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Abstract

Scientific applications store data in various formats. HDF5 and NetCDF-4 are data
formats which are widely used in the scientific community. They are surrounded by
high-level I/O interfaces which provide retrieval and manipulation of data.

The parallel execution of applications is a key factor regarding the performance. Previous
evaluations have shown that high-level I/O interfaces such as NetCDF-4 and HDF5 can
exhibit suboptimal I/O performance depending on the application’s access patterns.

In this thesis we investigate how the parallel versions of the HDF5 and NetCDF-4 in-
terfaces are behaving when using Lustre as underlying parallel file system. The I/O is
performed in a layered manner: NetCDF-4 uses HDF5 and HDF5 uses MPI-IO which
itself uses POSIX to perform the I/O. To discover inefficiencies and bottlenecks, we anal-
yse the complete I/O path while using different access patterns and I/O configurations.

We use IOR for our analysis. IOR is a configurable benchmark that generates I/O
patterns and is well known in the parallel I/O community. In this thesis we modify IOR
in order to fulfil our needs for analysis purposes.

We distinguish between two general access patterns for our evaluation: disjoint and inter-
leaved. Disjoint means that each process accesses a contiguous region in the file, whereas
interleaved is an access to a non-contiguous region. The results show that neither the dis-
joint nor the interleaved access outperforms the other in every case. But when using the
interleaved access in a certain configuration, results near the theoretical maximum are
realised. We provide best practices for choosing the right I/O configuration depending
on the need of application in the last chapter.

The NetCDF-4 interface does not provide the feature to align the data section to partic-
ular address boundaries. This is a significant disadvantage regarding the performance.
We provide an implementation and reevaluation for this feature and observe perspicuous
performance improvement.

When using NetCDF-4 or HDF5, the data can be broken into pieces called chunks which
are stored in independent locations in the file. We present and evaluate an optimised
implementation for determining the default chunk size in the NetCDF-4 interface. Be-
yond that, we reveal an error in the NetCDF-4 implementation and provide the correct
solution.
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1. Introduction

High performance computing (HPC) systems solve computationally intensive problems
using a high degree of parallelism. To motivate the thesis, we provide an overview of
the current state of the art of HPC systems in this chapter. Afterwards, we discuss the
issues and problems which arise using parallel input / output (I/O) in these systems.
Then we present the goal of this thesis and finally we briefly present the content of the
following chapters.

1.1. High performance computing

High performance computing is an area of computing which requires extremely high
processing and storage capabilities. It is used in fields that solve computationally in-
tensive problems, like natural science or cryptography. HPC systems can be organised
in a clustered manner (see Figure 1.1): Compute nodes, which consist of multiple pro-
cessors, are connected via a high performance network. Each processor can execute
an instance of a computer program, called process. I/O is usually performed by dedi-
cated I/O nodes and storage systems. Message passing is one type of communication
between the processes. The Message Passing Interface1 ([SOW+95]) is a programming
standard which allows programmers to write portable parallel programs using messages
to exchange information between processes. More details on MPI will be discussed in
Section 2.1. The network bandwidth is crucial to the performance, because many nodes
communicate with each other. Multiple network technologies like Ethernet or Infiniband
exist. Currently, Ethernet supplies a maximum theoretical data rate of 100 Gbit/s 2,
whereas Infiniband supplies up to 300 Gbit/s ([Wik13]).

Tasks are processed by splitting up the problem into multiple pieces, so that each process
solves only a part of the global problem. Afterwards, the processes communicate their
local solutions via messages, if it is necessary. It is easily seen that this approach is
not adequate for all problems, because a lot of problems have serial dependencies, thus
full parallelization is not always possible. This problem is formalized in Amdahl’s Law
([BM06]), which states that the speedup, which can be achieved by a parallelisation, is
always bounded by 1

f
, whereas f denotes the fraction of the runtime of the program

1MPI
2Gbit/s stands for Gigabit per second, thus 109 bits per second
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Figure 1.1.: Possible architecture of an HPC system

which has to be executed in serial. Thus, if a problem has 1% serial requirement, a
maximum speedup of 100 can be achieved.

An example application using HPC is weather forecasting. As described in [BM06], the
Earth’s atmosphere is modeled in a discrete three-dimensional grid, each point contain-
ing various quantities like temperature and pressure. The time is also discretised, and
in each timestep quantities are calculated, likely the computation considering neighbour
grid points. Parallelisation makes sense in this scenario, because each process can pro-
cess one or multiple points in the grid and has to communicate only with few other
processes.

The computing power of supercomputers is often measured in FLOPS, which states the
“floating point operations per second” that can be executed by the system. It is not
clearly defined which kind of operation is used, but usually basic arithmetic operations
like addition or multiplication are used. Furthermore, [DLP03] notes: “The performance
of a computer is a complicated issue, a function of many interrelated quantities. These
quantities include the application, the algorithm, the size of the problem, the high-level
language, the implementation, the human level of effort used to optimize the program,
the compiler’s ability to optimize, the age of the compiler, the operating system, the
architecture of the computer and the hardware characteristics.” This means that it is not
possible to have an exact specification of the amount of FLOPS a HPC system generally
realises. But it is possible to define the theoretical performance of an HPC system,
also called peak performance: This is the number of achieved FLOPS, when summing
up the FLOPS, which each processing unit can realise (usually a value proportional to
the clock cycle). Peak performance can be used as an upper bound of FLOPS which
can actually be achieved when executing real world applications. To attain a more
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realistic performance measure, benchmarks are used. These are standardised programs,
which are executed in a controlled environment. It is important that these programs
solve typical problems, which occur in most of the applications. The de-facto standard
benchmark is called HPC LINPACK. As described in [DLP03], LINPACK is a collection
of routines for solving various systems of linear equations, which is a common problem
in multiple scientific fields. The most powerful HPC systems, as stated in the TOP500
list ([Top13]), obtain multiple PetaFLOPS using LINPACK.

1.2. Parallel I/O

High performance applications usually store data using standardised formats, so that
the data can easily be exchanged and processed further. The Hierarchical Data For-
mat 53([G+00]) and Network Common Data Form 44 ([RDE+10]) are data formats
surrounded by application interfaces (APIs), which allow manipulation or retrieval of
the data by application programs written in various programming languages like C or
Fortran. Both are very common in the scientific community. They store the data in a
self-describing portable way using multi-dimensional arrays. More details on HDF5 and
NetCDF-4 are discussed in Sections 2.2 and 2.3.

I/O performance can be crucial to overall performance of the program. For example, this
can be the case if an application has to read data from disk storage before it can start
processing. I/O can be performed in parallel by multiple processes, which can increase
the speed dramatically in certain scenarios. The theoretical maximum of the overall
read/write bandwidth equals the sum of the read/write bandwidth of each process. But
the actual bandwidth can be significantly lower, because there are many factors that
influence the I/O performance. For example, in most cases the disk storage will be
accessed via a network, which means that the network bandwidth limits the achieveable
I/O bandwidth. Furthermore, applications always use a certain access pattern when
manipulating and retrieving data. The access pattern is a key factor regarding the
performance. We explain this issue with a simplified example, which is illustrated in
Figure 1.2. There are 16 blocks on the disk, and the application tries to access 4 blocks,
which are non-contiguous. The disk has to do 4 seek operations, before it can write/read
the data. If the blocks were contiguous, the disk would only be required to perform 1
seek operation. Thus, the access pattern has an impact on the performance.

Parallel I/O does also need an underlying parallel file system, because otherwise the I/O
will be serialised when accessing the file system. Parallel file systems support parallel
access to the same file or different files by multiple processes. The data of a file can
be stored on different locations on several disks. Several parallel file systems exist, for

3HDF5
4NetCDF-4
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Figure 1.2.: Non-contiguous access pattern

example GPFS5 ([BBC+98]) or Lustre ([BZ02]).

The HDF5 and NetCDF-4 APIs provide parallel access to the data. They perform the
I/O in a layered manner: The NetCDF-4 API uses HDF5 to store the data, and HDF5
uses the I/O implementation of MPI which itself uses the I/O routines of the under-
lying system, which satisfy POSIX(“Portable Operating System Interface”), a family
of standards for maintaining compatibility between operating systems. Finally, I/O is
performed by the I/O driver. Figure 1.3 illustrates this behaviour. If the application
writes data, it uses the high-level I/O interface, and the data is passed down until it
arrives at the driver layer. A read happens in the opposite direction.
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Figure 1.3.: I/O layering

The goal of this thesis is to enable high performance I/O using the aforementioned
interfaces. To do this, the complete I/O path will be analysed while using different
access patterns and I/O configurations. The focus is to find and eliminate the reasons
for potential existing inefficiencies wherever possible and to establish I/O best practices.

To conduct our analysis we will use IOR6 ([IORb]) benchmark. IOR is a configurable
benchmark that generates I/O patterns and is well known in the parallel I/O community.

5General Parallel File System
6Interleaved Or Random
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In [SS07] it is well explained why IOR is a good choice for benchmarking parallel I/O
systems. The reason is that it provides many I/O configurations (like transaction size,
different patterns, shared file, multiple files) and it supports the traditional POSIX
interface, MPI-IO, and HDF5. In this thesis we modify IOR in order to fulfil our needs
for the analysis purposes. For example, IOR lacks of the support for multi-dimensional
data layout. We implement this feature.

We choose Lustre as underlying parallel file system, because it has open licensing and
its architecture fits well to the hardware and network environment provided by the Sci-
entific Computing research group at the University of Hamburg, where the evaluation
takes place. Furthermore, according to [Opeb], “Currently seven of the TOP10 super-
computing sites, and over 60% of TOP100 sites, utilize Lustre.”, which means that the
research results are of interest in the HPC community.

This thesis is organised as follows: Chapter 2 provides basic background knowledge,
which is required to understand the subsequent chapters. We sum up work related to the
analysis of parallel I/O in Chapter 3. The evaluation of the libraries using various I/O
configurations and access pattern is portrayed in Chapter 4. We present enhancements
to the high-level I/O libraries in Chapter 5. Chapter 6 summarises the thesis.
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2. Background

In this chapter we will give an overview of various technologies, which are used in the
thesis.

2.1. MPI

As discussed in the introduction, in a typical HPC architecture, the processes are decen-
tralised and communicate using messages. The Message Passing Interface (MPI) is a
standard for creating portable parallel programs using messages. It defines syntax and
semantics of a set of interface functions which can be accessed from C or Fortran. This
section is based on [SOW+95]. MPI has been designed from a community called MPI
forum, that consist of a group of vendors, industrial users, industrial and national re-
search laboratories and universities. Multiple implementations have been developed, for
example MPICH ([MPI]) or OpenMPI ([Opea]). These implementations are available
on a range of computer architectures. The standard supports efficient implementations
across machines of differing characteristics by avoiding to state how operations will take
place. MPI specifies only the logic of an operation and for this reason the implemen-
tation can take advantage of specific features of the underlying platform. For example,
some architectures have special communication coprocessors, which means that the im-
plementation could offload the communication to this coprocessor.

One of the key features of MPI is portability, which means that application programmers
that use MPI do not have to rewrite their code for different architectures. Furthermore,
MPI is also designed to allow transparency: Applications can run on systems which have
subsystems of different hardware architectures. The user does not have to know how
to transform the messages such that the communication between the different hardware
architectures will succeed. Finally, MPI defines a minimum behaviour of all implemen-
tations, like the guarantee that the underlying transmission of messages is reliable.

An MPI program is executed by a set of autonomous processes; each process executing
the code in his own environment. The processes communicate via routines which are
provided by the MPI interface. Normally, each process possesses his own adress space,
but shared memory scenarios are also possible. Groups are ordered sets of processes; each
process possesses a unique identifier in a group which is called rank. Communicators
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are either used to let a process communicate with other processes in the same group or
in another group. The first type is called intracommunicator, whereas the latter type is
called intercommunicator. There is also a predefined communicator called MPI_COMM_-

WORLD which is used for communication in the group which consists of all processes.

Point-to-point communication is the basic communication type used in MPI - the trans-
mission of data between two processes: One side sending, the other receiving. The data
which is transmitted can be typed, in order to support heterogenous systems, so that
the application program doesn’t have to do data conversion for different architectures.
Furthermore, the data can be tagged. A tag is an integer and marks the message in a
special way so that the receiving part can select the messages appropiate to the purpose.
The respective communication routines can be used in blocking and non-blocking mode:
In the first mode, the routine returns only when it is sure that the operation is suc-
cessfully performed. When using non-blocking mode, the routine returns immediately.
This can be used to perform further computation during the transmittal of the data.
Nevertheless it is required that the successful completion is tested with another routine
call. Performing a send operation does not ensure that the receiver has received any-
thing at all. However, there’s a synchronous mode which enables rendezvous semantics
between sender and receiver; the send operation is then only finished when the receiver
has initiated the receipt.

In contrast to point to point communication, collective communication is the transmittal
of data among all processes in a group specified by an intracommunicator object. MPI
provides collective communication functions, for barrier synchronisation across all group
members, global communication functions and global reduction operations. Barrier
synchronisation is provided by a function called MPI_Barrier, which blocks the caller
until all members of the group have called it. Global communication functions include
broadcast, scatter and gather. Broadcast means the transmittal of a message from one
sender to all members of the group. Scatter means the distribution of data from one
root to all processes in the group. Each member of a group receives a separate piece of
data. Gather designates the backward process. Reduction operations provide the ability
to calculate results collectively. For example, this can be useful, if the sum of a set of
integers shall be computed, whereas the integers are stored in a distributed manner in
buffers of several processes.

The first version of the MPI standard didn’t include definitions for performing parallel
I/O. This feature has been added to the second version of the MPI standard ([For09]).
The collection of I/O routines is also called MPI-IO. They consist of basic operations such
as open/close a file or read/write from/to a file. Furthermore, more advanced features,
like the creation of filetypes and fileviews are also provided. Filetypes and fileviews can
be used to partition the file among processes. Moreover, MPI-IO distinguishes the I/O
in two fundamental modes: independent versus collective. In the first case, the client
processes neither do coordination or synchronisation when performing the I/O. In the
second case, the client processes are coordinating the I/O, which provides the ability to
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perform optimisations.

The most widely available MPI-IO implementation is called ROMIO ([Lab]). It is a high-
performance, portable implementation which is packaged with MPICH and OpenMPI.
In ROMIO there are two key optimisations, which are well explained in [TGL99]. The
first, data sieving, uses the fact that multiple accesses at different locations on a disk
are much more expensive than one large contiguous access (due to the overhead of
the seek operations). Therefore, multiple independent accesses are aggregated into one
large access. By doing this, data regions are accessed which should not be accessed.
These data regions are filtered out when the whole data has arrived at the client in
the application buffer. The second key optimisation is called Two-Phase I/O. It is an
optimisation which is applied when the I/O is performed collectively. It takes advantage
from the knowledge of the entire access information of a group of processes. Similar to
data sieving it is based on the assumption, that large accesses are better than small
independent accesses. The algorithm figures out if the accesses of the processes are
interleaved. In such cases, the data accesses are reorganised, and the I/O is delegated
to I/O aggregator nodes (which can be a subset of all client nodes), in the manner that
each node has access to a separate contiguous region. Later, when the data is transferred
to the client I/O nodes, the data is reorganised, and each client node accesses the data
regions it has originally requested. The Two-Phase I/O is illustrated in Figure 2.1.

P1 P2 P1 P2

Interleaved file access

P1 P2

Phase I: Access contiguous regions

on disk

P1 P2

Phase II: Reorder the data in memory

Figure 2.1.: Two-Phase I/O

2.2. HDF5

HDF5 is a self-describing portable data format, surrounded by a high-level I/O interface
which provides retrieval and manipulation of data. This section is based on the content
of [Kor11] and [G+00]. Implementations for a range of platforms exist and high-level
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APIs for various programming languages like C, C++, Fortran 90 and Java are provided.
HDF5 supports large and heterogenous data: There is no limit on the number or size of
data objects and it is possible to mix any kind of data within a HDF5 file. One can specify
complex data types, relations and dependecies. Fast access to the data is provided
through accessing parts of the file without parsing the entire content. Furthermore,
many open-source and commercial tools exist for managing, manipulating and analysing
the data.

HDF5 uses two basic concepts to store the data in a hierachical manner: groups and
datasets. Groups contain zero or more groups or datasets; that corresponds to the
concept of directories in filesystems. Datasets store the actual data in multidimensional
arrays; that corresponds to the concept of files in filesystems. A dataset consists of two
parts: A header and the data array. The header contains the metadata of the data which
is actually stored in the array. The header saves the name of the dataset, the datatype,
dataspace and storage layout of the data. Each data element has the same datatype
and the type can be basic (like integer, float,...) or compounded. The dataspace is a
description of the shape of the array. It consists of the number of dimensions and the
current and maximum sizes of each dimension. The dataset can be extended up to the
maximum size in each dimension via a routine which must be called using collective
I/O. A dimension’s maximum size can also be specified as unlimited, meaning that
the dataset can grow without limit in this dimension. Groups and datasets can also
have metadata and attributes, which are user-defined HDF5 structures containing extra
information about the HDF5 object.

The data can be stored in three different ways: contiguous, compact or chunked. Con-
tiguous means that the whole data of a dataset is stored in one contiguous array of
bytes apart from the header, as illustrated in Figure 2.2. n-dimensional datasets are
seralised into a 1-dimensional datastream by mapping the memory buffer directly to the
disk. When using the C interface, the data is stored in a row-major order. This layout
requires that the dataset must be of fixed-size (this means that it is not extendible),
because it is not assured that free space is available after the array. If the data is stored

A
A

dataset dataset in file

Figure 2.2.: Contiguous dataset

in a compact way, it is directly stored in the dataset header. This makes sense when
the data amount is small, because in contrast to the contiguous layout, where the data
is stored apart from the header, only one I/O operation is required to access the data.
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Just like the contiguous data layout, the dataset must be of fixed-size. The data can
also be stored using chunks, which means that the dataset is split into chunks, which
are rectangular regions, and the chunks are written into independent locations in the file
(illustrated in Figure 2.3). A chunk may have any size or shape that fits in the dataspace;

A

C

B

D B C A D

dataset dataset in file

Figure 2.3.: Chunked dataset

a 3-dimensional dataspace can be split into 3, 2 or 1-dimensional chunks. Chunks may
also extend beyond the size of the dataspace; the extra regions will not be accessible.
For example, a 3 × 3 dataspace can be overlaid by 2 × 2 chunks, leaving 7 elements
unused (illustrated in Figure 2.4). The locations of the chunks are stored in the header
section of the dataset, using a tree data structure called B-tree ([BM02]). B-trees hold
the stored data in sorted way and allow access and manipulation in logarithmic time.
They are commonly used in databases and filesystems. The HDF5 interface provides a
routine which aligns the address of the file objects (dataset header, contiguous datablock,
chunks) to a multiple of the alignment value passed. This can be useful in combination
with parallel I/O, which we will explore in this Thesis.

0 1 2 3
0

1

2

3

Figure 2.4.: 2 × 2 chunks overlaying a 3 × 3 dataspace

Chunks are read/written individually, and can be used to improve the performance
when performing partial I/O (on a subset of the dataset), which is explained in [Gro13].
Also, the interface provides a tunable chunk cache: Each time a chunk is accessed, the
whole chunk is loaded in the cache and the selected points are loaded in the user buffer.
Each dataset possesses its own cache. The cache can be turned off, which is recom-
mended for some scenarios (for example if the full dataset is queried). Furthermore, the
HDF5 interface provides also the feature to (de)compress the data that it (reads)writes.
Compression requires chunked layout because it is applied on chunks of the data.
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HDF5 implements several strategies to allocate storage space and fill the space with fill
values. Fill values enable a reading process to discover if the region has already been
accessed by a writing process or not. According to the POSIX specification, “read()
shall return bytes with value 0” for unaccessed regions. But if 0 values are also used
by writing processes, a reading process could not decide if the data is dirty or not. If
the application uses a fill value, e.g. −1, and ensures that no writing process uses this
value, the region would consist of bytes with value −1 and it could be decided that
this region has not been touched by another process. HDF5 supports early, late and
incremental file space allocation. Early means that the space of the whole dataset is
allocated immediately when the dataset is created. The whole space is allocated first
when the first data is written, when using late as strategy. Incremental is only supported
when using chunked layout, and in this mode only the storage for each chunk is allocated
when it has to be written. When using parallel I/O, the default allocation strategy is
early, as each process requires a view of the entire dataset. The filling of the space is
done when the space is allocated, but can be disabled in order to improve performance.
This is strongly recommended when it is clear that the full dataset is written before it is
read, because the write performance degrades approximately to the half of the original
write performance, as each write is performed two times.

2.3. NetCDF

NetCDF is a self-describing portable data format and interface for accessing and manip-
ulating the data. The development is supervised and hosted by the Unidata program at
the University Corporation for Atmospheric Research (UCAR). NetCDF is used in the
scientific community, especially in climatology, meteorology and oceanography applica-
tions. The content of this section is based on [RDE+10]. As in HDF5, the data is stored
in arrays, which are multidimensional fields; each storing a data element of a datatype,
which is fixed for the whole array. The NetCDF interface provides an abstraction from
the underlying storage format in the manner of an abstract datatype. The user retrieves
and manipulates a NetCDF file using the software libraries, the internal representation
of the data is hidden from the user, allowing portable and exchangeable implementa-
tions. The physical representation of the data is designed to be machine-independent.
NetCDF supports access from various programming languages, for example C, FOR-
TRAN 77, FORTRAN 90, and C++. Furthermore, there exist implementations for
various UNIX systems; an MS Windows port is also available.

NetCDF comes in different versions. The current version is NetCDF-4. It introduced a
new binary format, too. There exist three different binary formats for NetCDF files:

• classic format; this was used in the first version of NetCDF

• 64-bit format, this is an extension of the classic format, allowing larger variables
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and file sizes

• NetCDF-4; this is the HDF5 data format, with some restrictions

This thesis focuses on the current version, NetCDF-4.

Generic utility programs exist, which have the purpose to visualise or modify the data.
ncdump for example, prints the data structure in a human-readable format onto the
console. ncgen is the counterpart of ncdump; it reads a description of a NetCDF file in
a human-readable format, and generates a binary version of it. The textual description
is in a tiny language called CDL (network Common data form Description Language).
Furthermore, a set of standalone, command-line programs exists, called NetCDF Op-
erators ([NCO]), which take NetCDF files as input, operate on them, and output the
results in text, binary or NetCDF formats. Example operations are deriving new data,
averaging or printing. The purpose is to aid the manipulation and analysis of gridded
scientific data.

The data model of NetCDF consists of dimensions, variables and attributes. A NetCDF
dimension consists of a name and a length, which is an abitrary positive integer. In the
classic or 64-bit format, at most one dimension can have unlimited length; NetCDF-
4 files can have multiple dimensions with unlimited length. A variable is a multi-
dimensional array of values of the same type. It consists of a name, datatype and a
list of dimensions, which define its shape. If a variable has at least one unlimited dimen-
sion, it is called record variable, and the possible amount of entries is unbounded. In
NetCDF-4, record variables use extendible HDF5 datasets to store the data. As men-
tioned in Section 2.2, collective I/O is required in this case. The list of dimensions can
also be empty, meaning that the variable can store only one value. When a variable has
0 dimensions, it is called scalar, with 1 dimension vector and with 2 dimensions matrix.

There exists a special type of variable, called coordinate variable. A coordinate variable
corresponds to a dimension, it has the same name as the respective dimension, is a
vector and its shape is the same as the dimension. The values of the variable are
typically physical coordinates which are describing the values of the dimension. It has
no meaning to the NetCDF interface, but can be used by application programs to specify
positions along it. For example, consider there exists a dimension with size 5 called time,
which describes the time of a measurement. A corresponding coordinate variable would
have the name time, datatype integer and the dimension time. Its values could be
0, 10, 20, 30, 40. Furthermore, assume in the dataset exists a variable called temperature
with the dimension time. Each point describes the temperature which was measured at
a respective time. An application program which visualizes the data could now use the
values of the coordinate variable instead of just index positions (0, 1, 2, 3, 4).

NetCDF distinguishes between internal and external data type of a variable. The in-
ternal type is the type used in the respective programming language in the application
program. The external data type is the type used in the NetCDF file. The data is
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converted when reading or writing to the file, if the physical representation is differ-
ing. External types provide portability, because the application programmer does not
need to take care of the underlying storage architecture. Furthermore, the data format
can be changed independently from the application programs, because the conversion is
performed by the software libraries.

Attributes are used for storing metadata. They can be used globally, which means
storing information about a whole NetCDF dataset. But the most common use case
are variable-specific attributes. In NetCDF-4, attributes can also be placed at group
level. There exist reserved attributes, which are used by the NetCDF interface, and
attribute conventions for generic application software. For example, most generic appli-
cations which process NetCDF datasets use variable-specific attributes called valid_min
or valid_max to specify the range of allowed values for a variable. Furthermore, a global
attribute “Conventions” can be used to specify the name of a set of well defined conven-
tions, followed by the dataset. The type of the attribute is a char array, which consist
of the name of conventions. For example there exist the Climate and Forecast (CF)
conventions, used to describe atmospheric, ocean and climate data.

As mentioned above, NetCDF-4 uses the HDF5 file format. By default, for non-record
variables, a contiguous data layout is used. But the user can specify chunked data layout
and chunk sizes for each dimension via a function. If record-variables are used, the data
layout is set to chunked due to the requirement of extendibility. NetCDF-4 does also
support compression of data, which requires chunked layout, too. Finally, NetCDF-4
does also provide a routine to disable the prefilling of data.

2.4. Lustre

Lustre is an open-source distributed parallel filesystem, whose deployments are popular
in scientific supercomputing. It presents a POSIX interface to its clients with parallel
access capabilities to the shared file objects. Our descriptions are based on [OI14].
Lustre stores data in an object-based manner: The file is split up into multiple objects
(“stripes”) which are stored on different servers. The distribution on different servers
enables parallel I/O performance. The bandwidth is bounded by the sum of bandwith
of each I/O server. The bandwith of an I/O server is bounded by the network and disk
access data rate. The total storage capacity is the sum of the storage capacity of each
storage server.

Lustre’s architecture (see Figure 2.5, taken from [OI14]) is divided in three parts: Clients,
metadata servers and storage servers. Clients are connected via network with the Lus-
tre services, which are responsible for storing the metadata and the objects. Metadata
servers (MDSes) store namespace metadata, such as filenames, directories, access per-
missions, and file layout on one or more metadata targets (MDTs). Lustre uses multiple
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object storage servers (OSSes) to store the file data on one or more object storage tar-
gets (OSTs). Clients access and concurrently use data through the standard POSIX I/O
system calls.

Figure 2.5.: Architecture of Lustre

File striping across multiple OSTs can be used to improve the performance. This is the
case, when the aggregated bandwidth to a single file exceeds the bandwidth of a single
OST. The size of a stripe is specified by a parameter called stripe size. The number
of OSTs which shall be used is defined by stripe count. When the chunk of data being
written to an OST exceeds stripe size, the next chunk of data in the file is stored on
the next OST. The next OST is determined in a round robin fashion. In the default
configuration, stripe size is set to 1 MiB and stripe count to 1, which implicates no
striping across multiple servers. However these parameters can be configured by the
user on a per-file or per-directory basis.

When accessing a file, each client node is able to determine with which OST he has to
communicate, because the stripes are allocated in a round robin fashion. This implicates
that there is no need for communication with the metadata server after the file layout
is clear. Our analysis focusses only on the performance when writing/reading to/from
one file, so the handling of the metadata should be negligible.

In order to protect the integrity of each file’s data and metadata, Lustre possesses a
distributed lock manager. Furthermore, locking enables client side caching, since other
clients do not have the ability to manipulate the data while the lock is held. File data
locks are directly managed by the OSTs containing the file region. The locks are provided
as byte-range extent locks. Metadata locks are managed by the MDT that stores the
inode for the file.
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2.5. IOR

IOR is a software used for benchmarking parallel filesystems using different I/O APIs
and various access patterns. The main purpose of IOR is to measure the read/write
performance when accessing one or multiple files in the filesystem. IOR differentiates
the strategies to use a shared file or one file per process. These strategies can be easily
compared for an identical set of testing parameters. According to [SS07], “most of the
existing benchmarks are not reflective of the current I/O practice of HPC applications,
either because the access pattern did not correspond to that of the HPC applications,
because they only exercise POSIX APIS (eg. no MPI-IO, HDF5, NetCDF), or because
they measure only serial performance.” In [SAS08], IOR is used to predict the perfor-
mance of three I/O benchmarks, whose I/O patterns are “representative of many I/O
intensive codes in the NERSC1 workload”. In this study IOR predicts the performance
with a maximum error of 10 %, showing the powerfulness of IOR.

When using shared file strategy, the organisation is as follows (illustrated in Figure 2.6):
The file comprises segments, which themselves comprises blocks. A block is a coherent
collection of data accessed by one process. A process reads/writes to a block in chunks
which have a configurable size, called transfer size. This is the amount of data which
is written/read per function call in the application program. When using a one file per
processor strategy, each process stores its blocks in its own file. Segments and blocks
can be used to simulate different access patterns. For example, when using only one
segment in a shared file, a disjoint access pattern can be simulated, because there is no
interweavement between the access of the processes. When using multiple blocks, the
access of the processes is interleaved. When using POSIX or MPI-IO, the data which

. . . . . . . . .
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Figure 2.6.: IOR shared file

is saved to the file is just a collection of bytes, without any additional structure. IOR
uses a one-dimensional dataset when HDF5 is the desired API.

IOR can be parametrised using various configurations. The following parameters of IOR

1National Energy Research Supercomputing Center
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are important to this thesis: api, segmentCount, blockSize, readFile, writeFile, reorder-
TasksConstant, transferSize, numTasks, repetitions, memoryPerNode, interTestDelay,
collective, noFill, setAlignment. api describes which I/O API to use. IOR version 3.0.1
(which will be used in this thesis) supports POSIX, MPI-IO, HDF5 and PNETCDF
([PNE]). The latter is a parallel I/O interface for NetCDF versions lesser than NetCDF-
4. segmentCount indicates the count of segments to use and blockSize the size of each
block. If readFile (writeFile) is set to 1, a read (write) operation will be measured. It
is also possible that both read and write will be measured; in this case the write will
be performed first and the read afterwards. This scenario has conflict potential: If the
same node reads the data back which has written it, the cache will deliver high perfor-
mance. For this purpose, the parameter reorderTasksConstant can be used. When set
to x, the process with the rank n + x will read back the data, which the process with
rank n has written. This prevents the data from being read directly from the cache.
The transferSize is the amount of data which each process writes/reads per function
call in the application (see Chapter 1). numTasks indicates how much client processes
will participate in the I/O operation. With repetitions the count of repetitions can be
choosen. IOR has a built-in statistic system, such that mean values and standard devi-
ations of the performance will be calculated. memoryPerNode is the amount of memory
which the application will allocate to simulate application behaviour. It can also be
used to prevent client-side caching, because if almost no memory is available, then the
data cannot be cached in memory. interTestDelay is the count of seconds which will
be paused between two tests. If collective is set to 1, then the I/O will be performed
collectively (see Section 2.1). The noFill option indicates if the HDF5 (and NetCDF)
interface will use the filling behaviour (see Section 2.2). setAlignment can be set to the
aligning borders as explained in Section 2.2.

2.6. VampirTrace

When analysing or developing high performance programs, it is often important to dis-
cover potential bottlenecks and performance issues. VampirTrace is a tool, which can be
used to analyse the behaviour of a parallel program. This section is based on [KBD+08].
We distinguish two types of program analysing methods: profiling and tracing. Profiling
aggregates the information of certain event types, whereas tracing records information
of individual events. Tracing is more powerful than profiling, because one can use the
information gained from tracing to profile a program, but not the other way around.
However, tracing produces more data and can slow down the performance of the pro-
gram, which can manipulate the results. Common event types which can be recorded
are

• enter or leave of function calls

• point to point communication using MPI
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• collective communication using MPI

• performance counter samples

The modification of the application in order to detect event occurrences is called instru-
mentation. VampirTrace is an instrumentation and measurement component, which
can be used to trace parallel applications. It is integrated in the current versions of
Open-MPI, an implementation for the MPI standard. VampirTrace adds code to the
application by compiler, linking or source-to-source instrumentation. An instrumented
application generates trace files, which can be opened for visualisation by a tool called
Vampir. It provides zooming and browsing in timeline and statistical displays. For ex-
ample, the global timeline shows processes and threads on a vertical axis. The program
state is visualised by horizontal bars, coloured according to the function which is active
at this given point of time. Point to point communication, global communication and
I/O operations are displayed by arrows. A screenshot can be seen in Figure 2.7.

Figure 2.7.: Vampir
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3. Related work

In this chapter we will discuss related work regarding the application of parallel I/O
using Lustre.

As discussed in Section 2.1 and illustrated in Figure 2.1, Two-Phase I/O is an opti-
misation technique used by ROMIO; the goal is to perform a small amount of large
contiguous accesses instead of many non-contiguous accesses (see Section 2.1). Accord-
ing to [DL08], this optimisation is not adequate when using Lustre as underlying parallel
filesystem. When the clients are performing large contiguous accesses, each client has
to communicate with many OSS, which leads to network, OSS and locking contention.
We explain this issue with following example: We assume that we have a system which
consists of 4 clients, 8 OSS/OSTs, a stripe size of 1 byte and stripe count of 8. The
clients want to write 32 bytes in total. When using Two-Phase I/O, the file is parti-
tioned among the clients such that one client writes the first region (bytes 1 to 8), one
client the second region (bytes 8 to 16), and so on. Thus each client communicates
with each OST (see Figure 3.1) and each client has to obtain 8 locks, which means that
there is contention at network, OST and locking level. If the first client would write the

OST 1 OST 2 OST 3 OST 4 OST 5 OST 6 OST 7 OST 8

Client 1 Client 2 Client 3 Client 4

Figure 3.1.: all-to-all pattern

bytes 1, 2, 9, 10, 17, 18, 25, 26, the second client the bytes 3, 4, 11, 12, 19, 20, 27, 28, and so
on, then the first client would only communicate with OST 1, 2, the second with OST
3, 4, and so on (see Figure 3.2). There would be less contention at the network and
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locking level. Dickens et al. call these patterns 8-OST (or all-to-all) and 2-OST pattern,
depending on the number of OSTs each client is communicating with.

In [DL08], the authors present an experimental study which has the goal to compare
the performance of Two-Phase I/O with various x-OST patterns. The focus has been
to find the impact of the access pattern on the performance. So, they simulated Two-
Phase I/O by explicitely setting the access pattern which would result after the first
phase has been applied. This ignores the cost of the redistribution of the data and sets
the focus on the cost of accessing the data. The study was performed on two large HPC
clusters. The results were, that the original Two-Phase I/O and other patterns which
involved communicating with a lots of OSTs performed worst on both systems, while
the 1-OST and 2-OST pattern provided the best performance. The authors conclude
that communication with a small number of OSTs is better than with a large number.

Furthermore, the authors have implemented a user-level library called Y-Lib, which has
the goal to minimise the contention for file system resources by controlling the number
of OSTs with which the clients communicate([DL10]). This number depends on the
particular system. The application calls this library instead of the routines from MPI-
IO, and the library distributes the data using message passing such that the data access
pattern confirms the respective distribution. Afterwards, the data is written to disk
using POSIX write operations. Experiments have been performed on two large HPC
systems, varying the number of aggregator processors used. Three different cases were
distinguished on the first system.

In the first case, the data was distributed in a way among the processes such that it
had to be redistributed. This means, for Y-Lib, the data has been placed in a way that
each process had to write a large contiguous region(”confirming distribution”), so that
Y-Lib redistributed the data. For MPI-IO, the data was set to a 1-OST pattern, so that
the Two-Phase I/O redistributed it to the confirming distribution. Y-Lib outperformed
MPI-IO up to a factor of 10. In the second case, the data has already been placed in the
correct distribution (confirming distribution for MPI-IO and 1-OST pattern for Y-Lib),
so that no redistribution was necessary. Y-Lib improved the performance up to a factor
of three in this case. The last case was to force MPI-IO to use the 1-OST pattern by
disabling Two-Phase I/O and data-sieving. The performance increased with a factor up
to 2.

On the other system, the optimal pattern appeared to be the 2-OST pattern. In the
experiment the I/O performance was compared using no redistribution, by explicitly
setting the 2-OST pattern. Y-Lib was not used because using a 2-OST pattern was not
already implemented. The 2-OST pattern began to outperform the conforming distri-
bution when the count of processors exceeded a certain limit and the largest observed
improvement was 36 %, significantly lower as in the first system. The authors conclude
that Y-Lib can improve the performance significantly, but a benefit must not always
exist, it depends on the count of processors and the particular system. They suggest to
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extend Y-Lib, to find the best OST pattern using an analytic model or a set of heuristics.

OST 1 OST 2 OST 3 OST 4 OST 5 OST 6 OST 7 OST 8

Client 1 Client 2 Client 3 Client 4

Figure 3.2.: 2-OST pattern

In [LC08], 3 modifications to the Two-Phase I/O algorithm used by ROMIO are pre-
sented and evaluated in different test scenarios using Lustre and GPFS as underlying
parallel filesystem. In the original algorithm, ROMIO divides the accessed file region
evenly into contiguous file domains, which are then accessed by the I/O aggregator pro-
cesses. These chunks are not aligned to the Lustre stripe sizes and lock boundaries,
which can impact the performance. The first modification aligns the accesses to the file
system lock boundaries, which can be equal to the Lustre stripe size.

The second modification is the so called static-cycling method. It divides the entire
accessed region into blocks of equal size, whose size is set to the file system’s lock
granularity, and assigns these blocks to the I/O aggregators in a round-robin fashion.
Thus, if we have n aggregators, the blocks i, i + n, i + 2 · n, . . . are assigned to the
aggregator with rank i. The advantage of the approach is, that if the lock granularity
size is the same as the file stripe size and there is a common divisor between the number
of I/O servers and aggregators, each aggregator will communicate with the same set
of I/O servers, reducing network and OSS contention. The disadvantage is, that if
the number of I/O aggregators is much higher than the number of I/O servers, a lot
of aggregators will communicate with the same I/O servers using interleaved accesses,
which can lead to a lot of locking contention (because a lot of small lock requests have
to be performed).

The third modification is called group-cycling method, and tries to eliminate these
interleaved accesses. Group-cycling divides the number of I/O aggregators into groups,
whose size is equal to the number of I/O servers. The aggregated access region is then
divided evenly among the groups with the boundaries aligned to the stripe size. Within
a group, the static-cycling method is used. In one group, each aggregator communicates
with exactly one I/O server and because the file region is divided among the groups,
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the access is no more interleaved. The experimental results show that none of the
methods discussed above outperform the others on all file systems. Thus, the MPI-IO
interface must dynamically adapt a method that works best on the target file system.
Nevertheless, the results show that the group-cycling approach performs best when using
Lustre in combination with collective write operations.

In [NLC08] it has been argued that a high degree of parallelism leads into high I/O
contention at the servers and does not scale with the amount of processors. The authors
propose a system which consists of a set of delegated I/O processes, called I/O Delegate
Cache System (IODC). IODC intercepts I/O requests from the application processes,
and optimises them using I/O caching and data aggregation. They evaluate their im-
plementation using only 10 % of extra I/O processes, and discover high performance
improvement in I/O bandwidth.

The authors of [YVCJ07] believe that a large stripe count can degrade the performance
because of the increased protocol overhead, when clients must communicate with many
OSTs, and the reduced memory cache locality, when the network buffer is multiplexed for
many OSTs. They have conducted experiments which indicate this behaviour. Therefore
they suggest the following approach: Instead of writing into one file, the file is split into
subfiles and the processes write into the subfiles. After the file has been written, the
file will be joined using the file joining feature of Lustre. According to the authors, the
best I/O rate will be achieved when the file is small, each subfile does not stripe too
wide, the subfiles do not overlap which would produce contention at the OSTs, and that
the subfiles together cover a sufficient number of OSTs for a good aggregated bandwith.
They implement these requirements in a technique called hierachical striping, which lets
one determine the size of a subfile, the number of OSTs for this subfile and the start index
of the OST of the subfile. Finally, they evaluate their implementation using collective
management operations and concurrent read/write accesses. Their results show high
performance increasement.

Finally, best practices for using HDF5 and MPI-IO with Lustre are given in [How12];
for example to set the alignment to the Lustre stripe sizes and to tune the width of the
B-Tree, which is used to store the locations of the chunks. Furthermore, two software
modifications to the HDF5 interface have been presented, which have been incorporated
in the HDF5 release 1.8.5 . They have refactored the H5Fflush API routine, which
has the purpose to flush all buffers associated with a file to the disk. Previously, the
routine extended the file size on disk to allocate all space (even the regions which have
not been written yet). This resulted in a call of the MPI-IO routine MPI_File_set_-

size, which has very poor performance on Lustre systems. Because it is not required
to set the file size accurately until the file has been closed, the call has been removed
from the code. The second modification is about the flushing of the metadata items.
Previously, only one process wrote all metadata items to the disk, since early parallel
filesystems performed poorly when multiple processes performed small I/O operations.
According to the authors, this is no more true with modern file systems (as Lustre),
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which have multiple storage servers and can handle multiple small requests at the same
time. The interface has been modified to divide up the metadata into groups and each
process flushes one group to the disk. These modifications and best practices have been
evaluated in combination with the modifications from [LC08], which are incorporated in
the Cray Message Passing Toolkit 3.1 . The results show that the performance is much
better than using unoptimised configurations.
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4. Evaluation

This chapter is dedicated to an extensive analysis of the NetCDF-4 and HDF5 interfaces
concerning parallel I/O access. We compare many I/O configurations and analyse the
full I/O path (POSIX, MPI-IO, HDF5 and NetCDF-4). We distinguish the access of the
data into two modes: disjoint and interleaved. Disjoint means that each client accesses
a large contiguous region of the data, as illustrated in Figure 4.1.

P0

Block 0

P1

Block 1 . . .

Pn

Block n

Figure 4.1.: Disjoint pattern

We speak of interleaved access when each client accesses a large non-contiguous region.
This pattern is illustrated in Figure 4.2. One has to consider, that we refer to logical
and not physical access: The accesses described above are related to the calls in the
application level, which does not mean that the physical access is performed in the same
way. For example, when using chunking the data is physically spread in a non-contiguous
way even when using logically contiguous accesses.

P1 P2 . . . Pn

Segment 0

P1 P2 . . . Pn

Segment 1 . . .

P1 P2 . . . Pn

Segment m

Figure 4.2.: Interleaved pattern

We analyse the performance using contiguous and chunked data layout, with a one-
dimensional data shape. Furthermore, we are interested in the impact on the perfor-
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mance when a multi-dimensional data shape is used. For this purpose, we also analyse
the performance with a two-dimensional data shape.

4.1. Testbed specification

We use the software libraries and versions stated in Table 4.1.

Software Version
HDF5 1.8.11
Open-MPI 1.6.4
Lustre 2.5
NetCDF-4 4.1.3
IOR 3.0.1

Table 4.1.: Software versions

Our system consists of 10 OSS nodes that host the OSTs. For simplicity’s sake we
will only speak of OSTs instead of OSS in this thesis. Furthermore, one of the servers
mentioned does also host one MDS. Each of these server nodes has Intel® Xeon™ Sandy
Bridge E-1275 CPUs (3.4 GHz, 4 cores total), 16 GB DDR3/PC1333 ECC RAM, 3 ×
2 TB SATA2 Western Digital WD20EARS HDDs, a 160 GB SATA2 Intel 320 SSD and
2 × Intel® 82579LM/82574L Gigabit Ethernet NICs. They use CentOS 6.5 with Linux
2.6.32-358.18.1.el6_lustre.x86_- 64. We use 10 client nodes. These nodes each have
2 × Intel® Xeon™ Westmere EP HC X5650 CPUs (2.66 GHz, 12 cores total), 12 GB
DDR3/PC1333 ECC RAM, a 250 GB SATA2 Seagate Barracuda 7200.12 HDD and 2
× Intel® 82574L Gigabit Ethernet NICs. They use Ubuntu 12.04.3 LTS with Linux
3.8.0-33-generic.

All nodes are interconnected via Gigabit-Ethernet. We can therefore calculate the the-
oretical maximum performance: The throughput is bounded by the network and we
have 10 client nodes each bounded by 1000 MBit/s which equals 125 MB/s1. TCP/IP
is used as underlying network transport protocol stack and adds overhead to the pure
data transport. In [Kun13], researchers of the research group Scientific Computing at
the University of Hamburg, which use the same network environment, measured an
available bandwith of 117 MB/s due to protocol overhead,etc. Thus the maximum is

10 × 117MB/s = 1170MB/s ≈ 1125MiB/s 2

1MB/s stands for Megabyte per second, thus 106 bytes per second
2MiB/s stands for Mibibyte per second, which equals 220 bytes per second
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4.2. Modifications to IOR

We have modified IOR to fit our analysis purposes. IOR is written in C and has one
main source file, which implements several functions for creating tests, printing the
results, doing simple statistics and running tests. Tests can write/read data and check
that writing/reading was correct. IOR has one driver for each API, which is realised in
a source file that implements the so called abstract ior interface (aiori) . This interface
(implemented as a C-struct, see Listing 4.1) declares functions for creating, closing and
opening a file, transferring data, etc. The main file binds at startup to the concrete
implementation and calls these functions when performing the test. This abstract design
lets one easily add drivers for other APIs without changing the main file.

1 typedef struct ior_aiori {

2 char *name ;

3 void *(* create)(char *, IOR_param_t *);

4 void *(* open )(char *, IOR_param_t *);

5 IOR_offset_t (* xfer )(int , void *, IOR_size_t *,

6 IOR_offset_t , IOR_param_t *);

7 void (* close)(void *, IOR_param_t *);

8 void (* delete)(char *, IOR_param_t *);

9 void (* set_version )(IOR_param_t *);

10 void (* fsync)(void *, IOR_param_t *);

11 IOR_offset_t (* get_file_size)( IOR_param_t *,

→֒ MPI_Comm , char *);

12 } ior_aiori_t ;

Listing 4.1: aiori struct

NetCDF support is integrated by a driver for the parallel interface pnetcdf. In the words
of [LLC+03], “pnetcdf is a parallel interface for writing and reading netCDF datasets.
This interface is derived with minimum changes from the serial netCDF interface but
defines semantics for parallel access and is tailored for high performance.” This interface
does only support NetCDF files of a version which is less than 4. Therefore, we have
added a driver for the parallel version of NetCDF-4.This driver provides the nofill option,
chunking, the usage of unlimited dimensions and multiple dimensions. Hence we have
added the options chunkSize, unlimited, dimx, dimy, chunkx and chunky. The chunkSize
option specifies the size of the chunks when using only one dimension. If unlimited is set
to 1, the first dimension will have size unlimited, which means that the variable, which
holds the data that is written, can be arbitrarily extended. dimx and dimy are required
when two-dimensional data layout is desired. dimx specifies the size of the first and dimy
that of the second dimension. The variable is defined using the datatype NC_BYTE, which
means that the product of dimx and dimy equals the aggregated filesize3. chunkx and

3This is not exactly true, because the metadata adds overhead. But this overhead is so small, that it
is negligible.
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chunky specify the size of the chunks respectively. If none of the parameters unlimited,
dimx, dimy, chunkx and chunky are used, the size of the only dimension equals the
aggregated filesize.

Listing 4.2 shows our implementation for transferring data. Lines 14 to 18 show the
respective calls for putting/retrieving data. fd is the identificator of the NetCDF file
we are using and var_id the identificator of the variable. start and count are one-
dimensional arrays, whose size corresponds to the dimension of the variable. The buffer

contains the data. Lines 3 to 6 are related to the two-dimensional case. We always write
the full transfer size along the second dimension, thus the count of the first dimension
is set to 1 and the count of the second dimension to the transfer size. Furthermore, it
is required that the dimy parameter is a multiple of the transfer size and the number of
tasks which are participating. The start offset is calculated by taking into consideration
that the second dimension is the fastest-varying dimension. Lines 10 and 11 show the
one-dimensional case. start is set to the offset and count to the transfer size.

1 if( param ->dimx && param ->dimy )

2 {

3 start [0] = ( size_t) (param -> offset / param -> dimy );

4 start [1] = ( size_t) (param -> offset % param -> dimy );

5 count [0] = ( size_t) 1;

6 count [1] = ( size_t) (param -> transferSize );

7 }

8 else

9 {

10 start [0] = ( size_t) param ->offset ;

11 count [0] = ( size_t) (param -> transferSize );

12 }

13 /* access the file */

14 if (access == WRITE) { /* WRITE */

15 NC4_CHECK ( nc_put_vara (*(int *)fd , var_id , start , count ,

→֒ (char *) buffer), "cannot write into variable ");

16 } else { /* READ or CHECK */

17 NC4_CHECK ( nc_get_vara (*(int *)fd , var_id , start , count ,

→֒ (char *) buffer), "cannot read from variable ");

18 }

Listing 4.2: NC4 data transfer algorithm

We have modified the HDF5 driver to support multiple segments in one dataset. The
original version created a new dataset for each segment. We were required to modify
this, because our analysis purposes require interleaved access in one dataset (see Section
4.5). Analogous to the NetCDF-4 driver, we have implemented chunking, unlimited
dimension and two-dimensional data layout. Finally we have integrated calls to restart
the Lustre system.
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4.3. Experimental design

Except the stripe count parameter (see Section 2.4), we use Lustre in default configura-
tion. This means that server-side locking is disabled and the stripe size parameter is set
to 1 MiB. We set stripe count to −1, which means that a file is spread over all OSTs.

Table 4.2 shows the IOR parameters which we are using in all of our experiments. In each
I/O configuration we write and read back data, repeating 3 times. IOR calculates the
write/read bandwidth in the following manner ([iora]): “IOR performs get a time stamp
START, then has all participating tasks open a shared or independent file, transfer data,
close the file(s), and then get a STOP time. The calculated bandwidth is the amount of
data transferred divided by the elapsed STOP-minus-START time.” The figures of the
experimental results are given in Appendix A. Our plots do always show the mean of the
different measurements, if not stated otherwise. We have run several tests with different
choices for the memoryPerNode parameter and it seems that this parameter does not
have a lot of impact on the performance; thus we set the parameter to 0 (which means no
additional memory allocation). To ensure the independence of each run, we restart the
Lustre system before each write or read test and wait 30 seconds before performing the
test. Restarting includes cleaning the caches of the client and server nodes. Prefilling, as
discussed in Section 2.2, slows down the performance approximately by the half; because
we know this in advance it makes no sense to use this option in our experiments. Thus
we use the option noFill.

We use 1 process per client node, because we believe that this is satisfying to saturate
the network interface, which means that adding more processes would only result in con-
tention and worse performance. Furthermore, we set the parameter reorderTasksCon-
stant to 1, to prevent that the data is read back from the cache (see Section 2.5). The
goal of our experiments is to discover the full potential of the system. Therefore we
use the full amount of client nodes and set numTasks to 10. We write/read 20 GiB4

per node. This exceeds the available memory on the client nodes (see Section 4.1) and
prevents that the data is only written to memory and not to the disk storage. As we
use 10 nodes, the aggregated filesize is equal to 200 GiB. If not stated otherwise, we
set transferSize to 1 MiB and believe that this is a good value, because according to
[OI14] the Lustre clients internally send all their data in 1 MiB chunks, if it is possible.
Furthermore the default Lustre stripe size equals 1 MiB. When using chunked I/O, we
set the chunk size to 1 MiB, too. If not stated otherwise, we align the beginning of the
data section to the Lustre stripe sizes. This also includes the physical start adress of the
chunks, if chunked I/O is used. We therefore set the parameter setAlignment to 1 MiB.
It has to be mentioned, that this mechanism does not work when using the NetCDF-4
API, because the aligning is not implemented. We have implemented this feature in this
thesis. For more details see Section 5.1.

4GiB stands for Gibibyte, which equals 230 bytes
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If not mentioned differently, we run every test case once with independent I/O and once
with collective I/O. For collective I/O, we disable the Two-Phase I/O optimisation (see
Figure 2.1), because it makes no sense for our analysis purposes. This optimisation tries
to turn non-contiguous accesses into contiguous ones by reordering the data accesses.
This is useless when analysing the disjoint pattern, because the clients are already ac-
cessing large contiguous regions. Furthermore, if we would use this optimisation with
the interleaved pattern, the optimisation would turn the interleaved access into a dis-
joint access, which would not be the scenario which we want to analyse. The MPI-IO
driver of IOR uses the routines MPI_File_write_at_all and MPI_File_read_at_all

in order to write/read data collectively. According to [ROM] these routines perform in-
dependent I/O, when Two-Phase I/O is disabled. For this reason we do not use MPI-IO
in combination with collective I/O in our tests. The HDF5 API internally uses fileviews
when performing collective I/O; this results in a call of MPI_File_set_view which is
collective. Thus synchronisation will be performed which affects the I/O behaviour. We
are therefore interested in the comparision between independent and collective I/O when
using NetCDF-4 and HDF5.

readFile = 1
writeFile = 1
repetitions = 3
reorderTasksConstant = 1
memoryPerNode = 0
interTestDelay = 30
noFill = 1
numTasks = 10
transferSize = 1m
setAlignment = 1m

Table 4.2.: Basic IOR configuration

4.4. Disjoint pattern

As we write 20 GiB per process, in all tests of this section, additionally to the Basic
IOR configuration stated in Table 4.2, we use the IOR configuration stated in Table 4.3.
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segmentCount = 1
blockSize = 20g

Table 4.3.: IOR configuration - disjoint pattern

4.4.1. Contiguous data layout

Figure 4.3 shows the results of a test using contiguous data layout. We have plotted
the minimum and maximum throughput, because many results have a high variation
when using independent I/O. We believe that the reason lies in the combination of the
competition on the OST and network resources with the lack of synchronisation when
using independent I/O.
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Figure 4.3.: Disjoint pattern

We see that the results are far away from the theoretical maximum stated in Section
4.1. We are sure that this can be explained by the contention on the OSTs and network
resources, because the access pattern is an all-to-all OST pattern; each client node is
communicating with each OST node. When analysing the results using independent I/O,
we observe that reading performs better than writing5, especially in the case of MPI-IO,
HDF5 and NetCDF-4. We have the following explanation for this issue: Figure 4.4

5If not stated differently, we mean for each API and each value (minimum and maximum).
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shows a trace, using the tool Vampir (see Section 2.6), of an example run with POSIX,
which indicates that some clients are deferring their respective writes, which leads to
the inconsistent figures and low data rates. We have analysed the log files on the client
nodes and they indicate that some OSTs are not able to handle all the requests to write
data from the clients. Therefore some clients are deferring their respective writes. We
believe that the reason lies in the combination of the access pattern (all-to-all) and the
lack of synchronisation when using independent I/O; the write requests of some clients
arrive earlier and in a larger flow at the OSTs, which then prefer those clients. The
other clients loose the connection to the sever, due to a timeout, because their write
requests have not been responded to.

Figure 4.4.: Some clients defer writes

POSIX performs better than MPI-IO, which performs better than HDF5 which itself
performs better than NetCDF-4. The difference is especially strong when comparing the
peak performance of HDF5 with NetCDF-4, the minimum value of MPI-IO with HDF5
and MPI-IO with POSIX; but we cannot conclude if this is random behaviour (due
to the inconsistency) or related to the APIs. When reading, POSIX achieves higher
figures than the other APIs, but the difference is very small if we consider the peak
performance. The difference between minimum performance is strong, but again, this
could be a coincidence. The other APIs perform almost equally, which means that the
API overhead is not strong in this case.

In the case of collective I/O, NetCDF-4 and HDF5 attain higher data rates when writing.
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HDF5 achieves better results when writing than NetCDF-4, which could be related to
the API overhead or the lack of alignment in the NetCDF-4 API. Furthermore, we note
that HDF5 achieves similar data rates as POSIX in independent mode, which is an
indicator that the we have measured the maximum which is possible for HDF5. When
reading collectively, both APIs perform similarly.

Finally, if we compare collective I/O against independent I/O, we observe that writing
performs better using collective I/O than when using independent I/O, surely due to
the synchronisation which prevents the deferring of the write requests of the clients,
as explained above. Reading with NetCDF-4 and HDF5 achieves better results when
independent I/O is applied.

The goal of the following test is to discover the impact of the transfer size on the
performance. Because of the inconsistent behaviour when using independent I/O in
combination with this access pattern, we constrain the test to collective I/O. Figure
4.5 shows the results. Writing performs better than reading until a large transfer size
is reached (128 MiB), then reading performs better than writing. Furthermore, read
performance increases monotonically with the transfer size for both APIs. We believe
that the reason lies in the fact that write requests can be aggregated and cached by
the OSTs, so they can be written out in a performant way. This is not possible when
reading, because the OSTs have to deliver the data immediately which can implicate
a lot of seeking, especially when the transfer size is small. This behaviour hampers
the throughput. When the transfer size is large, the amount of seeks which have to be
performed is relatively small; thus reading benefits from a larger transfer size.

Writing with HDF5 performs relatively constant. Only with small transfer sizes (128 and
256 KiB6) the performance is very poor. We believe that such small transfer sizes imply a
larger communication overhead, because more network packets have to be transmitted
(which itself contain metadata). Furthermore, HDF5 outperforms NetCDF-4 until a
transfer amount of 4 MiB is reached. The reason lies in the lack of alignment in the
NetCDF-4 API. Unaligned writing implicates that some write requests are split up to
multiple OSTs, which results in smaller chunks which have to be processed on the OSTs
for the respective requests. This overhead is especially significant when the transfer size
is small, because the fraction of requests which have to be split up is larger. Reading
with either HDF5 or NetCDF-4 performs almost equally. Unaligned I/O does not seem
to degrade the performance, even when using small transfer sizes. The reason could be
the fact, that reading with small transfer sizes does already perform poorly, and the
splitting of the requests has no more influence on the poor performance.

Finally, we analyse the impact of the API overhead of NetCDF-4 when using different
transfer sizes. Therefore we compare NetCDF-4 with HDF5 using unaligned I/O. The
results are illustrated in Figure 4.6. When writing, both APIs perform almost equally.
When reading with larger transfer sizes (> 4 MiB), HDF5 performs slightly better, but

6KiB stands for Kibibyte, which equals 210 bytes
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Figure 4.5.: Varying transfer size

the API overhead of NetCDF-4 is not significant.

4.4.2. Chunked data layout

In the following test we analyse the performance using chunked data layout with various
chunk sizes. We set the transfer size to 512 MiB, because our previous tests have
indicated that the performance benefits from a large transfer size. Furthermore, we use
collective I/O to attain figures with low variation. Figure 4.7 shows the results. Overall,
whether writing or reading, the performance increases with the size of the chunks and
stays relatively constant at a particular chunk size. Small chunk sizes imply a larger
amount of chunks which implies a larger amount of metadata that has to be handled.
As mentioned in Section 2.2, the locations of the chunks are stored in a B-tree. Halving
the chunk sizes increases the size of the B-tree by double. This overhead slows down
the performance dramatically, especially when writing, because the B-tree has to be
calculated and written to the header. NetCDF-4 performs worse than HDF5 with small
chunk sizes. The reason is not the lack of alignment in the NetCDF-4 API, because
we have performed tests with HDF5 unaligned that achieved the same figures as HDF5
with aligned I/O. Therefore, the API adds overhead in this case. When the chunk size
is sufficiently large, the results are analogous to the contiguous case using 512 MiB as
transfer size (see Figure 4.5). The reason is that the metadata overhead, mentioned
above, is no longer important and the same access pattern is used: Large contiguous
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Figure 4.6.: Comparing NetCDF-4 with HDF5 unaligned

regions are accessed by each process.

4.4.3. Two-dimensional data layout

Finally, we analyse the disjoint scenario using two-dimensional data layout. We use the
IOR configuration stated in Table 4.4; thus, the first dimension has a size of 2 KiB and
the second 100 MiB. The results are shown in Figure 4.8. As in the one-dimensional case,
the results are far away from the theoretical maximum. More precisely, the results are
nearly the same when the figures are consistent, which is the case when collective I/O
is used. In the case of inconsistency the peak performance is always in similar regions.
The reason is, that the underlying access pattern is the same: a large contiguous region
will be accessed, leading into an all-to-all pattern.

dimx = 2k
dimy = 100m

Table 4.4.: IOR configuration - Two dimensions
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Figure 4.7.: Chunked layout

4.4.4. Summary

We conclude that this access pattern is not suited if maximal throughput performance
is desired: All our tests achieve data rates which are far away from the maximal theo-
retical performance mentioned in Section 4.1. The reason is the competition on network
and OST resources, because all clients are communicating with all server nodes. We
explained this suspicion in Chapter 3.

Many results have a high variation when using independent I/O. We believe that the
reason lies in the lack of synchronisation combined with the access pattern. Furthermore,
write performance with independent I/O is very poor in some cases, because some clients
are deferring their respective writes, because the server is not capable to respond to the
respective requests.

The highest throughput (whether reading or writing) is achieved when using large trans-
fer sizes. This is especially important when reading, because the overhead induced by
the seeking is very little in this case. Reading does even perform better than writing with
very large transfer sizes. Furthermore, for small transfer amounts, HDF5 outperforms
NetCDF-4 when writing. The reason lies in the unaligned data access of NetCDF-4.
The NetCDF-4 API adds almost no overhead with this access pattern, as HDF5 with
unaligned I/O performs almost identical to NetCDF-4 when writing and slightly better
when reading with large transfer amounts.
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Figure 4.8.: Disjoint pattern multiple dimensions

Chunked I/O benefits from large chunk sizes, as the metadata overhead using small
chunks slows down the performance dramatically. When using large chunk sizes in
combination with a large transfer size (512 MiB), the results are equal to the contiguous
case. Finally, the dimensionality of the data layout appears to have no real impact on
the performance behaviour.

4.5. Interleaved pattern

In this section we will analyse different x-OST patterns. The term has been discussed in
Chapter 3 and it has been taken from [DL08]. In our scenarios an x-OST access means,
that each client node is communicating with exactly x OST nodes in the whole test. We
define a pattern to also be x-OST when using chunked layout, if it is x-OST when using
contiguous layout; though chunked I/O spreads the data into independent locations,
which means that we cannot determine the number of OSTs the client is communicating
with. Furthermore a pattern is also x-OST when using NetCDF-4, although the access
is not aligned, which means that it is communicated with more than x OSTs.

When using x-OST access, there exist groups with competing clients. E.g. in the 2-OST
pattern with 10 client nodes evenly spread over the OSTs, each OST will communicate
with 2 clients. These 2 clients compete for the resources. In this section we want to
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analyse the impact of this competition on the performance.

4.5.1. Contiguous data layout

We analyse the 1-OST pattern using the IOR configuration stated in Table 4.5 and con-
tiguous data layout. Figure 4.9 shows the results. Writing or reading with POSIX and
MPI-IO performs nearly identical, achieving almost the theoretical maximum. The 1-to-
1 communication between clients and servers prevents competition on OST and network
resources. Contrary to POSIX and MPI-IO, HDF5 performs better when reading than
when writing; reading independently performs even equal to POSIX and MPI-IO, but
writing performs significantly worse. We believe that the write performance is affected
by the API overhead induced by the HDF5 API, whereas reading benefits from the
ability of the clients to read-ahead data. Furthermore, HDF5 benefits from independent
I/O. Collective I/O adds unnecessary synchronisation between the clients when perform-
ing a 1-to-1 communication, which slows down the performance. Contrary to the little
overhead of the layering induced by HDF5, NetCDF-4 performs much worse. The reason
is that the alignment of the data is not supported in NetCDF-4, leading to unaligned
data access, which results in communication with more than one OST. Reading (either
collective or independent) and writing independently achieves about half of the perfor-
mance of HDF5, which could be explained by the fact that due to the unaligned I/O
with each request two OSTs are involved. Writing in collective with NetCDF-4 slows
the performance down dramatically.

segmentCount = 20k
blockSize = 1m

Table 4.5.: IOR configuration - 1-OST pattern

The goal of the following test is to analyse the impact of a large transfer size (512 MiB)
when using the 1-OST pattern. The IOR benchmark requires that the transfer size is
not larger than the block size, which means that we cannot use IOR for this particular
scenario. We have written benchmarks for HDF5 and MPI-IO, which use this access
pattern and call the respective write/read routines with 512 MiB as transfer size. The
POSIX interfaces do not provide the ability to write/read using non-contiguous accesses,
which means that for all APIs the respective calls are split into contiguous calls when
the data arrives at the POSIX layer. Furthermore, the NetCDF-4 API provides the
ability to use non-contiguous calls; but we have looked into the implementation of the
corresponding routine, which shows that afterwards all calls are directly converted into
contiguous calls of another high-level NetCDF-4 routine. This means that it makes no
sense to write a benchmark using this routine, because it directly results in contiguous
calls of the NetCDF-4 API. Therefore, we have only written benchmarks for HDF5 and
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Figure 4.9.: 1-OST pattern

MPI-IO, which have the purpose to test the decrease of the API overhead when using
large transfer sizes. We have to note that our implementation of the MPI-IO benchmark
uses the routine MPI_File_set_view, which is collective across all processes. This means
that each call is synchronised across all processes, contrary to the implementation of the
MPI-IO driver of IOR when using independent I/O.

Figure 4.10 shows the results in comparison with the results using 1 MiB as transfer size.
We observe that the performance of MPI-IO does not change, which indicates that the
maximal reachable performance with MPI-IO has already been achieved. Except when
reading independently, the performance increases for HDF5 when using 512 MiB as
transfer size. Reading collectively performs equal to MPI-IO, in this case. Furthermore,
writing independently and collectively performs equal, but still worse than MPI-IO.
The performance enhancement is especially strong for writing using collective I/O. The
reason for the performance enhancement in the case of collective I/O is the smaller
synchronisation overhead, as a larger transfer size results in fewer calls of the write/read
routine, which itself results in fewer synchronisation calls. We conclude that the API
overhead does still exist for writing with HDF5, but using large transfer sizes decreases
this overhead.

Figure 4.11 shows the results when using the 2-OST pattern. The IOR configuration is
stated in Table 4.6. We have plotted the minimum and maximum as some figures show
high variation when using independent I/O. In the case of writing with independent I/O,
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Figure 4.10.: 1-OST pattern, comparing transfer size

all APIs achieve figures that lie in the region of about the half of the data rate of the
1-OST pattern. POSIX, MPI-IO and HDF5 perform similarly; NetCDF-4 is performing
worse, due to the lack of aligning. When writing collectively, the performance slows
down dramatically, and NetCDF-4 and HDF5 perform similarly. We believe that the
reason for these poor figures is the competition on the OST and network resources, as
each client competes with another client for two OSTs, combined with the interleaved
access on each OST. Each OST writes one stripe of one client after the stripe of the
second client, and so on. We speculate that this access pattern is much more expensive
when than using the disjoint pattern, where each OST can allocate a large contiguous
region on the underlying storage system, and has few overhead regarding the consistency
of the data (locking, etc). The synchronisation of collective I/O leads to similar arrival
times of the respective write requests. We suspect that this is a great disadvantage
which leads to the poor figures. In the case of independent I/O, several write requests
of one client can arrive independently, which allow greater possibility to optimise the
access to the underlying storage system, as more data layout information is available.

We observe a high variation of the results when reading independently; furthermore the
minimum performance is significantly lower than when using collective I/O. We have
the following explanation for this issue: The seeking overhead on the OSTs is very high
using interleaved access, if the read requests arrive in an unfavourable way. Figure 4.12
illustrates an access of two clients on an OST. Consider, that all read requests of Client
A arrive before the requests of Client B. If each client accesses n stripes, the OST has
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to seek 2 ∗ n times. If the requests would arrive at the same time, the OST could mix
the requests and would only be required to seek maximal n times. Therefore, reading
benefits from collective I/O in this case, as the read requests are synchronised and the
seeking overhead decreases. The minimum read performance of HDF5, MPI-IO and
POSIX is similar; achieving less than half of the performance of the 1-OST pattern.
NetCDF-4 performs better; the unaligned access leads to more clients accessing one
OST, which allows the mixing of more requests and decreases the seek overhead. One
run of HDF5 is an outlier, performing equally to the collective I/O performance of HDF5.
Reading collectively with NetCDF-4 performs slightly better than independently, due
to the benefit gained from synchronisation.

segmentCount = 10k
transferSize = 2m
blockSize = 2m

Table 4.6.: IOR configuration - 2-OST pattern
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Figure 4.11.: 2-OST pattern

In the following test we explore the impact of a large transfer size (512 MiB) using the
2-OST pattern. We use our self-developed benchmarks, which have been mentioned
above. Figure 4.13 shows the results. Writing with HDF5 using collective I/O benefits
strongly from the large transfer size, as the synchronisation overhead decreases. Writing
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Figure 4.12.: Interleaved access

independently performs almost equally. The maximum read performance does even
perform worse, which is significantly expressed when using independent I/O. But due
to the inconsistency when reading, we cannot conclude if this is hazard or not. As
mentioned above, our MPI-IO benchmark internally uses a collective MPI-IO routine
each time before the data is written/read. This is the reason why the results of MPI-
IO are very similar to HDF5 using collective I/O. The write performance decreases
and the read performance increases with our benchmark. But we believe that the latter
increasement is due to the synchronisation and not due to the larger transfer size. Finally,
we conclude that this access pattern does not benefit from large transfer sizes, except
when writing collectively.
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Figure 4.13.: 2-OST pattern, comparing transfer size

Finally, we analyse the 5-OST and 10-OST pattern in comparison with the 1-OST and 2-
OST pattern. The IOR configurations are shown in Table 4.7 and 4.8. We omit the tests
for POSIX, MPI-IO and HDF5, as we do not believe to attain performance increasement
over the 1-OST pattern. The results are illustrated in Figure 4.14. When writing
independently, the 1-OST pattern outperforms the other patterns, because, as explained
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above, the interleaved access performs very poorly in combination with competition
on the OSTs. Writing collectively performs very poor, but the performance increases
slightly with the number of OSTs it is communicated with. We believe that the reason
lies in the increasement of the transfer size which we use in our tests, which leads into
fewer synchronisation calls. Reading independently benefits from the communication
with more OSTs. We believe that the reason is that more clients per OST gives each
OST the possibility to optimise the access and to decrease the seek overhead. Reading
collectively performs moreover constant, except the 5-OST pattern, which performs
worse.

segmentCount = 4k
transferSize = 5m
blockSize = 5m

Table 4.7.: IOR configuration - 5-OST pattern

segmentCount = 2k
transferSize = 10m
blockSize = 10m

Table 4.8.: IOR configuration - 10-OST pattern

4.5.2. Chunked data layout

In the following tests we analyse the performance behaviour of HDF5 and NetCDF-
4 with chunked data layout, varying the number of OSTs it is communicated with.
We use the IOR configurations which are stated in the Tables 4.5, 4.6,4.7 and 4.8.
Furthermore, we set the chunk size to the maximum meaningful value, which is the
value of the block size, because larger chunk sizes decrease the meta data overhead,
as discussed in Subsection 4.4.2. Figure 4.15 illustrates the results using HDF5. The
achieved figures are significantly lower than the figures of the disjoint pattern (1 MiB
chunk size). Furthermore, independent I/O realises better results than collective I/O.

When writing independently, the 2-OST pattern performs slightly better than the 1-
OST pattern; we believe that the reason lies in the increased metadata overhead when
using smaller chunk sizes. The results of the disjoint pattern (illustrated in Figure 4.7)
indicate that the performance behaviour is very sensitive when using such small chunk
sizes. The 5- and 10-OST pattern perform worse, surely due to the increased cost of
communication between clients and servers implied by the access pattern. The 1-OST
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Figure 4.14.: 1- to 10-OST pattern, NetCDF-4

pattern performs best in the case of collective writes. We have the following explanation
for this issue: We have inspected the locations of the chunks in the file and observed that
about 85% of the transfer calls are 1-OST, which means that each client communicates
with one OST without competition of other clients. It seems that the performance
benefits from this lack of competition. Reading performs worst with the 1-OST pattern,
due to the increased metadata overhead. This is especially expressed in the case of
independent I/O. When reading collectively, the APIs perform almost equally.

Figure 4.16 shows the results using NetCDF-4. The performance among the APIs is
similar to the one using HDF5. Except for the case of reading collectively with the
5-OST pattern, HDF5 performs always better than NetCDF-4. Furthermore, when
writing collectively, the 1-OST pattern doesn’t perform best with NetCDF-4 any more,
due to the unaligned I/O which destroys the benefit mentioned above, that most of the
calls were 1-OST.

4.5.3. Two-dimensional data layout

In the following test we analyse the 1-OST scenario using two-dimensional data layout
with the IOR configuration stated in Table 4.4. The results are shown in figure 4.17.
The results are nearly identical using HDF5 and similar when using NetCDF-4 with one
dimension. We omit further tests using two-dimensional data layout, because we believe
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Figure 4.15.: 1- to 10-OST pattern, HDF5 with chunked I/O

that the results will be almost identical to the one-dimensional case.

Finally we analyse the performance when incrementally extending size of the dataspace
(see Section 2.2). To do this, we use a two-dimensional data layout and the first dimen-
sion will be the unlimited dimension. When using HDF5, we set the initial dimension
size of the first dimension to 1. As mentioned in Section 2.2, collective and chunked I/O
is required in this case. We use the 1-OST pattern and set the size of the second dimen-
sion to 10 MiB, which has the consequence that the interfaces extend the filespace after
each collective call. The IOR configuration is stated in Table 4.9. Figure 4.18 shows
the results. NetCDF-4 performs equally to the poor figures when writing collectively
using chunked I/O with the 1-OST pattern. The extension of the dataspace, which is
performed after each call, has no impact on the figures. HDF5 performs much worse
than using fixed-size datasets and also worse in comparison to the figures when using
the 1-OST pattern which chunked I/O. It seems that the extension of the dataset slows
down the performance.

4.5.4. Summary

The 1-OST pattern using POSIX or MPI-IO achieve figures which are almost the theo-
retical maximum. HDF5 achieves similar figures when reading and achieves higher fig-
ures as in the disjoint pattern (with 512 MiB transfer size) when writing independently.
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Figure 4.16.: 1- to 10-OST pattern, NetCDF-4 with chunked I/O

Writing collectively performs equal to the figures of the disjoint pattern. Collective I/O
adds unnecessary synchronisation and slows down the performance. The performance of
HDF5 with the 1-OST pattern benefits from large transfer sizes; especially in the case
of collective I/O. Large transfer sizes result in fewer calls of the respective write/read
routines and decreases the synchronisation overhead. The 2-OST pattern slows down
the performance of POSIX, MPI-IO and HDF5 dramatically, due to the competition on
OST and network resources.

The NetCDF-4 API achieves much lower figures than the other APIs with the 1-OST
pattern. The reason lies in the lack of alignment in the API, which does not result in a 1-
to-1 communication between client and server. When writing independently, NetCDF-4
achieves the highest figures with the 1-OST pattern. Writing collectively performs very
poorly; the best performance is realised with the 10-OST pattern. Reading performs
best with the 10-OST pattern.

Chunked I/O achieves figures with are significantly lower than when using the disjoint
access pattern. Beyond that, independent I/O performs better than collective I/O.
When writing independently, HDF5 and NetCDF-4 perform best with the 1- and 2-OST
pattern. Writing collectively performs best with the 1-OST pattern and HDF5 and best
with the 10-OST pattern with NetCDF-4. Reading realises the best figures with the
5-OST pattern.

Finally, our tests indicate that the dimensionality of the dataset does not influence the
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Figure 4.17.: 1-OST pattern multiple dimensions

performance behaviour. But the usage of extendible datasets slows down the perfor-
mance when using HDF5.
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unlimited = 1
dimy = 10m
segmentCount = 20k
blockSize = 1m
collective = 1
chunkx = 1
chunky = 1m

Table 4.9.: IOR configuration - Extendible dataset
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Figure 4.18.: 1-OST pattern, extending the dataspace
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5. Enhancements

In this chapter enhancements to the NetCDF-4 API are presented and evaluated.

5.1. Alignment

As mentioned earlier, the NetCDF-4 API does not implement the aligning of the data
objects (contiguous data section or chunks). We have added the respective function
call (of the HDF5 API) and recompiled the API. We have reevaluated the disjoint and
1-OST pattern with NetCDF-4 aligned to the Lustre stripe sizes.

In our first reevaluation, we analyse the performance of NetCDF-4 using the disjoint
access pattern, as stated by the IOR configuration in Table 4.3. The results are illus-
trated in Figure 5.1. The plot shows minimum and maximum value, because of the
high standard deviation. The alignment improves the write performance of NetCDF-4,
which is now almost equal to the performance of HDF5. Reading performs similar to
the unaligned access.

We reevaluate the test using the 1-OST pattern, which used the IOR configuration stated
in Table 4.5. We observe that the alignment of NetCDF-4 improves the performance
greatly, because each client node is now really communicating with one OST node. The
write performance (either independent or collective mode) is now almost equal to HDF5.
Reading performs worse than HDF5, but perspicuously better than the old unaligned
version of the NetCDF-4 API.

Figure 5.3 shows the reevaluation using chunked I/O and the 1-OST pattern. It shows
that again the alignment improves the performance, which is significantly expressed
when writing collectively. But the figures of HDF5 are not achieved, which indicates
that an API overhead does exist in this case.

Summary The lack of alignment in the NetCDF-4 API is a real disadvantage regarding
the performance. We have contacted Unidata concerning this issue. They have answered
that “benefits of the alignment feature were apparently overlooked in the NetCDF-4
implementation” and that the feature will be implemented in a future release.
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Figure 5.1.: Disjoint pattern, with NetCDF-4 aligned

Overall, the figures improve greatly when using aligned I/O. The use of the 1-OST
pattern benefits the most from the alignment, as the communication is now really a
1-to-1 communication between client and server nodes.

5.2. Default chunksize using unlimited dimension

When an unlimited dimension is used in the NetCDF-4 API, the underlying storage
layout must be chunked (see Section 2.2 ). The user can specify the sizes of each
chunk dimension and default values are provided if the user does not specify a value
for a dimension. The default chunk size can be provided when the NetCDF-4 API is
compiled. If the value is not provided, the default chunk size equals 4 MiB. The default
values for each dimension are calculated with the algorithm stated in listing 5.1. Each
unlimited dimension is set to size 1, and the other dimensions in a manner that the
overall chunk has the default chunk size. This algorithm is unuseable when using only
unlimited dimensions and accessing large datasets, because the chunk size is too small.
We have added code which checks if only one unlimited dimension is used, and in this
case assigns the default chunk size even if the dimension is unlimited. We omit the
multi-dimensional case, because we believe that the results will be similar. In the multi-
dimensional case, one could set all dimensions to size 1 and the last varying dimension
to the default chunk size. This should result in the same access pattern.
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Figure 5.2.: 1-OST pattern, with NetCDF-4 aligned

1 if (dim -> unlimited )

2 chunksize [d] = 1;

3 else

4 chunksize [d] = pow (( double ) DEFAULT_CHUNK_SIZE/type_size ,

5 1/( double )(var -> ndims - unlimdim ));

Listing 5.1: Algorithm calculating default chunksize

We evaluate our implementation using the alignment optimisation of section 5.1 and
the disjoint and 1-OST pattern. We use the IOR configurations of Tables 4.3 and 4.5 ,
adding the IOR parameter unlimited and collective, to enable the unlimited dimension.
Because the data rates of the unoptimised version are too small, we are just accessing
10 MiB, thus the parameter blockSize is set to 1 MiB in this case. In this special case,
disjoint and 1-OST pattern coincide. The results are illustrated in Figure 5.4. The
reader has to take notice of the logarithmic scaling of the y-axis. The data rates of
the unoptimised version are unuseable, achieving one hundredth of one MiB/s when
writing and about half a MiB/s when reading. The optimised version achieves, in both
patterns, figures which are more than 10, 000 times better than the unoptimised version.
The write performance of the disjoint pattern is similar to the contiguous case, which is
illustrated in Figure 4.7. Furthermore, the disjoint pattern achieves better figures than
the 1-OST pattern, especially when writing. This coincides with our results from the
Evaluation Chapter.
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Figure 5.3.: 1-OST pattern, chunked I/O, with NetCDF-4 aligned

5.3. Internal error when using unlimited dimension

While we have run the tests of the Section 5.2, we have observed an internal error of the
NetCDF-4 API. Each time the application transfers data, the length of the dimension is
growing, which means that the underlying dataset has to be extended. When a dataset
has to be extended, the processes must communicate with each other to find the new
dimension size for each dimension, which corresponds to the maximum dimension size
of all processes. To find this maximum, the NetCDF-4 API uses the MPI function
Allreduce, whose signature is stated in listing 5.2.

1 int MPI_Allreduce(void *sendbuf , void *recvbuf , int count ,

2 MPI_Datatype datatype , MPI_Op op , MPI_Comm comm )

Listing 5.2: Signature of MPI_Allreduce

Allreduce performs a global reduce operation, specified by op, on elements of an input
buffer (sendbuf ), and stores the result in an output buffer (recvbuf ). The elements of
the buffer have type datatype and the size of the buffers is determined by the count
of elements. comm designates the group of processes which are communicating. The
NetCDF-4 API uses the maximum operation and uses MPI_INT as basic datatype,
which stands for a 32-bit signed integer. But the elements of the buffer are stored as
signed numbers (datatype hsize_t). Thus, the unsigned numbers are interpreted as
signed numbers which leads to an error if an unsigned number is interpreted as negative
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Figure 5.4.: Default chunksize using unlimited dimension

number. The correct solution would be to use MPI_Unsigned as basic datatype, which
stands for an unsigned 32-bit integer. We have implemented the correct solution and
started an issue on the respective GitHub repository of NetCDF-41. The solution has
been tested and committed to the source code by UniData.

1https://github.com/Unidata/netcdf-c
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6. Conclusion

Summary The goal of this thesis is to analyse the performance behaviour of the HDF5
and NetCDF-4 interfaces when using parallel I/O with Lustre as underlying filesystem.
Lustre splits a file up into multiple objects, called stripes, which are stored on different
OSTs. These stripes are distributed among the OSTs in a round-robin fashion. HDF5
and NetCDF-4 store the data in multi-dimensional arrays. The underlying data layout
can be contiguous, which means that the data is stored in one large contiguous chunk.
But the data layout can also be chunked, which means that the data is broken into pieces,
which are stored in independent locations. Furthermore, the HDF5 API provides the
ability to align the data objects (contiguous data section or chunks) to particular address
boundaries. This can be used to align the data objects to the Lustre stripes, to minimise
the overhead of communication with more OSTs. Unfortunately, the NetCDF-4 API
does not provide this feature.

HDF5 and NetCDF-4 use MPI-IO to perform the parallel I/O and MPI-IO uses the
POSIX interfaces of the underlying operating system. Therefore, we analysed the full
I/O path (POSIX, MPI-IO, HDF5 and NetCDF-4). We used the well known benchmark
IOR for our evaluation and modified it to fit our analysis purposes. The original IOR
software has drivers for POSIX, MPI-IO, HDF5 but not NetCDF-4. Instead, PNETCDF,
a parallel API for NetCDF files with a version less than 4 is provided. We implemented
a driver for NetCDF-4. Furthermore, we implemented chunking, two-dimensional data
layout and support for unlimited dimension for the HDF5 and NetCDF-4 driver.

We distinguished two general access pattern for our evaluation in Chapter 4: disjoint
and interleaved access. In the first pattern, each client process accesses a large con-
tiguous region and in the second pattern a large non-contiguous region. We analysed
the performance of contiguous and chunked layout; using a one-dimensional data shape.
Furthermore, the impact of the usage of multiple dimensions was tested with an analysis
of a two-dimensional data layout.

The figures of the disjoint access are far away from the theoretical maximum performance,
because, due to the large contiguous region accessed by each client, each client has to
communicate with all server nodes, which leads to high contention on network and OST
resources. We observed a high variation of the achieved performance in several cases
when using independent I/O. Beyond that, the write performance is very poor as some
servers are not able to respond to the write requests of the clients. The results using
the contiguous layout show that the NetCDF-4 API (whether reading or writing) and
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the HDF5 API benefit from large transfer sizes when reading . With very large transfer
sizes (512 MiB), reading does even perform better than writing. The performance of the
HDF5 API is better than that of the NetCDF-4 API, when the I/O accesses are aligned
to the Lustre stripe sizes. But, if HDF5 uses unaligned I/O accesses, the performance is
almost equal. This indicates that the NetCDF-4 API adds almost no overhead with this
access pattern. Chunked I/O benefits from large chunk sizes. The metadata overhead
when using small chunks slows down the performance dramatically. The results are
equal to the contiguous case if large chunk sizes are used in combination with a large
transfer size (512 MiB). Finally, the dimensionality of the data layout appears to have
no real impact on the performance behaviour.

In the interleaved access case, we analysed different x-OST patterns, which means that
clients logically communicate with x OSTs. The 1-OST pattern with POSIX or MPI-
IO achieves almost the theoretical maximum. HDF5 (with contiguous layout, aligned
to the Lustre stripes) outperforms the figures achieved from the disjoint access. The
reason is the lack of competition on network and OST resources. HDF5 performs better
with independent I/O, as the synchronisation overhead induced by collective I/O slows
down the performance. Furthermore, the performance of HDF5 benefits from large
transfer sizes. But the write performance of HDF5 is lower than that of POSIX and
MPI-IO, indicating that an API overhead does exist. The 2-OST pattern slows down
the performance of POSIX, MPI-IO and HDF5 significantly, because of the competition
on OST and network resources.

The NetCDF-4 API performs perspicuously worse than the other APIs with the 1-OST
pattern. The lack of alignment in the API does not result in a 1-to-1 communication
between client and server, inducing more competition on OST and network resources.
The achieved figures with chunked layout are significantly lower than when using the
disjoint access pattern. Beyond that, independent I/O performs better than collective
I/O with chunking. Finally, like in the disjoint access pattern, our tests indicate that
the dimensionality of the dataset does not influence the performance behaviour. But
the usage of extendible datasets slows down the performance when using HDF5.

We presented some enhancements to the NetCDF-4 API implementation in Chapter 5.
As mentioned above, the NetCDF-4 API lacks the alignment feature. We implemented
the alignment to the Lustre stripes and reevaluated the disjoint and 1-OST scenario.
The figures improve greatly with the aligned version, especially with the 1-OST pat-
tern. We contacted UniData, the organisation which is responsible for the source code
of NetCDF-4, and they will build this feature in a future release. Beyond that, we im-
plemented another version of the routine which assigns default chunk sizes in NetCDF-4.
We observe figures which are 10, 000 times better than the unoptimised version. Fur-
thermore, while developing the version, we have observed an error in the API, using a
false datatype. We provided the correct solution to the respective GitHub repository.
The solution has been incorporated in the source code.
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Best practices Our results allow us to provide best practices concerning the usage of
parallel I/O with the HDF5 and NetCDF-4 APIs in order to achieve high throughput.
Surely, our test environment does not equal the environment of a large HPC cluster,
but we are sure that our results can be transferred to larger environments. HDF5
performs best with contiguous layout, if the 1-OST pattern is used with I/O accesses
aligned to the Lustre stripes. Furthermore, independent I/O should be used in this
case, as the synchronisation implied by collective I/O is unnecessary and slows down
the performance. A large transfer size does also increase the performance.

Chunked I/O achieves lower performance; but in some cases (for example if the usage
of compression is desired) it is required. The best performance with chunking is realised
with the disjoint pattern in combination with large chunk sizes, in order to decrease the
metadata overhead. Furthermore, collective I/O should be used as we have observed
figures with high variation using independent I/O with this access pattern. Finally, we
believe that chunking does benefit from large transfer sizes, too. Due to the lack of
alignment in the NetCDF-4 API, the disjoint pattern with large transfer sizes is better
suited as an interleaved pattern, if high performance is desired. Chunked I/O with
NetCDF-4 does also perform best with the disjoint pattern.

Furthermore, our tests indicate that the dimensionality of the data layout has no impact
on the performance behaviour. We believe that the underlying access pattern (disjoint
or interleaved) is the key factor regarding performance. For the reason of separation of
concern, an access pattern performance optimisation, for example like a redistribution
of the data to achieve a 1-OST pattern, should be put in the MPI-IO layer. Some of
such optimisations have been presented in Chapter 3, for example the user-level library
Y-Lib or the static-cycling and group-cycling method. Finally, the usage of unlimited
dimensions or extendible datasets should be avoided if maximal performance is desired,
because the extension of the filespace slows down the performance.

Further work We used Lustre as underlying parallel filesystem. Evaluations with
GPFS, which is also very common in the HPC community, could be interesting, too. The
metadata overhead when using chunked layout slows down the performance dramatically
in the case of small chunk sizes. The performance of HPC applications using chunked I/O
would benefit if deficiencies regarding the handling of the metadata could be revealed and
removed. Beyond that, a comparison of the performance of PNETCDF and NetCDF-4
might induce the need for an investigation of PNETCDF’s source code, in order to find
hints for parallel I/O optimisations in the NetCDF-4 API.
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A. Experimental results

Table A.1.: Results of experiments of Figure 4.3
API I/O Operation Max(MiB/s) Min(MiB/s) Mean(MiB/s) StdDev

POSIX independent write 785.00 780.12 782.59 1.99
POSIX independent read 794.39 783.17 789.34 4.65
MPI-IO independent write 707.19 618.79 652.83 38.85
MPI-IO independent read 757.31 666.85 709.93 37.06
MPI-IO collective write 732.30 519.71 591.28 99.73
MPI-IO collective read 738.59 667.49 692.33 32.74
HDF5 independent write 671.65 518.69 580.62 65.75
HDF5 independent read 764.64 665.88 706.54 42.16
HDF5 collective write 776.06 770.80 772.97 2.24
HDF5 collective read 524.46 500.16 513.52 10.07
NC4 independent write 522.42 455.63 498.40 30.32
NC4 independent read 739.94 652.35 694.14 35.87
NC4 collective write 691.28 677.96 684.47 5.44
NC4 collective read 529.44 524.49 526.34 2.21

Table A.2.: Results of experiments of Figure 4.5
API Transfer Size Operation Max(MiB/s) Min(MiB/s) Mean(MiB/s) StdDev

HDF5 128 KiB write 486.50 475.12 481.72 4.82
128 KiB read 220.20 218.36 219.52 0.83
256 KiB write 609.29 602.58 607.02 3.14
256 KiB read 297.68 294.56 295.73 1.38
512 KiB write 804.42 802.73 803.39 0.74
512 KiB read 404.43 392.54 399.64 5.12
1 MiB write 800.45 794.79 797.79 2.32
1 MiB read 533.71 515.24 527.24 8.49
2 MiB write 801.05 798.47 800.11 1.16
2 MiB read 638.63 624.89 630.24 6.00
4 MiB write 805.63 795.25 801.07 4.33
4 MiB read 695.83 683.40 689.42 5.08
8 MiB write 805.63 802.16 803.95 1.42
8 MiB read 708.99 704.46 707.37 2.06
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16 MiB write 803.11 801.89 802.60 0.52
16 MiB read 733.40 726.26 728.93 3.18
32 MiB write 811.59 804.42 807.64 2.97
32 MiB read 736.39 727.10 730.36 4.26
64 MiB write 803.01 796.18 800.63 3.15
64 MiB read 790.70 784.58 787.91 2.53
128 MiB write 801.43 774.03 791.85 12.61
128 MiB read 854.94 849.09 852.84 2.66
256 MiB write 801.01 791.86 796.88 3.79
256 MiB read 860.60 842.57 852.31 7.43
512 MiB write 800.05 792.07 796.98 3.51
512 MiB read 867.73 854.60 859.46 5.88

NC4 128 KiB write 227.71 221.76 225.03 2.47
128 KiB read 219.28 217.20 218.26 0.85
256 KiB write 442.76 437.77 439.51 2.30
256 KiB read 295.58 294.18 294.89 0.57
512 KiB write 477.31 460.21 466.27 7.82
512 KiB read 393.72 393.60 393.67 0.05
1 MiB write 677.89 665.82 670.22 5.45
1 MiB read 536.65 516.45 529.01 8.95
2 MiB write 699.76 678.31 690.11 8.89
2 MiB read 647.48 640.44 644.74 3.08
4 MiB write 779.12 772.41 776.59 2.98
4 MiB read 704.08 696.04 698.86 3.70
8 MiB write 788.37 783.51 786.11 2.00
8 MiB read 732.21 723.94 728.02 3.38
16 MiB write 790.71 788.78 789.60 0.81
16 MiB read 764.40 746.25 753.09 8.06
32 MiB write 801.63 796.82 799.66 2.06
32 MiB read 741.15 734.38 737.40 2.81
64 MiB write 805.39 791.89 799.83 5.76
64 MiB read 761.38 753.94 758.45 3.24
128 MiB write 805.38 765.58 786.40 16.30
128 MiB read 820.16 813.49 816.14 2.89
256 MiB write 805.74 786.18 798.27 8.63
256 MiB read 829.78 827.83 828.74 0.80
512 MiB write 800.45 753.10 780.15 19.92
512 MiB read 831.22 824.84 827.68 2.65

Table A.3.: Results of experiments of Figure 4.6
Mode Transfer Size Operation Max(MiB/s) Min(MiB/s) Mean(MiB/s) StdDev

Aligned 128 KiB write 486.50 475.12 481.72 4.82
128 KiB read 220.20 218.36 219.52 0.83

69



256 KiB write 609.29 602.58 607.02 3.14
256 KiB read 297.68 294.56 295.73 1.38
512 KiB write 804.42 802.73 803.39 0.74
512 KiB read 404.43 392.54 399.64 5.12
1 MiB write 800.45 794.79 797.79 2.32
1 MiB read 533.71 515.24 527.24 8.49
2 MiB write 801.05 798.47 800.11 1.16
2 MiB read 638.63 624.89 630.24 6.00
4 MiB write 805.63 795.25 801.07 4.33
4 MiB read 695.83 683.40 689.42 5.08
8 MiB write 805.63 802.16 803.95 1.42
8 MiB read 708.99 704.46 707.37 2.06
16 MiB write 803.11 801.89 802.60 0.52
16 MiB read 733.40 726.26 728.93 3.18
32 MiB write 811.59 804.42 807.64 2.97
32 MiB read 736.39 727.10 730.36 4.26
64 MiB write 803.01 796.18 800.63 3.15
64 MiB read 790.70 784.58 787.91 2.53
128 MiB write 801.43 774.03 791.85 12.61
128 MiB read 854.94 849.09 852.84 2.66
256 MiB write 801.01 791.86 796.88 3.79
256 MiB read 860.60 842.57 852.31 7.43
512 MiB write 800.05 792.07 796.98 3.51
512 MiB read 867.73 854.60 859.46 5.88

Unaligned 128 KiB write 232.90 226.54 228.85 2.88
128 KiB read 221.07 216.25 219.25 2.14
256 KiB write 432.67 413.44 425.14 8.38
256 KiB read 297.68 295.08 296.74 1.18
512 KiB write 507.79 500.44 504.17 3.00
512 KiB read 392.23 389.03 391.02 1.42
1 MiB write 652.71 639.11 645.34 5.61
1 MiB read 535.65 528.95 533.32 3.09
2 MiB write 688.61 676.51 683.53 5.13
2 MiB read 654.91 648.00 651.80 2.86
4 MiB write 784.15 775.73 779.56 4.26
4 MiB read 725.37 712.51 719.17 6.44
8 MiB write 784.59 778.73 781.61 2.39
8 MiB read 763.58 752.61 757.16 4.67
16 MiB write 793.98 780.69 788.08 5.53
16 MiB read 782.06 779.13 780.66 1.20
32 MiB write 799.77 778.70 792.63 9.85
32 MiB read 761.94 754.24 759.03 3.42
64 MiB write 803.61 770.61 788.67 13.65
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64 MiB read 801.66 781.13 790.25 8.54
128 MiB write 799.31 794.62 797.66 2.15
128 MiB read 853.85 847.20 849.71 2.95
256 MiB write 798.16 794.10 795.63 1.80
256 MiB read 860.07 858.05 859.11 0.83
512 MiB write 793.46 722.44 762.21 29.61
512 MiB read 868.93 858.34 863.95 4.34

Table A.4.: Results of experiments of Figure 4.7
API Chunk Size Operation Max(MiB/s) Min(MiB/s) Mean(MiB/s) StdDev

HDF5 128 KiB write 384.23 381.27 382.46 1.28
read 522.38 514.18 517.50 3.53

256 KiB write 520.55 515.88 518.12 1.91
read 564.47 555.54 560.06 3.65

512 KiB write 636.91 634.00 635.00 1.35
read 679.52 666.50 673.51 5.37

1 MiB write 710.25 694.83 704.85 7.09
read 752.29 732.81 739.92 8.78

2 MiB write 748.80 717.23 729.34 13.90
read 810.60 800.66 806.90 4.44

4 MiB write 781.08 774.64 777.40 2.70
read 813.33 802.34 807.89 4.49

8 MiB write 778.77 769.87 773.26 3.93
read 834.93 817.22 825.52 7.27

16 MiB write 784.68 763.48 775.20 8.80
read 846.86 830.55 836.17 7.56

32 MiB write 797.90 780.24 791.25 7.84
read 853.77 839.14 847.77 6.26

64 MiB write 787.73 774.19 783.20 6.37
read 863.63 849.96 855.52 5.86

128 MiB write 800.28 772.56 784.06 11.80
read 868.24 855.33 860.26 5.69

256 MiB write 786.66 782.92 784.61 1.55
read 853.68 848.35 850.49 2.30

512 MiB write 785.76 777.81 781.18 3.36
read 865.43 846.02 855.93 7.93

NC4 128 KiB write 297.05 293.17 294.88 1.62
read 505.08 495.32 501.09 4.18

256 KiB write 452.72 448.90 450.63 1.58
read 544.09 536.97 539.71 3.12

512 KiB write 560.47 552.71 555.91 3.31
read 652.99 644.79 648.51 3.39

1 MiB write 628.11 617.19 622.72 4.46
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read 685.33 677.67 682.62 3.51
2 MiB write 716.81 711.55 713.78 2.22

read 767.17 746.50 758.30 8.69
4 MiB write 711.05 691.43 702.75 8.29

read 786.52 772.27 777.45 6.44
8 MiB write 778.93 777.99 778.43 0.39

read 801.09 798.37 799.47 1.17
16 MiB write 768.91 753.35 762.65 6.71

read 806.88 788.86 798.81 7.47
32 MiB write 790.13 774.65 781.16 6.56

read 819.73 802.51 811.74 7.09
64 MiB write 775.23 766.41 770.50 3.63

read 821.66 817.82 819.90 1.59
128 MiB write 784.84 767.15 773.69 7.92

read 833.45 824.59 828.32 3.75
256 MiB write 789.73 774.56 783.99 6.72

read 827.68 824.78 826.68 1.34
512 MiB write 796.96 791.69 794.88 2.29

read 827.90 819.74 824.36 3.42

Table A.5.: Results of experiments of Figure 4.9

API I/O Operation Max(MiB/s) Min(MiB/s) Mean(MiB/s) StdDev
POSIX independent write 1075.61 1071.89 1073.73 1.52
POSIX independent read 1069.26 1062.97 1066.23 2.58
MPI-IO independent write 1076.32 1070.43 1073.93 2.53
MPI-IO independent read 1070.59 1069.89 1070.19 0.29
HDF5 independent write 905.69 900.70 903.80 2.20
HDF5 independent read 1071.97 1068.53 1069.87 1.50
HDF5 collective write 797.82 789.92 792.61 3.68
HDF5 collective read 1007.11 996.25 1001.44 4.45
NC4 independent write 504.69 453.80 477.15 20.99
NC4 independent read 521.14 480.28 494.52 18.84
NC4 collective write 55.13 54.58 54.8 0.29
NC4 collective read 574.35 549.36 565.69 11.56
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Table A.6.: Results of experiments of Figure 4.10

API I/O Transfer Size Op. Max(MiB/s) Min(MiB/s) Mean(MiB/s) StdDev
MPI-IO ind. 1 MiB write 1076.32 1070.43 1073.93 2.53
MPI-IO ind. read 1070.59 1069.89 1070.19 0.29
HDF5 ind. write 905.69 900.70 903.80 2.20
HDF5 ind. read 1071.97 1068.53 1069.87 1.50
HDF5 cll. write 797.82 789.92 792.61 3.68
HDF5 cll. read 1007.11 996.25 1001.44 4.45

MPI-IO ind. 512 MiB write 1079.69 1074.03 1077.63 3.13
MPI-IO ind. read 1072.16 1067.99 1070.60 2.28
HDF5 ind. write 960.91 958.52 959.82 1.21
HDF5 ind. read 1072.20 1065.30 1067.68 3.92
HDF5 cll. write 958.66 956.65 957.90 1.09
HDF5 cll. read 1067.89 1064.02 1066.17 1.97

Table A.7.: Results of experiments of Figure 4.11

API I/O Operation Max(MiB/s) Min(MiB/s) Mean(MiB/s) StdDev
POSIX independent write 511.71 487.03 499.93 10.11
POSIX independent read 383.58 352.01 368.18 12.90
MPI-IO independent write 530.08 486.89 510.99 17.98
MPI-IO independent read 468.45 339.68 419.62 56.99
HDF5 independent write 505.66 496.64 502.51 4.15
HDF5 independent read 800.95 359.44 522.37 197.93
HDF5 collective write 122.42 121.85 122.06 0.26
HDF5 collective read 780.35 765.29 772.28 6.20
NC4 independent write 295.48 280.82 288.24 5.99
NC4 independent read 504.46 494.93 498.75 4.11
NC4 collective write 86.83 86.12 86.49 0.29
NC4 collective read 562.88 556.58 559.13 2.71



Table A.8.: Results of experiments of Figure 4.13

API I/O Transfer Size Op. Max(MiB/s) Min(MiB/s) Mean(MiB/s) StdDev
MPI-IO ind. 1 MiB write 530.08 486.89 510.99 17.98
MPI-IO ind. read 468.45 339.68 419.62 56.99
HDF5 ind. write 505.66 496.64 502.51 4.15
HDF5 ind. read 800.95 359.44 522.37 197.93
HDF5 cll. write 122.42 121.85 122.06 0.26
HDF5 cll. read 780.35 765.29 772.28 6.20

MPI-IO ind. 512 MiB write 306.58 276.96 293.74 15.20
MPI-IO ind. read 749.51 701.27 725.12 24.12
HDF5 ind. write 517.56 508.55 511.77 5.03
HDF5 ind. read 505.03 433.06 474.42 37.17
HDF5 cll. write 313.26 298.43 304.47 7.79
HDF5 cll. read 705.80 686.77 695.43 9.63

Table A.9.: Results of experiments of Figure 4.14

I/O OST pattern Operation Max(MiB/s) Min(MiB/s) Mean(MiB/s) StdDev
independent 1 write 504.69 453.80 477.15 20.99
independent read 521.14 480.28 494.52 18.84

collective write 55.13 54.58 54.8 0.29
collective read 574.35 549.36 565.69 11.56

independent 2 write 295.48 280.82 288.24 5.99
independent read 504.46 494.93 498.75 4.11

collective write 86.83 86.12 86.49 0.29
collective read 562.88 556.58 559.13 2.71

independent 5 write 244.26 231.51 236.31 5.66
independent read 612.76 577.14 594.80 14.54

collective write 124.99 122.39 124.08 1.20
collective read 489.68 475.65 482.11 5.78

independent 10 write 229.42 212.99 218.84 7.50
independent read 707.87 699.18 702.97 3.64

collective write 161.94 151.52 155.86 4.43
collective read 588.81 571.19 581.30 7.43
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Table A.10.: Results of experiments of Figure 4.15

I/O OST pattern Operation Max(MiB/s) Min(MiB/s) Mean(MiB/s) StdDev
independent 1 write 393.90 389.47 391.91 1.84
independent read 329.01 327.55 328.10 0.65

collective write 211.19 209.10 210.13 0.85
collective read 232.60 229.37 230.54 1.46

independent 2 write 401.99 398.32 399.91 1.54
independent read 407.74 393.43 402.80 6.63

collective write 111.22 110.48 110.81 0.31
collective read 265.61 258.23 261.75 3.02

independent 5 write 321.21 316.49 318.87 1.93
independent read 487.09 476.85 482.05 4.18

collective write 153.78 153.38 153.58 0.16
collective read 284.49 278.08 281.07 2.63

independent 10 write 255.15 236.92 244.86 7.63
independent read 421.99 420.39 421.36 0.70

collective write 188.08 185.93 187.04 0.88
collective read 271.89 269.89 270.67 0.88

Table A.11.: Results of experiments of Figure 4.16

I/O OST pattern Operation Max(MiB/s) Min(MiB/s) Mean(MiB/s) StdDev
independent 1 write 293.59 282.98 286.64 4.92
independent read 334.38 314.57 324.75 8.10

collective write 48.67 46.85 48.00 1.00
collective read 161.99 160.82 161.27 0.63

independent 2 write 282.79 279.92 280.95 1.31
independent read 366.26 361.60 363.44 2.03

collective write 64.47 64.32 64.41 0.07
collective read 210.52 208.61 209.75 0.83

independent 5 write 242.62 219.07 227.00 11.04
independent read 470.44 460.83 465.64 3.92

collective write 92.96 91.64 92.08 0.62
collective read 297.78 285.80 291.41 4.92

independent 10 write 242.33 213.90 232.52 13.17
independent read 388.27 381.78 384.64 2.70

collective write 142.61 123.28 130.34 8.71
collective read 255.87 254.13 254.93 0.72
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Table A.12.: Results of experiments of Figure 4.8

Api I/O Mode Operation Max(MiB/s) Min(MiB/s) Mean(MiB/s) StdDev
HDF5 ind. unaligned write 618.68 509.75 580.93 50.36
HDF5 ind. unaligned read 737.04 691.26 718.10 19.51
HDF5 ind. aligned write 744.82 520.99 636.60 91.53
HDF5 ind. aligned read 773.31 713.95 734.72 27.31
NC4 ind. unaligned write 569.69 497.59 522.89 33.13
NC4 ind. unaligned read 770.15 688.21 730.83 33.53

HDF5 cll. unaligned write 711.98 682.94 692.78 13.58
HDF5 cll. unaligned read 543.46 525.80 537.08 8.00
HDF5 cll. aligned write 774.93 768.62 771.58 2.59
HDF5 cll. aligned read 524.50 506.06 517.73 8.28
NC4 cll. unaligned write 680.38 668.95 675.30 4.75
NC4 cll. unaligned read 522.32 521.07 521.61 0.53

Table A.13.: Results of experiments of Figure 4.17

API I/O Operation Max(MiB/s) Min(MiB/s) Mean(MiB/s) StdDev
HDF5 independent write 905.34 899.92 902.42 2.23
HDF5 independent read 1073.46 1064.07 1067.48 4.24
HDF5 collective write 798.78 785.83 792.14 5.29
HDF5 collective read 1024.00 989.52 1007.78 14.15
NC4 independent write 454.88 447.69 450.42 3.18
NC4 independent read 450.37 428.52 438.45 9.03
NC4 collective write 52.97 52.84 52.88 0.08
NC4 collective read 603.98 602.25 603.23 0.72

Table A.14.: Results of experiments of Figure 4.18

API Max(MiB/s) Min(MiB/s) Mean(MiB/s) StdDev
HDF5 258.60 257.04 257.91 0.65
NC4 52.52 52.35 52.41 0.10
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Table A.15.: Results of experiments of Figure 5.2

Api I/O Mode Operation Max(MiB/s) Min(MiB/s) Mean(MiB/s) StdDev
HDF5 ind. aligned write 905.69 900.70 903.80 2.20
HDF5 ind. aligned read 1071.97 1068.53 1069.87 1.50
HDF5 cll. aligned write 797.82 789.92 792.61 3.68
HDF5 cll. aligned read 1007.11 996.25 1001.44 4.45
NC4 ind. unaligned write 504.69 453.80 477.15 20.99
NC4 ind. unaligned read 521.14 480.28 494.52 18.84
NC4 cll. unaligned write 55.13 54.58 54.8 0.29
NC4 cll. unaligned read 574.35 549.36 565.69 11.56
NC4 ind. aligned write 922.60 905.22 916.48 7.97
NC4 ind. aligned read 908.55 892.40 902.51 7.19
NC4 cll. aligned write 780.07 770.90 774.47 4.01
NC4 cll. aligned read 840.07 826.94 834.68 5.61

Table A.16.: Results of experiments of Figure 5.3

Api Mode I/O Operation Max(MiB/s) Min(MiB/s) Mean(MiB/s) StdDev
HDF5 aligned ind. write 586.99 500.11 557.48 40.57
HDF5 aligned ind. read 420.18 414.10 416.55 2.62
HDF5 aligned cll. write 693.11 688.80 690.99 1.76
HDF5 aligned cll. read 282.53 281.88 282.26 0.28
NC4 unaligned cll. write 49.83 49.27 49.46 0.32
NC4 unaligned cll. read 162.45 158.87 160.85 1.82
NC4 unaligned ind. write 310.48 251.76 286.47 30.79
NC4 unaligned ind. read 318.80 304.19 310.26 6.21
NC4 aligned cll. write 230.95 224.72 228.50 2.72
NC4 aligned cll. read 231.65 227.09 229.04 1.92
NC4 aligned ind. write 383.58 355.33 371.66 11.94
NC4 aligned ind. read 332.90 330.53 332.04 1.07
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Table A.17.: Results of experiments of Figure 5.1

API I/O Mode Operation Max(MiB/s) Min(MiB/s) Mean(MiB/s) StdDev
HDF5 ind. aligned write 671.65 518.69 580.62 65.75
HDF5 ind. aligned read 764.64 665.88 706.54 42.16
HDF5 cll. aligned write 776.06 770.80 772.97 2.24
HDF5 cll. aligned read 524.46 500.16 513.52 10.07
NC4 ind. unaligned write 522.42 455.63 498.40 30.32
NC4 ind. unaligned read 739.94 652.35 694.14 35.87
NC4 cll. unaligned write 691.28 677.96 684.47 5.44
NC4 cll. unaligned read 529.44 524.49 526.34 2.21
NC4 ind. aligned write 657.16 515.69 565.37 64.98
NC4 ind. aligned read 750.53 639.59 691.27 45.60
NC4 cll. aligned write 771.19 766.82 768.68 1.84
NC4 cll. aligned read 509.44 503.75 506.88 2.36

Table A.18.: Results of experiments of Figure 5.4

Version Mode Operation Max(MiB/s) Min(MiB/s) Mean(MiB/s) StdDev
Old disjoint & 1-OST write 0.01 0.01 0.01 0.00
Old disjoint & 1-OST read 0.49 0.22 0.31 0.16
New disjoint write 747.70 743.98 745.91 1.86
New disjoint read 367.81 361.75 365.52 3.29
New 1-OST write 563.28 543.27 556.04 11.09
New 1-OST read 316.84 315.70 316.17 0.49
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