3
 m

s
31

 m
s

99
 m

s
14

6
 m

s
38

 m
s

10
2

m
s

17
9

m
s

50
 m

s
15

5
m

s
23

7
m

s
62

 m
s

L_
N

1_
M

2_
M

is
ra

1
b

2
7

m
s

69
 m

s
13

2
 m

s
28

 m
s

74
 m

s
13

9
 m

s
32

 m
s

99
 m

s
15

4
 m

s
37

 m
s

10
1

m
s

18
3

m
s

49
 m

s
17

3
m

s
24

2
m

s
63

 m
s

L_
N

1_
M

3_
C

h
w

ir
u

t1
20

3
m

s
54

9
 m

s
93

5
 m

s
2

03
 m

s
54

2
m

s
93

4
 m

s
25

9
m

s
74

2
 m

s
11

94
 m

s
27

8
m

s
73

3
m

s
12

86
 m

s
30

2
m

s
85

8
m

s
13

06
 m

s
73

9
m

s

L_
N

1_
M

3_
C

h
w

ir
u

t2
8

1
m

s
21

4
 m

s
36

5
 m

s
80

 m
s

21
3

m
s

36
9

 m
s

85
 m

s
23

4
 m

s
40

6
 m

s
91

 m
s

24
3

m
s

39
9

m
s

12
0

m
s

34
8

m
s

53
2

m
s

24
5

m
s

L_
N

1_
M

6_
La

n
cz

o
s3

25
4

m
s

70
0

 m
s

11
91

 m
s

2
53

 m
s

67
8

m
s

11
71

 m
s

27
9

m
s

72
7

 m
s

11
50

 m
s

26
9

m
s

71
9

m
s

12
27

 m
s

53
3

m
s

14
91

 m
s

23
47

 m
s

18
06

 m
s

L_
N

1_
M

8_
G

au
ss

1
17

2
1

m
s

4
62

0
 m

s
76

49
 m

s
18

25
 m

s
48

73
 m

s
81

14
 m

s
1

91
1

m
s

51
31

 m
s

82
52

 m
s

33
62

 m
s

87
20

 m
s

14
63

7
m

s
56

24
 m

s
15

11
3

m
s

24
49

1
m

s
21

59
9

m
s

L_
N

1_
M

8_
G

au
ss

2
17

2
0

m
s

4
63

1
 m

s
76

58
 m

s
18

49
 m

s
48

73
 m

s
81

04
 m

s
1

92
5

m
s

50
30

 m
s

82
59

 m
s

33
83

 m
s

90
34

 m
s

14
39

8
m

s
56

40
 m

s
14

95
3

m
s

24
50

3
m

s
21

62
7

m
s

A
_N

1_
M

2_
M

is
ra

1c
3

0
m

s
72

 m
s

12
7

 m
s

34
 m

s
78

 m
s

13
2

 m
s

35
 m

s
88

 m
s

15
0

 m
s

41
 m

s
11

0
m

s
16

8
m

s
53

 m
s

15
0

m
s

23
4

m
s

71
 m

s

A
_N

1_
M

2_
M

is
ra

1d
2

6
m

s
68

 m
s

12
0

 m
s

31
 m

s
72

 m
s

12
9

 m
s

33
 m

s
87

 m
s

14
8

 m
s

38
 m

s
10

7
m

s
16

1
m

s
49

 m
s

15
4

m
s

26
6

m
s

63
 m

s

A
_N

1_
M

4_
R

o
sz

m
an

1
9

5
m

s
25

3
 m

s
44

7
 m

s
1

10
 m

s
25

7
m

s
44

9
 m

s
10

2
m

s
26

9
 m

s
46

6
 m

s
10

8
m

s
30

6
m

s
46

3
m

s
13

1
m

s
39

0
m

s
64

6
m

s
40

0
m

s

A
_N

1_
M

5_
K

ir
b

y2
37

6
m

s
1

03
5

 m
s

17
38

 m
s

4
49

 m
s

10
16

 m
s

17
36

 m
s

48
7

m
s

13
05

 m
s

21
93

 m
s

50
6

m
s

14
05

 m
s

21
55

 m
s

55
1

m
s

15
51

 m
s

25
25

 m
s

26
87

 m
s

A
_N

1_
M

5_
M

G
H

1
7

17
1

m
s

45
6

 m
s

79
7

 m
s

2
11

 m
s

45
9

m
s

80
0

 m
s

18
0

m
s

48
1

 m
s

82
2

 m
s

18
5

m
s

52
3

m
s

79
4

m
s

22
9

m
s

65
9

m
s

10
53

 m
s

10
10

 m
s

A
_N

1_
M

6_
La

n
cz

o
s1

25
0

m
s

67
8

 m
s

11
63

 m
s

3
06

 m
s

67
3

m
s

11
67

 m
s

26
1

m
s

70
9

 m
s

11
87

 m
s

26
9

m
s

75
3

m
s

11
49

 m
s

53
1

m
s

14
83

 m
s

24
83

 m
s

18
16

 m
s

A
_N

1_
M

6_
La

n
cz

o
s2

25
1

m
s

66
9

 m
s

11
57

 m
s

2
98

 m
s

67
3

m
s

11
67

 m
s

26
1

m
s

69
0

 m
s

11
89

 m
s

26
8

m
s

75
2

m
s

11
52

 m
s

53
1

m
s

14
82

 m
s

25
67

 m
s

18
21

 m
s

A
_N

1_
M

7_
H

ah
n

1
10

4
5

m
s

2
77

7
 m

s
46

40
 m

s
14

19
 m

s
35

69
 m

s
59

15
 m

s
1

40
8

m
s

36
97

 m
s

60
46

 m
s

24
53

 m
s

65
61

 m
s

10
29

9
m

s
39

33
 m

s
10

51
5

m
s

17
32

6
m

s
15

78
0

m
s

A
_N

1_
M

8_
G

au
ss

3
17

1
7

m
s

4
72

4
 m

s
77

20
 m

s
21

28
 m

s
48

68
 m

s
80

87
 m

s
1

92
1

m
s

50
82

 m
s

82
63

 m
s

33
67

 m
s

90
71

 m
s

13
93

9
m

s
56

48
 m

s
15

10
8

m
s

24
49

4
m

s
21

57
3

m
s

A
_N

1_
M

9_
EN

SO
16

9
3

m
s

4
51

6
 m

s
77

18
 m

s
24

19
 m

s
55

44
 m

s
92

28
 m

s
2

22
3

m
s

57
94

 m
s

96
45

 m
s

39
19

 m
s

10
41

2
m

s
16

30
1

m
s

61
24

 m
s

16
77

9
m

s
27

07
7

m
s

24
98

1
m

s

A
_N

2_
M

3_
N

el
so

n
13

3
m

s
35

1
 m

s
61

1
 m

s
1

66
 m

s
36

2
m

s
62

0
 m

s
15

2
m

s
40

0
 m

s
69

8
 m

s
17

8
m

s
50

0
m

s
76

2
m

s
19

9
m

s
57

0
m

s
93

4
m

s
49

8
m

s

H
_

N
1_

M
2

_B
o

xB
O

D
2

2
m

s
59

 m
s

10
7

 m
s

32
 m

s
63

 m
s

11
3

 m
s

27
 m

s
80

 m
s

13
0

 m
s

32
 m

s
97

 m
s

14
6

m
s

46
 m

s
13

8
m

s
23

3
m

s
48

 m
s

H
_

N
1_

M
3

_B
en

n
et

t5
15

7
m

s
41

7
 m

s
72

4
 m

s
1

99
 m

s
42

2
m

s
73

5
 m

s
19

4
m

s
51

3
 m

s
88

8
 m

s
21

1
m

s
59

4
m

s
90

5
m

s
23

2
m

s
66

8
m

s
11

13
 m

s
61

5
m

s

H
_

N
1_

M
3

_E
ck

er
le

4
6

4
m

s
17

2
 m

s
29

9
 m

s
86

 m
s

17
6

m
s

30
6

 m
s

70
 m

s
18

7
 m

s
32

7
 m

s
76

 m
s

21
7

m
s

33
1

m
s

98
 m

s
28

4
m

s
48

7
m

s
17

9
m

s

H
_

N
1_

M
3

_M
G

H
1

0
4

9
m

s
13

1
 m

s
22

9
 m

s
67

 m
s

13
6

m
s

23
7

 m
s

54
 m

s
14

6
 m

s
26

2
 m

s
60

 m
s

17
7

m
s

26
6

m
s

74
 m

s
21

7
m

s
36

4
m

s
13

3
m

s

H
_

N
1_

M
3

_R
at

42
4

4
m

s
11

8
 m

s
20

7
 m

s
59

 m
s

12
1

m
s

21
5

 m
s

49
 m

s
13

1
 m

s
23

0
 m

s
55

 m
s

16
1

m
s

24
2

m
s

68
 m

s
20

3
m

s
36

6
m

s
95

 m
s

H
_

N
1_

M
4

_M
G

H
0

9
8

1
m

s
21

4
 m

s
37

1
 m

s
1

02
 m

s
21

8
m

s
37

9
 m

s
89

 m
s

22
9

 m
s

40
2

 m
s

97
 m

s
26

1
m

s
39

8
m

s
11

3
m

s
31

4
m

s
52

6
m

s
27

2
m

s

H
_

N
1_

M
4

_R
at

43
8

6
m

s
23

0
 m

s
40

1
 m

s
1

14
 m

s
23

4
m

s
40

8
 m

s
92

 m
s

24
9

 m
s

43
7

 m
s

10
0

m
s

27
8

m
s

42
6

m
s

11
3

m
s

33
0

m
s

56
0

m
s

31
0

m
s

H
_

N
1_

M
7

_T
h

u
rb

er
40

9
m

s
1

09
2

 m
s

18
80

 m
s

5
07

 m
s

10
96

 m
s

18
88

 m
s

42
6

m
s

11
28

 m
s

19
58

 m
s

86
9

m
s

23
19

 m
s

36
30

 m
s

13
64

 m
s

35
73

 m
s

59
09

 m
s

48
26

 m
s

H
_

N
2_

M
3

_M
ey

e
rR

o
th

4
5

5
m

s
14

5
 m

s
25

5
 m

s
70

 m
s

16
7

m
s

28
3

 m
s

62
 m

s
16

1
 m

s
27

9
 m

s
65

 m
s

19
1

m
s

28
7

m
s

78
 m

s
22

1
m

s
39

0
m

s
15

1
m

s

H
_

N
2_

M
3

_M
ey

e
rR

o
th

5
5

4
m

s
14

5
 m

s
25

5
 m

s
69

 m
s

15
0

m
s

28
3

 m
s

59
 m

s
16

3
 m

s
27

9
 m

s
66

 m
s

19
1

m
s

28
7

m
s

78
 m

s
24

5
m

s
38

0
m

s
14

9
m

s

H
_

N
1_

M
4

_M
ili

tk
yM

e
lo

u
n

16
8

6
m

s
23

0
 m

s
40

0
 m

s
92

 m
s

26
3

m
s

42
9

 m
s

95
 m

s
24

7
 m

s
42

7
 m

s
98

 m
s

28
1

m
s

42
6

m
s

11
7

m
s

34
2

m
s

54
2

m
s

31
2

m
s

2
5

6
5

1
2

1
0

2
4

2
0

4
8

4
0

9
6

M
ea

n
 R

u
n

n
in

g
Ti

m
es

 [
D

is
cr

et
iz

ed
, M

LA
, S

in
gl

e
P

re
ci

si
o

n
]

T
a
b
le

B
.2
:

M
ea

n
ru

n
n

in
g

ti
m

es
of

th
e

P
E

ap
p

ro
a
ch

fo
r

a
se

ri
es

o
f

te
st

p
ro

b
le

m
s.

T
h

is
te

st
ca

se
u

se
d

th
e

d
is

cr
et

iz
ed

en
co

d
in

g
a
n

d
th

e
M

o
d

ifi
ed

L
ev

en
b

er
g

A
lg

or
it

h
m

.
E

ac
h

te
st

w
as

re
p

ea
te

d
10

ti
m

es
fo

r
d

iff
er

en
t

p
o
p

u
la

ti
o
n

si
ze

s
a
n

d
g
en

er
a
ti

o
n

li
m

it
s.

T
h

e
va

lu
es

a
re

th
e

m
ea

n
ru

n
n

in
g

ti
m

es
in

m
il

li
se

co
n

d
s.

T
h

ey
ar

e
co

lo
r-

co
d

ed
fr

om
gr

ee
n

(0
m

s)
to

re
d

(3
0
0
0
0
0

m
s)

.
T

h
e

ri
g
h
tm

o
st

co
lu

m
n

co
n
ta

in
s

th
e

re
su

lt
s

o
f

th
e

co
n
tr

o
l

co
n

fi
g
u

ra
ti

o
n

,
w

h
ic

h
is

eq
u

iv
al

en
t

to
gu

es
si

n
g

a
se

t
of

st
ar

ti
n

g
va

lu
es

1
3
1
0
7
2

ti
m

es
.

101

Appendix B. Performance Analysis Results

P
o

p
u

la
ti

o
n

 S
iz

e
1

3
1

0
7

2

N
u

m
b

er
 o

f
G

en
er

at
io

n
5

1
5

2
5

5
1

5
2

5
5

1
5

2
5

5
1

5
2

5
5

1
5

2
5

0

L_
N

1_
M

2_
D

an
W

o
o

d
2

6
m

s
64

 m
s

10
3

 m
s

25
 m

s
68

 m
s

11
0

 m
s

28
 m

s
76

 m
s

12
5

 m
s

35
 m

s
95

 m
s

15
4

m
s

47
 m

s
13

2
m

s
21

5
m

s
72

 m
s

L_
N

1_
M

2_
M

is
ra

1
a

2
9

m
s

69
 m

s
11

1
 m

s
27

 m
s

72
 m

s
11

9
 m

s
30

 m
s

83
 m

s
13

5
 m

s
36

 m
s

99
 m

s
16

4
m

s
50

 m
s

13
6

m
s

23
9

m
s

57
 m

s

L_
N

1_
M

2_
M

is
ra

1
b

2
9

m
s

69
 m

s
11

2
 m

s
28

 m
s

73
 m

s
12

0
 m

s
32

 m
s

81
 m

s
13

5
 m

s
37

 m
s

10
2

m
s

16
4

m
s

49
 m

s
14

6
m

s
24

3
m

s
67

 m
s

L_
N

1_
M

3_
C

h
w

ir
u

t1
14

7
m

s
37

9
 m

s
61

4
 m

s
1

43
 m

s
38

1
m

s
62

2
 m

s
15

8
m

s
42

1
 m

s
68

5
 m

s
16

6
m

s
44

1
m

s
71

9
m

s
18

1
m

s
49

2
m

s
80

4
m

s
40

5
m

s

L_
N

1_
M

3_
C

h
w

ir
u

t2
6

5
m

s
17

5
 m

s
28

3
 m

s
67

 m
s

17
8

m
s

29
0

 m
s

70
 m

s
18

8
 m

s
30

7
 m

s
79

 m
s

21
5

m
s

34
5

m
s

95
 m

s
25

8
m

s
41

9
m

s
16

3
m

s

L_
N

1_
M

6_
La

n
cz

o
s3

23
2

m
s

60
3

 m
s

97
9

 m
s

2
28

 m
s

60
5

m
s

98
5

 m
s

23
7

m
s

63
4

 m
s

10
30

 m
s

24
0

m
s

64
2

m
s

10
42

 m
s

47
3

m
s

12
60

 m
s

20
52

 m
s

15
71

 m
s

L_
N

1_
M

8_
G

au
ss

1
71

6
m

s
1

88
3

 m
s

30
52

 m
s

7
05

 m
s

18
77

 m
s

30
61

 m
s

72
0

m
s

19
18

 m
s

31
16

 m
s

14
62

 m
s

39
36

 m
s

64
08

 m
s

22
23

 m
s

59
61

 m
s

97
19

 m
s

82
23

 m
s

L_
N

1_
M

8_
G

au
ss

2
70

8
m

s
1

87
0

 m
s

30
49

 m
s

7
04

 m
s

18
82

 m
s

30
60

 m
s

72
0

m
s

19
18

 m
s

31
14

 m
s

14
61

 m
s

39
39

 m
s

64
05

 m
s

22
30

 m
s

59
60

 m
s

97
11

 m
s

82
11

 m
s

A
_N

1_
M

2_
M

is
ra

1c
2

8
m

s
69

 m
s

11
1

 m
s

27
 m

s
72

 m
s

11
8

 m
s

30
 m

s
82

 m
s

13
3

 m
s

36
 m

s
99

 m
s

16
2

m
s

49
 m

s
13

5
m

s
22

1
m

s
57

 m
s

A
_N

1_
M

2_
M

is
ra

1d
2

8
m

s
68

 m
s

11
1

 m
s

27
 m

s
72

 m
s

11
8

 m
s

30
 m

s
83

 m
s

13
3

 m
s

36
 m

s
99

 m
s

16
2

m
s

49
 m

s
13

5
m

s
23

1
m

s
62

 m
s

A
_N

1_
M

4_
R

o
sz

m
an

1
9

1
m

s
22

5
 m

s
36

7
 m

s
86

 m
s

23
0

m
s

37
3

 m
s

90
 m

s
24

2
 m

s
39

1
 m

s
96

 m
s

25
7

m
s

42
1

m
s

11
6

m
s

31
6

m
s

51
6

m
s

30
6

m
s

A
_N

1_
M

5_
K

ir
b

y2
23

4
m

s
59

2
 m

s
96

4
 m

s
2

26
 m

s
60

3
m

s
97

6
 m

s
23

7
m

s
63

5
 m

s
10

25
 m

s
24

4
m

s
65

4
m

s
10

64
 m

s
27

3
m

s
73

0
m

s
11

91
 m

s
13

04
 m

s

A
_N

1_
M

5_
M

G
H

1
7

15
7

m
s

39
3

 m
s

63
8

 m
s

1
48

 m
s

39
6

m
s

64
3

 m
s

15
3

m
s

41
2

 m
s

66
6

 m
s

16
0

m
s

43
0

m
s

71
0

m
s

18
2

m
s

49
2

m
s

80
5

m
s

79
5

m
s

A
_N

1_
M

6_
La

n
cz

o
s1

22
5

m
s

59
9

 m
s

97
3

 m
s

2
26

 m
s

60
3

m
s

98
0

 m
s

23
7

m
s

63
4

 m
s

10
24

 m
s

23
8

m
s

63
8

m
s

10
38

 m
s

47
0

m
s

12
52

 m
s

20
40

 m
s

15
96

 m
s

A
_N

1_
M

6_
La

n
cz

o
s2

22
5

m
s

59
9

 m
s

97
3

 m
s

2
26

 m
s

60
4

m
s

98
1

 m
s

23
7

m
s

63
3

 m
s

10
24

 m
s

23
8

m
s

63
8

m
s

10
38

 m
s

46
9

m
s

12
51

 m
s

20
42

 m
s

15
88

 m
s

A
_N

1_
M

7_
H

ah
n

1
53

3
m

s
1

39
6

 m
s

22
70

 m
s

5
30

 m
s

14
15

 m
s

22
95

 m
s

54
7

m
s

14
59

 m
s

23
55

 m
s

10
99

 m
s

30
09

 m
s

48
40

 m
s

17
06

 m
s

45
74

 m
s

74
38

 m
s

62
63

 m
s

A
_N

1_
M

8_
G

au
ss

3
70

2
m

s
1

87
4

 m
s

30
51

 m
s

7
03

 m
s

18
88

 m
s

30
59

 m
s

71
9

m
s

19
17

 m
s

31
14

 m
s

14
57

 m
s

39
44

 m
s

63
88

 m
s

22
29

 m
s

59
45

 m
s

97
17

 m
s

82
24

 m
s

A
_N

1_
M

9_
EN

SO
87

5
m

s
2

29
2

 m
s

37
55

 m
s

8
80

 m
s

23
49

 m
s

38
67

 m
s

90
4

m
s

24
07

 m
s

39
17

 m
s

17
55

 m
s

47
09

 m
s

76
80

 m
s

26
67

 m
s

71
11

 m
s

11
56

6
m

s
99

51
 m

s

A
_N

2_
M

3_
N

el
so

n
9

9
m

s
26

0
 m

s
41

5
 m

s
99

 m
s

26
0

m
s

42
4

 m
s

10
7

m
s

28
1

 m
s

45
9

 m
s

11
6

m
s

30
7

m
s

50
0

m
s

12
9

m
s

35
1

m
s

57
1

m
s

24
9

m
s

H
_

N
1_

M
2

_B
o

xB
O

D
2

2
m

s
61

 m
s

98
 m

s
24

 m
s

63
 m

s
10

5
 m

s
27

 m
s

73
 m

s
12

0
 m

s
32

 m
s

91
 m

s
14

8
m

s
45

 m
s

12
5

m
s

20
7

m
s

50
 m

s

H
_

N
1_

M
3

_B
en

n
et

t5
11

8
m

s
30

8
 m

s
49

6
 m

s
1

16
 m

s
30

9
m

s
50

4
 m

s
12

7
m

s
33

9
 m

s
55

2
 m

s
13

4
m

s
35

9
m

s
58

5
m

s
15

0
m

s
40

3
m

s
65

7
m

s
32

9
m

s

H
_

N
1_

M
3

_E
ck

er
le

4
6

1
m

s
15

1
 m

s
24

5
 m

s
58

 m
s

15
5

m
s

25
2

 m
s

62
 m

s
16

4
 m

s
26

8
 m

s
68

 m
s

18
6

m
s

29
7

m
s

83
 m

s
22

8
m

s
37

2
m

s
13

3
m

s

H
_

N
1_

M
3

_M
G

H
1

0
5

0
m

s
12

7
 m

s
20

5
 m

s
48

 m
s

13
0

m
s

21
1

 m
s

52
 m

s
14

0
 m

s
22

8
 m

s
57

 m
s

15
8

m
s

25
7

m
s

72
 m

s
19

6
m

s
32

0
m

s
11

7
m

s

H
_

N
1_

M
3

_R
at

42
4

6
m

s
11

8
 m

s
18

9
 m

s
45

 m
s

12
0

m
s

19
6

 m
s

48
 m

s
13

1
 m

s
21

2
 m

s
54

 m
s

14
8

m
s

24
2

m
s

67
 m

s
18

7
m

s
30

4
m

s
99

 m
s

H
_

N
1_

M
4

_M
G

H
0

9
8

3
m

s
20

8
 m

s
33

5
 m

s
78

 m
s

21
0

m
s

34
2

 m
s

83
 m

s
22

1
 m

s
36

1
 m

s
88

 m
s

23
8

m
s

38
7

m
s

10
5

m
s

28
5

m
s

46
3

m
s

26
8

m
s

H
_

N
1_

M
4

_R
at

43
8

7
m

s
21

8
 m

s
35

2
 m

s
83

 m
s

22
2

m
s

35
8

 m
s

86
 m

s
23

0
 m

s
37

8
 m

s
92

 m
s

24
8

m
s

40
5

m
s

10
9

m
s

29
8

m
s

48
5

m
s

27
4

m
s

H
_

N
1_

M
7

_T
h

u
rb

er
35

4
m

s
93

3
 m

s
15

06
 m

s
3

52
 m

s
93

4
m

s
15

19
 m

s
36

1
m

s
96

1
 m

s
15

61
 m

s
69

5
m

s
18

46
 m

s
30

10
 m

s
11

75
 m

s
31

53
 m

s
51

07
 m

s
40

58
 m

s

H
_

N
2_

M
3

_M
ey

e
rR

o
th

4
5

3
m

s
13

5
 m

s
21

9
 m

s
52

 m
s

13
9

m
s

22
5

 m
s

55
 m

s
14

7
 m

s
24

0
 m

s
61

 m
s

16
6

m
s

27
0

m
s

76
 m

s
20

8
m

s
34

4
m

s
12

0
m

s

H
_

N
2_

M
3

_M
ey

e
rR

o
th

5
5

0
m

s
13

5
 m

s
21

9
 m

s
52

 m
s

13
9

m
s

22
5

 m
s

55
 m

s
14

7
 m

s
24

0
 m

s
61

 m
s

16
5

m
s

27
1

m
s

75
 m

s
20

7
m

s
34

0
m

s
11

9
m

s

H
_

N
1_

M
4

_M
ili

tk
yM

e
lo

u
n

16
8

5
m

s
21

4
 m

s
34

7
 m

s
82

 m
s

21
8

m
s

35
3

 m
s

85
 m

s
22

9
 m

s
37

2
 m

s
92

 m
s

24
5

m
s

39
9

m
s

10
7

m
s

29
3

m
s

47
8

m
s

26
8

m
s

2
5

6
5

1
2

1
0

2
4

2
0

4
8

4
0

9
6

M
ea

n
 R

u
n

n
in

g
Ti

m
es

 [
Lo

ga
ri

th
m

ic
, L

M
A

, S
in

gl
e

P
re

ci
si

o
n

]

T
a
b
le

B
.3
:

M
ea

n
ru

n
n
in

g
ti

m
es

of
th

e
P

E
ap

p
ro

a
ch

fo
r

a
se

ri
es

o
f

te
st

p
ro

b
le

m
s.

T
h

is
te

st
ca

se
u

se
d

th
e

lo
g
a
ri

th
m

ic
en

co
d

in
g

a
n

d
th

e
L

ev
en

b
er

g
-

M
ar

q
u

ar
d

t
A

lg
or

it
h

m
.

E
ac

h
te

st
w

as
re

p
ea

te
d

10
ti

m
es

fo
r

d
iff

er
en

t
p

o
p

u
la

ti
o
n

si
ze

s
a
n

d
g
en

er
a
ti

o
n

li
m

it
s.

T
h

e
va

lu
es

a
re

th
e

m
ea

n
ru

n
n

in
g

ti
m

es
in

m
il

li
se

co
n

d
s.

T
h

ey
ar

e
co

lo
r-

co
d

ed
fr

om
gr

ee
n

(0
m

s)
to

re
d

(3
0
0
0
0
0

m
s)

.
T

h
e

ri
g
h
tm

o
st

co
lu

m
n

co
n
ta

in
s

th
e

re
su

lt
s

o
f

th
e

co
n
tr

o
l

co
n

fi
g
u

ra
ti

o
n

,
w

h
ic

h
is

eq
u

iv
al

en
t

to
gu

es
si

n
g

a
se

t
of

st
ar

ti
n

g
va

lu
es

1
3
1
0
7
2

ti
m

es
.

102

Appendix B. Performance Analysis Results

P
o

p
u

la
ti

o
n

 S
iz

e
1

3
1

0
7

2

N
u

m
b

er
 o

f
G

en
er

at
io

n
5

1
5

2
5

5
1

5
2

5
5

1
5

2
5

5
1

5
2

5
5

1
5

2
5

0

L_
N

1_
M

2_
D

an
W

o
o

d
3

5
m

s
62

 m
s

99
 m

s
25

 m
s

66
 m

s
10

6
 m

s
28

 m
s

75
 m

s
12

2
 m

s
33

 m
s

93
 m

s
15

0
m

s
47

 m
s

12
9

m
s

20
9

m
s

64
 m

s

L_
N

1_
M

2_
M

is
ra

1
a

3
0

m
s

70
 m

s
11

4
 m

s
29

 m
s

75
 m

s
12

2
 m

s
32

 m
s

84
 m

s
13

6
 m

s
37

 m
s

10
1

m
s

16
3

m
s

51
 m

s
13

9
m

s
23

6
m

s
71

 m
s

L_
N

1_
M

2_
M

is
ra

1
b

2
8

m
s

70
 m

s
11

3
 m

s
28

 m
s

74
 m

s
12

0
 m

s
31

 m
s

83
 m

s
13

5
 m

s
36

 m
s

10
0

m
s

16
3

m
s

50
 m

s
14

4
m

s
23

9
m

s
63

 m
s

L_
N

1_
M

3_
C

h
w

ir
u

t1
20

5
m

s
53

4
 m

s
86

9
 m

s
2

01
 m

s
54

0
m

s
87

7
 m

s
25

4
m

s
68

1
 m

s
11

00
 m

s
27

3
m

s
73

0
m

s
11

82
 m

s
29

8
m

s
80

0
m

s
13

04
 m

s
72

0
m

s

L_
N

1_
M

3_
C

h
w

ir
u

t2
7

8
m

s
20

8
 m

s
33

8
 m

s
78

 m
s

21
3

m
s

34
7

 m
s

85
 m

s
22

4
 m

s
36

3
 m

s
92

 m
s

24
3

m
s

39
8

m
s

11
9

m
s

32
1

m
s

52
5

m
s

24
5

m
s

L_
N

1_
M

6_
La

n
cz

o
s3

25
6

m
s

67
1

 m
s

10
91

 m
s

2
51

 m
s

67
5

m
s

11
01

 m
s

26
0

m
s

69
4

 m
s

11
21

 m
s

26
5

m
s

71
0

m
s

11
51

 m
s

52
2

m
s

14
00

 m
s

22
69

 m
s

17
87

 m
s

L_
N

1_
M

8_
G

au
ss

1
17

0
8

m
s

4
60

5
 m

s
74

74
 m

s
18

24
 m

s
48

71
 m

s
79

05
 m

s
1

86
7

m
s

50
15

 m
s

81
30

 m
s

32
45

 m
s

86
72

 m
s

14
08

0
m

s
54

31
 m

s
14

48
0

m
s

23
47

2
m

s
21

42
0

m
s

L_
N

1_
M

8_
G

au
ss

2
17

1
0

m
s

4
60

8
 m

s
74

79
 m

s
18

23
 m

s
49

02
 m

s
79

19
 m

s
1

87
8

m
s

50
20

 m
s

81
38

 m
s

32
56

 m
s

86
56

 m
s

14
07

8
m

s
54

18
 m

s
14

47
4

m
s

23
48

2
m

s
21

41
5

m
s

A
_N

1_
M

2_
M

is
ra

1c
3

4
m

s
73

 m
s

11
7

 m
s

31
 m

s
77

 m
s

12
4

 m
s

33
 m

s
87

 m
s

14
0

 m
s

40
 m

s
10

4
m

s
16

8
m

s
53

 m
s

14
0

m
s

22
4

m
s

70
 m

s

A
_N

1_
M

2_
M

is
ra

1d
2

9
m

s
68

 m
s

11
0

 m
s

26
 m

s
72

 m
s

11
7

 m
s

30
 m

s
81

 m
s

13
2

 m
s

36
 m

s
98

 m
s

16
0

m
s

48
 m

s
13

5
m

s
22

7
m

s
63

 m
s

A
_N

1_
M

4_
R

o
sz

m
an

1
10

0
m

s
25

2
 m

s
41

1
 m

s
96

 m
s

25
8

m
s

41
7

 m
s

10
0

m
s

26
9

 m
s

43
6

 m
s

10
6

m
s

28
5

m
s

46
3

m
s

13
1

m
s

35
2

m
s

57
5

m
s

40
9

m
s

A
_N

1_
M

5_
K

ir
b

y2
38

4
m

s
1

00
1

 m
s

16
33

 m
s

3
78

 m
s

10
10

 m
s

16
37

 m
s

48
2

m
s

12
75

 m
s

20
69

 m
s

49
9

m
s

13
25

 m
s

21
55

 m
s

54
4

m
s

14
52

 m
s

23
53

 m
s

26
68

 m
s

A
_N

1_
M

5_
M

G
H

1
7

17
8

m
s

45
4

 m
s

73
9

 m
s

1
71

 m
s

45
9

m
s

74
5

 m
s

17
8

m
s

47
2

 m
s

76
8

 m
s

18
2

m
s

48
7

m
s

79
3

m
s

22
5

m
s

60
5

m
s

98
4

m
s

10
20

 m
s

A
_N

1_
M

6_
La

n
cz

o
s1

24
9

m
s

66
7

 m
s

10
86

 m
s

2
53

 m
s

67
9

m
s

10
93

 m
s

25
8

m
s

68
4

 m
s

11
16

 m
s

26
4

m
s

70
4

m
s

11
46

 m
s

52
5

m
s

13
97

 m
s

22
73

 m
s

17
86

 m
s

A
_N

1_
M

6_
La

n
cz

o
s2

24
9

m
s

66
7

 m
s

10
86

 m
s

2
53

 m
s

67
3

m
s

10
94

 m
s

25
8

m
s

68
3

 m
s

11
16

 m
s

26
5

m
s

70
4

m
s

11
47

 m
s

52
4

m
s

13
95

 m
s

22
73

 m
s

17
92

 m
s

A
_N

1_
M

7_
H

ah
n

1
10

7
3

m
s

2
82

7
 m

s
45

61
 m

s
13

43
 m

s
35

74
 m

s
58

03
 m

s
1

38
3

m
s

36
97

 m
s

60
04

 m
s

24
08

 m
s

63
90

 m
s

10
38

5
m

s
38

37
 m

s
10

23
5

m
s

16
56

2
m

s
15

70
4

m
s

A
_N

1_
M

8_
G

au
ss

3
17

0
4

m
s

4
60

7
 m

s
74

68
 m

s
18

32
 m

s
48

84
 m

s
79

08
 m

s
1

87
2

m
s

50
28

 m
s

81
34

 m
s

32
57

 m
s

86
63

 m
s

14
07

6
m

s
54

26
 m

s
14

52
8

m
s

23
42

7
m

s
21

36
7

m
s

A
_N

1_
M

9_
EN

SO
16

9
0

m
s

4
50

9
 m

s
73

33
 m

s
20

79
 m

s
55

43
 m

s
89

96
 m

s
2

17
2

m
s

58
18

 m
s

94
37

 m
s

37
67

 m
s

10
04

3
m

s
16

31
7

m
s

59
51

 m
s

15
91

7
m

s
25

82
4

m
s

24
81

8
m

s

A
_N

2_
M

3_
N

el
so

n
13

9
m

s
35

0
 m

s
56

9
 m

s
1

33
 m

s
35

6
m

s
57

7
 m

s
15

4
m

s
40

6
 m

s
64

3
 m

s
17

6
m

s
46

8
m

s
75

9
m

s
19

8
m

s
53

1
m

s
86

4
m

s
50

6
m

s

H
_

N
1_

M
2

_B
o

xB
O

D
2

2
m

s
59

 m
s

97
 m

s
23

 m
s

63
 m

s
10

3
 m

s
26

 m
s

72
 m

s
11

8
 m

s
32

 m
s

89
 m

s
14

6
m

s
44

 m
s

12
4

m
s

20
4

m
s

52
 m

s

H
_

N
1_

M
3

_B
en

n
et

t5
15

9
m

s
42

0
 m

s
67

8
 m

s
1

58
 m

s
42

2
m

s
68

5
 m

s
19

2
m

s
51

3
 m

s
83

4
 m

s
20

8
m

s
55

5
m

s
90

3
m

s
23

1
m

s
62

1
m

s
10

12
 m

s
57

1
m

s

H
_

N
1_

M
3

_E
ck

er
le

4
6

7
m

s
17

2
 m

s
27

9
 m

s
66

 m
s

17
6

m
s

28
6

 m
s

69
 m

s
18

7
 m

s
30

3
 m

s
75

 m
s

20
3

m
s

33
0

m
s

97
 m

s
26

5
m

s
43

2
m

s
18

4
m

s

H
_

N
1_

M
3

_M
G

H
1

0
5

2
m

s
13

1
 m

s
21

4
 m

s
51

 m
s

13
6

m
s

22
0

 m
s

54
 m

s
14

5
 m

s
23

7
 m

s
59

 m
s

16
2

m
s

26
5

m
s

73
 m

s
20

1
m

s
32

8
m

s
12

8
m

s

H
_

N
1_

M
3

_R
at

42
4

7
m

s
11

7
 m

s
19

1
 m

s
45

 m
s

12
1

m
s

19
7

 m
s

48
 m

s
13

1
 m

s
21

3
 m

s
54

 m
s

14
8

m
s

24
2

m
s

67
 m

s
18

5
m

s
30

4
m

s
99

 m
s

H
_

N
1_

M
4

_M
G

H
0

9
8

4
m

s
21

4
 m

s
34

8
 m

s
81

 m
s

21
8

m
s

35
4

 m
s

85
 m

s
22

9
 m

s
37

1
 m

s
90

 m
s

24
5

m
s

39
9

m
s

10
7

m
s

29
1

m
s

47
3

m
s

27
0

m
s

H
_

N
1_

M
4

_R
at

43
9

2
m

s
23

7
 m

s
37

3
 m

s
87

 m
s

23
3

m
s

38
0

 m
s

91
 m

s
24

4
 m

s
39

7
 m

s
96

 m
s

26
1

m
s

42
5

m
s

11
3

m
s

30
5

m
s

50
1

m
s

31
8

m
s

H
_

N
1_

M
7

_T
h

u
rb

er
41

3
m

s
1

09
1

 m
s

17
75

 m
s

4
10

 m
s

10
97

 m
s

17
81

 m
s

42
1

m
s

11
30

 m
s

18
22

 m
s

84
7

m
s

22
89

 m
s

36
99

 m
s

13
76

 m
s

37
27

 m
s

60
69

 m
s

48
09

 m
s

H
_

N
2_

M
3

_M
ey

e
rR

o
th

4
5

7
m

s
14

5
 m

s
23

7
 m

s
56

 m
s

14
9

m
s

24
3

 m
s

59
 m

s
16

3
 m

s
25

8
 m

s
64

 m
s

17
7

m
s

28
7

m
s

79
 m

s
21

5
m

s
35

1
m

s
14

8
m

s

H
_

N
2_

M
3

_M
ey

e
rR

o
th

5
5

5
m

s
14

5
 m

s
23

6
 m

s
55

 m
s

15
0

m
s

24
3

 m
s

59
 m

s
15

9
 m

s
25

9
 m

s
65

 m
s

17
7

m
s

28
9

m
s

78
 m

s
21

4
m

s
35

3
m

s
14

6
m

s

H
_

N
1_

M
4

_M
ili

tk
yM

e
lo

u
n

16
9

0
m

s
22

9
 m

s
37

4
 m

s
87

 m
s

23
4

m
s

38
1

 m
s

92
 m

s
24

5
 m

s
39

7
 m

s
97

 m
s

26
2

m
s

42
9

m
s

11
3

m
s

30
6

m
s

50
2

m
s

32
0

m
s

2
5

6
5

1
2

1
0

2
4

2
0

4
8

4
0

9
6

M
ea

n
 R

u
n

n
in

g
Ti

m
es

 [
Lo

ga
ri

th
m

ic
, M

LA
, S

in
gl

e
P

re
ci

si
o

n
]

T
a
b
le

B
.4
:

M
ea

n
ru

n
n

in
g

ti
m

es
of

th
e

P
E

ap
p

ro
a
ch

fo
r

a
se

ri
es

o
f

te
st

p
ro

b
le

m
s.

T
h

is
te

st
ca

se
u

se
d

th
e

lo
g
a
ri

th
m

ic
en

co
d

in
g

a
n

d
th

e
M

o
d

ifi
ed

L
ev

en
b

er
g

A
lg

or
it

h
m

.
E

ac
h

te
st

w
as

re
p

ea
te

d
10

ti
m

es
fo

r
d

iff
er

en
t

p
o
p

u
la

ti
o
n

si
ze

s
a
n

d
g
en

er
a
ti

o
n

li
m

it
s.

T
h

e
va

lu
es

a
re

th
e

m
ea

n
ru

n
n

in
g

ti
m

es
in

m
il

li
se

co
n

d
s.

T
h

ey
ar

e
co

lo
r-

co
d

ed
fr

om
gr

ee
n

(0
m

s)
to

re
d

(3
0
0
0
0
0

m
s)

.
T

h
e

ri
g
h
tm

o
st

co
lu

m
n

co
n
ta

in
s

th
e

re
su

lt
s

o
f

th
e

co
n
tr

o
l

co
n

fi
g
u

ra
ti

o
n

,
w

h
ic

h
is

eq
u

iv
al

en
t

to
gu

es
si

n
g

a
se

t
of

st
ar

ti
n

g
va

lu
es

1
3
1
0
7
2

ti
m

es
.

103

Appendix B. Performance Analysis Results

P
re

ci
si

o
n

P
o

p
u

la
ti

o
n

 S
iz

e
 /

 N
o

. G
en

e
ra

ti
o

n
s

M
ea

n
 R

u
n

n
in

g
Ti

m
es

 [
Lo

ga
ri

th
m

ic
, M

LA
]

4
0

9
6

 /
 1

5

38
54

5
m

s
12

32
89

 m
s

69
42

22
 m

s
L_

N
1

_M
8

_G
au

ss
1

19
17

3
m

s

2
5

6
 /

 1
5

5
1

2
 /

 1
5

1
0

2
4

 /
 1

5
2

0
4

8
 /

 1
5

4
0

9
6

 /
 1

5
2

5
6

 /
 1

5
8

1
9

2
 /

 1
5

8
1

9
2

 /
 1

5

Si
n

gl
e

D
o

u
b

le

C
P

U

In
te

l i
7

 4
7

7
0

k
21

65
 m

s
51

48
7

m
s

2
3

72
 m

s
4

73
0

 m
s

93
25

 m
s

18
5

66
 m

s
3

68
8

5
m

s
73

33
4

m
s

96
38

9
m

s
18

3
54

5
m

s
35

29
24

 m
s

73
5

40
0

 m
s

24
44

29
 m

s
2

83
61

 m
s

2
41

28
 m

s
44

63
6

m
s

5
1

2
 /

 1
5

1
0

2
4

 /
 1

5
2

0
4

8
 /

 1
5

9
08

 m
s

16
86

9
m

s

35
80

 m
s

72
32

 m
s

28
00

 m
s

A
M

P
 -

 G
P

U

N
vi

d
ia

 G
ef

o
rc

e
1

0
8

0

A
M

P
 -

 G
P

U

In
te

l H
D

 4
6

0
0

A
M

P
 -

 W
A

R
P

H
_N

1
_M

3
_B

en
n

et
t5

L_
N

1
_M

8
_G

au
ss

1

H
_N

1
_M

3
_B

en
n

et
t5

L_
N

1
_M

8
_G

au
ss

1

H
_N

1
_M

3
_B

en
n

et
t5

L_
N

1
_M

8
_G

au
ss

1

H
_N

1
_M

3
_B

en
n

et
t5

24
84

3
m

s
3

48
54

 m
s

34
14

8
m

s
37

56
4

m
s

68
0

12
 m

s

14
15

 m
s

39
95

 m
s

77
21

 m
s

14
71

6
m

s
27

07
5

m
s

48
24

 m
s

49
71

 m
s

86
44

 m
s

14
46

9
m

s

1
44

88
 m

s
28

87
5

m
s

58
03

9
m

s
12

18
81

 m
s

3
23

07
 m

s
62

33
7

m
s

12
18

52
 m

s

46
53

 m
s

4
44

 m
s

12
79

9
m

s
24

13
25

 m
s

10
37

64
 m

s
17

8
81

8
 m

s

42
9

m
s

52
6

m
s

56
2

m
s

64
9

m
s

82
0

m
s

5
6

33
 m

s
5

39
8

 m
s

56
09

 m
s

59
38

 m
s

74
0

8
m

s
14

58
6

m
s

24
26

62
 m

s
48

66
02

 m
s

93
6

m
s

17
99

 m
s

54
72

 m
s

10
54

5
m

s
21

40
0

m
s

42
45

2
m

s

14
53

6
m

s

T
a
b
le

B
.5
:

M
ea

n
ru

n
n

in
g

ti
m

es
of

th
e

P
E

ap
p

ro
a
ch

fo
r

tw
o

te
st

p
ro

b
le

m
s

o
f

d
iff

er
en

t
si

ze
.

E
a
ch

te
st

w
a
s

re
p

ea
te

d
1
0

ti
m

es
fo

r
d

iff
er

en
t

p
a
ra

ll
el

iz
a
ti

o
n

m
et

h
o
d

s,
as

w
el

l
as

fo
r

d
iff

er
en

t
p

op
u

la
ti

on
si

ze
s,

g
en

er
a
ti

o
n

li
m

it
s

a
n

d
fl

o
a
ti

n
g

p
o
in

t
p

re
ci

si
o
n

s.
T

h
e

va
lu

es
a
re

th
e

m
ea

n
ru

n
n

in
g

ti
m

es
in

m
il

li
se

co
n

d
s.

T
h

ey
ar

e
co

lo
r-

co
d

ed
fr

om
gr

ee
n

(0
m

s)
to

re
d

(3
0
0
0
0
0

m
s)

.

104

Appendix B. Performance Analysis Results

2
5

6
 /

 1
5

5
1

2
 /

 1
5

1
0

2
4

 /
 1

5
2

0
4

8
 /

 1
5

4
0

9
6

 /
 1

5
8

1
9

2
 /

 1
5

Si
n

gl
e

D
o

u
b

le

2
5

6
 /

 1
5

5
1

2
 /

 1
5

1
0

2
4

 /
 1

5
2

0
4

8
 /

 1
5

4
0

9
6

 /
 1

5
8

1
9

2
 /

 1
5

R
el

at
iv

e
Sp

ee
d

u
p

s
to

 C
P

U
 [

Lo
ga

ri
th

m
ic

, M
LA

]

P
re

ci
si

o
n

P
o

p
u

la
ti

o
n

 S
iz

e
 /

 N
o

. G
en

er
at

io
n

s

1
.0

0
x

1
.0

0
x

H
_N

1
_M

3_
B

en
n

et
t5

1
.0

0
x

1
.0

0
x

1
.0

0
x

1
.0

0
x

1
.0

0
x

1
.0

0
x

1
.0

0
x

1
.0

0
x

1
.0

0
x

1
.0

0
x

1
.0

0
x

1
.0

0
x

1
.0

0
x

L_
N

1_
M

8_
G

au
ss

1
1

.0
0

x
1

.0
0

x
1

.0
0

x
1

.0
0

x

1
.0

0
x

1
.0

0
x

1
.0

0
x

1
.0

0
x

1
.0

0
x

A
M

P
 -

 G
P

U

N
vi

d
ia

 G
ef

o
rc

e
1

0
8

0

L_
N

1_
M

8_
G

au
ss

1
4

.1
2

x
5

.8
8

x
8

.9
8

x

C
P

U

In
te

l i
7

 4
7

7
0

k

H
_N

1
_M

3_
B

en
n

et
t5

4
.8

8
x

9
.3

1
x

1
4

.6
8

x
2

6
.1

9
x

4
1

.7
2

x
6

2
.7

9
x

1
4

.2
6

x
1

6
.8

9
x

2
7

.9
4

x

0
.4

2
x

0
.8

8
x

1
.6

6
x

3
.1

3
x

4
.9

8
x

5
.0

3
x

2
.7

0
x

3
.4

0
x

4
.1

1
x

0
.6

9
x

1
.1

3
x

2
.5

7
x

H
_N

1
_M

3_
B

en
n

et
t5

2
.3

8
x

4
.2

7
x

4
.2

9
x

4
.1

1
x

3
.7

4
x

3
.5

4
x

2
.0

1
x

2
.8

8
x

L_
N

1_
M

8_
G

au
ss

1
1

.5
0

x
1

.9
6

x
1

.5
5

x
2

.1
2

x

A
M

P
 -

 W
A

R
P

L_
N

1_
M

8_
G

au
ss

1
1

.1
4

x
0

.8
8

x
0

.7
2

x

A
M

P
 -

 G
P

U

In
te

l H
D

 4
6

0
0

H
_N

1
_M

3_
B

en
n

et
t5

1
.5

3
x

1
.4

3
x

1
.4

1
x

1
.4

0
x

1
.2

7
x

1
.2

1
x

1
.0

1
x

1
.0

1
x

1
.4

3
x

T
a
b
le

B
.6
:

R
el

at
iv

e
sp

ee
d

u
p

s
of

th
e

P
E

ap
p

ro
ac

h
fo

r
tw

o
te

st
p

ro
b

le
m

s
o
f

d
iff

er
en

t
si

ze
.

E
a
ch

te
st

w
a
s

re
p

ea
te

d
1
0

ti
m

es
fo

r
d

iff
er

en
t

p
a
ra

ll
el

iz
a
ti

o
n

m
et

h
o
d

s,
as

w
el

l
as

fo
r

d
iff

er
en

t
p

op
u

la
ti

on
si

ze
s

a
n

d
fl

o
a
ti

n
g

p
o
in

t
p

re
ci

si
o
n
s.

T
h

e
va

lu
es

sp
ec

if
y

th
e

re
la

ti
ve

sp
ee

d
u

p
in

co
m

p
u

ta
ti

o
n

ti
m

e
o
f

a
p

ar
al

le
li

za
ti

on
m

et
h

o
d

co
m

p
ar

ed
to

th
e

C
P

U
.

T
h

ey
a
re

co
lo

r-
co

d
ed

fr
o
m

re
d

(s
m

a
ll

es
t

va
lu

e)
to

g
re

en
(l

a
rg

es
t

va
lu

e)
.

105

Appendix B. Performance Analysis Results

2
5

6
 /

 1
5

5
1

2
 /

 1
5

1
0

2
4

 /
 1

5
2

0
4

8
 /

 1
5

4
0

9
6

 /
 1

5
8

1
9

2
 /

 1
5

Si
n

gl
e

D
o

u
b

le

2
5

6
 /

 1
5

5
1

2
 /

 1
5

1
0

2
4

 /
 1

5
2

0
4

8
 /

 1
5

4
0

9
6

 /
 1

5
8

1
9

2
 /

 1
5

P
o

p
u

la
ti

o
n

 S
ca

lin
g

[L
o

ga
ri

th
m

ic
, M

LA
]

P
re

ci
si

o
n

P
o

p
u

la
ti

o
n

 S
iz

e
 /

 N
o

. G
en

e
ra

ti
o

n
s

1
4.

63
x

30
.4

8
x

H
_N

1
_M

3
_B

en
n

et
t5

1.
00

x
1

.8
5x

3.
57

x
6.

80
x

12
.5

1x
23

.7
8x

1.
00

x

12
.7

5x
36

.2
1x

1.
00

x
1

.6
0x

3.
99

x
7.

61
x

L_
N

1
_M

8
_G

au
ss

1
1.

00
x

1
.4

8x
2.

33
x

6.
43

x

1
.9

9x
3.

93
x

7.
83

x
1

5.
55

x
30

.9
2

x

A
M

P
 -

 G
P

U

N
vi

d
ia

 G
ef

o
rc

e
1

0
8

0

L_
N

1
_M

8
_G

au
ss

1
1.

00
x

1
.0

4x
1.

07
x

C
P

U

In
te

l i
7

 4
7

7
0

k

H
_N

1
_M

3
_B

en
n

et
t5

1.
00

x
0

.9
7x

1.
18

x
1.

27
x

1.
46

x
1.

85
x

1.
86

x
3.

11
x

5.
34

x

1.
00

x
0

.9
6x

1.
00

x
1.

05
x

1.
32

x
2.

5
9x

1.
95

x
2.

98
x

5.
1

3x
1.

00
x

0
.9

8x
1.

08
x

H
_N

1
_M

3
_B

en
n

et
t5

1.
00

x
1

.0
3x

1.
98

x
3.

94
x

7.
96

x
16

.0
1x

9.
52

x
18

.8
5x

L_
N

1
_M

8
_G

au
ss

1
1.

00
x

1
.1

3x
2.

26
x

4.
53

x

A
M

P
 -

 W
A

R
P

L_
N

1
_M

8
_G

au
ss

1
1.

00
x

1
.9

2x
3.

70
x

A
M

P
 -

 G
P

U

In
te

l H
D

 4
6

0
0

H
_N

1
_M

3
_B

en
n

et
t5

1.
00

x
1

.9
8x

3.
87

x
7.

45
x

15
.1

2x
30

.0
0x

7.
22

x
14

.3
9x

28
.8

5x

T
a
b
le

B
.7
:

P
op

u
la

ti
on

sc
al

in
g

of
th

e
P

E
ap

p
ro

ac
h

fo
r

tw
o

te
st

p
ro

b
le

m
s

o
f

d
iff

er
en

t
si

ze
.

E
a
ch

te
st

w
a
s

re
p

ea
te

d
1
0

ti
m

es
fo

r
d

iff
er

en
t

p
a
ra

ll
el

iz
a
ti

o
n

m
et

h
o
d

s,
as

w
el

l
as

fo
r

d
iff

er
en

t
p

op
u

la
ti

on
si

ze
s

a
n

d
fl

o
a
ti

n
g

p
o
in

t
p

re
ci

si
o
n

s.
T

h
e

va
lu

es
sp

ec
if

y
th

e
sc

a
li

n
g

o
f

th
e

co
m

p
u

ta
ti

o
n

co
st

in
re

g
a
rd

s
to

th
e

p
op

u
la

ti
on

si
ze

.
T

h
ey

ar
e

co
lo

r-
co

d
ed

fr
om

re
d

(l
a
rg

es
t

va
lu

e)
to

g
re

en
(s

m
a
ll

es
va

lu
e)

.

106

Bibliography

[1] C. Gerlach, “Numerical Evolution – Using Genetic Hybrid-Methods to Solve
Nonlinear Regression Problems,” Master’s thesis, Universität Hamburg, 2014.

[2] Committee on Publication Ethics, “Text Recycling Guidelines.” https://

publicationethics.org/text-recycling-guidelines, 2017.

[3] M. K. Transtrum, B. B. Machta, and J. P. Sethna, “Why are nonlinear fits to
data so challenging?,” Physical Review E, vol. 104, February 2010.

[4] L. Hogben, Handbook of Linear Algebra. CRC Press, second ed., 2014.

[5] G. A. F. Seber and C. J. Wild, Nonlinear Regression, pp. 4–10. Wiley, first ed.,
1989.

[6] D. M. Bates and D. G. Watts, Nonlinear Regression Analysis and Its Appli-
cations. Wiley-Interscience, second ed., 2007.

[7] G. A. F. Seber and C. J. Wild, Nonlinear Regression. Wiley, first ed., 1989.

[8] G. A. F. Seber and C. J. Wild, Nonlinear Regression, pp. 15–18. Wiley,
first ed., 1989.

[9] G. A. F. Seber and C. J. Wild, Nonlinear Regression, pp. 21–23. Wiley,
first ed., 1989.

[10] M. K. Transtrum and J. P. Sethna, “Geodesic acceleration and the
small-curvature approximation for nonlinear least squares.” As article
via Cornell University Library, article code:arXiv:1207.4999, July 2012.
http://arxiv.org/abs/1207.4999.

[11] G. A. F. Seber and C. J. Wild, Nonlinear Regression, p. 621. Wiley, first ed.,
1989.

[12] J. Holland, Adaptation in Natural and Artificial Systems. Cambridge. MIT
Press, 1992.

[13] F. Giacobbo and M. Marseguerra, “Solving the inverse problem of parameter
estimation by genetic algorithms,” Annals of Nuclear Energys, vol. 29/8, May
2002.

107

https://publicationethics.org/text-recycling-guidelines
https://publicationethics.org/text-recycling-guidelines

Bibliography

[14] A. M. Kate Gregory, C++ AMP: Accelerated Massive Parallelism with Mi-
crosoft Visual C++. O’Reilly Media, Inc., first ed., 2012.

[15] Khronos Group, “The open standard for parallel programming of heteroge-
neous systems.” https://www.khronos.org/opencl/, 2017.

[16] Nvidia Corporation, “CUDA.” http://www.nvidia.com/object/cuda_

home_new.html, 2017.

[17] Microsoft Corporation, “Direct3D.” https://msdn.microsoft.com/en-us/

library/windows/desktop/hh309466(v=vs.85).aspx, 2017.

[18] Microsoft Corporation, “C++ Accelerated Massive Parallelism.” https://

msdn.microsoft.com/en-us/library/hh265137.aspx, 2017.

[19] Khronos Group, “C++ Single-source Heterogeneous Programming for
OpenCL.” https://www.khronos.org/sycl, 2017.

[20] D. M. Bates and D. G. Watts, Nonlinear Regression Analysis and Its Appli-
cations. Wiley-Interscience, first ed., 1988.

[21] D. A. Ratkowsky, Nonlinear Regression Modelling: A Unified Practical Ap-
proach. Marcel Dekker Inc, first ed., 1989.

[22] J. Schnute and D. Fournier, “A new approach to lengthfrequency analy-
sis: Growth structure,” Canadian Journal of Fisheries and Aquatic Sciences,
vol. 37(9), 1980.

[23] T. Blickle and L. Thiele, “A comparison of selection schemes used in genetic
algorithms,” tik report, 1995. Version 2.

[24] IEEE, “IEEE Standard for Floating-Point Arithmetic,” IEEE Std 754-2008,
pp. 1–70, Aug 2008.

[25] K. Levenberg, “A method for the solution of certain non-linear problems in
least squares,” Quarterly of Applied Mathematics, vol. 2, pp. 164–168, 1944.

[26] D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear
parameters,” Journal of the Society for Industrial and Applied Mathematics,
vol. 11/2, pp. 431–441, June 1963. http://www.jstor.org/stable/2098941.

[27] Various, “Wikipedia – numerical stability.” https://en.wikipedia.org/

wiki/Numerical_stability, 2017.

[28] Leslie Hogben, Handbook of Linear Algebra, ch. 58. CRC Press, second ed.,
2014.

[29] J. Blinn, “Consider the lowly 2 x 2 matrix,” IEEE Computer Graphics and
Applications, vol. 16, pp. 82–88, March 1996.

108

https://www.khronos.org/opencl/
http://www.nvidia.com/object/cuda_home_new.html
http://www.nvidia.com/object/cuda_home_new.html
https://msdn.microsoft.com/en-us/library/windows/desktop/hh309466(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/hh309466(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/hh265137.aspx
https://msdn.microsoft.com/en-us/library/hh265137.aspx
https://www.khronos.org/sycl
https://en.wikipedia.org/wiki/Numerical_stability
https://en.wikipedia.org/wiki/Numerical_stability

Bibliography

[30] Microsoft Corporation, “restrict (C++ AMP).” https://msdn.microsoft.

com/en-us/library/hh388953.aspx, 2017.

[31] National Institute of Standards and Technology (NIST), “Nonlinear Regres-
sion Statistical Reference Data Set.” http://www.itl.nist.gov/div898/

strd/nls/nls_info.shtml, 2003.

[32] Josef Tvrdik and Ivan Krivy, “Nonlinear Regression (14 difficult models).”
http://www1.osu.cz/~tvrdik/wp-content/uploads/nlmod14.pdf, 2017.

[33] Nvidia Corporation, “GeForce GTX 1080 Whitepaper).” http:

//international.download.nvidia.com/geforce-com/international/

pdfs/GeForce_GTX_1080_Whitepaper_FINAL.pdf, 2016.

[34] Various, “Toolbox for nonlinear regression in r: The package nlstools,” Journal
of Statistical Software, vol. 66, Aug 2015.

[35] Various, “R News,” The Newsletter of the R Project, vol. 6, Aug 2006.

[36] M. K. Transtrum, B. B. Machta, and J. P. Sethna, “Geometry of nonlinear
least squares with applications to sloppy models and optimization,” Physical
Review E, vol. 83, March 2011. citation code: Phys. Rev. E 83, 036701.

[37] Z. Drma and K. Veseli, “New fast and accurate jacobi svd algorithm. i,” SIAM
Journal on Matrix Analysis and Applications, vol. 29, no. 4, pp. 1322–1342,
2008.

109

https://msdn.microsoft.com/en-us/library/hh388953.aspx
https://msdn.microsoft.com/en-us/library/hh388953.aspx
http://www.itl.nist.gov/div898/strd/nls/nls_info.shtml
http://www.itl.nist.gov/div898/strd/nls/nls_info.shtml
http://www1.osu.cz/~tvrdik/wp-content/uploads/nlmod14.pdf
http://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_GTX_1080_Whitepaper_FINAL.pdf
http://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_GTX_1080_Whitepaper_FINAL.pdf
http://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_GTX_1080_Whitepaper_FINAL.pdf

Bibliography

110

Erklärung der Urheberschaft

Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit im Masterstu-
diengang Informatik selbstständig verfasst und keine anderen als die angegebenen
Hilfsmittel - insbesondere keine im Quellenverzeichnis nicht benannten Internet-
Quellen - benutzt habe. Alle Stellen, die wörtlich oder sinngem aus Verffentlichun-
gen entnommen wurden, sind als solche kenntlich gemacht. Ich versichere weit-
erhin, dass ich die Arbeit vorher nicht in einem anderen Prüfungsverfahren ein-
gereicht habe und die eingereichte schriftliche Fassung der auf dem elektronischen
Speichermedium entspricht

Ort, Datum Unterschrift

111

	1 Introduction
	1.1 Motivation
	1.2 Outline

	2 Background
	2.1 Linear Algebra
	2.1.1 Real Numbers Assumption
	2.1.2 Notation and Terminology
	2.1.3 Singular Value Decomposition
	2.1.4 Moore-â•ﬁPenrose Pseudoinverse

	2.2 Regression Analysis
	2.2.1 Notation And Terminology
	2.2.2 Nonlinear Regression
	2.2.3 Gauss-Newton Algorithm

	2.3 Genetic Algorithms
	2.4 General-Purpose GPU Computing
	2.4.1 History
	2.4.2 Technologies

	3 Related Work
	3.1 The Starting Value Problem
	3.2 Traditional Methods
	3.3 Hybrid Approach
	3.3.1 Concept
	3.3.2 Restrictions

	4 The Parameter Evolution Approach
	4.1 Overview
	4.1.1 Requirements
	4.1.2 Goals
	4.1.3 Concept

	4.2 The Evolution Layer
	4.2.1 Chromosome
	4.2.2 Genetic Operators
	4.2.3 Encoding

	4.3 The Evaluation Layer
	4.3.1 Nonlinear Least Squares

	4.4 The Computation Layer
	4.4.1 Singular Value Decomposition

	5 Implementation
	5.1 Overview
	5.1.1 Custom Implementation vs. Libraries
	5.1.2 Generictiy vs. Polymorphism
	5.1.3 GPGPU vs. CPU

	5.2 C++ AMP
	5.2.1 Basics
	5.2.2 Tiling

	5.3 Evolution Layer
	5.3.1 Binary Chromosome
	5.3.2 Population
	5.3.3 Genetic Operators
	5.3.4 Genetic Solver
	5.3.5 Nonlinear Regression Description
	5.3.6 Encoding

	5.4 Evaluation Layer
	5.4.1 Regression Model
	5.4.2 Nonlinear Regression Solver
	5.4.3 Linear System Solver SVD

	5.5 Computation Layer
	5.5.1 Model Evaluator
	5.5.2 Jacobi Rotation SVD

	6 Evaluation
	6.1 Setup
	6.1.1 Objectives
	6.1.2 Subjects
	6.1.3 Conditions

	6.2 Results

	7 Conclusion
	8 Outlook
	A Evaluation Results
	B Performance Analysis Results
	Bibliography

