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Abstract

Since computers exist, the performance of processors increases faster than the throughput
of networks and permanent storage. As a result, the performance bottleneck is the
throughput between the processor the other system components. To improve overall
cluster performance, the processor can be used to compress the data before sending it to
a slower component.

In order to apply the compression efficiently to all kind of data intensive applications,
compression can be performed in an underlying file system which is widely used in
clusters. One of these file systems is Lustre.

L7} is focused on speed and is currently one of the fastest lossless compression
algorithms. The algorithm can compress up to 4.51 GB/s while decompression reaches
about 9.14 GB/s. All available LZj implementations use continuous buffers. Since
Lustre is a Linux kernel module, the memory is accessed via page arrays. To be able
to use LZ4 the data has to be copied into a continuous buffer and back later. The aim
of this thesis to improve the throughput of the compression by reducing the memory
utilization and the number of copying processes. Therefore a modified version of LZ/ is
introduced, which works directly on page-based buffers. After the implementation of
the LZj algorithm with page-based buffers, it became clear that the performance was
not sufficient. Therefore, a new algorithm called BeWalgo is designed that doubles the
compression throughput when page arrays are used as buffers. The drawback of the
BeWalgo algorithm is that the compression ratio may be lower in comparison to LZ}.
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1. Introduction

Processor performance increases by about 60% per year; At the same time, the speed of
the memory increases by only 10% [Car02, p. 1] [nvil7]. The performance gap between
the processor and the other system components increases exponentially. As a result, the
processors are currently wasting a lot of time by waiting for the slow components. To
reduce the waiting time, applications can overlap the time-consuming read and write
(r/w) operations with additional calculations. But overlapping is not always possible
and requires additional code optimizations for each application.

Nodes in clusters and supercomputers are connected with very fast network connections
with large data rates and low latencies. InfiniBand interconnects are often used there
[Mell5]. If the data are compressed more quickly and with a better compression rate,
it would be possible to transfer more data over the same network. Since compression
takes time, the permanent storage of the data is delayed. Normally large simulations
do not write data for permanent storage and read it back immediately. Most often the
data is written once and later read only for a restart or for evaluation. The restart of a
simulation normally occurs only once every few hours or days. Post-processing of the
generated data is usually done by another application, which does not have the data
in the cache anyway. In both cases, the increased delay is not important because both
events are relatively rare and the latency is added only once to the total run time.

Clusters and supercomputers require large storage systems. These large storage systems
are mostly, but not exclusively, based on hard disk drives (HDDs) because of the relatively
low price per volume. HDDs can write a few hundred megabytes per second, which is
much slower than the random access memory (RAM). When the data stream is sent
compressed to the storage nodes, the reduced data size results in a reduced waiting time
for the calculation nodes because the required data is available more quickly. When
compression occurs in the file system, each application on the system that stores a lot of
data gets additional performance without the need for individual compression algorithms.

No user application that produces a lot of data must worry about compression as
performance improvement when the file system transparently compresses all files. There
are a lot of file systems, but there are only a few that are widely used in clusters and
supercomputers [Int14]. One of these file systems is Lustre [Lus17]. It is possible to
add compression to Lustre because it is open source. Lustre is a distributed file system,
which implies that multiple computation nodes can simultaneously write to multiple
dedicated storage nodes. These storage nodes write the data to their attached storage
devices. The Lustre file system is completely written in C and runs in the Linux kernel.

Adding compression support to a file system requires several components. When
different compression algorithms are available, the file system must be able to choose the
best compression algorithm for the current data. For later decompression, the file system



must store the size of compressed and uncompressed data. The work on all components
needed to add compression to the file system is already in progress while this thesis is
being written [Fucl6.

Benchmarks show that LZj [Coll7] is currently one of the fastest compression algo-
rithms. LZ4 is a lossless compression algorithm with a focus on speed. The algorithm
can compress data with up to 4.51 GB/s while the decompressor reaches 9.14 GB/s.
To compare the speed of different compression algorithms, the function memcpy is
normally used as a reference. The currently available LZ/ versions require at least virtual
continuous buffers for input and output. The allocation of virtual continuous memory
requires the Linux kernel to modify the page tables, resulting in an overhead. On the
other hand, the allocation of large physically continuous buffers within the kernel leads
to serious challenges because the kernel can not guarantee that the requested memory
is available. To solve this problem, a modified LZ4 algorithm is implemented which
operates directly on page-based buffers.

Benchmarks in Chapterb.3 show that the LZ4 compression speed on page-based
buffers is poor because the throughput reaches only 2.99 GB/s while achieving the
same compression ratio as the continuous buffer version. Therefore, this thesis presents
a new compression algorithm called BeWalgo with focus on speed in the context of
page-based buffers. With the page-alignment of r/w operations, it is possible to double
the achieved throughput in comparison to LZj. Depending on the structure of the data
to be compressed, the BeWalgo algorithm can lead to poorer compression ratios compared
to LZ4. For example, if text is to be compressed, BeWalgo achieves a compression ratio
of 1.9 while LZj reduces the same data with a ratio of 4.3. When scientific data are to
be compressed, both algorithms achieve nearly the same compression ratio as shown in
Chapter 5.

1.1. Structure of this Thesis

Chapter 2 describes the basics needed for fast compression and programming in the
Linux kernel. Chapter 3 describes the design of the various algorithms, including some
problems that arose during the creation process. Section 3.2 explains how the various
algorithms have been implemented. In addition, the key elements are displayed which
make the code as fast as possible. Chapter 4 shows some compression algorithms and
helper algorithms. These algorithms could be useful after they have been adapted for the
Linux kernel because they either improve the compression ratio or represent completely
new algorithms. Chapter 5 evaluates the the differences between the continuous and
page buffer based algorithms as well as the effect of different data-sets to the compression
ratio and speed.



2. State of the Art

This chapter shows the basic concepts of the compression algorithm LZ/ as well as some
differences between user space and kernel space code.

2.1. Compression

Compression algorithms are designed to reduce the size of data by converting data to
another format. This is only possible if the data contains repeating patterns. There
are two large classes of compression algorithms: Lossless and lossy [Seb03]. Lossless
algorithms guarantee that all reconstructed data exactly match the corresponding original
data. Lossy algorithms may loose some information to reduce the size even more. Lossy
algorithms are not further explained, since these should not be used in the context of file
systems. For compression algorithms preallocated input and output buffers are required.
Most algorithms, including LZ/, require these buffers to be at least virtually continuous.
Currently, LZ/ is the fastest compression algorithm for continuous buffers. To modify the
algorithm and accept page-based buffers, it is necessary to analyze LZ/ to understand
how the algorithm works and why it is so fast.

2.1.1. LZ4

The LZJ algorithm belongs to the family of the LZ* algorithms. In LZ* the uncompressed
data are divided into literals and matches. A literal is a group of bytes that are first seen
by the compressor and can not be compressed. The literal is stored in the compressed
data stream as it is. A match is a group of bytes that the compressor has already seen
before. To find matches the compressor uses a sliding window. The compressor therefore
only needs to store the information where these bytes, relative to the current position,
have already been seen. The matches are the interesting components because they can
be used to reduce the data size. Matches can be optimized in count and length.

Figure 2.1 visualizes the pattern of the LZ4 compressed data stream. This pattern is
repeated until all the data are encoded. The last pattern ends directly after a literal.

Token Literal Literal Off Match
Literal Match length iterals set length
length length
4 bits 4 bits [0, N] bytes [0, L] bytes 2 byte [0, M] bytes

Figure 2.1.: LZj pattern of compressed data



2.1.1.1. Length Encoding

To store the information how long a literal or match is LZ/ needs to encode lengths. To
store this lengths efficiently LZ/ can not use the default two’s complement. Therefore,
Figure 2.2 shows the decoding of such an LZj length.

e

l

Length = 4 bits from token

tmp = input.read(1) %—
v

Length += tmp

[ Finish

Figure 2.2.: LZ} decode length

The first component of an encoded length is stored in four bits, which are part of
the token. If the four bits represent a value less than 15, then the length is decoded.
Otherwise, the following bytes must be read and summed up until a byte with a value less
than 255 is read. When a match is decoded, it is necessary to add the value min-match
to the decoded length.

To understand why LZj uses this length encoding, it is best to show analyzes of
different datasets. These datasets are explained in detail in Chapter 5.
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length of individual matches length of individual matches
(a) ‘text’ dataset (b) ‘hdf5’ dataset

Figure 2.3.: Length distribution of literals and matches with the LZ4 compressor

Figure 2.3a shows the analysis results of the ‘text’ dataset. An analysis of the ‘silesia
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corpus’ dataset resembles the ‘text’ dataset and can therefore be found in the appendices.
Figure 2.3 shows the distribution of literal-lengths and match-lengths. The vertical line
indicates the point at which more than two bytes are required to encode a length with
the LZ/ encoding.

If the compression ratio is very high as in the ‘hdf5’ dataset, then only 80% of the data
can be encoded with matches of at most two bytes, as shown in Figure 2.3b. Otherwise,
as in the ‘text’ dataset, almost all matches and literals can be encoded in at most two
bytes. Even if only 80% of the encoded lengths are at most two bytes long, this is still
the majority. If the length encoding would use groups of two bytes or more, then the
compressed data stream would require more space.

2.1.1.2. Search for a Match

The LZ4compressor spends between 91% and 98% of the total time only to find matches.
The process of finding matches is shown in Figure 2.4.

e

input.available < 7 Stop - no match ]

/ data = input.read(4) /

!

h = hash(data)

y

position = hashtableAt(h)

y

hashtablePut(h,input.position)

!

/ tmp = input.read At(position,4) /

Stop - found match at ‘position’J

no

input.seek(stepsize)

Figure 2.4.: LZ4 search for a match

The LZ4 compressor requires a hash table in order to be able to locate matches in the
data. When searching for a match, the compressor must ensure that no data is touched
beyond the input buffer. In addition, the compressed data must end with a literal.
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Therefore, the process of searching for a match is aborted when only a few literals are left
in the input buffer. If there is enough data, the current data is hashed and used to find
a location in the hash table. If the data at the obtained position matches the data at
the current position, then the compressor has found a match. Otherwise, the compressor
must search further. In order to improve the speed when the data is poorly compressible,
the step size to be skipped can be increased after each non-coincidence. In order to
influence the compression speed, the compression function accepts an acceleration factor
as a parameter. This parameter is used to change the step size to gain more speed at
the expense of a poorer compression ratio.

2.1.1.3. Compression

The LZ4 compressor must convert the original data into the compressed data format
described in Figure 2.1. Figure 2.5 shows the general principle how the LZ/ compressor
works.

ST

!

LZ} search match

)
@ 2o LZ} encode last literal
|

Finish ]

yes [
LZJ expand match backwards

!

LZJ encode literal

!

L7} expand match forwards

l

LZ4 encode match

consecutive match

Figure 2.5.: LZj compression overview

Now, the detailed description for the compression process follows:

o search for match: The LZ4 compression process starts with searching for a
match.
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o match found: If there is no match or no other data is present, the last literal is
encoded. If there is a match, the algorithm tries to expand the match as far as
possible to the beginning.

o LZ) encode literal: If it is known where the next match begins, the data between
the last encoded match and the current match must be stored as a literal. It is
possible that the literal-length is zero.

e LZ) encode last literal: It is necessary that the last pattern of the compressed
data ends with a literal because there is no guarantee that there is any match at
all. Since matches must be at least four bytes long, they can not be encoded at the
end. In addition, the performance can be increased by reducing the branches. The
token of the last pattern is the only one in which no implicit min-match length is
encoded.

o« LZJ expand match to end: After the literal is encoded, the compressor expands
the match as far as possible. During expansion, the compressor must ensure that
it does not expand beyond the limits of the input buffer.

o« LZj encode match: If the position and the length of the match are known, the
compressor can append this information to the compressed data stream.

« consecutive match: To optimize the speed, LZ4 can skip a large portion of its
code if there are successive matches. To skip large parts of the code, GOTOs are
used. While GOTOs are rarely used in the user space, they are often used in Linux
kernel code.

2.1.1.4. Decompression

The decompression of a compressed LZj data stream is simple and therefore particularly
fast. To decompress a stream in LZ4 format, it is sufficient to read the bytes from the
input stream only once. Figure 2.6 shows the general method of decompression.
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ST

!

Token = input.read(1)

!

LZ4 decompress literal

yes
abort condition Finish

LZJ decompress match

Figure 2.6.: LZ4 decompression overview

The first byte in the stream is a token. This token contains the first part of the lengths
for the following literal as well as the following match. After the token has been read,
the decompressor continues to decompress a literal.

To decompress a literal, it is necessary to first decode the literal-length, as described
in Subsubsection 2.1.1.1. Now that the literal-length is known, the literal from the input
buffer is copied to the output buffer. The only position at which an LZ/ decompressor
can successfully terminate is directly after decompressing a literal. If the data is not
fully recovered, the decompressor continues to decompress a match.

Decoding a match is similar to decoding a literal. However, since matches contain
a reference to previously decoded data, it is necessary to first decode this reference by
reading an offset. With this offset and the current position in the decoded data stream,
it is possible to calculate the origin of the new data. According to the origin of the
data, the literal-length is decoded. In order to reduce the required storage space for
the compressed data by the LZj algorithm, the match-length must be increased by the
min-match value. After the position and the length are known, the match can be copied
to the current position in the target buffer. Since this copying process copies between
two points in the same buffer, it is possible that the source area and the target area
overlap. If these areas overlap, the copy function must ensure that only data that already
exists is read. This process is repeated until all data are restored.

2.1.1.5. Memcpy vs. Custom wild-copy Function

There are several ways to copy data from one memory location to another. The default
memcpy routine is provided by the compiler. This function can be used if there are
large memory blocks to be copied. But that is not enough for the needs of a compressor
or decompressor. Combining many small copies with the overhead of a function call
results in inefficient code. A function call forces the processor to dump active registers
to memory, execute the called function, and then restore all registers. When for example
eight bytes should be copied, then it is obvious that dumping of all registers to the
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memory is an overkill for this task. LZ4 therefore has a custom wild-copy function that
copies eight bytes at once from a given source to a particular destination. The reason for
copying eight bytes at once is to reduce the loop overhead. In addition, the overhead for
the function call is removed. To achieve this advantage, the custom wild-copy function
must be inlined into the source code, otherwise there is no advantage. The disadvantage
of copying eight bytes at once is that this custom wild-copy function can not be called at
the end for the last literal. A further disadvantage is that the size of the binary code
increases by approximately 3% only for the copying code due to the inlining at different
locations in the code. As the binary kernel module grows larger, the processor can no
longer keep the entire code in the fastest cache.

2.2. Linux kernel

The gee compiler is used for the compilation of the Linux kernel [Svel7, p.2]. Even if
the same compiler is used for the user space code as well as for the Linux kernel, there
are some differences.

2.2.1. Missing Features for Linux Kernel Code

Many libraries exist for anything in the user space, but none of them can be used within
the Linux kernel. Floating-point hardware and vector registers are disabled in Linux
kernel modules, to improve overall system performance, especially in the context of
context switches. This is possible since large parts of the Linux kernel do not need these
features.

In the user space, each application can be started as often as needed. In the Linux
kernel, each module can only be loaded once. This allows a Linux kernel module to merge
tasks from different users and has the ability to change the order of tasks to improve
performance. For example, if several things are compressed in parallel, the module can
guarantee that there are at most as many threads as there are processor cores. On the
other hand, when the module has to process tasks from different applications, internal
locking and queuing mechanisms may lead to a new kind of trouble.

2.2.2. Memory
2.2.2.1. Page-Based Buffers

In Linux, memory is organized in pages. The struct page contains all information that
the Linux kernel has to know about a piece of memory. Since this structure has a wide
range of attributes, it is not explained further in this thesis. All attributes of the struct
page and their meanings are described in [Gor04, p.118].

struct page *page;

Listing 2.1: Datatype of a page in the Linux Kernel
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Normally a single page represents 4096 bytes. In the Linux kernel, the PAGE__SIZE
can be adjusted to any power of two. To allocate a single page, the alloc_page function
can be used. How this function works in detail is found at [Gor03, p.117].

If large continuous memory is needs to be allocated as a single page the function
alloc__pages can be used. This function can allocate a page containing powers of two as
the number of child pages.

struct page *alloc_page(unsigned int gfp_mask);
struct page *alloc_pages(unsigned int gfp_mask, int n);

Listing 2.2: Allocate a page in the Linux Kernel

The function free__page can be used to release a single page. How this function
works in detail is found at [Gor03, p.119].

void __free_page(struct page *page);

Listing 2.3: Free a page in the Linux kernel

To access page content, the page needs to be mapped first. The function kmap [Gor04,
p.147] is used to map a page. When the module currently does not need access to the
page content, the mapping can be dismissed. This means that only the mapping is
invalid, the data itself is still in memory, so that swapping can occur. To dismiss such a
mapping, the kunmap function is used.

void *kmap (struct page *page);
void kunmap(struct page *page);

Listing 2.4: Map a page in the Linux kernel

2.2.2.2. Continuous Buffers

To allocate small memory blocks in the Linux kernel, the function kmalloc can be used.
The function requires the target size for the allocation as a common malloc. The kmalloc
function also requires some flags that describe how and where the memory is to be
allocated. If the module no longer needs the memory, then kfree should be called as
soon as possible to reduce memory fragmentation. Once the memory is allocated, the
pointer can be used just as any pointer in the user space can be used. The kmalloc
function always allocates physical continuous memory. Because physically continuous
memory can not be swapped or moved, the size of such allocation is limited by software
and hardware. The upper limit for kmalloc allocations is dependent on the architecture.
But regardless of the architecture, the upper bound for a single allocation is defined by
kmalloc in "linuz/slap.h" as 2%°, which is 32 MiB. In addition, when the random access
memory (RAM) is highly fragmented, the maximum available size at runtime can be
additionally reduced. How these functions work in detail can be found at [Gor04, p.118].
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void *kmalloc(size_t size, int flags);
void kfree(const void *objp);

Listing 2.5: Allocate small memory blocks in the Linux kernel

If the Linux kernel module requires a memory block that is too large, kmalloc can
not be used because there is not enough physically continuous memory. Large storage
areas can only be allocated virtually. Virtual continuous memory is allocated physically
scattered, then the small blocks are blended side by side by software. Blending allows
parts or even the entire memory area to be swapped to a connected hard disk. The
function to allocate virtual continuous memory in the Linux kernel is called vmalloc. If
the module no longer needs the memory, the function vfree must be called to release the
memory. To allocate virtual memory, the Linux kernel must modify the page tables. In
the page table is coded, which pages are present and where they are located. Changing
the page table takes some time, so physically continuous memory should be preferred in
the kernel space. How these functions work in detail can be found at [Gor04, p.112-113].

void *vmalloc (unsigned long size);
void vfree(void *addr) ;

Listing 2.6: Allocate large memory blocks in the Linux kernel

If a kernel module allocates memory, then it must ensure that the returned pointer
is not NULL. If a user space application detects that there is no memory, then this
application will normally crash and be terminated. In the kernel, each module must
handle situations where there is no memory without terminating itself or crashing the
system.

2.2.3. Scatter-Lists

Scatter-lists are a construct in the Linux kernel to define an interface for copying data
between a page-based buffer and a continuous buffer. Scatter-lists can be initialized with
an array of pages. Thereafter, it is easy to access any data sequence in the page-based
buffer. Scatter-lists support missing pages. To achieve these gaps between the pages,
Scatter-lists contain a linked list that stores the offsets of each page along with the
pointers to the pages. The disadvantage of being able to have gaps between the pages is,
even if there are no gaps, that the internal linked list must be traversed for each memory
access. If there are no gaps, the corresponding pages can be calculated in a constant
time. Therefore, the overhead of Scatter-lists is only acceptable if there are only a few
copy operations or when there are gaps between the pages.

2.2.4. Errors & Debug

Bugs and errors in the core space are particularly critical. If an error occurs in the
kernel space, it is possible that the whole system crashes and not just the one module
that actually causes the error. Therefore kernel modules should detect errors and try to
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handle them gracefully. In addition, if the Linux kernel module requests more memory
than is available, some random user space applications are killed to free memory. This
should be avoided whenever possible.

Debugging kernel space modules is more difficult than debugging user space applications.
If the kernel crashes, then the whole system exits. As a result, each debugger would
terminate immediately too, without having a chance to analyze why the system crashed.
To debug kernel code, it is common practice to log some messages with information
about the values of some variables. If the system crashes, one can hopefully look into the
logfile and maybe it is possible to see what exactly happened. There is a big problem
with log messages: Log messages may not be printed or saved to the disk if the system
hangs or crashes. Therefore, it is possible to add manual delays after log messages to
give the system some time to display the message before doing anything critical. Delays
in the code have the disadvantage that the debugging of high-frequent loops with explicit
delays requires a lot of time, even if only the last iterations contain delays.

2.2.5. Kthreads

kthreads in the Linux kernel space are similar to processes in the user space. Every Linux
kernel thread runs in its own context. Therefore, context switches are required when
kthreads are involved. Linux kernel modules that do not call msleep either directly or
indirectly, regardless of the elapsed time can not be preempted by the scheduler. Multiple
measurements with the perf tool proof, that in the case of sequential compression, there
are at most two context switches - one at the beginning and one at the end. When
kthreads are used, the number of context switches linearly scales with the number of
kthreads started.

2.2.6. Work__Queue

A work__queue is a special queue type defined by the Linux kernel. Once the work queue
is initialized, at least one thread is waiting for work to be appended to the queue. The
advantage of the work_queue is that the complete locking and synchronizing mechanism
is already implemented. If the module is not dependent on other modules, then a global
work__queue can be used that is shared among all other modules. The global work__queue
reduces the number of concurrent threads. This leads to the advantage that cache
misses are reduced after a preemptive interrupt. If the work queue is initialized at the
module start time, then this can be used to limit the number of simultaneous threads by
processing only the desired number of data records simultaneously.
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3. Design and Implementation

3.1. Design of page based algorithms

The first approach for compressing page-based buffers is to compress the pages indepen-
dently. If each page is compressed independently into another page, it is not necessary
to check whether the data are overlapping two pages because only one page is viewed
at a time. Unfortunately, when trying to compress the pages, the problem sometimes
occurs that some pages might be compressed as desired, while others might increase in
size because they are not compressible. If the compressor does not use the entropy of
previous pages, the entire compression became useless because the data normally does
not contain patterns in that small ranges.

If only some of the pages are compressed, a different array of data are required to store
the information, which pages are compressed, and which ones are not. This approach has
the advantage that parallelization can be applied perfectly, since all pages are independent
of each other.

When a page is fully filled during compression, the compression can continue auto-
matically on the next page. If it is possible to switch to another page, this check must
be performed before each r/w operation at the input and output buffer. The problem
becomes even greater when more than one byte belongs to a single r/w operation. For
example when the offset of a match is decoded, two bytes needs to be read. If the offset
on the page is badly chosen, than both bytes are located at different pages. In such a
case, the r/w operation itself must verify that these bytes are read from the correct page.
This verification results in a large number of branches in the code. Each branch leads to
the trashing of the processor pipeline and therefore takes a lot of time. This approach
retains the same compression ratio as before, but the throughput is reduced compared
to the continuous buffers compression as can be seen in the Chapter 5.

The first subsection evaluates how the LZj algorithm is to be adapted to accept
page-based buffers. Then the BeWalgo algorithm is designed in both subversions to
solve the problems that LZ/ had. After the introduction of all serial algorithms, the last
subsection shows the intended advantages of parallel compression.

3.1.1. LZ4

The LZj algorithm itself has already been explained in Subsection 2.1.1. Like any other
compression algorithm, LZ4 treats patterns that are aligned to page boundary the same
way as any other pattern. As a result, each r/w operation may be partial on two sides.
To access data that is distributed over two pages, several instructions are required. Since
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these overlapping r/w operations can appear at any position during both encoding and
decoding, this takes a lot of time. When it is required to copy data from one page-based
buffer to another, it gets worse. Page overlapping r/w operations can now occur on input
and output pages at different times, which will increase the required branches in the code
to about 580%. In addition, the length coding used by LZ/ is unfavorable in connection
with pages: To read a number, the LZ/ decompressor must read one byte after another
until a byte is not equal to 255. To read the data byte by byte, the decompressor must
verify before each read operation that the pointer still points to a valid address on one
of the pages.

The performance would increase drastically if it would be possible to rewrite the
compressor so that data are never stored in places where they overlap two sides. The
compressor would need to split some matches into different partitions to align the r/w
operations so that all data are stored either completely on one page or the other. The
problem here is the LZj data format, where each match-length is implicitly increased
by four. This implicit four makes it impossible to guarantee that all page overlapping
r/w operations are eliminated since, in the worst case, the compressed data only consist
of four byte matches, which can not be separated at any position. The second problem
is that even if such a modified compressor exists, this compressor must eliminate all
overlapping r/w operations at both the input and output buffers. This compressor would
produce a larger output when trying to split all the matches so that the compression
loses effectiveness.

3.1.2. BeWalgo64

The compression and decompression performance can be drastically improved if the
algorithms can work directly with the page aligned memory. With memory aligned
r/w operations, it is possible to read several bytes at the same time without having to
access several pages. Known compression algorithms treat aligned patterns just like any
other pattern. To improve the speed at the expense of the compression ratio, this thesis
introduces a new compression algorithm that uses r/w operations which are aligned
to eight byte boundaries. This alignment is possible because the Linux kernel code
guarantees that each configurable PAGE_SIZF is a power of two. Additionally it can
be assumed that the size of a page is larger than eight bytes. The eight byte alignment
is selected because most current CPUs support 64-bit architectures and therefore the
register word size is eight bytes. Since everything is aligned to eight bytes, each encoded
length can hide an implicit scale factor of eight. Figure 3.1 shows the pattern for the
compressed data stream.
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Control-block

Literal Match Offset Literal Match
length; | length; et lengthy | lengths

Literals; | Literalsy

Offsetq

0,N]-8 [0,M]-8

1 by 1 byte 21 1 g 1 ) 2 by
byte byte byte byte byte byte bytes bytes

Figure 3.1.: 64-bit Be Walgo64 pattern of compressed data

As can be seen, the control block and the literals have been aligned to an eight byte
boundary. The control block contains two sets of literals and matches. Since this is
known at compile time, the compiler is expected to optimize the code to access the two
portions of the control block as efficiently as possible. However the compiler does not
optimize the code as expected. Therefore, the developer must manually duplicate the
code to reduce the branches needed for decompression.

The eight byte alignment, of course, has some drawbacks to the compression ratio.
If the data to be compressed does not contain patterns that are aligned to eight byte
boundaries, the number of matches found is drastically reduced. This can lead to a poor
compression ratio. If the matches and the literals do not alternate in the given dataset,
then there are numerous bytes that are wasted to encode zero-length literals or matches.

If the data to be compressed contain patterns that are mostly aligned at a four or
eight byte boundary, the compression ratio is almost the same as for LZj.

3.1.3. BeWalgo32

This compression algorithm is a variant of the 64-bit subversion of Be Walgo compression,
as described in Subsection 3.1.2. This algorithm substantially reduces the r/w alignment
from eight to four bytes. The intended advantage is that even smaller matches can be
found without introducing too many branches. Since the alignment of four bytes is still
large enough to cover a complete set of literal-length, match-length and offset, a similar
pattern can be used for the compressed data. Since the alignment is reduced to four
bytes, the implicit scale factor must also be reduced to four for all lengths.

Control-block

Literal Match ot Literals
length length set

[0,N]-4
bytes

1 byte 1 byte 2 byte
Figure 3.2.: 32-bit Be Walgo32 pattern of compressed data
3.1.4. Parallelization

Current processors do not show their full performance until tasks are executed in
parallel. If the compression algorithm is executed in parallel, then the throughput can
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be theoretically multiplied. To compress the data in parallel, the original data can be
divided into chunks. These chunks can then be compressed independently. The problem
with independent chunks is that the compressed data stream should store the data in
the right order without gaps. Gaps occur automatically when there are multiple chunks
because it is unlikely that every compressed page is filled completely. Gaps between the
compressed data would result in a lower compression ratio and are therefore unwanted.

3.2. Implementation

This section describes how the algorithm is implemented and the problems on the way.
The first subsection explains what Scatter-lists are and why they can not be used. Then
it is explained how the LZ/ algorithm is converted to accept page-based buffers, and
why this implementation loses so much performance. Subsection 3.2.3 explains how the
BeWalgo subversions are implemented and why these implementations are faster than
the LZj implementation. The last subsection shows how to optimize the code in the
kernel space to get a greater acceleration.

The entire compression source code written for this thesis is available at GitHub [Ben17].

3.2.1. Scatter-Lists

Scatter-lists are a construct defined in the Linux kernel. The idea is that Scatter-lists
should define an interface for the transfer of data between a page-based buffer and a
continuous buffer.

By viewing the Linux source code, you can see that Scatter-lists use linked lists. These
lists are traversed for each copy process. The compressor spends most of its time reading
data from the input buffer. The compressor reads a maximum of eight bytes at the
same time. When searching for a match, some positions in the source are even read even
several.

If the compressor would use Scatter-lists, then the number of branches would increase
with the length of the data to be compressed for the search for the correct page to read
from. It is obvious that this is not a good idea. During compression, it is previously
known that there are no gaps between the pages. Therefore, it is not necessary to have
such a linked list. Since each page has the same size, the page index and the position on
a page can be calculated in a constant time. All pages are passed to the compressor in
the form of an array. This array provides random access to each page as needed.

Another strategy to reduce the number of list iterations is that the Scatter-lists copy
large memory blocks between the page-based buffers and local continuous buffers. For
this, it would be necessary to allocate such additional buffers that would otherwise not
be required. This idea has been discarded since memory in the kernel space is limited
and the copying process needs additional time.
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3.2.2. LZ4

Direct writing of page-based code is difficult because of the increased error potential.
Therefore, the continuous buffer code is used as the baseline.

First, all pointer operations such as read, write, step forward, and distance calculations
are replaced by function calls. These function calls can now be changed to work with
page buffers. Due to the structure of the compressed data, the newly introduced branches
in the assembler code are required and can not be removed. These helper functions are
forced to be inlineed by the compiler to achieve a speed increase of up to 80%. The
continuous buffer algorithm has been highly optimized. Some of these optimizations
have been removed during conversion to page-based buffers.

In addition, some simple operations are much more complicated than before. For
example, while the compressor is searching for a match, it is necessary to compare four
byte sections with each other in the input buffer. In the original code for continuous
buffers, there is only the comparison of the data from two integer pointers, as shown in
Listing 3.1.

match found = (*xa == *b);

Listing 3.1: LZ4 Identify a match

When using page-based buffers, one must take care to ensure that each read operation
reads all data from the correct page. Listing 3.2 shows only the instructions for a single
read-32-bit-operation that automatically moves the pointer forward when the data have
been read. Even if there are enough data on the current page, then at least one jump
as well as some arithmetic calculations are performed which were not needed for the
continuous buffers.

static FORCE_INLINE void LZ4_pages_forward
— (page_access_helperx* p) {
/* this function contains a lot of arithmetic and is
— therefore critical for the total exzecution time */
p->idx = p->idx + 1; /*number of the pagex*/
p->ptr = p->pages[p->idx]; /*pointer to the nth page*/
p->ptr_end_byte_t = p->pages[p->idx] + PAGE_SIZE;
p->ptr_end_size_t = p->pages[p->idx] + PAGE_SIZE -
— sizeof (size_t);
b
static FORCE_INLINE U32 LZ4 pages_read32
— (page_access_helperx* p) {
U32 res;
switch (p->ptr_end _byte_t - p->ptr) {
case 0: /* there are no bytes left on the current
— page.*/
/* each 'case' results in an additional jump in
— assembler code */
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/* lots of arithmetic operations are slowing down
— the whole process */
LZ4 _pages_forward (p);/* switch to the mnexzt page */
res = *((U32%) p->ptr); /* read the data */
p->ptr += 4; /* increment the pointer */
break;
case 1:/* there is one byte left on the current page. */
res = (U32) (*x(p->ptr));/* read last byte of page */
LZ4 pages_forward (p); /* continue reading on next
— page */
res |= ((U32) (*x((U16*) p->ptr)) << 8) | ((U32)
— (x(p->ptr + 2)) << 24);
p->ptr += 3;
break;
case 2:
res = (U32) (x((U16%) p->ptr));
LZ4 pages_forward (p);
res |= ((U32) (x((U16%) p->ptr)) << 16);
p->ptr += 2;
break;
case 3:
res = (U32) (x(p->ptr)) | ((U32) (*((U16x*) (p->ptr
— + 1))) << 8);
LZ4 pages_forward (p);
res |= ((U32) (*x(p->ptr)) << 24);
p->ptr += 1;
break;
default:/* there are enough bytes on the current page */
res = *x((U32%) p->ptr); /* just read all bytes x*/
p->ptr += 4;
break;
+
p->offset += 4;/* absolute position is always increased
— by 4 regarless of a page switch */
return res;
+

Listing 3.2: LZ4 read 4 bytes with page based buffers

3.2.3. BeWalgo32 & BeWalgob4

Both BeWalgo subversions have a very similar pattern for the compressed data. To
reduce redundant code, the two subversions share the same source code. The key parts
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in which the subversions differ are implemented with macros to give the compiler the
best starting point for optimization.

The general code structure was inspired by LZ/, but since the r/w operations are
aligned to four or eight byte boundaries, the implementation is rewritten from scratch,
and therefore has several differences to the LZ/ implementation. The most obvious
components are the compressor and the decompressor. The implementation of the
algorithm has several aspects. The BeWalgo compressor is divided into several code
segments, which are usually divided by labels. These labels are used as jump marks
to jump directly to any point in the code without having to use redundant branches.
The following sections show the most interesting code sections and optimizations in the
compressor code.

3.2.3.1. Function Prototype

To avoid a redundant code, only a generic compressor is implemented. To remove the
overhead introduced by the generic components, the function must be inlined. The
function attribute no__instrument__function tells the compiler to omit an empty function
call at the beginning of the function. This empty function call would otherwise have
been used to allow the trace of an error in the stack. This empty function is particularly
problematic when only small files are compressed and the compression algorithm is
therefore often called. The _ always inline attribute forces the compiler to inline
the function. Additionally all compile time constants are forced to be evaluated. If
the compiler detects a condition that is always true or false, the corresponding dead
branch is removed. The code in Listing 3.3 shows the function prototype for the generic
compression function.

_attribute__ ((no_instrument function)) static

< __always_inline int BeWalgo_compress_generic (
BeWalgo_compress_internal* wrkmem,
const BEWALGO_COMPRESS_DATA _TYPEx comnst source,
BEWALGO_COMPRESS_DATA_TYPEx* const dest,
const int source_length,
const int dest_length,
int acceleration,
const BeWalgo_safety_mode safe_mode,
const BeWalgo_ offset_check offset_check);

Listing 3.3: BeWalgo function prototype for compression

For the later code snippets, it is useful to explain the parameters of the function. Most
parameters are similar to the generic LZ4 compression function.

e The wrkmem pointer points to a memory area that the compressor can use during
compression. This memory must have a predefined size that is preset by default to
four pages. The reason for only a small wrkmem pointer is that this memory area
should remain in the fastest cache level as possible. The memory contains only
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one hash table. This hash table is used to find the next match. This procedure is
described in detail in Subsubsection 3.2.3.2.

e The pointer source points to the input buffer that is to be compressed. The
size of the memory referenced is defined by the parameter source__length. The
BEWALGO_COMPRESS_ DATA TYPE is used to merge the 32-bit and 64-bit

subversion into the same source code.

e The dest pointer points to the output where the compressed data is to be written.
The maximum length is specified by the parameter dest__length.

o The parameter acceleration is used to increase speed at the cost of a poorer
compression factor to search for the next match.

e The variable safe__mode is an internal variable. This variable describes whether
the output buffer is large enough even in the worst case if the data is uncompressible.
If the memory is large enough, many branches can be omitted, resulting in a
performance boost.

e The variable offset check is also an internal variable. This variable defines
whether the source data is small enough to prevent the offset from overflowing.
If the offset can not overflow, some branches can be eliminated, which in turn
increases the throughput.

3.2.3.2. Find Next Match

Listing 3.4 shows the source code for the match searching process.

do {
if (unlikely (ip >= source_end_ptr)) A
goto _encode_last_literal;

}

h = b_compress_hash (*xip);

match = source + wrkmem->tablel[h];

wrkmem->table [h] = ip - source;

if ((*xmatch == *ip)
%& ((offset check == B _NO OFFSET_CHECK)
|l (ip - match <= B_OFFSET_MAX))) {

goto _find _match_left;
}

} while (1);

Listing 3.4: BeWalgo Search next match

Figure 3.3 shows a visual representation of the code shown in 3.4. The numbers in
the nodes correspond to the line numbers of the Listing.
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2:input.available == 0 3:Stop - no match ]

/ 5:data = input.read(4) /
v
5:h = hash(data)
v
6:position = hashtableAt(h)
v

T:hashtablePut(h,input.position)

!

/ 8:tmp = input.read At(position,4) /

8:data == tmp 11:Stop - found match at ‘position’]

13:input.seek(stepsize * 4)

Figure 3.3.: BeWalgo search for a match

The branch in line 2 checks for the end condition. If the current position in the input
array is equal to the first position after the input array, then there is no more match in
the input. In this case, the remaining literals must be encoded. The ‘unlikely’ macro tells
the compiler that this condition is rarely true. The compiler can use this information to
write the corresponding code to the end of the binary file. As an effect, the performance
is increased when the prediction is true. If the prediction is incorrect, the code must
probably be loaded from cold storage. This results in longer execution times. If you give
the compiler such a hint, then this should be true, otherwise it is better not to give the
compiler any hints.

Line 5 calculates the hash value for the current couple of bytes. Line 6 uses the
calculated hash value to extract the last position which produced the same hash and
store it in the ‘match’ variable. Line 7 finally updates the position in the hash table to
point to the current position. Calculating the hash requires several operations including
multiplication. To force the compiler to produce better code, this hash is stored in a
temporary variable. Otherwise as detected in all of my test cases the compiler inserts
code which calculates that value twice.

The branch in line 8-10 detects whether a match has been found. Since the hash table
is quite small, there are a lot of hash collisions. These hash collisions lead to many
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false match predictions. The condition in line 9 can be evaluated at compile time. If
this expression is true, the compiler will completely omit the source-code in rows 9 and
10. Due to the reduced number of operations, the performance is increased by about
5%. If the condition can not be simplified, the offset must be calculated and compared
with the maximum allowable offset. If there is no match, the current position on line
13 is increased. The ‘ip’ pointer is incremented in incremental steps. In the case of
non-compressible data, this improves the performance significantly since most literals
are not even touched.

3.2.3.3. Consecutive Matches

If the data are well compressible, there are many consecutive matches. If the whole code
for searching a match would be executed, this would consume a considerable amount of
time. Therefore, there is a single check for a consecutive match immediately after the
encoding of a match. The code that checks this match is identical to the loop content
in Listing 3.4. If there is such a consecutive match, execution jumps directly to the
code where the end of a match is searched for. Since much code is not executed, the
compression gains a lot of performance when there are numerous consecutive matches.
The number of consecutive matches increases for well compressible data.

3.2.3.4. Encode Match

In a single control segment, it is possible to store matches up to a length of 255 multiplied
by the implicit factor of four or eight. If the matches are much longer, then it takes a
lot of time to encode each match individually. To improve performance, only the first
matches are encoded by setting the offset and the length individually. The remaining
match-length is encoded by repetitively copying the first truly encoded match. Because
the number of write operations is halved, the performance increases especially when a
file contains large trivial sequences such as zeros.

3.2.3.5. Page-Based Code

Direct writing of page-based buffer code is difficult because of the increased error potential.
Therefore, the continuous buffer code is used as a baseline as described above for the
LZ4 code.

The next step is to replace all pointer operations such as read, write, step forward and
distance calculations with function calls. These function calls can now be changed to
work with a page-based buffer.

After all bugs have been fixed, the next step is to inline all of these page-based
functions in order to make all branches visible. Because all page-based functions must
check whether the pointer points to a valid page, many branches are nearly exact
duplicates. From the developer’s point of view, it is possible to remove these branches
while the compiler can not remove them. In contrast to LZ4, the BeWalgo algorithm
uses blocks that are aligned to four or eight bytes. Because of the increased alignment
for the r/w operations, the number of checks that the page has enough data has been
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significantly reduced. This is one of the most important differences to the page-based
LZ4 code, as this was not possible there.

In the final code, it is possible to map all pages beforehand and check whether they
are randomly physically continuous. This check requires only one addition and one
comparison per page. Therefore this check is very cheap. If the pages are continuous, it
would be possible to apply the continuous buffers algorithm directly to the page-based
buffers to improve throughput. During the speed measurements, this type of improvement
is not useful since it introduces a test dependency which can not be controlled and affects
the speed significantly.

3.2.4. Optimization
3.2.4.1. Function Calls

Each function call causes the ‘call’ command in the assembler code. If there is a function
call, all registers must be pushed to the stack. In addition, all parameters for the called
function must also be put into the stack. The function is executed and then all registers
are restored and the stack is popped. If the function is only a small helper, then this
overhead is not acceptable. As my benchmarks have shown the performance for the
page-based code would be halved.

Therefore, the next step is to provide these helper with the attribute  always inline
for the compiler. Just using the O3 compiler flag is not sufficient. When the compiler
detects such a forced inline request, the function is compiled once and the assembler
code is then copied to the surrounding function. As a result, there is no ‘call’ command
for this function in the assembler, and the stack operations are omitted.

But the called function is compiled differently than the code that is programmed
directly in a single function. If the code is larger, the compiler can reorder the statements
more easily if the code is written in a single function. It is not possible to write a trivial
example to demonstrate this behavior, since any trivial example would be trivial for the
compiler, and would therefore be pointless.

The popular function memcpy is one of these short frequent helper functions. The
worst thing with memcpy is that the gce compiler does not inline this function in any
of the test cases. Since most matches are small, the overhead for memcpy is one of the
worst cases in the compressor. To eliminate this overhead, a custom version of memcpy
is implemented where 32 bytes are copied at once. The last bytes are then copied in
blocks of eight or four bytes respectively.

3.2.4.2. 7:-operator against if

The ?:-operator should be preferred over an ‘if’. Although both are logically the same, the
?:-operator is definitely compiled without a branch in assembler code. Since each branch
results in trashing in the processor pipeline, a reduced branch count is preferred. In small
functions, the compiler can translate transparently between the ‘if’ and the ?:-operator.
But the compiler does not recognize this in large functions like the compressor code.

29



Therefore, it is not possible to give a trivial function example to prove this behavior.
Benchmark tests from the compressor show that the ?:-operator increases performance
by up to 5%.

3.2.4.3. Vectorization

Most Linux kernel modules do not need vector registers. To improve the overall system
performance, these vector registers are not stored before kernel space code is executed.
This means that while the kernel code is running, there might be some unsaved user data
in the vector registers. Since these data are not stored, it is not allowed to write data to
such registers within the kernel module. Since the speed improvements for the general
compression code would be small anyway, this optimization strategy is not applied to
the compression modules.

3.2.4.4. Parallelization

The compression code itself can hardly be parallelized because the logic of the compression
functions is sequential. To apply multiple processor cores for compression, the input data
must be split into several chunks. These chunks can then be compressed independently.
Completely independent compression tasks can then be performed by different threads.
Because of the newly introduced independent compression, the compression ratio is
reduced since the entropy of earlier chunks is thrown away. Tests on the ‘text’ dataset
show that the compressed data compared to the sequential compression is increased by
1.6% when a chunk size of 128 KiB is used.

In the Linux kernel, there are two ways to run code in parallel. The first way is to use
kthreads. The kthreads are used similar to the threads in the user space.

Another way to run code parallel in the Linux kernel is to use a work queue. A
work__queue is initialized with a preferred number of kthreads. After initialization, the
desired amount of kthreads will wait for the work to be placed in that queue. When
tasks are appended to the queue, the kthreads take those tasks and execute them. The
work__queue is easy to use and includes all the synchronization and locking mechanisms
required to distribute tasks across multiple kthreads.
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4. Related Work

This chapter presents some related work. This work aims to improve the performance
of other algorithms, combine several algorithms for easy exchange, or introduce other
compression algorithms.

4.1. Bitshuffle

Bitshuffle [Kiy15] restructures the data before it is compressed. Bitshuffle itself has no
influence on the data size. The idea behind Bitshuffle is that even if the data does not
contain repeating byte groups, the probability that some bits are equal over several bytes
is nevertheless very high. For example, ASCII text that contains a sequence of randomly
distributed characters uses only about 32 different characters, while a byte can hold 256
different states. When Bitshuffle is applied to such data, a matrix transpose operation
is applied at the bit level. After this matrix transposition, the first bits of successive
bytes are merged into one byte. Since ASCII text always sets some bits to zero, the
compression algorithm must now compress data with large sequences of zero bytes. This
results in a much higher compression ratio even though the characters are randomly
distributed. An advantage of Bitshuffle is that the data size remains unchanged. This
leads to many possibilities such as vectorization and parallelization. For example, if
threads are used, the operations can be perfectly parallelized since the threads access
completely independent data segments with exactly the same workload. The same is
true for vectorization.

Since Bitshuffle can not be used without a compression algorithm, it is not useful
to give an throughput for Bitshuffle alone. Multiple Benchmarks [FA15] show, that
the throughput of many different compression algorithms increases, if these are used
together with Bitshuffle. In the average case the compression ratio of various compression
algorithms is at least doubled.

The disadvantage is that the Bitshuffle algorithm can not achieve full throughput in
the Linux kernel because the vector registers are disabled there. But if the code were
adjusted to work in the Linux kernel, the Bitshuffle algorithm could work perfectly on
page-based buffers without losing performance. Due to the perfect alignment to the page
boundaries, the performance for transposing the bit matrix could increase.

4.2. Blosc

Blosc [Alt15] is a user space compression library that is meant to accelerate memory-
bound computations. To reduce the memory bus activity Blosc divides the data into
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small blocks which fit completely in the fastest cache level. To increase the processor
throughput SIMD instructions are used whenever possible. To actually compress data
several fast compression algorithms like LZ4 are bundled with the source code. If the
LZ} compressor is used together with Bitshuffle the throughput can reach up to 22.58
GB/s at a compression ratio of 68 [FA15].

4.3. QuickAssist

Intel® QuickAssist uses special hardware for compression. If this hardware is present,
data can be compressed without load on the CPU. This makes it possible to overlay
the compression time perfectly with additional calculations. QuickAssist supports
two compression algorithms, deflate and LZS, both based on Huffman coding. The
disadvantage is that the special hardware must be present. One of the chipsets compatible
with compression is the Intel® ColetoCreek 8950 chip [Sil16]. This hardware can reach
compression speeds up to 24 GB/s.

4.4. Zstandard

Zstandard [Chal6] or zstd is another compression algorithm. Similar to LZ/ and BeWalgo,
this algorithm accepts a parameter to manipulate the compression rate and the ratio. In
contrast to LZ4, an increase in the parameter leads to a stronger compression. If a very
high value is selected, the temporary memory required for compression is increased in
addition to the increased time. This algorithm searches and encodes matches like LZj.
In contrast to LZ4, the literals between the matches are additionally compressed with
different algorithms. While the compression rate is thereby improved, the performance
suffers. If the standard acceleration is used, then zstd reaches up to 100 MB/s during
compression and up to 459 MB/s during decompression.

4.5. LZ4m

LZ4m [Se-17] is a variant of LZ/, which is focused on the compression of in-memory
data. This algorithm is to be used for data that is going to be swapped from the main
memory. As a result, this algorithm must be very fast in order not to negatively affect
overall system performance. Since the goal seems to be to compress exactly one page
at once, the algorithm can make some assumptions to meet these requirements while
reducing the data size. LZ4m is about 25% faster than the original LZ/ algorithm. The
main difference between LZ4m and the BeWalgo algorithm is that LZ4m uses less bits
to encode lengths and offsets of literals and matches. Due to the reduced number of bits
it seems so that LZ4m can not use the entropy of previous pages.
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5. Evaluation

During this thesis, three different algorithms were evaluated with continuous buffers and
page-based buffers.

Three different datasets were used for the throughput tests. Since the throughput
itself is not meaningful, the compression ratio is also given close to all measurements.

o The first dataset, called ‘silesia corpus’ dataset, contains a collection of files that can
not be compressed with lossy algorithms. This dataset was first used by Sebastian
Deorowicz in his PHD thesis [Seb03]. The collection consists of medical images,
executable files, text, and more. In total, this dataset comprises 212 MB. The data
contain many patterns, which are usually very short. The goal of this dataset is to
be able to compare lossless compression algorithms with each other.

o The second dataset, called ‘text’ dataset, contains a collection of 300 MB of source
code and configuration files found on my system. These numerous files were linked
together to form a single large dataset. Since a large portion of the dataset is
source code, there are many similar patterns in the data. From the viewpoint of
the compressor, this dataset contains many mostly short patterns and is structured
similarly to the ‘silesia corpus’ dataset.

o The third dataset, called ‘hdf5’ dataset, contains 468 MB of tbnt data. This
dataset contains the relative occurrence of different chemicals in German waters
with latitude, longitude and depth. These data are used to simulate and predict
how and where chemicals flow through rivers into the ocean. This dataset is closest
to the real application because it is data that is actually produced and used on
clusters. The compression algorithms can benefit from larger patterns in the file
that are likely to be aligned to data types such as integer, float, or double.

The LZ4 algorithm in the Linux kernel with continuous buffers has been updated by
Sven Schmidt as described in his paper [Svel7]. This implementation is used without
any change to compare the speeds.

For comparison purposes, the throughput of a custom wild-copy function is displayed.
This function copies 32 bytes in each loop run until all data has been copied. Within
the compression algorithms, this wild-copy function is faster than the default memcpy.
The wild-copy function can be applied either directly to pages or to continuous buffers
without differences in throughput. Another reason for the comparison with the wild-
copy function instead of memcpy is to ensure that the data are actually copied by the
processor, and therefore no hardware acceleration in the background can be used. If
hardware accelerated copy would be used, the throughput should not be compared with
compression code since the data never reaches the processor while it is copied.
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5.1. Acceleration

The LZj algorithm accepts an acceleration parameter to adjust the speed and the ratio
as needed. The BeWalgo algorithm accepts a parameter to produce the same effects.
Figure 5.1 shows that the acceleration factor actually has an effect on speed and the
compression rate for all the algorithms presented. For this comparison, the compression
throughput is measured only with continuous buffers since the effect is similar for the
algorithms with page-based buffers.
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Figure 5.1.: Acceleration effect on speed and ratio

Figure 5.1a shows that the effect of the acceleration parameter leads to an improvement
in throughput, while at the same time the compression ratio decreases uniformly. This is
the intended and expected behavior. Because the similarities to the ‘text’ dataset are
extreme, that graphic can be found in the attachments.

On the other hand, Figure 5.1b shows that if the data is well compressible, the
acceleration parameter may lead to negative effects. With increasing acceleration, the
BeWalgo subversions produce poorer compression ratios for this dataset, while the speed
improvement is minimal. In this test case, LZ/ leads to poorer results. While the
compression ratio of LZ4 decreases with higher acceleration, the size of compressed data
increases. As a result there is more data to copy which in turn decreases the compression
throughput.

5.2. Continuous Buffer Based Algorithms

First, the continuous buffer based algorithms are compared. For the tests, each dataset
is loaded once into the memory and then compressed directly in the continuous buffers
several times. For this comparison, the acceleration factor is set to one, the default value
for each algorithm.
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Figure 5.2.: Comparison of the algorithms using continuous buffers

Figure 5.2a shows that the LZj algorithm can reduce the size of the ‘silesia corpus’
dataset to a half. The BeWalgo subversions also reduce the size of this data, but the
ratio is negligibly small. Since the LZ/ algorithm results in a much better ratio in this
case, the throughput can not be compared well.

Compressing the ‘text’ dataset as shown in Figure 5.2b results in similar results. In
this case, the compression ratio can be doubled compared to the ‘silesia corpus’ dataset,
while the throughput remains similar.

On the other hand, the ‘hdf5’ dataset shown in Figure 5.2c¢ results in completely
different results. Since the data contains large repeated patterns, all algorithms achieve
similar very good compression ratios. The decompression rates are almost the same for
all algorithms. When compressing the data, the Be Walgo subversions have a minimal
better throughput.

Due to the strong compression ratio of the ‘hdf5’ dataset, the compression and decom-
pression algorithms can be faster than the wild-copy function. The strong compression
ratio of 13 means for the decompressor that on average every byte is read once and
written 13 times. This results in very good caching effects that do not occur when the
data is only copied from one memory location to another.
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5.3. Page Based Algorithms

The goal of this thesis is to compress the data with page arrays as buffers, which are
to be used in the Lustre file system. The acceleration factor for all algorithms in the
following figures is set to the default value as before. Regardless of the use of page-based
or continuous buffers, the compression ratio is the same. The compressed data from the
BeWalgo algorithms are even binary-identical between the continuous and page-based
buffer versions. The throughput measurements marked with ‘copy’ contain the necessary
operations to copy the page-based buffer into the continuous buffer and back. The
algorithms that natively accept page-based buffers are not affected by this flag.
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Figure 5.3.: ‘silesia corpus’ dataset

As is known from the previous chapter, the BeWalgo algorithm can not very well
compress the ‘silesia corpus’ dataset while the LZ4 algorithm can reduce the same data
to about half. Figure 5.3 shows that the time required for copying to continuous buffer is
a massive impact on overall performance. In the case of BeWalgo, the throughput can be
doubled if the data are compressed natively in page-based buffers. The LZ4 algorithm
shows a surprising effect: if the compression - especially the page-based buffer version - is
extremely slow, then it is faster to copy the data into continuous buffer, compress them
and then copy them back. One reason for this effect is the nature of the LZj algorithm,
which completely ignores the alignment of the patterns. The continuous buffer version of
the LZ4 algorithm can perform some good optimizations that are not applicable in a
page-based environment. In this way, the continuous buffer LZ/ compressor achieves 1.5
times the throughput of the page-based version. In the context of decompression, the
page-based LZ/ reaches only half the throughput of the continuous buffer version.
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In contrast to the ‘silesia corpus’ dataset, the ‘hdf5’ dataset can be compressed very
well with all selected algorithms. Figure 5.4 shows that the compression ratios are almost
identical for all compared algorithms.
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Figure 5.4.: ‘hdf5’ dataset

The comparison of the throughput without the ‘copy’ flag shows that the continuous
buffer algorithms are always at least slightly better than their page-based counterparts.
In the case of LZ/, the continuous buffer algorithms are far better than their page-based
counterparts due to the nature of the algorithm.

Data transfer between page-based and continuous buffers reduces the throughput of
the affected algorithms by half. As a result, the algorithms that accept page-based
buffers natively are drastically faster in the Lustre context. As a bonus, the page-based
algorithms do not even require a temporary continuous buffer in the kernel space.

The LZj compression algorithm compared to the BeWalgo algorithm results in only
half of the throughput. At this point, the nature of LZ4, which ignores the pattern
alignment, leads to a huge disadvantage.
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5.4. Parallel Compression

Since the compression consumes significantly more time than the decompression, only
the compressor is initially parallelized. To parallelize the compression, the data is
divided into chunks of 128 KiB, which are then compressed in parallel. The constant
chunk size independent from the number of threads leads to the same compression ratio
regardless of the number of threads. In the following subsections, only the BeWalgo
algorithm is displayed because the LZ4 data format does not allow the concatenation of
the compressed data streams. LZ4 compressed data can not be concatenated because it
is impossible to define match-lengths of zero between two literals.

5.4.1. Continuous Buffer Based Algorithms

First, the continuous buffer algorithms are compared in terms of acceleration gained by
the use of more processor cores.
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Figure 5.5.: continuous buffer based algorithm throughput by thread count

Parallel compression of the ‘text’ dataset shows that the algorithm scales well with the
number of processor cores, as shown in Figure 5.5a. If well compressible data such as the
‘hdf5’ dataset is compressed in parallel, the algorithm scales up to a maximum of 17 Gb/s.
This seems to be a hardware limitation of the main memory bandwidth. Surprisingly,
the compression of the ‘hdf5’ dataset is much faster than the parallel wild-copy as well
as the parallel memcpy, where the data are only copied. Because of the compression, the
BeWalgo algorithm requires a much smaller output buffer. Therefore, the cache is used
more efficiently, enabling higher throughput.
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5.4.2. Page Based Algorithms

Finally, the page-based compression algorithms are compared with respect to the accel-
eration obtained with more processor cores.
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Figure 5.6.: page-based algorithm throughput by thread count

Figure 5.6 shows that the throughput and compression ratio of the Be Walgo algorithms
remain nearly the same when using page-based buffers instead of continuous ones. Thus,
it would be obvious that if the continuous buffer algorithms were used in Lustre, the
throughput would definitely decrease as the extra time to copy the data to continuous
buffers would cause a large overhead.

When the page-based wild-copy algorithm is run with multiple threads, the throughput
decreases with increasing thread numbers. A possible reason for this behavior might
be that the cache gets invalidated more often when multiple cores concurrently map
and unmap a lot of pages. The page-based memcpy algorithm is a bit faster than the
wild-copy, and scales similar.
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6. Conclusion and Future Work

6.1. Conclusion

The processor performance is increasing faster than the performance of any storage
related component. To reduce this gap, data can be compressed before it is stored or
transmitted. With compression the size of data can be decreased, while at the same
time the latency is increased. The increasing latency is acceptable as long as the data
is accessed in big bulks. To improve the performance of many applications at once the
compression is applied in the underlying file system. The file system of choice is the
distributed kernel file system Lustre.

There exist many different compression algorithms. To improve the performance in
this context the compression algorithm must be very fast and lossless. The chosen
algorithm is LZj since it is currently the fastest. All available compression algorithms
use continuous buffers for input and output. To maximize the performance in the kernel
the compression algorithms must directly operate on the page based buffers.

There are multiple possible strategies how to handle the knowledge that there is an
array of pages in the background. The most efficient strategy is to compress the whole
page array at once and be careful to write the data always to the correct page. The
original LZ4 algorithm looses a lot of performance if the data is stored in page arrays.

The BeWalgo solves the performance problems of LZ/ with page buffers at the expense
of a potentially poorer compression ratio by viewing the input data in an 8 byte raster.
Additionally the BeWalgo algorithms open the possibility to concatenate the parallel
compressed binary chunk data without storing the individual compressed chunk sizes.
By concatenating the binary compressed data the compression ratio can be increased
while being able to compress parallel. LZj requires these individual chunk sizes because
zero length matches in the middle are not encodable.

6.2. Future Work

Compression in the Linux kernel is still under development. Therefore, there will be a
lot of work in the future until compression is used in productive environments.

Many different compression algorithms exist. Each compression algorithm has different
advantages and disadvantages. For example, if the data is stored for a long time, it might
be useful to use very strong compression to reduce the disk space required. If the data is
produced very quickly, it would be better to use a weak and fast compression algorithm
to make better use of the hardware. To use the individual advantages a lot of algorithms
needs to be adapted to work in the Linux kernel.
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A. Test-System

Table A.1 shows the relevant hardware properties of the test-system used for the mea-
surements.

Architecture x86 64

Endian Little

Processor Intel(R) Core(TM)
i7-4790K CPU @ 4.00GHz

CPU max MHz 4400

CPU min MHz 800

L1d cache (per core) | 32K
L1i cache (per core) | 32K
L2 cache (per core) | 256K

L3 cache (total) 8192K

Memory-clock 1600MHz

Memory-type DDR3

Memory-size 16GB

OS Ubuntu 17.04

kernel ubuntu 4.10.0-21-generic
Compiler gce version 6.3.0 20170406

Table A.1.: Test-System
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B. Chapter

This chapter contains graphs similar to the illustrations in the text. For completeness,
these graphs are presented in this chapter.
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Figure B.1.: Length distribution of literals and matches with the LZ/ compressor - ‘silesia
corpus’ dataset
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