
Masterarbeit

Integrating self-describing data formats
into file systems

vorgelegt von

Benjamin Warnke

Fakultät für Mathematik, Informatik und Naturwissenschaften
Fachbereich Informatik
Arbeitsbereich Wissenschaftliches Rechnen

Studiengang: Informatik
Matrikelnummer: 6676867

Erstgutachter: Prof. Dr. Thomas Ludwig
Zweitgutachter: Dr. Michael Kuhn

Betreuer: Dr. Michael Kuhn
Betreuer: Kira Duwe

Hamburg, 2019-11-08

Abstract
The computational power of huge supercomputers is increasing exponentially every
year. The use of this computational power in scientific research in various fields quickly
generates large amounts of data. The amount of data, that can be stored in individual
file systems, as well as their access speed, also increases exponentially. Unfortunately, the
memory size and speed grow slower than the computational performance. The research
needs a tool that makes it possible to quickly find the data of interest to researchers in
these huge file collections.

File system interfaces were defined in the early days of computers and have not been
modified since their invention. A search for certain data in huge data collections was not
intended. This search could be done by custom metadata. This was not directly possible
in the past because the Portable Operating System Interface (POSIX) does not contain
the required functions.

Self-Describing Data Format (SDDF) were developed for the exchange and reusability
of research results between research groups. These are file formats that store metadata
along with their raw data, that is the file itself contains the description of the data as
well as how it is encoded.

Looking for information according to certain criteria, all eligible files had to be opened.
This thesis describes the development of a new interface as well as the reference-

implementation for the combined storage of data and metadata. This novel interface
includes functions for storing metadata in a dedicated Structured Query Language (SQL)
backend. Storing metadata in a dedicated backend enables a more efficient search process.
Since metadata is now stored in a central database, the files which meet the search-criteria
can be opened systematically, as many files are excluded from the beginning. This saves
time. The existence of metadata in file systems also has the advantage of intelligently
distributing file content across different storage nodes. For example, metadata can be
written to faster storage mediums than the raw data which is needed less frequently.
This saves time and money.

Contents
1 Introduction 5

1.1 Existing work . 8
1.2 Goal . 9
1.3 Thesis outline . 9

2 State of the art 10
2.1 File systems . 10

2.1.1 Local file systems . 11
2.1.2 Distributed file systems . 11
2.1.3 Typical file system library stack 12

2.2 HDF5 . 12
2.2.1 Usage example . 15

2.3 ADIOS2 . 16
2.4 JULEA . 17

3 Design 20
3.1 Naive approach . 20
3.2 JULEA DB backend . 21
3.3 JULEA DB client . 25

3.3.1 JDBSchema . 25
3.3.2 JDBSelector . 26
3.3.3 JDBEntry . 27
3.3.4 JDBIterator . 28

3.4 HDF5 VOL Plugin on top of JULEA DB client 29
3.4.1 HDF5-File . 29
3.4.2 HDF5-Link . 30
3.4.3 HDF5-Datatype . 30
3.4.4 HDF5-Space . 31
3.4.5 HDF5-Dataset and HDF5-Attribute 32
3.4.6 HDF5 VOL Plugin example . 34

4 Implementation 35
4.1 Backend Operation . 35
4.2 SQL wrapper . 37
4.3 Usage example . 39

4.3.1 JDBSchema . 40
4.3.2 JDBEntry . 42

3

4.4 Adding new backend implementations . 43
4.5 JULEA debugging . 43

4.5.1 AFL . 43
4.5.2 Mockup . 44
4.5.3 Static code analysis . 44
4.5.4 Error handling . 44
4.5.5 Other . 44

5 Evaluation 45
5.1 Synthetic HDF5 benchmarks . 45
5.2 Enzo benchmark - a real application using HDF5 46
5.3 Synthetic JULEA DB client benchmarks 48

5.3.1 Null-Backend . 48
5.3.2 Impact of the used database . 50
5.3.3 Impact of the number of fields . 51
5.3.4 Impact of Indices . 52
5.3.5 Impact of the storage medium . 54
5.3.6 Impact of the Process count . 55

5.4 New functionality . 57

6 Related Work 59
6.1 Compression . 59
6.2 EMPRESS . 60
6.3 Dynamic metadata Management for Petabyte-scale File Systems 60
6.4 Semantic file system . 61
6.5 Parallel data analysis directly on scientific file formats 61
6.6 Making Sense of File Systems Through Provenance and Rich metadata . 62
6.7 Structured metadata for the JULEA storage framework 63

7 Summary, Conclusion and Future Work 64
7.1 Summary . 64
7.2 Conclusion . 64
7.3 Future work . 65

Bibliography 66

Appendices 69

List of Figures 70

List of Listings 71

List of Tables 72

List of Abbreviations 73

4

1 Introduction
The computational power of the largest supercomputers in the world is growing expo-
nentially every year. Figure 1.1 shows the performance improvement of the 500 largest
supercomputers in the last 25 years. As the computational power increases, so does the
amount of data generated and stored.

[ht]

Figure 1.1: Performance development in the TOP500 list [Erich Strohmaier, 2019a] in
the last 25 years

The first hierarchical file system for the systematic storage of data was designed in
1965 [Daley and Neumann, 1965]. The storage space of a single hard drive at that time
was about one megabyte [IBM, 1965]. Then, only a single computer was connected to a
storage disk. These computers were used by a few people each.

5

The networking of computers and their services have become more complex. Some
computers are designed for high-speed computing, others for permanent storage. Today
supercomputers consist of hundreds to thousands of compute nodes. Many of the nodes
in a supercomputer are connected to the same storage system. Both, the programs for
calculation and the file systems for storage are each distributed to different computers.
Within the storage nodes there are several hard drives which also have to be coordinated.

On the supercomputers of the TOP500 list [Erich Strohmaier, 2019b] the main ap-
plications either simulate complex models or analyze a large amount of sensor or
application data. In modern science, many different research areas use simulations
[Arie Shoshani, 2019]. During the simulation of complex models, petabytes of data are
generated.

Then the data is analyzed. Post-processing tools are used for this analysis to extract
the data of interest from the total file collection [Arie Shoshani, 2019]. Often extreme
values are of particular interest. The extraction of the information of interest from a
growing volume of data can benefit from rich metadata.
The increase of the existing data volume and the access speed in an increasingly

complex computer landscape results in novel requirements for file system interfaces.
POSIX has been developed as a file system interface to provide a unified interface for

a variety of storage systems for different operating systems.
One of the biggest problems with POSIX is that it is necessary to propagate every

change to a file instantly to all other nodes.
If there are only a few nodes, then this is fine. However, current servers have thousands

of compute nodes and millions of connected users. This massively parallel access causes
immense network traffic to synchronize all file content on all connected nodes.
POSIX does not contain transaction or batch semantics because it was not required

at the time of its creation. The benefit of batch semantics is to efficiently write large
volumes of data in a batch process. The benefit of transaction semantics is ensuring data
consistency across multiple files and operations.
Today, there are many different attempts to define structured data formats with

different properties to efficiently support as many application requirements as possible.
Due to the limitations contained in the definitions, not every definition is suitable for
every application. These definitions are implemented in different libraries. Libraries
differ in their interfaces and are therefore incompatible with each other.

Libraries make it easier to describe raw data with metadata. As the simplest variant,
small JavaScript Object Notation (JSON) or Extensible Markup Language (XML) files
can be used, which are stored in a separate file in addition to the file containing the raw
data.
SDDF were developed for the exchange of research results between research groups and

reusability. These are file formats that store the metadata together with their raw data,
that is, the file itself contains the description of the data as well as how it is encoded.
Examples of SDDF are libraries such as Hierarchical Data Format (HDF5) [Group, 2019]
and Adaptable Input/Output System (ADIOS2) [Laboratory, 2019].

6

This results in the following advantages:

• The metadata is always stored together with the raw data and remains consistent.
Only the user himself may explicitly rewrite or delete the file.

• Although the architectures of the Central Processing Unit (CPU) are different,
these libraries can still use the metadata to read the raw data. Without these
libraries, this would not be as easy.

A disadvantage of generic data formats is that the data access speed can be lower
compared to proprietary binary data formats. This is due to another library layer
between the physical storage and the application.
The Network Common Data Format (NetCDF) was designed as a stand-alone file

format. During development, the data format has changed. With the announcement of
the fourth version of the NetCDF HDF5 is now used as a storage layer below NetCDF.
The intended improvement was the combination of the simpler interface of NetCDF with
the increased flexibility of HDF5.

There are also many specialized data formats for different applications. Some of these,
such as HDF5 for molecular data (H5MD) [Developers., 2019] merely extend existing
generic data formats to support specific types of applications. The advantage is that
it may be easier to develop a new application if previously implemented dataformats
can be reused. The disadvantage of this type of library is that every layer in the storage
stack tries to optimize data access for itself. These additional library layers on top of the
generic data format increase the complexity of the entire library stack and thus reduce
the flexibility of the structured data format. Because of the complexity, some libraries
in the stack can undo previous library improvements, effectively reducing the overall
performance of the application.
Each application decides which data formats are supported and which are not. In

climatology and geosciences, the file formats HDF5 and NetCDF are often used. This
is mainly due to the fact that it was recognized early on in this field of research
that the interchangeability of data is an important part of research. To ensure the
interchangeability of their data, geoscientists have agreed on a common standard.

Other research areas do not define a universal file format standard. This is where the
problem of many coexisting data formats occurs, so that there are many applications
that compute similar things but store them in different ways. This makes it harder to
compare or reuse results.
So, there are many different applications for particle and material simulation with

different output formats. An example of this is EDEM, an application for simulating
materials and elements. For 7 years, this application had used its own proprietary data
format. For 3 years, the data is now stored in HDF5 format, so users can now more easily
compare their data with the results of other applications [Rowan, 2019]. Previously,
scientists had to unite the file format with others if they wanted to share and compare
their results.

It would be more useful and efficient, however, if the file system itself provided such a
flexible interface. Then any application could easily be shared.

7

1.1 Existing work
Currently, most metadata is stored next to the data within the same file. Typical
everyday formats such as Joint Photographic Experts Group (JPEG) and Portable
Network Graphics (PNG) for images and Moving Picture Experts Group (MPEG) for
video files store their metadata directly inside the file. The file system stores only the
most basic metadata, for example, the creation date of the file. There are many different
photo and video formats, and each format stores its metadata differently, making it
difficult to find specific metadata attributes. The metadata in some of these formats,
such as JPEG, may contain duplicate information such as the creation date, which is
also stored in the file system.

The same applies to websites. Each Hypertext Markup Language (HTML) page stores
its metadata in its own header using special tags, which does not change the visual
output of the web page. However, computers can use this metadata to better interpret
the content of the page. Similar to the consumer computer, only the basic metadata
such as the website Uniform Resource Locator (URL) tree can be specified globally per
homepage.

Even in the big supercomputers, metadata, if available, is stored individually in each
file.

CoSEMoS
The current storage stack in supercomputers has many problems with data throughput and
metadata management. An important cause of this type of problem is the separation of
metadata in files and metadata in the underlying file system. As a result, the information
about how the file data is structured, is not known within the file system. During post-
processing, many files are opened just to read the metadata, if minimum and maximum
values are going to be extracted. Another problem is the static and non-configurable
Input/Output (IO) semantics in POSIX file systems. The target of the Coupled Storage
System for Efficient Management of Self-Describing Data Formats (CoSEMoS) project
is to solve this problem. Therefore, CoSEMoS expands JULEA.
To solve the problems shown, CoSEMoS will add a new storage interface to JULEA.

Since JULEA is a core dependency of this thesis, it is described in detail in Section 2.4.
The interface should provide a simplified access to the files metadata within the file
system. Additionally, a global metadata management system will be added. This
management system will use the provided metadata to decide which backend should be
used to store the data. If the application provides enough metadata, the management
system can automatically decide whether to save the data to a Non-Volatile Random-
Access Memory (NVRAM), a Solid-State Drive (SSD), a Hard Disk Drive (HDD) or tape
storage. JULEA already defines a variety of semantics that can be set by the application
depending on the needs of the application. This deep coupling between file system and
file metadata allows novel interfaces to analyze large amounts of data more efficiently.

Part of the CoSEMoS project is the implementation of a structured backend where the
generic metadata provided by the application can be stored. This structured backend

8

will be implemented as part of this master thesis.
To simplify the transition for existing applications, CoSEMoS provides plugins for

self-describing data formats, such as HDF5 and ADIOS2, to automatically store their
data in JULEA. The HDF5 Virtual Object Layer (VOL) Plugin is implemented as a
proof-of-concept to show that the new JULEA Database (JULEA DB) interface can be
used to store metadata in one central location. The HDF5 VOL Plugin is also utilized
to analyze the impact of the newly introduced file system interface on performance.
The global metadata manager is not part of this thesis and will be developed in the

future.

1.2 Goal
Current self-describing data formats such as HDF5 and ADIOS2 store their metadata
within each file. Because of the flexibility of these data formats, it is not possible to find
specific attributes at fixed offsets in the files. Instead, each file must be opened with the
appropriate library to search for the requested attributes. This makes queries on large
file collections inefficient.
The HDF5 VOL Plugin previously used in JULEA uses the JULEA Key Value

Store (JULEA KV) backend to store its metadata. The advantage of the JULEA KV
backend compared to native HDF5 is that the JULEA KV backend can identify identical
metadata. The problem with this approach is that it is still not possible to efficiently
query all files that contain a specific attribute set.
The goal of this thesis is to store the metadata in a dedicated metadata backend.

Saving the metadata of all files, along with file system metadata, allows complex SQL-like
queries against the metadata. Using complex metadata queries makes it easy to find
files of interest in large file collections without the need to create individual indices next
to the file system.

1.3 Thesis outline
The remainder of this thesis is structured as follows: Chapter 2 describes how currently
used data formats store their metadata. Chapter 3 shows how the new proposed storage
interface works, and which problems are taken into consideration. Chapter 4 shows
how the proposed design is implemented. Chapter 5 compares different aspects of the
implementation with similar approaches. Chapter 6 shows related work, which tries to
solve similar problem definitions. Additionally, differences and problems with the shown
approaches are highlighted.

9

2 State of the art
First, this chapter defines different kinds of file systems. Especially the metadata
structure is highlighted, because this is a main component of the following chapters.

2.1 File systems
File systems are present since the early days of computers. The main task of those
systems is to transform a file structure into a byte array, which then can be stored on a
physical storage medium. To fulfill that task, file systems are forced to store metadata
information. This metadata primarily contains the name of the file, and the location
of the bytes, which belong to this file. Nowadays all major file systems are hierarchical
file systems. The hierarchical component allows the definition of a directory structure.
These directories are special files, which contain the locations of other files metadata
instead of file data.

Most existing file systems implement the POSIX standard. This interface defines the
functions, which access and modify the file structure and data. Because this interface is
old, multiple aspects, which are important nowadays, are not taken into consideration in
its design. Some important aspects which were not considered in the standard are:

• huge directories with thousands or millions of files

• huge files which contain terabytes of data

• copying of huge files which contain gaps, which are never initialized, between
different file systems

• network synchronization overhead

• the ability to attach searchable metadata to files

• the requirement that each file access needs to be written as a time stamp to the
file metadata

Some of these aspects are only relevant for server-cluster use cases, while other aspects
are serious performance killers for any use case. There are multiple attempts to solve
some of these problems, but as long as the interface with its definition is not changed,
these are just workarounds, and not solutions.

10

2.1.1 Local file systems
Local file systems store their data on a physical storage medium, which is directly
connected to the main board of the computer. The direct physical connection within
this computer allows the file system to cache often required file system metadata in its
own memory. The file system can assume, that the cached metadata is always valid,
since there is no other computer which might modify anything.

2.1.2 Distributed file systems
In contrast to local file systems, the physical storage is reachable over a network connection.
This allows the physical storage to be connected to multiple different storage nodes. At
the same time multiple client nodes can connect to the same physical storage.

One advantage is, that the overall storage volume and speed can be increased, because
multiple storage nodes share the task to store data. At the same time a huge collection of
clients can read and modify the same data at the same time. This creates the additional
task for the file system to coordinate the concurrent access of the clients.
Coordination of thousands of compute nodes is a complex task. Additionally the

POSIX standard defines hard requirements on the behavior of the implementation. A
major problem with the POSIX standard for this use case is the requirement, that
any change to any file needs to be made visible instantly to every connected user.
Additionally the POSIX semantic requires, that for every read access the metadata
should be updated to store the timestamp of the occurred read operation. Together this
creates a huge amount of network traffic, if a single user reads only a few bytes in a small
file. Additionally to the network traffic, this makes caching file system data much more
complex, because there might be another user, who just in this moment modified the
targeted file or directory.
To reduce the complexity of distributed file systems, local file systems can be used

on the storage nodes as an additional layer. For example, Lustre uses the Zettabyte
File System (ZFS) locally on its storage nodes, to focus only on the network layer. This
reduces the file system complexity, but increases the amount of library and caching layers
between the physical storage and the client node.

11

2.1.3 Typical file system library stack
In super computers environments the major application data often is not written directly
to the POSIX storage. Instead these application often use libraries, which provide a
more suitable storage interface. Figure 2.1 shows the typical library stack, which is used
in server environments.

Application

NetCDF

HDF5

Distributed File System

Local File System

Physical Storage

struct{int x; float y;}[50]z;

int[50] x, float[50] y

int[50] x, float[50] y

400 bytes

400 bytes

400 bytes

Figure 2.1: Typical Application Storage Hierarchy. The left column shows the library
layer. The right column shows the known data type.

In the first layer, the application itself does exactly know, the structure and the
meaning of all of its data. The next layer is the storage library, which is used by the
application.

In scientific applications, often NetCDF is used here. Because this library supports a
fully structured data interface, it is possible to exactly define the whole data structure in
form of metadata. NetCDF itself requires HDF5.
HDF5 allows the storage of rich metadata too. Due to the different interfaces, the

metadata needs to be transformed between these two libraries. This is true, even if both
of these libraries can store the exact data structure, just because the metadata is stored
in a different way.
HDF5 then writes the data to a POSIX file system. To do this, HDF5 needs to convert

the structural metadata into a binary array. After the conversion into a binary array,
all structural information is lost. Any of the following libraries of file systems may only
know, that there is a specific amount of bytes, which needs to be stored.
Every library layer potentially looses some structural information. If the structural

information is lost, it can not be restored in a lower library layer. Without the structural
information, the file system is not able to perform queries on parts of the binary data.

2.2 HDF5
HDF5 [Group, 2019] is a hierarchical data format. The HDF5-Group defines the binary
encoding of the data and provides libraries that can read and write files of that format.
HDF5 files store large amounts of structured data along with their metadata.

12

Super
Block

Root
Group

Local
Heap

Group
Table Group

Local
Heap

Group
Table

ObjectObject
Header

Data

Global
Heap

Object
Header
Exten-
sion

Data

1-1

1-1
1-1

0-m

1-1
1-1

0-m

0-m

0-m

0-1

0-1

1-1

1-1

0-m

1-1

1-1

Figure 2.2: The HDF5 File Structure [Group, 2006]. The gray node shows where the
actual data is stored. Everything else is metadata. The arrow captions
highlight, which components are either optional or can be referenced multiple
times from a single component.

13

Each HDF5 file is structured as shown in Figure 2.2. This file format allows a lot of
different aspects of the data to be modeled in the metadata. Some components in a file
are optional, other can exist multiple times. As a consequence, the HDF5 library defines
a huge amount of functions in its application interface. The elements which can hold the
actual data are called dataset or attribute. The dataset can store huge amounts of
data. On the other hand, the attribute stores the application defined metadata, which
can be attached to any dataset, group or file.

All element types contained in HDF5, such as dataset or attribute, are special cases
of the generic type group. Therefore, it is sufficient to allow cyclic dependencies between
groups to allow similar relationships between dataset as well. These cycles allow the
definition and storage of complex dependency graphs within a single HDF5 file.
The advantage of storing metadata in each file is, that the flexibility of those files is

maximized, because any file can have a different format. In real world applications like
simulation applications, this feature is not used because the data format is defined once.
Afterwards a huge amount of files with the same file format is going to be written to
storage during the runtime of the application.
To gain any scientific results, these generated files need to be analyzed later. For a

quick overview, to identify if something bad happened, it is often useful to find extreme
values across all of the generated files. The current approach, to store the metadata in
each file requires, that each file is individually opened, and the extreme values need to
be extracted. If the metadata would have been stored in the file system, it would be
much faster to perform this kind of analysis.

In contrast there are aspects, where metadata in each file is an advantage. For example,
if the metadata is contained in each file, then the file can be easily send to another user,
and that other user can use the metadata to learn, what the file contains. Structured
HDF5 object headers contain information about the exact encoding of the binary file.
This allows moving the file to another supercomputer with a different CPU architecture.

The size of the metadata itself is usually small and of little importance compared to
the size of the real data.
Finally, the storage location of the metadata is a choice between portability and

searchability.
HDF5 does not currently create its own metadata, such as minimum and maximum

values. Instead, the application must explicitly define all metadata.
HDF5 allows Message Passing Interface (MPI) applications to access the same file.

However, there is a performance issue if multiple MPI processes update the file metadata.
The reason for this performance issue is, that all MPI processes which open a file must
perform all operations which change the file metadata collectively. This includes the
creation of a dataset as well as writing to an attribute. Even those MPI processes, which
do not have to write data to those datasets, need to participate in the collectively called
H5Dcreate function [Chaarawi, 2015].

14

2.2.1 Usage example
This section shows an example of how HDF5 can be used. Additionally the improvements
of using HDF5 compared to direct IO are highlighted.

1 int write_hdf_data(int *data, hsize_t dims){
2 hid_t file;
3 hid_t dataspace;
4 hid_t dataset;
5

6 file = H5Fcreate("JULEA.h5", H5F_ACC_TRUNC, H5P_DEFAULT,
H5P_DEFAULT);↪→

7

8 dataspace = H5Screate_simple(1, &dims, NULL);
9

10 dataset = H5Dcreate2(file, "test", H5T_NATIVE_INT, dataspace,
H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);↪→

11 H5Dwrite(dataset, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT,
data);↪→

12 H5Dclose(dataset);
13

14 H5Sclose(dataspace);
15

16 H5Fclose(file);
17 }

Listing 2.1: HDF5 usage example

First Listing 2.1 assumes in line 1 that there is an array of integer values, which should
be written to the storage. Additionally it is known, how many integer values are going
to be written.

The first HDF5 call in line 6 initializes a new HDF5 file. The truncate flag is used to
define, that the file should be truncated if it exists, otherwise this file is newly created.
The other parameters during file creation can be used to pass some global options to the
file. For example, these parameters can be used to specify that the JULEA HDF5 VOL
Plugin should be used instead of the internal binary encoding.
Afterwards a dataspace is defined. Within HDF5 this kind of variable is used to

define the size and dimension count of an array. In this example the array has only a
single dimension, which reflects the amount of data points to be written to storage.
Next, the dataset itself is created within the specified file. During the dataset

creation, the variable type and the number of elements need to be defined. The variable
type of a specific dataset can not be changed for the lifetime of an HDF5 file. In this
example, the array is of type integer. It would be possible to declare the variable type to
be any complex datatype.

15

Finally, after the definition is ready, the data is written to the dataset in line 11.
Here the whole data is written at once. Instead of H5S_ALL the user could define any
subset of fields within the array. This allows the partial writing of data.
Afterwards every created handle needs to be closed, to flush the data to disk and

release all in-memory pointers.
If the file is opened later by another user, the metadata could tell, that there is an

array of integer defined under the key test. The user could use that information, to
read and use the data in its own application.

In contrast, if only a plain POSIX file is used, than there is no structural information
within the file. The file-system could tell the user only, that there is an specific amount
of bytes. Without the file structure information, the file is just binary data, which can
not be interpreted on its own. To use the data, it is required to ask the file creator, how
the file needs to be parsed.
In summary, HDF5 provides a way, that the file data is described by the file itself.

This costs some time during data creation, but makes it much easier to read the data
later.

2.3 ADIOS2
ADIOS2 is a unified IO performance framework [Laboratory, 2019]. The framework can
be used to transport self-discribing data over the network. Additionally this framework
can store data in a file system or in-memory. The target is to do the provided operations
with a high-performance. In contrast to the performance issue of HDF5 [Chaarawi, 2015],
ADIOS2 allows high-performance MPI access to the same data stream. This is possible
because ADIOS2 may use a different metadata file for each process.
Time steps are also a central element of ADIOS2. These time steps allow different

ADIOS2 applications to stream data through files. Even if one application is still writing
new time steps, another application could start to process those files at the same time.
The time step model fits perfectly to applications, which simulate something, and write
their data in static time intervals. On the other hand, if the application does not
write time-dependent data, this approach has its disadvantages. ADIOS2 itself does
not provide an Application Programming Interface (API) to define hierarchical data
formats. If hierarchical dependencies are desired, these must be added by another library
on top of ADIOS2. Another difference to HDF5 is, that ADIOS2 calculates its own
metadata along with the data provided by the application. The calculated properties
include minimum and maximum values for the different variables.
ADIOS2 provides multiple engines. Each engine is specialized in its own task. Some

engines store the data in the file system, others transmit data over the network. The
following paragraph describes the binary-packed (BP4) engine, which is the most current
file storage engine. This engine uses a folder structure with multiple different files, to
store the data which belongs together. The variable number of files within the directory
structure allows multiple processes to write at the same time into different files, without
the risk of damaging data of other processes. The same applies to the metadata. The

16

metadata is stored within the same directory structure, but in different files than the
data. This allows for more flexible handling of the metadata. Even if the data is stored
in multiple files, all of these files belong together. In addition to advantages during
writing, this approach allows a reader application, to process the data at the same time,
as it is generated.

2.4 JULEA
JULEA [Kuhn, 2017] is designed to simplify the IO stack of High-Performance Computing
(HPC) applications and quickly evaluate new storage concepts. To reach this goal
JULEA defines a collection of simple interfaces. To enable rapid prototyping, JULEA
has a modular structure. For example, a JULEA module provides a Filesystem in
Userspace (Fuse) implementation, which supports the user with a fully POSIX compatible
file system. In addition to the plain POSIX, JULEA defines several different alternative
storage interfaces.
Currently, the code base of JULEA is small. Because of this property, JULEA is a

beginner-friendly storage environment. The core of JULEA includes a client-server socket
connection to enable distributed storage systems.
The basic structure of an application using JULEA is shown in Figure 2.3.
The JULEA KV interface defines generic functions for storing relationships between

keys and small objects. Data for a specific key in JULEA KV must be completely written
immediately.

The JULEA Object Store (JULEA OBJ) interface defines generic functions for storing
relationships between keys and huge objects. To write objects that are larger than the
available Random-Access Memory (RAM), this interface allows partial read and write
access to objects. The JULEA KV and JULEA OBJ components can be used together
to implement all functions required for a POSIX file system.

The new JULEA DB interface extends or replaces the JULEA KV interface, allowing
for efficient querying of partial keys or partial data content.
There are multiple benefits if, for example, HDF5 objects are mapped to JULEA

objects, key-value pairs and db-entries:

• There are different backend interfaces, which can be used to implement plugins for
different higher storage abstraction layers.

• Filesystem metadata and file metadata is not required to be separated from each
other.

• Metadata may be stored in a more structured backend, which allows more complex
and faster analysis queries, even across across multiple files. With these fast
metadata queries, the searching for data pieces of interest in huge file collections is
supported.

17

Compute Node

Application Analysis Tools Export

JULEA

JULEA HDF5
Client

JULEA DB
Client

JULEA OBJ
Client

JULEA KV
Client

JULEA Networking

Adaptable
IO semantics

Global
metadata
Manager

JULEA KV
Server

JULEA OBJ
Server

JULEA DB
Server

Figure 2.3: JULEA applications Structure. The blue parts in the figure existed before
this thesis. The green components are added in this thesis. The red boxes
are planned, but not included in this thesis.

18

• If the file system has structure information about the file content, then often used
file pieces can be stored on a fast storage medium, while archive data can be
compressed and stored on slow storage devices.

• The file system may use different storage backends for different kinds of files. Some
backends allow faster read access, others allow faster updating of data. Each
backend has its own advantages, and each user has its own reqirements. Rich
metadata within a file system allows more efficient storage access.

• Deduplication of similar data can be performed more easily, because the file system
can now focus on similar file sections instead of just raw data files.

• Additionally, this allows the file system to store similar data sections of different
files more efficiently, to allow faster read access later. Faster read access may be
provided due to the distribution of data to the backends. A larger number of
storage nodes may increase the read access to the data later.

Adding new backend types to JULEA is easy, but not the main goal of the JULEA
design. Prior to this thesis, JULEA only defined two backend types. Backend types
define internal interfaces used by the JULEA client library.

If the required backend type is defined then it is very easy to implement a new backend.
Each backend type interface tries to be as generic as possible to accommodate a wide
variety of different implementations. All existing backend types have at least two different
implementations, but the number of available backends is not limited by the source code
itself. Currently, each instance of JULEA can load at most one backend implementation
of each type. This may change in the future from JULEA, if automated algorithms based
on application requirements decide which backend leads to the best performance.
Because JULEA is a distributed storage system, backend implementations should

always keep in mind that the code can be accessed by multiple threads simultaneously.
With JULEA a different semantics can be specified for each message. Semantics can

change the behavior of the JULEA backend if multiple processes write their data at the
same time. Currently, the semantic part of JULEA is in an early stage of development
and therefore not fully supported by all backends.

19

3 Design
This chapter describes the design decisions before and during the development of the
JULEA DB backend.

3.1 Naive approach
There are several approaches, how applications can interact with a structured backend
type. The simplest approach is, that each application uses its own SQL library directly.
Then each application can connect to the same database. With this approach, only
one database schema would have to be defined. Afterwards, each application can write
its data independently. That way, the application has full control over its metadata.
The advantage is that every application has the maximum flexibility to use a particular
backend. At the same time, this advantage is also a disadvantage. If the applications are
not forced to a common schema, some applications do not adhere to a proposed scheme
if it does not fit perfectly with their needs. If each application uses its own schema, the
benefits are reduced because the results cannot be easily compared between applications.
Because of the differences between the various SQL libraries, the application cannot
easily change its database without requiring full refactoring.

20

3.2 JULEA DB backend
The core idea of the JULEA DB backend interface definition is to support many different
backend implementations. To keep JULEA as simple as possible, the number of functions
in the interface is kept as low as possible.

1 gboolean backend_init (gchar const*);
2 void backend_fini (void);
3

4 gboolean backend_batch_start (gchar const*, JSemantics*, gpointer*,
GError**);↪→

5 gboolean backend_batch_execute (gpointer, GError**);
6

7 gboolean backend_schema_create (gpointer, gchar const*, bson_t const*,
GError**);↪→

8 gboolean backend_schema_get (gpointer, gchar const*, bson_t*, GError**);
9 gboolean backend_schema_delete (gpointer, gchar const*, GError**);

10

11 gboolean backend_insert (gpointer, gchar const*, bson_t const*, bson_t*,
GError**);↪→

12 gboolean backend_update (gpointer, gchar const*, bson_t const*, bson_t
const*, GError**);↪→

13 gboolean backend_delete (gpointer, gchar const*, bson_t const*,
GError**);↪→

14 gboolean backend_query (gpointer, gchar const*, bson_t const*,
gpointer*, GError**);↪→

15 gboolean backend_iterate (gpointer, bson_t*, GError**);

Listing 3.1: JULEA backend interface

Listing 3.1 shows the API of the JULEA DB backend.
The interface includes functions to define and use a structured datatype. After the

definition of the structured datatype, the interface can be used to access the data. The
data access can be any of the basic data operations like insert, update, delete and
query.
A lower abstraction layer like write, read and truncate would not be useful at

this place, because the intended improvement is to allow structured data within the file
system. A higher abstraction layer on the other hand, would increase the complexity
of the backend. At the same time complex functions may not be suitable to map every
desired datatype to the backend, because some libraries may have completely different
assumptions.

Each backend type in JULEA provides functions to initialize and finalize any backend,
which must be called at application startup and termination respectively. These functions

21

follow a different error handling strategy then every other function in the API. The
detailed error handling is described in Section 4.5.4.

The definition of this backend type implies but does not require SQL implementations.
The proposed internal interface uses Binary JSON (BSON) [bson, 2019] as a container

to send data over the network. BSON is part of the public MongoDB [MongoDB, 2019]
interface. MongoDB is a non relational SQL (noSQL) database that is already used as a
JULEA KV backend.

The BSON structure is similar to JSON but is binary coded. Binary coding reduces
the size of data for transmission over the network compared to simple JSON. In addition,
the use of BSON prevents the use of many string conversion functions. BSON already has
several language bindings, which makes the development of JULEA language bindings
even easier.
BSON has already been used at various points in JULEA for transfer purposes so that

the JULEA DB interface can share the existing core code. The advantage of BSON is
those type conversions are applied automatically when the communicating computers
use different CPU architectures, such as big and little-endian. This allows easy portable
code between different CPU architectures. The disadvantage of BSON is that the data
has to be converted into a key-value format. Then, the receiver side has to extract the
data from this key-value format. Unfortunately, benchmarks show that especially the
creation of large BSON document structures takes much time Table 5.1.
Figure 3.1 shows the overhead generated by the JULEA DB design while writing

metadata. The metadata must be transformed multiple times on the way from the
application to the POSIX store.

To prevent problems with incompatible CPU architectures, the data is first packaged
into a BSON structure. Depending on whether the client or server-side backend is loaded,
the BSON is either sent as a byte stream over a GLib socket connection or passed directly
to the JULEA backend API. Within the backend, the BSON needs to be parsed for
the SQL API to use the data. The SQL backend then transforms the data into its
own internal format and integrates the data into the corresponding tables. Finally, a
confirmation signal is sent back to the application. If an error occurs it will be returned
to the application instead of the acknowledgment signal, and all further processing of
that message will be aborted.

Transactions are part of the JULEA DB interface as shown in Listing 3.1. To begin a
transaction the function backend_batch_start is used. All functions which are called
within a transaction are restricted to the same namespace, which is passed as the
first parameter. The message semantics are also the same for every function within a
transaction. The third parameter outputs an opaque pointer, which is afterwards passed
to every other backend function as the first parameter. This ensures a consistent behavior
within a transaction.

To finally commit a transaction, backend_batch_execute must be called. This
function must be called in case of any error within the transaction too because this
function is responsible to free any transaction-specific resources.

22

Application

JULEA
client API

JULEA
internal API

GLib
socket API

JULEA
backend API

SQL
API

SQL
internal network

POSIX

base
type
base
type BSON

bytes
BSON

base
type
base
type binary

bytes

ACK
ACK

ACK
ACK

ACK
ACK

ACK

Figure 3.1: JULEA metadata Write

The existence of transactions has performance reasons too. Without transactions, a
huge amount of small messages would generate a huge amount of network traffic. If all
these small transactions are combined in a single transaction, then the amount of network
packets is reduced. Databases are typically faster if multiple operations are combined in
a single transaction. Future versions of JULEA might be able to sort and deduplicate
the requests, to gain additional speed. The scope of the transactions can be defined by
the message semantics. The application can determine whether each operation should be
performed in a separate transaction, or whether all operations within a message should
be performed together in a transaction. Later it will be possible to explicitly start and
end transactions containing several messages. Transactions that span multiple messages
can be useful to ensure consistent file system status, especially if the application may
crash.
Not all backend implementations can handle all combinations of message semantics.

Some backend libraries used, may have limitations that JULEA cannot simulate.

23

For example, the Data Definition Language (DDL) contains all the commands in a
database system that are used to create, modify or delete database schema structures.
Normally, DDL operations are not performed while an SQL transaction is not completed.
For example, MySQL closes all open transactions before running a DDL operation. In
contrast, SQLite fully supports DDL operations within transactions.
However, JULEA DB schema operations to create or delete a schema should very

rarely be used. Applications should define their data layout once at the beginning of the
program and then use it for their runtime.

To avoid inconsistent behavior, JULEA currently explicitly closes any open transactions
before DDL operations are applied. As a result, JULEA does not execute all backend_-
schema_create operations within a single database transaction, even if the message
semantics so specifies. The same applies to backend_schema_delete because both create
and delete SQL schema in their backend implementations.
In addition to the special cases mentioned, the JULEA backend implementation

respects any semantics as much as possible. In the future, JULEA will decide whether
to issue errors or notify the application that the requested semantics is not applicable.
The JULEA DB backend interface should only be called internally in JULEA and

never directly from the application. In this way, JULEA can perform extended error
checking on the client-side. Currently, most errors are also explicitly caught in the
backend, but some errors would only be detected by SQL compilation errors. Future
versions of JULEA may eliminate this redundant error checking to improve performance.
In the future, the client-side library will perform additional optimizations within the
application to improve the performance and usability of the data.

24

3.3 JULEA DB client
The definition of the client-side functions follows the same approach as the definition of
the backend-side interface. The client-side JULEA library should allow the application
to use the JULEA library in very different scenarios. As a consequence, the client-side
JULEA library was developed to support the implementation of various other libraries
based on JULEA. For example, JULEA includes an HDF5 VOL Plugin based on its own
client-side library. To make the memory management easier, each allocated object uses
reference counting.

3.3.1 JDBSchema

The client-side JDBSchema object as shown in Listing 3.2 contains the structure definition
of a data type which is specified by the application. The corresponding concept in SQL
is the schema of a table.

1 JDBSchema* j_db_schema_new (gchar const* namespace, gchar const* name,
GError** error);↪→

2 JDBSchema* j_db_schema_ref (JDBSchema* schema);
3 void j_db_schema_unref (JDBSchema* schema);
4

5 gboolean j_db_schema_add_field (JDBSchema* schema, gchar const* name,
JDBType type, GError** error);↪→

6 gboolean j_db_schema_get_field (JDBSchema* schema, gchar const* name,
JDBType* type, GError** error);↪→

7 guint32 j_db_schema_get_all_fields (JDBSchema* schema, gchar*** names,
JDBType** types, GError** error);↪→

8 gboolean j_db_schema_add_index (JDBSchema* schema, gchar const** names,
GError** error);↪→

9

10 gboolean j_db_schema_equals(JDBSchema* schema1, JDBSchema* schema2,
gboolean* equal, GError** error);↪→

11

12 gboolean j_db_schema_create (JDBSchema* schema, JBatch* batch, GError**
error);↪→

13 gboolean j_db_schema_get (JDBSchema* schema, JBatch* batch, GError**
error);↪→

14 gboolean j_db_schema_delete (JDBSchema* schema, JBatch* batch, GError**
error);↪→

Listing 3.2: JULEA DB client-side JDBSchema

This JDBSchema object contains the information about which variables exist and which
type should be used to access those variables. JULEA DB itself does not allow implicit

25

type conversions. Applications should use the same type of data to read and write
variables anyway.

During the schema build phase, the application may decide to add an arbitrary amount
of fields to the schema using j_db_schema_add_field. After the definition of a field,
the application may index some of the variables by calling j_db_schema_add_index to
improve the access speed later. Indexes initially cost additional time when the affected
variables are written. However, indexes can also achieve a tremendous speed increase as
shown later in Figure 5.6 if the variables are frequently read or queried. Therefore, the
application should pay attention to which variables should be indexed and which should
not.
After the schema is created via j_db_schema_create, the application can query an

existing JDBSchema definition at any time. To query JDBSchema information first a new
schema handle needs to be created by supplying the namespace and name to the function
j_db_schema_new. Afterwards, j_db_schema_get retrieved the desired information.
The queried JDBSchema information can later be used to check if the backend uses a
compatible definition. In addition to checking the structure, the requested JDBSchema
information may include additional automatically generated variables, including their
type. The most important automatically generated variable is the _id, which can be used
as a SQL foreign key in various related JDBSchema definitions. To enable more flexible
backend implementations, each backend implementation can convert each variable type
to another compatible type. Because of this behavior, it may be useful to query the
structural information immediately after the JDBSchema is created.

3.3.2 JDBSelector

Depending on the purpose, the same JDBSelector can be used to update, query, and
delete some JDBEntry objects. The JDBSelector only works for data already stored in
the backend.

1 JDBSelector* j_db_selector_new (JDBSchema* schema, JDBSelectorMode mode,
GError** error);↪→

2 JDBSelector* j_db_selector_ref (JDBSelector* selector);
3 void j_db_selector_unref (JDBSelector* selector);
4

5 gboolean j_db_selector_add_field (JDBSelector* selector, gchar const*
name, JDBSelectorOperator operator, gconstpointer value, guint64
length, GError** error);

↪→

↪→

6 gboolean j_db_selector_add_selector (JDBSelector* selector, JDBSelector*
sub_selector, GError** error);↪→

Listing 3.3: JULEA DB client-side JDBSelector

Listing 3.3 shows the JDBSelector object type, which is used to restrict a query to
the specified conditions.

26

During the creation, it is required, to specify a JDBSchema, on which the selection is
performed. The JDBSchema is used to verify, that all requested fields exist. Additionally
type checking can be performed. To allow querying multiple fields at once, the mode
parameter allows choosing how all fields are connected with each other. Currently, mode
can be either AND or OR. Listing 3.4 shows an example of how complex combinations of
conditions can be applied to a JDBSelector.

j_db_selector_add_field can be used to define an arbitrary amount of fields together
with their conditions.

1 sel1 = j_db_selector_new(..OR..);
2 sel2 = j_db_selector_new(..AND..);
3 j_db_selector_add_field(sel1, ..cond1..);
4 j_db_selector_add_field(sel1, ..cond2..);
5 j_db_selector_add_field(sel2, ..cond1..);
6 j_db_selector_add_field(sel2, ..cond2..);
7 j_db_selector_add_selector(sel1, sel2, ..);
8 // .. WHERE sel1cond1 OR sel1cond2 OR (sel2cond1 AND sel2cond2)

Listing 3.4: JULEA DB client-side complex JDBSelector query

3.3.3 JDBEntry

The client-side JDBEntry object contains the variable values for a subset of the variables
defined in the corresponding JDBSchema.

1 JDBEntry* j_db_entry_new (JDBSchema* schema, GError** error);
2 JDBEntry* j_db_entry_ref (JDBEntry* entry);
3 void j_db_entry_unref (JDBEntry* entry);
4

5 gboolean j_db_entry_set_field (JDBEntry* entry, gchar const* name,
gconstpointer value, guint64 length, GError** error);↪→

6

7 gboolean j_db_entry_insert (JDBEntry* entry, JBatch* batch, GError**
error);↪→

8 gboolean j_db_entry_update (JDBEntry* entry, JDBSelector* selector,
JBatch* batch, GError** error);↪→

9 gboolean j_db_entry_delete (JDBEntry* entry, JDBSelector* selector,
JBatch* batch, GError** error);↪→

10

11 gboolean j_db_entry_get_id (JDBEntry* entry, gpointer* value, guint64*
length, GError** error);↪→

Listing 3.5: JULEA DB client-side JDBEntry

27

Listing 3.5 shows the interface for the JDBEntry object. During the creation, the
j_db_entry_new requires the JDBSchema reference. This reference is required, to be
able to automatically infer the types of the values, which are set afterwards using
j_db_entry_set_field.

j_db_entry_set_field can be used to define the values for a subset of the fields
defined within the schema definition. Depending on the use-case, the remaining fields are
automatically filled. If the use-case is j_db_entry_insert, then the remaining values
are set to NULL. When an existing entry should be updated using j_db_entry_update,
then the remaining fields are not touched. In the last use-case, where an entry should be
deleted, the fields do not matter anyway.

The function j_db_entry_get_id may only be called directly after a successful insert
operation. In this case, the function retrieves a unique identifier, which can be used to
find exactly this entry later in the backend. Entries have no methods for querying their
values. Their only purpose is to add structured data to the backend.

3.3.4 JDBIterator

The last component of the client-side API is the JDBIterator. This component allows
the iteration over multiple JDBEntry objects. In order to reduce the number of network
requests and obtain consistent data, all selected JDBEntry objects are simultaneously
placed in a buffer within the JULEA DB client to allow for fast iteration thereafter. Due
to the bulk transfer of data between the backend and the client, the client and backend
JDBIterator definitions are completely independent of each other.

1 JDBIterator* j_db_iterator_new (JDBSchema* schema, JDBSelector*
selector, GError** error);↪→

2 JDBIterator* j_db_iterator_ref (JDBIterator* iterator);
3 void j_db_iterator_unref (JDBIterator* iterator);
4

5 gboolean j_db_iterator_next (JDBIterator* iterator, GError** error);
6

7 gboolean j_db_iterator_get_field (JDBIterator* iterator, gchar const*
name, JDBType* type, gpointer* value, guint64* length, GError**
error);

↪→

↪→

Listing 3.6: JULEA DB client-side JDBIterator

Besides the memory management functions, only two functions are defined.
j_db_iterator_next can be used to loop over the retrieved entries. If there are no

more elements then a no-more-elements-error is thrown. If the completion of the loop
is indicated as an error, then the function implementation may also return additional
errors.

28

To retrieve the values of the fields for a current entry, the function j_db_iterator_-
get_field is used. Besides the binary data, this function returns the field type too. The
application may use this type of information to verify, that the requested and retrieved
data types match.

3.4 HDF5 VOL Plugin on top of JULEA DB client
The HDF5 VOL Plugin interface can override HDF5 functions directly related to storage
IO. The HDF5 VOL Plugin interface allows for alternative encoding as well as file
structures optimized for different file systems. In addition, this interface enables server
admins to change the storage format globally without the need to change an application.
There are already implementations [Olgasnezh, 2017] [Perevalova, 2017] that store all
HDF5 metadata in a SQLite database. JULEA already offers an implementation of the
HDF5 VOL Plugin. The current implementation of the HDF5 VOL Plugin is based on
the JULEA KV and JULEA OBJ clients. The newly proposed implementation of the
HDF5 VOL Plugin uses the JULEA DB client instead of the JULEA KV client. The
analysis of the stored HDF5 files is thereby to be improved because now complex SQL
queries can be performed across multiple files. Since some of the existing JULEA KV
backends are also based on SQL databases, the performance difference should be minimal.

Since HDF5 already specifies all public functions, the design of the HDF5 VOL Plugin
can define a fixed SQL schema. The JULEA DB schema definition is the main difference
to the existing implementation of JULEA KV, as this new interface allows much more
detailed metadata queries. The complete ER-Diagram of the SQL schema is shown in
Figure 3.2. To allow a simplified representation of the SQL table structure, each SQL
table is additionally defined in its own table.

3.4.1 HDF5-File
Each HDF5 file has exactly one entry in the HDF5_file schema. This HDF5_file entry
is the entry point for all data and metadata belonging to the same file. The schema of a
file defines only the file name as seen in Table 3.1.

column name type references comment
_id Integer auto-generated by the database
name String the name of the file

Table 3.1: HDF5_file defined on behalf of the HDF5 VOL Plugin plugin

To quickly identify which data and metadata belong to an HDF5_file, every other SQL
schema has a direct reference to that HDF5_file. This relation is needed to efficiently
truncate a file. HDF5 itself does not define functions for deleting an HDF5_attribute
nor functions for deleting the entire file. Native HDF5 also does not require a file deletion
operation because the file is accurately represented in a POSIX file system. To empty

29

the entire file, the HDF5 VOL Plugin can be used to open the file in truncate mode. To
remove only a single HDF5_attribute, the entire file must be repackaged, skipping the
HDF5_attribute to be removed. HDF5 does not define such a copy function on its own.
Instead, an external application must be used to perform this operation.

After the HDF5_file entry has been created, any other HDF5 object can be added to
this file. Each object added to a file has an entry in the corresponding SQL schema.

3.4.2 HDF5-Link
In addition, each object needs at least one entry in the HDF5_link schema. The HDF5_-
link schema is used to define any cyclic dependencies between any HDF5 objects. The
table definition can be seen in Table 3.2. Cyclic dependencies are allowed between any
kind of object except files. Files are currently not allowed to belong to another file.
To detect which object types are referenced, extra columns indicate the types of the
referenced objects.

column name type references comment

_id Integer auto-generated by
the database

file Integer file→_id

parent_type Integer indicating the target table
of the parent attribute

child_type Integer indicating the target table
of the child attribute

parent Integer {group, dataset, attr}→_id
child Integer {group, dataset, attr, file}→_id

Table 3.2: HDF5_link defined on behalf of the HDF5 VOL Plugin plugin

3.4.3 HDF5-Datatype
The HDF5_datatype_header entry defines the type of a single value. HDF5 allows very
detailed and complex definitions of data types. Currently, only basic variable types are
allowed. Later the HDF5 VOL Plugin implementation might be extended to enable the
more complex data types features. Even if only very basic variables are considered, HDF5
allows a wide variety of options. Table 3.3 shows the definition of the basic datatype
within JULEA DB.

30

column name type references comment
_id Integer auto-generated by the database
type_cache BLOB caching the HDF5 binary type
type_class Integer the type of the variable
type_size Integer the amount of bytes per variable
type_sign Integer only for integer types
type_· · · Integer other type properties as defined by HDF5

Table 3.3: HDF5_datatype defined on behalf of the HDF5 VOL Plugin plugin

3.4.4 HDF5-Space
The HDF5_space_header entry, along with the associated HDF5_space entries, defines
how many values are contained in the related HDF5_attribute or HDF5_dataset. The
HDF5_space entries may define unlimited dimensions that allow any amount of data
to be written to the file. Because a space consists of a variable amount of dimensions,
multiple tables are required. At first, Table 3.5 defines, how many dimensions exist.

column name type references comment
_id Integer auto-generated by the database
dim_index Integer the index of the dimension
dim_size Integer the allowed range within the dimension
dim Integer space_header→_id

Table 3.4: HDF5_space defined on behalf of the HDF5 VOL Plugin plugin

Afterwards, Table 3.4 defines the ranges of each each dimension.

column name type references comment
_id Integer auto-generated by the database
dim_cache BLOB caching the HDF5 binary space
dim_count Integer how many dimensions exist
dim_total_count Integer multiplicative sum of all dimensions ranges

Table 3.5: HDF5_space_header defined on behalf of the HDF5 VOL Plugin plugin

31

3.4.5 HDF5-Dataset and HDF5-Attribute
Currently, datasets and attributes are handled the same way within the JULEA DB
HDF5 VOL Plugin. Therefore only the structure of the dataset is shown in Table 3.6.
The data itself is not stored in the JULEA DB backend. Instead, the _id value of the
corresponding HDF5_attribute or HDF5_dataset is used as the key in the JULEA OBJ
store. Later the values of the attributes are going to be extracted and stored within the
Database directly. The dataset data is expected to be large in size, and therefore will
remain in the JULEA OBJ.
Both attributes and datasets, have an additional entry within the HDF5_datatype

schema and the HDF5_space schema.

column name type references comment
_id Integer JULEA OBJ→key auto-generated by the database
file Integer file→_id
dataspace Integer dataspace_header→_id
datatype Integer datatype_header→_id

Table 3.6: HDF5_dataset defined on behalf of the HDF5 VOL Plugin plugin

Currently, each HDF5_dataset and HDF5_attribute creates its own file in the JULEA OBJ
store. As long as there are only a few thousand HDF5_dataset, this works, but ev-
ery average HDF5 file defines multiple HDF5_datasets and HDF5_attributes. If the
JULEA OBJ store is filled with a large number of keys, then all access times to the
JULEA OBJ backend may increase. This behaviour was observed while using the POSIX
object store backend, without explicitly using directories within the key names.
Within this thesis there is no aspiration to fully support all functions of the HDF5

VOL Plugin, but only a proof-of-concept benchmark comparison should be possible. The
HDF5 JULEA library can be used to evaluate the performance and cost differences when
storing metadata globally in the file system.

32

HDF5_link

HDF5_file

name

HDF5_group

HDF5_attrHDF5_dataset

HDF5_datatype_header

type_cache

type_class

type_size

type_sign

type_· · ·

HDF5_space_header

dim_cache

dim_count

dim_total
_count

HDF5_space

dim_index

dim_size

1-m

parent 0-1

m
child

0-1

m

parent
0-1

mchild

0-1

m

parent

0-1

m child

0-1

m

child0-1

m
file 1

m

file 1
m

file

1

m

file

1

m

data
type

1

m

data
type

1

m data
space

1

m

data
space

1

m

Figure 3.2: HDF5 VOL Plugin ER-Diagram

33

3.4.6 HDF5 VOL Plugin example

1 hid_t julea_vol_id;
2 hid_t fapl;
3 hid_t file;
4

5 // initialize vol-plugin
6

7 julea_vol_id = H5VLregister_connector_by_name("julea", H5P_DEFAULT);
8 H5VLinitialize(julea_vol_id, H5P_DEFAULT);
9

10 // create / open file
11

12 fapl = H5Pcreate(H5P_FILE_ACCESS);
13 H5Pset_vol(fapl, julea_vol_id, NULL);
14 file = H5Fcreate("julea.h5", H5F_ACC_TRUNC, H5P_DEFAULT, fapl);
15

16 // do sth with file
17

18 // close file
19

20 H5Fclose(file);
21 H5Pclose(fapl);
22

23 // finalize vol-plugin
24

25 H5VLterminate(julea_vol_id);
26 H5VLunregister_connector(julea_vol_id);

Listing 3.7: HDF5 VOL Plugin example code

Listing 3.7 shows an example of how to use the JULEA HDF5 VOL Plugin. To update
existing applications to use the HDF5 VOL Plugin, the HDF5 VOL Plugin must first
be loaded at program startup (see lines 7-8). After that, the functions H5Fcreate and
H5Fopen are each invoked with a file access properties list (fapl) which activates the
HDF5 VOL Plugin interface as shown in line 14. Afterwards, the file can be used as in
any HDF5 application (line 16). Since these modifications are small, it is possible to
path existing applications to use a Plugin.

34

4 Implementation
This chapter shows some implementation details. The most important parts of the written
code are already merged into the master branch https://github.com/wr-hamburg/
julea. Everything else, especially the benchmarks, are accessible at https://github.
com/Qualenritter/julea.

4.1 Backend Operation
JULEA allows backends to be loaded either on the client or the server-side. Every
function which might be called on server-side, therefore, needs to be able to transmit
its parameters to the corresponding server. Before this thesis, every function needs to
explicitly pack all parameters into a network packet, and parse the parameters from the
binary stream on its own. During this work, a new wrapper mechanism is introduced.
Now every function, which might be called on the server-side, defines a constant struct,
which describes the parameters. Listing 4.1 shows the struct definition.

At first the struct JBackendOperationParam defines the type and the value of a single
function parameter. On the server-side, the binary data input stream remains valid until
the end of the function call. Therefore the temporary static storage can be used. A
BSON can be statically initialized using a static buffer, without any additional memory
allocations. The same applies to the GError data type. For every other variable type,
and on the client-side, the output data needs to be written into the provided buffers for
each variable. In this case the variables ptr and ptr_const are holding the data. The
variable len always holds the length of the data behind ptr. This length is required, to
move the data over the network.
Additionally backend_func defines the function, which should be called, with the

extracted and parsed parameters. Every other variable within this struct defines the
amount, type and value of the input and output parameters. To be able to handle errors
on the client-side, the last output parameter is required to be of type GError. Currently,
the amount of parameters has a fixed upper limit of 20. This limit is required, to gain
an absolute maximum struct size, to be able to call memcpy on this struct. This memcpy
includes all required parameters to call a function. Of course one needs to be careful
because function pointers must not be copied and used within other program instances.
Together these data stored in these structs can be used within a single wrapper

function, which is able to extract typed parameters from a binary stream. This reduces
the duplicated code and allows easier testing. The testing is simplified, because now,
there is a single location, where a mockup can be used instead of networking code.

35

https://github.com/wr-hamburg/julea
https://github.com/wr-hamburg/julea
https://github.com/Qualenritter/julea
https://github.com/Qualenritter/julea

1 struct JBackendOperationParam
2 {
3 JBackendOperationParamType type;
4 union
5 { // Only for temporary static storage
6 struct
7 {
8 gboolean bson_initialized;
9 bson_t bson;

10 };
11 struct
12 {
13 const gchar* error_quark_string;
14 GError error;
15 GError* error_ptr;
16 };
17 };
18 union
19 {
20 gconstpointer ptr_const;
21 gpointer ptr;
22 };
23 gint len;
24 };
25 struct JBackendOperation
26 {
27 gboolean (*backend_func)(struct JBackend*, gpointer, struct

JBackendOperation*);↪→

28 guint in_param_count;
29 guint out_param_count;
30 JBackendOperationParam in_param[20];
31 JBackendOperationParam out_param[20];
32 };

Listing 4.1: JULEA JBackendOperation interface to simplify transfer of data over the
network

36

4.2 SQL wrapper
Within the JULEA DB backend implementation, it is expected that there will be many
different SQL powered backends. Every database client API provides different function
prototypes. Therefore a generic SQL wrapper is used. This allows switching the real
used SQL backend easily. The downside of a generic wrapper around SQL is the added
overhead.

Most of the functions, required by the backend type interface are implemented within
the generic SQL backend. This shared code base allows simplified testing. Especially the
generation of SQL code from the input BSON structure is implemented here. To reuse
SQL compiled code, prepared statements are heavily used. Unfortunately, the SQL string
needs to be repeatedly generated. If the SQL string is found within a hash table then
the corresponding prepared statement is selected and used. Otherwise, the SQL string is
used to compile a new prepared statement. To allow fully multi-threaded backends, each
thread has its own SQL connection, with its own set of prepared statements.
The provided set of SQL wrapper functions is shown in Listing 4.2.

1 gpointer j_sql_open(void);
2 gboolean j_sql_close(gpointer db);
3

4 gboolean j_sql_prepare(gpointer db, const char* sql, gpointer* stmt,
GArray* types_in, GArray* types_out, GError** error);↪→

5 gboolean j_sql_finalize(gpointer db, gpointer stmt, GError** error);
6

7 gboolean j_sql_bind_null(gpointer db, gpointer stmt, guint idx, GError**
error);↪→

8 gboolean j_sql_bind_value(gpointer db, gpointer stmt, guint idx, JDBType
type, JDBTypeValue* value, GError** error);↪→

9 gboolean j_sql_column(gpointer db, gpointer stmt, guint idx, JDBType
type, JDBTypeValue* value, GError** error);↪→

10

11 gboolean j_sql_step(gpointer db, gpointer stmt, gboolean* found,
GError** error);↪→

12 gboolean j_sql_reset(gpointer db, gpointer stmt, GError** error);
13

14 gboolean j_sql_start_transaction(gpointer db, GError** error);
15 gboolean j_sql_commit_transaction(gpointer db, GError** error);
16 gboolean j_sql_abort_transaction(gpointer db, GError** error);

Listing 4.2: JULEA backend SQL interface

The function j_sql_open opens a new connection to a database backend. To prevent
any conflicting access, each thread must call this method on its own. The returned

37

pointer is used as an opaque handle to the database connection. Before a SQL enabled
thread is terminating itself, j_sql_close must be called on the corresponding backend
connection.

j_sql_prepare and j_sql_finalize are called to create and finalize a prepared
statement. Different database clients provide very different prepared statement func-
tionality. Some databases like MySQL enforce a lot of preparation and cleanup, while
other databases like SQLite handle the memory management internally. To be able to
support a wide variety of database interfaces, the prepare function requires all column
types together with the SQL string directly at initialization time.

The passing of parameters is different between different databases as well. To provide
a common interface, the memory management has to be included within the wrapper
functions. Another trap is the indexing of parameters in different database interfaces.
Some start the numbering of parameters at one, and some at zero. The wrapper
implementation needs to make sure, that the indexing works the same way for any
database. To receive a value from the query, the value type needs to be specified as well.
The main reason for the requirement to provide the variable type here too is to allow
error checking for consistent variable types.

The first call to j_sql_step executes the query, following calls iterate over the result
set rows. Some databases use the same function for execution and iteration of SQL
queries, while other databases separate this functionality into different functions. The
wrapper function must internally verify, that the function performs consistently across
multiple database types. If an iteration over the result set is finished, the j_sql_reset
function needs to be called afterwards, to reset the prepared statement, such that it can
be reused.

For the transaction management, additional functions are provided. Even if most SQL
databases allow transaction management through the SQL string, this is not true for
every database.
SQLite was chosen as the first database backend for the newly created JULEA DB

backend type because this database was already used in another JULEA backend type.
Because SQLite uses SQL as the input language, the backend implementation must issue
SQL statements. To simplify the implementation of additional SQL-based backends, the
SQL database-specific code is separate from the generic SQL wrapper implementation.

SQLite itself allows multiple parallel threads, but if multiple writes occur concurrently,
SQLite returns only one error code indicating that the requested SQL query should be
rerun later. The retry must then be performed either by the JULEA DB backend or by
the application. The expected use-case of the JULEA DB client is that MPI applications
with very many processes write to the same backend at the same time. Due to existing
SQLite-busy errors within a multi-threaded application on a single SQLite table, the
SQLite code is now protected by a global lock. This avoids large retry-loops within
the implementation at the expense of performance, since all queries to the JULEA DB
SQLite backend are serialized.
The SQL language itself is standardized. However, in a file system that is expected

to contain several petabytes of application-specific data, the severe limitations of the
database system used may become relevant. Each database system has different restric-

38

tions on the number of columns that can be used in a schema definition or the number of
columns that can be specified in a SQL-where clause. Normally these restrictions should
not be a problem, but the relevance of these restrictions depends on the implementation
in an unknown collection of applications that use the JULEA library.
In a file system containing petabytes of data, only a relatively small fraction of the

total data is metadata [Weil et al., 2004]. Currently, JULEA only issues errors if the
SQL backend cannot execute the requested queries. Later, JULEA should tell the
application which limitations exist for the scientist to debug more easily the application.
In JULEA, a global metadata manager is planned, but it does not yet exist. Later, this
metadata manager identifies which backend implementations can meet the application
requirements and automatically selects appropriate backends. As a result, the application
no longer needs to be informed about restrictions later. This automated decision could
be based on a combination of the hard limitations of backend implementations and speed
measurements for different use-cases. The metadata manager would need an additional
interface to the backend implementation to determine the limits and expected metrics of
various functions to accomplish its task.

The current JULEA DB backend implementation does not have a full static SQL
schema definition. The only known table contains the association between JULEA DB
schema names and the variables contained therein. All other tables are created at runtime
directly on behalf of applications from the JULEA DB.

4.3 Usage example
The JULEA DB client-side interface allows many different complex usage scenarios.
Therefore here only a few selected use-cases can be shown. Most function prototypes in
the JULEA DB client interface have a GError pointer as the last function argument. To
reduce the sample code included in this thesis, the error handling is omitted here. For
more advanced examples you could read the JULEA unit tests. There the error handling
is used excessively.

Every example requires an instance of JBatch. This instance is used to communicate
with the backend. As everywhere else in JULEA, the batch structure can be used to
issue multiple functions at the same time.
Every function defined in the JULEA DB client interface is prefixed with j_db_*.

Additionally, every struct is prefixed with JDB*. These prefixes allow a fast overview,
where which function is defined.

39

4.3.1 JDBSchema

Listing 4.3 is showing, how a small example schema can be defined. To show multiple
use-cases, this figure shows how to create a new schema, as well as how to open an
existing schema. Opening an existing JDBSchema is much easier than creating a new one.

1 void schema_create_open(gboolean create)
2 {
3 g_autoptr(JDBSchema) schema = NULL;
4 g_autoptr(JBatch) batch =

j_batch_new_for_template(J_SEMANTICS_TEMPLATE_DEFAULT);↪→

5

6 schema = j_db_schema_new("test", "variables", NULL);
7

8 if(create)
9 {

10 gchar const* idx_file[] = {"file", NULL};
11

12 j_db_schema_add_field(schema, "file", J_DB_TYPE_STRING,
NULL);↪→

13 j_db_schema_add_field(schema, "min", J_DB_TYPE_FLOAT64,
NULL);↪→

14 j_db_schema_add_field(schema, "max", J_DB_TYPE_FLOAT64,
NULL);↪→

15

16 j_db_schema_add_index(schema, idx_file, NULL);
17

18 j_db_schema_create(schema, batch, NULL);
19 }
20 else // open
21 {
22 j_db_schema_get(schema, batch, NULL);
23 }
24 j_batch_execute(batch);
25 // use the schema
26 }

Listing 4.3: JULEA DB client interface example showing the creation and loading of a
JDBSchema

At first, the function j_db_schema_new is used, to allocate a new JDBSchema object
with a given namespace and name. This step is required for both, creation and loading
of a schema.

40

If the schema is going to be newly created then the next step is to define the field
structure. In this example the fields file, min and max are added. The names and the
types of the fields can be chosen by the application. It is recommended, that prefix
underscores should not be used by applications, because this prefix is used by the backend
to auto-generate some fields. Later some additional operations might be auto-generated
too using the underscore-prefix.
After the definition of all fields, optional indices might be defined. In this example,

only a single index on the file field is added. It is important, that the index array
is NULL-terminated. The definition of the index function allows indices over multiple
columns as well as multiple independent indices. These indices are created within the
SQL backend.

After the structure definition is finished, the schema is finally published to the backend.
Here the functions j_db_schema_create and j_batch_execute are used together.
If the JDBSchema is already defined then the structure only needs to be loaded. A

single call to the get functions issues the request to load the structure. After the batch
is executed, the schema holds the structure definition, as it is stored in the backend.
If applications are executed multiple times, it might be unknown, if the requested

schema already exists or not. In this case, it is recommended, that the application first
tries to load the schema. If the schema is not existing, an error is returned. In case of an
error, the schema needs to be created. Afterwards, to gain a consistent full view to the
schema, the application should load the schema again. This has multiple advantages.
First, the application can verify, that the schema creation was successful. Second, the
application can now see the auto-generated fields. Especially the _id column can be a
very useful identifier for many applications.

41

4.3.2 JDBEntry

The main use-case of JULEA DB is to add new data to a backend. For this use-case,
the client-side JDBEntry is implemented. Listing 4.4 shows the insertion of an entry. For
simplicity reasons, the same schema definition as in Listing 4.3 is reused.

1 void entry_insert(JDBSchema *schema)
2 {
3 g_autoptr(JDBEntry) entry = NULL;
4 g_autoptr(JBatch) batch =

j_batch_new_for_template(J_SEMANTICS_TEMPLATE_DEFAULT);↪→

5

6 gchar const* file = "demo.bp";
7 gdouble min = 1.0;
8 gdouble max = 42.0;
9

10 entry = j_db_entry_new(schema, NULL);
11 j_db_entry_set_field(entry, "file", file, strlen(file), NULL);
12 j_db_entry_set_field(entry, "min", &min, sizeof(min), NULL);
13 j_db_entry_set_field(entry, "max", &max, sizeof(max), NULL);
14 j_db_entry_insert(entry, batch, NULL);
15 j_batch_execute(batch);
16 }

Listing 4.4: JULEA DB client interface example showing the creation and insertion of a
JDBEntry

At first, in line 10 the new JDBEntry to be inserted is allocated. During the entry
allocation, the schema is supplied. This allows the client-side implementation, to obtain
the variable types information. These variable types are required when the client sets
the values for the different fields.
After the entry is allocated, all desired fields are initialized with the given values.

Every field, which is not explicitly initialized, will be set to NULL within the backend.
Finally, the entry is inserted into the batch operation. After all desired entries are

added to the batch, the batch is executed, and all data is transmitted to the database.

42

4.4 Adding new backend implementations
The main focus of JULEA is, to allow fast prototyping of exotic storage interfaces.

All backend type interfaces are defined in the file include/core/jbackend.h.
The first step towards a new backend implementation is to choose a matching backend

type. Currently, three types of backends exist. Each backend type provides a different
set of functions to the client-side API. This directly results in different requirements on
the backend side.

Depending on the targeted backend, it might make sense, to allow the backend to be
loaded either on the server or client-side. Allowing the backend to be loaded on both
sides may allow easier testing.
Finally, all required functions in the JBackend struct need to be implemented.
To add a new backend implementation to an existing JULEA installation, only the

backend library needs to be added to the existing installation. No modification of existing
libraries is required. This ensures the high stability of applications, which use older
versions of other backend implementations.

4.5 JULEA debugging
JULEA uses the GLib testing framework to verify that the library is working properly.

During developing the JULEA DB backend type, it turned out that traditional unit
tests are not enough to find all sorts of bugs. Some errors occur due to race conditions,
others only after complex sequences of library calls. Because of this problem, the
JULEA DB backend and client code work with various debugging strategies.

4.5.1 AFL
To find and eliminate further errors in the code, the JULEA DB code is also tested
with the framework American Fuzzy Lop (AFL) [lcamtuf, 2019]. The difference between
AFL and traditional unit tests is that traditional unit tests reset the library to the
initial state after each test case. On the other hand AFL tests reuse the library state of
previous test runs. Code tested by AFL maintains its internal state and allows for many
different test case combinations without the developer having to explicitly write down
all test sequences. The core of AFL is a pseudo-random generator that generates binary
streams. These binary streams are passed to the library under test. The library under
test analyzes these binary streams and performs the functions defined by the binary
data. As a result, the library calls several functions, each with different parameters. The
library behaves as if there were an application that constantly writes random data to the
library. After a few hours, millions of different test cases are executed. Each of the test
cases consists of a series of random function calls. Together, a large part of the library is
executed in various combinations. The code and branch coverage of the library under
test easily reach high levels such as 95%. This greatly reduces the likelihood of large
library errors.

43

4.5.2 Mockup
Another way to test JULEA is to use mockup functions to facilitate the testing of complex
or slow code. For some test cases in the JULEA DB backend, the network socket code
was replaced by a mockup. In this way, the test framework can test the construction
and parsing of network messages within a single process without sending a true network
packet. If the network code is simulated in a single process, it is much easier to test
multiple instances of the library simultaneously.

4.5.3 Static code analysis
The clang tool suite contains the static code analyzer scan-build. This analyzer adds
an extra step to the compilation process. During the analysis phase, the tool looks
for potential memory access errors. Unfortunately, the g_auto_free and g_auto_ptr
annotations from the GLib cause many false-positive warnings about memory leaks. The
static code analysis alone cannot find complex errors in parallel applications, as only a
few statistical checks are performed on large functions.

4.5.4 Error handling
Different types of errors require different types of error handling. The programming
errors within JULEA should be fixed within JULEA and not be shown to any application.
Recoverable errors caused by improper use of the API should instead be reported to the
application for the application to respond to these errors.
GLib defines its own collection of error functions for both error classes. For the

in-library errors, use g_return_if_fail and g_return_val_if_fail. These functions
log a warning that their assertion is violated. These functions then either abort the
current function with the specified abort values, depending on the environment variables
or terminate the entire program with an error. In the debug version, both variants are
acceptable, but in the release version of JULEA, it would be inconvenient if a server
process is suddenly stopped because a single application misuses the API.

For recoverable runtime errors caused by applications the functions g_set_error and
g_set_error_literal should be used. These functions generate an error code along
with an error message and send both to the application. Thereafter, based on the error
code, the application may decide to either ignore or handle the error. The advantage is
that the entire system will run stable even if a JULEA client receives error messages.

4.5.5 Other
To ensure the correct behavior of the benchmarks, the code is extended to a debug mode
in which each return value is explicitly tested to ensure that it matches the expected
result. In the final measurements, these tests are skipped because they do not resemble
the behavior of an application in practice.

44

5 Evaluation
In this chapter the properties of the JULEA DB implementation are evaluated. In
addition, the properties of the HDF5 VOL Plugin based on the JULEA DB library are
considered. Various benchmarks are performed to compare different aspects of the new
implementation.

All benchmarks run on a consumer desktop PC. The used CPU model is i7-8700K at
a clock rate of 4.4 GHz. The RAM has 32 GB of DDR4 memory at 2.4 GT / s. The
RAM is large enough to keep all benchmark applications completely in memory. The
HDD on which some benchmarks are run is a TOSHIBA DT01ACA300, which rotates
at 7200 rpm.

5.1 Synthetic HDF5 benchmarks

1
10
100

1,000
10,000

100,000
1,000,000
10,000,000

dataset-create

dataset-open
dataset-close

attr-create
attr-open

attr-close

O
pe

ra
tio

n
/
Se
co
nd

HDF5 synthetic meta data benchmarks

mysql-hdd
mysql-mem
native-hdd
native-mem
sqlite-hdd
sqlite-mem

Figure 5.1: HDF5 synthetic metadata benchmarks

Figure 5.1 shows the speed differences between native HDF5 and the implementation
of the HDF5 VOL Plugin in JULEA using multiple backends. The native HDF5 is
much faster because it can use the file system cache. For this reason, the native HDF5
implementation has the same speed regardless of the storage medium used. In contrast,
the SQL databases are very pessimistic, ensuring that all their data is synchronized with

45

persistent storage before a confirmation signal is returned to the application. This allows
transaction semantics, but requires more time by design. In addition, JULEA assumes
a server environment in which the persistent storage is accessible only through other
dedicated storage nodes. JULEA must send all data to be stored in SQL at least once
over a virtual network. If the SQL database needs to be stored on an HDD then the
read and write speed is very low. The speed differences between the currently existing
JULEA backends are minimal when only a single process accesses the backend.

100

1,000

10,000

100,000

dataset-write

dataset-read
attr-write

attr-read

M
B/

s

HDF5 synthetic data benchmarks

mysql-hdd
mysql-mem
native-hdd
native-mem
sqlite-hdd
sqlite-mem

Figure 5.2: HDF5 synthetic data benchmarks

Figure 5.2 shows the speed at which data is written via the HDF5 VOL Plugin. The
JULEA OBJ backends are not implemented in this thesis, but have similar speed issues.
Native HDF5 can use the file system cache to write large amounts of data. JULEA DB
instead assumes a distributed storage. Currently JULEA is kept simple, therefore there
are no caching layers within JULEA. Internally, JULEA must repack the data and send
it at least once over a virtual network connection before the data is stored on the HDD.
That takes time.

5.2 Enzo benchmark - a real application using HDF5
Enzo [comunity, 2019] [Bryan et al., 2014] is a simulation program that can be applied
to a variety of very different physical problem domains. Most examples provided by
Enzo were carried out on a trial basis with JULEA and it turned out that most of the
examples have very similar IO patterns. The reason for this is, that there are just a few
different simulation classes within Enzo, but a huge amount of examples, which use these
with different configuration parameters.

The following benchmark uses the Enzo sample parameter file CollapseTestNonCos-
mological. This test problem initializes a sphere with constant density in the middle of

46

the simulation area. The sphere is in a pressure equilibrium with its surroundings. The
simulation dynamically collapses the sphere until it reaches its peak density. The radiant
cooling is turned off so that the sphere bounces and later reaches a state of equilibrium.

Since JULEA focuses on the IO characteristics, the example has been changed to store
the data at each time step. After saving the data, Enzo is restarted from the previously
generated savepoint. This significantly changes the relative required time of the different
functions within Enzo. In a normal production environment, IO is performed only every
few hours. This extreme of saving data that often should demonstrate the efficiency
differences between the storage interfaces.

30
40
50
60
70
80
90
100
110
120

HDF5 on HDD

HDF5 on ZRam

MySQL on ZRam

SQLite on ZRam

Se
co
nd

s

Enzo benchmarks

1 Process
6 Processes

Figure 5.3: Enzo benchmarks

Figure 5.3 is showing the time required to save and restart Enzo 40 times while
calculating the values described above. The HDF5 VOL Plugin implementations, which
use an HDD as the storage medium, are so slow that the benchmarks are aborted due to
a one hour timeout. One hour is significantly more time, than the required time by all
other variants.

When JULEA is operated on ZRam, the required wall time increases by 40% to 70%
compared to native HDF5. It is not easy to say how much time is needed exactly for
IO, as there are side effects. An important factor in an MPI application is that all
processes are waiting for each other. Even though the IO is only slightly slower, the
entire application takes much longer.

It can be seen that the native HDF5 library on an HDD reaches speeds similar to those
on a ZRam partition. Because the JULEA DB SQLite implementation uses a global lock
to access the database, the time it takes increases as the number of processes increases.
The JULEA DB MySQL implementation can instead use multi-process access to the
database. This allows faster access to the metadata since multiple processes can access
JULEA DB at the same time.

47

5.3 Synthetic JULEA DB client benchmarks
In this section, several properties of the JULEA DB implementations are evaluated.
Multiple aspects are compared using different parameters or configurations.
All benchmarks insert entries into already defined JDBSchema. The JDBEntry itself

are allocated initialized during the time measurement.
The amount of entries is specified by the x-axis, the resulting performance on the

y-axis. All operations are performed as batch operations with a maximum size of 10000.
If more than this amount of entries are added, multiple batches are performed after
another. It might not be common, that an application adds thousands of metadata
values at the same time, but on the other hand, an application should not add every
metadata value as a different transaction.
The following benchmarks do not include explicit measurements for the selection of

entries, because the performance changes are similar to the delete and update queries.
Every measurement is repeated until at least 60 seconds are used within JULEA. Some

plots terminate in the middle of the figures, due to a timeout of 120 seconds. Because of
the number of measurement points, and the resulting fluent plots, it is expected, that
the measurements are precise enough.
Each benchmark highlights a different aspect of the performance. If an aspect is not

explicitly compared in the figures, then the parameter is set to a default value.
The used default parameters are:

• entries use 50 fields

• there are indices on the queried field

• the storage medium is a ZRam partition

• 6 processes are used

5.3.1 Null-Backend
At first the theoretical maximum performance is measured with a null-backend imple-
mentation. This backend should be only used to evaluate the performance overhead of
JULEA backends. All functions of the JULEA DB interface are implemented. Within
this backend, only a single JDBSchema and a single JDBEntry are stored as an exact copy
in memory as they are received. The number of inserted and deleted entries is memorized
too, every other input parameter is ignored. If the entries are requested, then the last
inserted entry is repeatedly returned as often as there should be entries in the backend.
The reason for storing a single object of each type is, that the client side library behaves
differently if the amount of received data changes. Otherwise there is no error-checking
performed in the null-backend implementation.
During the benchmarks and the usual application usage, a JDBSchema is defined

once, and than reused within every process. To perform multi-process benchmarks, this
null-backend uses locks, to share the same schema definition across all processes. The

48

existence of a correct schema is required by the client side JULEA DB library, to perform
any other operation on behalf of the user.

To be able to compare this measurements with all other benchmarks, the null-backend
is loaded as a server-side component into JULEA.

5 50 500
insert 217,647 84,069 1,722
update 235,083 80,039 1,723
delete 236,089 239,498 215,660
select one by one 204,072 89,269 1,747
select all 202,075 28,126 376

Table 5.1: Theoretical maximum performance of each operation. All values are displayed
in operations per second. The columns show the impact of different field
counts defined by the JDBSchema. The rows show the different functions which
send data over the network.

Table 5.1 shows the measured maximum speed of the interface. Because this null-
backend does not actually store the data, insert, update and selection of single entries
reach the same speed.

The different amount of fields in the JDBSchema has a huge impact on the performance.
Even if the backend is replaced with a null backend, the client side library is still fully
functional. Therefore the client side library needs to query the field types from the
JDBSchema. Afterwards the fields of the BSON need to be initialized. If an BSON has
500 fields, there are many memory allocations and movements during the construction
of the BSON. The more fields are added, the more memory needs to be allocated and
moved.

The deletion of elements is the fastest, because this is the only operation, where only
a simple JDBSelector needs to be sent over a network connection.
The selection performs differently depending of the amount of entries transferred at

once. If only single entries are requested one by one, then the backend can just return
a copy of the existing JDBEntry which is already stored in-memory as BSON. If all
entries are requested at once, then the same speed penalty takes effect as earlier in the
field count. Each entry is added one by one to a huge BSON, which in turn needs to
be reallocated and moved around during construction. Finally when this huge BSON is
constructed, then it is send at once over the network connection to the client.

49

5.3.2 Impact of the used database
Figure 5.4 compares the influence of different process counts to the overall performance
of JULEA DB.

8,000
10,000
12,000
14,000
16,000
18,000
20,000
22,000

10 100 1,000 10,000
100,000

1,000,000

O
pe

ra
tio

n
/
Se
co
nd

#Entry

Database 1

insert-MySQL
update-MySQL
delete-MySQL
insert-SQLite

update-SQLite
delete-SQLite

(a) JULEA synthetic database benchmarks using 1 process

10,000
20,000
30,000
40,000
50,000
60,000

10 100 1,000 10,000
100,000

1,000,000

O
pe

ra
tio

n
/
Se
co
nd

#Entry

Database 6

insert-MySQL
update-MySQL
delete-MySQL
insert-SQLite

update-SQLite
delete-SQLite

(b) JULEA synthetic database benchmarks using 6 processes

Figure 5.4: Comparison of the existing JULEA DB backend databases using 1 or 6
processes which perform the same operations

First Figure 5.4a shows the performance development if just a single process writes to
JULEA DB. The amount of already stored data seems to have just a little impact on
the performance. However, this figure shows, that the SQLite backend is faster than the

50

MySQL backend implementation.
In the Second part Figure 5.4b shows the same benchmark, using 6 processes at

the same time. In contrast to the first figure, now the MySQL backend is faster than
the SQLite backend. The reason for this speed difference is, that the SQLite backend
implementation requires a global lock around all database operations. The lock is required
because all SQLite connections directly operate on the same file. Without the explicit
lock, the SQLite API would throw errors.

5.3.3 Impact of the number of fields
Figure 5.5 compares the influence of different amounts of fields within the JDBSchema
definition. The same benchmark is executed with 5, 50 and 500 integer fields. Obviously
the performance is much higher, if less data needs to be inserted. The interesting part of
this figure is the magnitude of the performance difference. Both implemented backends
show, that JDBSchemas with 500 fields are very bad for the performance. It is expected,
that the most common usage of JULEA DB uses less than 50 fields within a single
JDBSchema. Most operations in both backends reach their peak performance, if around
100 entries are inserted in the database. If more than 100 entries are present in the
database the performance remains the same. The exception to this observation is the
insertion of elements in the MySQL backend. Here the performance increases with
larger amounts of data. The reason is, that the index needs to be rebuild only once per
transaction. If a huge amount of entries is inserted at once, the rebuild-insertion ratio is
improved.

51

10,000
20,000
30,000
40,000
50,000
60,000
70,000
80,000
90,000
100,000

10 100 1,000 10,000
100,000

1,000,000

O
pe

ra
tio

n
/
Se
co
nd

#Entry

MySQL fields

insert-5
update-5
delete-5
insert-50

update-50
delete-50
insert-500

update-500
delete-500

(a) JULEA synthetic database benchmarks using MySQL

0
10,000
20,000
30,000
40,000
50,000

10 100 1,000 10,000
100,000

1,000,000

O
pe

ra
tio

n
/
Se
co
nd

#Entry

SQLite fields

insert-5
update-5
delete-5
insert-50

update-50
delete-50
insert-500

update-500
delete-500

(b) JULEA synthetic database benchmarks using SQLite

Figure 5.5: Comparison of the existing JULEA DB backend databases using a different
number of fields within the schema definition

5.3.4 Impact of Indices
Figure 5.6 compares the influence of indices within the JDBSchema definition. As expected,
the performance for updating values can gain huge speed improvements. To update
values, the values need to be selected first. Because of the existing indices, the selection
can be performed much faster, so that the operation completes faster too. The same
applies to the deletion of entries.

52

10,000
20,000
30,000
40,000
50,000

10 100 1,000 10,000
100,000

1,000,000

O
pe

ra
tio

n
/
Se
co
nd

#Entry

MySQL index

insert
update
delete

insert-index
update-index
delete-index

(a) JULEA synthetic database benchmarks using MySQL

5,000
10,000
15,000
20,000
25,000

10 100 1,000 10,000
100,000

1,000,000

O
pe

ra
tio

n
/
Se
co
nd

#Entry

SQLite index

insert
update
delete

insert-index
update-index
delete-index

(b) JULEA synthetic database benchmarks using SQLite

Figure 5.6: Comparison of the existing JULEA DB backend databases influence of indexes
on the queried field

The performance penalty for data insertion is much smaller than expected. However
both backends show, that the existence of indices costs time.
JULEA DB is intended to store huge amounts of data. Both backends show, that if

entries need to be updated, indices should definitely be used, if the amount of data is
large. The same applies for the querying of data, which is not shown in this figures.

53

5.3.5 Impact of the storage medium
Databases are stored on some kind of physical storage. To fulfill the ACID properties,
databases are very pessimistic regarding the physical storage. Every operation needs to
be flushed multiple times to the physical layer before any confirmation response is sent
to the client. Figure 5.7 compares the performance influence of the storage medium.

100

1,000

10,000

10 100 1,000 10,000
100,000

1,000,000

O
pe

ra
tio

n
/
Se
co
nd

#Entry

MySQL medium

insert-ZRam
update-ZRam
delete-ZRam
insert-HDD

update-HDD
delete-HDD

(a) JULEA synthetic database benchmarks using MySQL

10

100

1,000

10,000

10 100 1,000 10,000
100,000

1,000,000

O
pe

ra
tio

n
/
Se
co
nd

#Entry

SQLite medium

insert-ZRam
update-ZRam
delete-ZRam
insert-HDD

update-HDD
delete-HDD

(b) JULEA synthetic database benchmarks using SQLite

Figure 5.7: Comparison of the existing JULEA DB backend databases influence of the
storage medium below the database

The performance of SSD storage is not included in the benchmarks, but small samples

54

indicate, that the performance is somewhere between HDD and ZRam. As expected,
HDD storage is much slower than in-memory databases.

The interesting part is in Figure 5.7a. The more entries are stored within the database,
the better the performance. The reason is, that databases are only forced to flush their
operations at the end of a transaction. Because of the huge transaction size, all performed
measurements on the HDD are performed in a single transaction. This improves the
ratio between inserted entries and the amount of flushing the storage. As a result the
speed increases.

5.3.6 Impact of the Process count
Finally, the influence of different amounts of processes are directly compared in Figure 5.8.

The MySQL backend implementation reaches a nearly perfect speedup if huge amounts
of data are to be written. The slowest measurement reaches an average speedup of 3.
This is not perfect, but in summary, the increased number of processed increases the
performance too.

55

10,000

20,000

30,000

40,000

50,000

10 100 1,000 10,000
100,000

1,000,000

O
pe

ra
tio

n
/
Se
co
nd

#Entry

MySQL processes

insert-1
update-1
delete-1
insert-6

update-6
delete-6

(a) JULEA synthetic database benchmarks using MySQL

8,000
10,000
12,000
14,000
16,000
18,000
20,000
22,000
24,000
26,000

10 100 1,000 10,000
100,000

1,000,000

O
pe

ra
tio

n
/
Se
co
nd

#Entry

SQLite processes

insert-1
update-1
delete-1
insert-6

update-6
delete-6

(b) JULEA synthetic database benchmarks using SQLite

Figure 5.8: Comparison of the existing JULEA DB backend databases influence of the
process count accessing the database in parallel

On the other hand, the SQLite backend shows very poor results. As mentioned earlier,
a global lock is used. The speed increases with more processes, but the effect is very
small. The improvement comes from the fact, that the messages need to be sent to a
central JULEA DB server, which performs the SQLite operations. The messages can be
sent in parallel to the server, and are processed only in serial afterwards.

56

5.4 New functionality
In addition to shortening access times for application data, JULEA DB offers new
features for subsequent post-processing tools. Previously, a post-processing tool had to
parse each input file get an overview of the minimum and maximum values throughout
the simulation. With the JULEA DB backend, this information can be retrieved easily
and quickly from the JULEA DB database. Because JULEA DB metadata is stored
in a database, complex data queries can be performed much more efficiently. During
regular applications, the JULEA DB interface should be used to query data. During
post-processing it might be more efficiently to access the database server directly through
its SQL interface. To prevent the damaging of metadata, this direct SQL access must be
restricted to read only operations.

1
10
100

1,000
10,000
100,000

1,000,000

HDF5
MySQL

SQLite

#
Fi
le
s
/
Se
co
nd

calculate max value - benchmark

HDD read
ZRAM read
HDD write
ZRam write

Figure 5.9: HDF5 benchmarks querying data across multiple files

Figure 5.9 shows the results of a synthetic benchmark application that writes 1,000 files,
each containing 1,000,000 random integer values. After writing the data, the application
calculates the maximum value across all files. Using ZRam as the backend device reduces
the write speed of the application by a factor of 3. During the read phase, JULEA DB
based access provides 1,000-10,000x faster access to the metadata. If the application or
post-processing tool read the metadata multiple times, the speed can be significantly
improved. In particular, if it is not clear which data is of interest in which files, it can be
very useful to query several different properties and later decide which query returned
the most helpful content.
To use JULEA in an existing HDF5 application, only a few very small changes are

required because HDF5 has its own HDF5 VOL Plugin interface. With this interface,
it is possible to configure HDF5 to use JULEA as the backend. An example how this
plugin can be used can be seen in Listing 3.7.

57

In addition to an accelerated post-processing tool, JULEA DB can also identify
metadata that is significantly different from the metadata in the other files created by
the application. This can be useful for detecting abnormal changes in the data. This can
lead to new insights into huge amounts of data. Without JULEA DB, this would require
an application that indexes all the desired data and then executes the query. Without
any index, the query would be even slower.

58

6 Related Work
This chapter shows some related work and highlights the main differences to this thesis.
Furthermore, the advantages and disadvantages of some approaches are shown.
There are currently several strategies to improve the handling of huge amounts of

data.

6.1 Compression
Compression can be used to improve the data throughput between the volume on which
the data is stored and the application that requests the data. The cause for the higher
data throughput is that the computational speed of processors increases faster than the
storage or network access speed. When the data is compressed on the client-side, less
data needs to be transmitted over the network, which effectively increases the amount
of data sent to the storage. If the compression rate is high, more data can be cached
on the client node, which also increases the observed speed. To further increase the
compression rate, some files may allow the file system to compress the content with lossy
compression algorithms. Even if only the data is compressed, the metadata of the file
system is also affected. Now, the used compression algorithm together with its properties
has to be saved alongside the data. Due to the compression, the data size is changed.
The metadata must store the mapping between the actual data size and offset, as well as
the stored size and offset.
Compression can be applied to different layers. One approach is to apply the com-

pression directly within the POSIX file system Lustre [Fuchs, 2016]. The problem with
compression in the file system is that, from a file system perspective, the file is just a
stream of bytes. Due to missing file metadata, the compression in the file system must
not be lossy.
To access the metadata during compression, another approach is to add an extra

compression layer within libraries such as HDF5 before writing the data to the file system
[Di and Cappello, 2016]. The metadata allows temporal and local dependencies between
data to be exploited to further increase the compression rate. The disadvantage here is
that the compression code must be re-implemented for each data format to be stored.

59

6.2 EMPRESS
EMPRESS [Lawson and Lofstead, 2018] offers a structured metadata library similar
to HDF5. This library forces the application to add rich metadata tags to its data.
At the same time, only flat metadata hierarchies up to a maximum depth of 3 are
allowed. There are no automatically generated tags. This means that the application
must align its code with this library. If the application appends more metadata, other
metadata-based applications can also improve. If useful tags are appended to the
data, the post-processing tool can request data based on the tags. This allows the
post-processing tool to request much less data. As less data is requested and analyzed,
the entire analysis phase is faster. The metadata from multiple files are stored together
in an RDBMS database backend. This paper states to offer a faster metadata interface
than HDF5, especially when large volumes of processes are used. This library supports
importing and exporting metadata to continue to use the data in another cluster, as long
as the other cluster also uses EMPRESS. To add tags, the application must follow a
strict program structure as required by EMPRESS. This means that the application is
assumed to perform a time-based simulation that has many time steps that store very
similar structured data. This may be common, but this will not apply to any application.
EMPRESS adds some functions that need to be called between different time steps.
This forces parallel applications to synchronize between each time step to perform these
EMPRESS functions.

6.3 Dynamic metadata Management for Petabyte-scale
File Systems

In their paper [Weil et al., 2004], the authors analyze the importance and potential
improvements of metadata servers in huge distributed file systems. In petabyte server
clusters, metadata servers are critical to the overall performance of the server. The main
reason for their importance is that every reading and writing of data must be recorded
somewhere, which data belongs to which file and which storage server still has storage
space available. In this paper, the focus is only on file system metadata and currently
contains no file metadata. For this reason, the POSIX standard can still be used. To
achieve their improvements, the metadata is split across multiple metadata servers. Each
server and even the clients store so much metadata in their caches that fast access to all
stored file data is possible. To reduce the load on the dedicated metadata servers, clients
can calculate the object store IDs themselves from a small seed.

In this work, there are several layers of caches inserted between the metadata servers
and the application. In summary, the improvement of this approach is entirely dependent
on the existence of a lot of free RAM that can be used for caching. Because there is no
file metadata in the file system metadata, queries across multiple files are not speed up
because any files that may be part of the query must be opened on the client computer.
Even if the files could be located more quickly on the object storage servers, much of the
file content still needs to be sent to the application.

60

6.4 Semantic file system
The 1991 paper [Gifford et al., 1991] proposes semantic file systems for the first time. In
such a file system, there are special virtual folders that are interpreted as queries. The
virtual folder paths allow such a file system to be easily integrated into existing POSIX
file systems. These virtual path queries allow attribute-based access. Because the virtual
paths are just an extension, this type of file system is fully compatible with traditional
file systems. The paper states that this storage abstraction is more effective than the
standard file systems because it is now possible to query part of the file content without
the application knowing the exact file paths.
The attributes, which can be used in queries, are extracted by file type-specific

transducers. These transducers parse each file and create an index that can later be used
by the queries. In order to keep the index up-to-date, the file system must update the
index each time the file is created and updated.

Overloading of file systems is used on UNIX systems in multiple locations. For example,
each connected device appears as a special device file. Unix systems define sockets, which
can be used by processes to find each other. In some operating systems, processes are
also displayed as special files.
During their evaluation, the authors state that the indexing of all files is IO-bound.

With the hardware development over the past 28 years, the exact bottleneck may now
be in a different location, but it will still be slow to do multiple writes to the index after
any file change, just to keep the indexes up-to-date.

6.5 Parallel data analysis directly on scientific file
formats

The authors [Blanas et al., 2014] attempt to solve the problem of finding specific data
parts inside the output of scientific applications. For this purpose, it is suggested to
create indexes per file alongside the existing data files.

The authors state that much of the times used by the post-processing tool is used to
convert the data from the application readable format to a format that can be read by
the post-processing tool tools.

Since HDF5 and NetCDF are often used as a high-level interface for writing data, the
HDF5 VOL Plugin is extended to create these index files. The authors say that HDF5
itself is finely tuned to achieve maximum peak performance on parallel file systems in
large supercomputers.

The real benefit of simulations is achieved during post-processing tool, where interesting
application results are highlighted. Currently, many scientists are converting their data
into an auxiliary format that can be used by a query language. This conversion takes
a lot of time. If indexes could be used then complex queries could be performed
directly on the data without loading the entire data file. The authors’ benchmarks
show that their interface to HDF5 files using indexes is faster than the currently used
PostgreSQL (PostgreSQL) databases alongside the HDF5 files.

61

6.6 Making Sense of File Systems Through Provenance
and Rich metadata

In their paper [Parker-Wood et al., 2012], the authors state that the 40-year-old file-
finding tools can no longer perform efficient querying on current cluster file systems. As
they were created, these old tools did not have to handle as many files as they do today.
It also criticizes the basic file system concept, where the application has to define its
own filenames. If the application specifies enough metadata, then the file system may
automatically generate file names based on the file content. This would relocate the file
name invention task from the application to the file system designer. In addition, the
automatically generated file names are shorter on average, because scientists often use
very long file names.

Using automatically generated file structures, the computer can find data faster
based on its attributes. However, if the application wants to open a particular file, the
application must query the file using metadata, forcing the application to find out which
file in the provided result set is what it is looking for. When scientists name their files
manually, they will embed metadata in the filenames, which might become inconsistent
as the application evolves.

The article states that scientists often search their data files with grep, find, awk and
du to find their files and directories.

These brute-force search tools are based on inefficient linear-time functions in the file
system and the access tools.

Modern scientists do not have the knowledge of database administrators. Often they
are not even computer scientists. As a result these users are likely to issue vague requests,
which return too many results. At first this is not a resource friendly usage of file system.
On the other hand these users do not find, what they search for. Current server clusters
have a similar amount of files to the Internet about 40 years ago. One could say the
situation is comparable to the internet. In order to find something on the Internet, the
various homepages are linked. File systems, on the other hand, are still limited to POSIX
semantics.
To solve the problems with current file systems, the authors suggest adding access

counters to the inode structure of the file system. This allows probabilistic searches based
on how often a file is used. Finally, these counters can be used to find frequently used
files faster. One can also use these counters to determine which files are commonly used
together. This advantage is also a security issue because attackers or other applications
may be able to see the information about which files are often used together.
On the Internet, the page-rank algorithm is generally regarded as the gold standard

for general purpose ranking of web pages. On the Internet, the search algorithms can
provide links to web pages as well as small sections of text to find the information you
are looking for faster. In order to perform efficient searches in huge file systems, a
comparable approach is required. The problem with binary data is that the application
has no advantage when displaying random samples of binary data. The application must
specify explicit metadata sections that will be displayed during a search.

62

The work is continued in the paper [Parker-Wood et al., 2014]. While writing their
second paper, the authors had a working prototype. The authors call their prototype file
system TrueNames.

6.7 Structured metadata for the JULEA storage
framework

There already exists a previous attempt to store structured metadata within JULEA
[Michael Straßberger, 2019].

Within his work, the author had defined an interface for storing and accessing metadata
in the JULEA file system. The basic definition of different client side components is
reused in this thesis. The client side components defined by the author are:

• The JSMD_Type defines an atomar data type like Integer or String.

• JSMD_Scheme defines a complex data type, which consists of multiple JSMD_Type.

• The JSMD object is used to write to and intended to read data from the backend.

• JSMD_Search should define the selection, which data should be retrieved, and
provides additional functions to loop over the retrieved data. This component was
not included in his reference implementation.

In comparison to this thesis, the public client side functions itself are different. One
reason for the difference is, that the public function definitions of this author did not match
the other JULEA functions schemes. Additionally, because the author had not finished
his reference implementation, the defined interface required some functional changes too.
Especially, the querying of data was not included in his reference implementation. Since
the querying of data is one of the most important components of any file system, this
changed different aspects of the public and internal interfaces.

63

7 Summary, Conclusion and Future
Work

7.1 Summary
The ever-increasing computing power of supercomputers allows simulating more and
more detailed models. This generates a large amount of data. In order to efficiently store
these data collections as well as to quickly evaluate and locate relevant information, new
tools are needed to accomplish these tasks.
In the past, there have been several approaches to improve the handling of huge

amounts of files and file data. These approaches focus on finding data faster but neglect
the space-efficient storage of data. Most of these alternative strategies are based on a kind
of index stored either within the file system or next to the structured file. Alternatively,
caches are used in different places. Both strategies require a lot of the available RAM,
which the application can not use to calculate new data.

To solve these tasks, a novel file system interface was defined and a proof of concept
was implemented. This new interface makes it possible to store the file metadata together
with the file system metadata in a database backend. This provides the advantage
of enabling complex content-based searches across multiple files. Since it is no longer
necessary to open all files individually to analyze the metadata across multiple files,
much time is saved. Furthermore, this allows the file system to store the data more
efficiently. There are several reasons for this: On the one hand, the file system can quickly
recognize right from the first writing what data is probably needed more frequently than
others and store it in a preferred location. On the other hand, selective file parts can be
lossily compressed if the metadata shows that higher precision is not necessary. As a
disadvantage, it turned out that the writing of new data into the file system requires
more time, sometimes considerably longer, depending on the application. This is because
a database backend is used, which often synchronizes the data with the disk to ensure
the ACID properties.

7.2 Conclusion
For this master thesis, a reference implementation of the newly defined memory interface
was created. During the evaluation, it has been found that the writing of the data
sometimes becomes much slower, depending on the application. This can be attributed
to a more complicated storage in databases. Measurement results showed that finding
files based on metadata can be extremely accelerated. The goal of storing data according

64

to their importance on storage media of different speeds has not yet been processed.
Since the metadata already exists, this task can easily be performed without further
changes to user applications later.

7.3 Future work
There are many structured file formats. Each of these structured file formats has its
advantages and disadvantages. Some of the file formats are based on each other or take
advantage of useful features from other structured formats such as HDF5 and NetCDF.
To further simplify the evaluation of scientific data, more of these file formats would

need to be merged to unify the interfaces. In addition to merging file formats, the
metadata should be more tightly integrated with file system metadata to simplify the
processing of large file volumes. As a side effect, this also allows to automatically decide,
if data could be compressed with lossy algorithms to further improve the compression
ratio.

The strict and fixed POSIX semantics are outdated and should be mitigated or replaced
by newer interface definitions.
There have been attempts in the past to define interfaes for file systems which can

perform searches based on metadata. The biggest problem with this type of file system,
however, is extracting metadata from any file format.
Many utilities that are currently based on the POSIX standard could be integrated

directly into the file systems, because these functions are very common. With more meta
data, these functions can be executed much faster.

65

Bibliography
[Arie Shoshani, 2019] Arie Shoshani, D. R. (2019). Scientific Data Management: Chal-
lenges, Technology, and Deployment. Chapman and Hall/CRC.

[Blanas et al., 2014] Blanas, S., Wu, K., Byna, S., Dong, B., and Shoshani, A. (2014).
Parallel data analysis directly on scientific file formats. In Proceedings of the 2014
ACM SIGMOD international conference on Management of data - SIGMOD '14. ACM
Press.

[Bryan et al., 2014] Bryan, G. L., Norman, M. L., O’Shea, B. W., Abel, T., Wise, J. H.,
Turk, M. J., Reynolds, D. R., Collins, D. C., Wang, P., Skillman, S. W., Smith, B.,
Harkness, R. P., Bordner, J., Kim, J.-h., Kuhlen, M., Xu, H., Goldbaum, N., Hummels,
C., Kritsuk, A. G., Tasker, E., Skory, S., Simpson, C. M., Hahn, O., Oishi, J. S., So,
G. C., Zhao, F., Cen, R., Li, Y., and The Enzo Collaboration (2014). ENZO: An
Adaptive Mesh Refinement Code for Astrophysics. apjs, 211:19.

[bson, 2019] bson (2019). BSON. http://mongoc.org/libbson/current/bson_t.html.
[Online; accessed August 16, 2019].

[Chaarawi, 2015] Chaarawi, M. (2015). Parallel I/O with HDF5.
https://www.hdfgroup.org/2015/08/parallel-io-with-hdf5/. [Online; accessed
October 27, 2019].

[comunity, 2019] comunity (2019). The Enzo Project. https://enzo-project.org. [Online;
accessed September 18, 2019].

[Daley and Neumann, 1965] Daley, R. C. and Neumann, P. G. (1965). A general-purpose
file system for secondary storage. In Proceedings of the November 30–December 1,
1965, fall joint computer conference, part I on XX - AFIPS '65 (Fall, part I). ACM
Press.

[Developers., 2019] Developers., T. H. (2019). H5MD. https://nongnu.org/h5md/.
[Online; accessed August 16, 2019].

[Di and Cappello, 2016] Di, S. and Cappello, F. (2016). Fast Error-Bounded Lossy HPC
Data Compression with SZ. In IPDPS, pages 730–739. IEEE Computer Society.

[Erich Strohmaier, 2019a] Erich Strohmaier, Jack Dongarra, H. S. M. M. (2019a). Perfor-
mance development. https://www.top500.org/statistics/perfdevel/. [Online; accessed
August 16, 2019].

66

[Erich Strohmaier, 2019b] Erich Strohmaier, Jack Dongarra, H. S. M. M. (2019b).
TOP500 List - June 2019. https://www.top500.org/list/2019/06/. [Online; accessed
August 16, 2019].

[Fuchs, 2016] Fuchs, A. (2016). Client-Side Data Transformation in Lustre. Master’s
thesis, Universität Hamburg.

[Gifford et al., 1991] Gifford, D. K., Jouvelot, P., Sheldon, M. A., and O'Toole, J. W.
(1991). Semantic file systems. ACM SIGOPS Operating Systems Review, 25(5):16–25.

[Group, 2006] Group, T. H. (2006). The File as Written to Media.
https://support.hdfgroup.org/HDF5/doc/H5.intro.html. [Online; accessed Au-
gust 16, 2019].

[Group, 2019] Group, T. H. (2019). HDF5. https://portal.hdfgroup.org. [Online; accessed
August 16, 2019].

[IBM, 1965] IBM (1965). Technical press release.
https://www.ibm.com/ibm/history/exhibits/1130/1130_ttechnical.html. [On-
line; accessed September 11, 2019].

[Kuhn, 2017] Kuhn, M. (2017). JULEA: A Flexible Storage Framework for HPC. In
Lecture Notes in Computer Science, pages 712–723. Springer International Publishing.

[Laboratory, 2019] Laboratory, O. R. N. (2019). ADIOS2. https://adios2.readthedocs.io.
[Online; accessed August 16, 2019].

[Lawson and Lofstead, 2018] Lawson, M. and Lofstead, J. (2018). Using a Robust
Metadata Management System to Accelerate Scientific Discovery at Extreme Scales.
In 2018 IEEE/ACM 3rd International Workshop on Parallel Data Storage & Data
Intensive Scalable Computing Systems (PDSW-DISCS). IEEE.

[lcamtuf, 2019] lcamtuf (2019). AFL. http://lcamtuf.coredump.cx/afl/. [Online; accessed
August 16, 2019].

[Michael Straßberger, 2019] Michael Straßberger (2019). Structured metadata for the
JULEA storage framework. Online https://wr.informatik.uni-hamburg.de/
_media/research:theses:michael_strassberger_structured_metadata_for_
the_julea_storage_framework.pdf.

[MongoDB, 2019] MongoDB, I. (2019). MongoDB. https://www.mongodb.com. [Online;
accessed September 13, 2019].

[Olgasnezh, 2017] Olgasnezh (2017). hdf5-vol-sqlite-plugin.
https://github.com/Olgasnezh/hdf5-vol-sqlite-plugin. [Online; accessed September 13,
2019].

67

https://wr.informatik.uni-hamburg.de/_media/research:theses:michael_strassberger_structured_metadata_for_the_julea_storage_framework.pdf
https://wr.informatik.uni-hamburg.de/_media/research:theses:michael_strassberger_structured_metadata_for_the_julea_storage_framework.pdf
https://wr.informatik.uni-hamburg.de/_media/research:theses:michael_strassberger_structured_metadata_for_the_julea_storage_framework.pdf

[Parker-Wood et al., 2014] Parker-Wood, A., Long, D. D. E., Miller, E., Rigaux, P.,
and Isaacson, A. (2014). A file by any other name. In Proceedings of International
Conference on Systems and Storage - SYSTOR 2014. ACM Press.

[Parker-Wood et al., 2012] Parker-Wood, A., Tunkelang, D., Seltzer, M., Miller, E. L.,
and Long, D. D. E. (2012). Making Sense of File Systems Through Provenance and
Rich Metadata. Technical Report UCSC-SSRC-12-01, University of California, Santa
Cruz.

[Perevalova, 2017] Perevalova, O. (2017). Database VOL-plugin for HDF5.
Online https://wr.informatik.uni-hamburg.de/_media/research:theses:
olga_perevalova_database_vol_plugin_for_hdf5.pdf.

[Rowan, 2019] Rowan, R. (2019). Adopting HDF5 for Simulation Data in EDEM
Software. https://www.hdfgroup.org/2019/08/adopting-hdf5-for-simulation-data-in-
edem-software/. [Online; accessed September 11, 2019].

[Weil et al., 2004] Weil, S. A., Pollack, K. T., Brandt, S. A., and Miller, E. L. (2004).
Dynamic Metadata Management for Petabyte-Scale File Systems. In Proceedings of
the 2004 ACM/IEEE Conference on Supercomputing, SC ’04, pages 4–, Washington,
DC, USA. IEEE Computer Society.

68

https://wr.informatik.uni-hamburg.de/_media/research:theses:olga_perevalova_database_vol_plugin_for_hdf5.pdf
https://wr.informatik.uni-hamburg.de/_media/research:theses:olga_perevalova_database_vol_plugin_for_hdf5.pdf

Appendices

69

List of Figures
1.1 Performance development in the TOP500 list 5

2.1 Typical Application Storage Hierarchy 12
2.2 The HDF5 File Structure . 13
2.3 JULEA applications Structure . 18

3.1 JULEA metadata Write . 23
3.2 HDF5 VOL Plugin ER-Diagram . 33

5.1 HDF5 synthetic metadata benchmarks 45
5.2 HDF5 synthetic data benchmarks . 46
5.3 Enzo benchmarks . 47
5.4 Benchmarks of JULEA DB backends . 50

a JULEA synthetic database benchmarks using 1 process 50
b JULEA synthetic database benchmarks using 6 processes 50

5.5 Benchmarks of JULEA DB backends . 52
a JULEA synthetic database benchmarks using MySQL 52
b JULEA synthetic database benchmarks using SQLite 52

5.6 Benchmarks of JULEA DB backends . 53
a JULEA synthetic database benchmarks using MySQL 53
b JULEA synthetic database benchmarks using SQLite 53

5.7 Benchmarks of JULEA DB backends . 54
a JULEA synthetic database benchmarks using MySQL 54
b JULEA synthetic database benchmarks using SQLite 54

5.8 Benchmarks of JULEA DB backends . 56
a JULEA synthetic database benchmarks using MySQL 56
b JULEA synthetic database benchmarks using SQLite 56

5.9 HDF5 benchmarks querying data across multiple files 57

70

List of Listings
2.1 HDF5 usage example . 15

3.1 JULEA backend interface . 21
3.2 JULEA DB client-side JDBSchema . 25
3.3 JULEA DB client-side JDBSelector . 26
3.4 JULEA DB client-side complex JDBSelector query 27
3.5 JULEA DB client-side JDBEntry . 27
3.6 JULEA DB client-side JDBIterator . 28
3.7 HDF5 VOL Plugin example code . 34

4.1 JULEA JBackendOperation interface to simplify transfer of data over
the network . 36

4.2 JULEA backend SQL interface . 37
4.3 JULEA DB client interface example showing the creation and loading of

a JDBSchema . 40
4.4 JULEA DB client interface example showing the creation and insertion of

a JDBEntry . 42

71

List of Tables
3.1 HDF5_file defined on behalf of the HDF5 VOL Plugin plugin 29
3.2 HDF5_link defined on behalf of the HDF5 VOL Plugin plugin 30
3.3 HDF5_datatype defined on behalf of the HDF5 VOL Plugin plugin 31
3.4 HDF5_space defined on behalf of the HDF5 VOL Plugin plugin 31
3.5 HDF5_space_header defined on behalf of the HDF5 VOL Plugin plugin . 31
3.6 HDF5_dataset defined on behalf of the HDF5 VOL Plugin plugin 32

5.1 Theoretical maximum performance of each operation. All values are
displayed in operations per second. The columns show the impact of
different field counts defined by the JDBSchema. The rows show the
different functions which send data over the network. 49

72

List of Abbreviations
ACID Atomicity, Consistency, Isolation und Durability

ADIOS2 Adaptable Input/Output System

AFL American Fuzzy Lop

API Application Programming Interface

AVI Audio Video Interleave

BP4 binary-packed

BSON Binary JSON

CoSEMoS Coupled Storage System for Efficient Management of Self-Describing Data
Formats

CPU Central Processing Unit

DDL Data Definition Language

Fuse Filesystem in Userspace

HDD Hard Disk Drive

HDF5 Hierarchical Data Format

H5MD HDF5 for molecular data

HPC High-Performance Computing

HTML Hypertext Markup Language

IO Input/Output

JPEG Joint Photographic Experts Group

JSON JavaScript Object Notation

JULEA DB JULEA Database

JULEA KV JULEA Key Value Store

73

JULEA OBJ JULEA Object Store

MPEG Moving Picture Experts Group

MPI Message Passing Interface

NetCDF Network Common Data Format

noSQL non relational SQL

NVRAM Non-Volatile Random-Access Memory

PNG Portable Network Graphics

POSIX Portable Operating System Interface

PostgreSQL PostgreSQL

RAM Random-Access Memory

SDDF Self-Describing Data Format

SQL Structured Query Language

SSD Solid-State Drive

URL Uniform Resource Locator

VOL Virtual Object Layer

XML Extensible Markup Language

ZFS Zettabyte File System

74

Eidesstattliche Versicherung
Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit im Studiengang
Master Informatik selbstständig verfasst und keine anderen als die angegebenen Hilfsmittel
– insbesondere keine im Quellenverzeichnis nicht benannten Internet-Quellen – benutzt
habe. Alle Stellen, die wörtlich oder sinngemäß aus Veröffentlichungen entnommen
wurden, sind als solche kenntlich gemacht. Ich versichere weiterhin, dass ich die Arbeit
vorher nicht in einem anderen Prüfungsverfahren eingereicht habe und die eingereichte
schriftliche Fassung der auf dem elektronischen Speichermedium entspricht.

Ort, Datum Unterschrift

Veröffentlichung
Ich bin damit einverstanden, dass meine Arbeit in den Bestand der Bibliothek des
Fachbereichs Informatik eingestellt wird.

Ort, Datum Unterschrift

	Introduction
	Existing work
	Goal
	Thesis outline

	State of the art
	File systems
	Local file systems
	Distributed file systems
	Typical file system library stack

	HDF5
	Usage example

	ADIOS2
	JULEA

	Design
	Naive approach
	JULEA DB backend
	JULEA DB client
	JDBSchema
	JDBSelector
	JDBEntry
	JDBIterator

	HDF5 VOL Plugin on top of JULEA DB client
	HDF5-File
	HDF5-Link
	HDF5-Datatype
	HDF5-Space
	HDF5-Dataset and HDF5-Attribute
	HDF5 VOL Plugin example

	Implementation
	Backend Operation
	SQL wrapper
	Usage example
	JDBSchema
	JDBEntry

	Adding new backend implementations
	JULEA debugging
	AFL
	Mockup
	Static code analysis
	Error handling
	Other

	Evaluation
	Synthetic HDF5 benchmarks
	Enzo benchmark - a real application using HDF5
	Synthetic JULEA DB client benchmarks
	Null-Backend
	Impact of the used database
	Impact of the number of fields
	Impact of Indices
	Impact of the storage medium
	Impact of the Process count

	New functionality

	Related Work
	Compression
	EMPRESS
	Dynamic metadata Management for Petabyte-scale File Systems
	Semantic file system
	Parallel data analysis directly on scientific file formats
	Making Sense of File Systems Through Provenance and Rich metadata
	Structured metadata for the JULEA storage framework

	Summary, Conclusion and Future Work
	Summary
	Conclusion
	Future work

	Bibliography
	Appendices
	List of Figures
	List of Listings
	List of Tables
	List of Abbreviations

