
Automatic Analysis of a
Supercomputer’s Topology and
Performance Characteristics

— Bachelorarbeit —

Arbeitsbereich Wissenschaftliches Rechnen
Fachbereich Informatik

Fakultät für Mathematik, Informatik und Naturwissenschaften
Universität Hamburg

Vorgelegt von: Alexander Bufe
E-Mail-Adresse: 1bufe@informatik.uni-hamburg.de
Matrikelnummer: 6316267
Studiengang: Computing in Science, SP (Bio-)Chemie

Erstgutachter: Dr. rer. nat. Julian Kunkel
Zweitgutachter: Professor Dr.-Ing. Stephan Olbrich

Hamburg, den 18. März 2014

mailto:1bufe@informatik.uni-hamburg.de

Abstract
Although knowing the topology and performance characteristics of a supercomputer is
very important as it allows for optimisations and helps to detect bottleneck, no universal
tool to determine topology and performance characteristic is available yet. Existing tools
are often specialised to analyse either the behaviour of a node or of the network topology.
Furthermore, existing tools are unable to detect switches despite their importance. This
thesis introduces an universal method to determine the topology (including switches)
and an efficient way to measure the performance characteristics of the connections.

The approach of the developed tool is to measure the latencies first and then to compute
the topology by analysing the data. In the next step, the gained knowledge of the
topology is used to parallelise the measurement of the throughput in order to decrease
the required time or to allow for more accurate measurements. A general approach
to calculate latencies of connections that cannot be measured directly based on linear
regression is introduced, too

At last, the developed algorithm and measurement techniques are validated on sev-
eral test cases and a perspective of future work is given.

Contents

1 Introduction and Background 6
1.1 Motivation . 6
1.2 Structure of the Thesis . 7
1.3 Topology . 7
1.4 Performance Characteristics . 8
1.5 Measured Values . 10
1.6 Existings Tools . 11
1.7 Aims of the Work . 11

2 Design and Implementation 13
2.1 Basics of the Model . 13
2.2 Building the Model . 15

2.2.1 Generation of the Basic Model . 15
2.2.2 Shortest Path Length Calculation 18
2.2.3 Switch Detection and Replacing 19
2.2.4 Elimination of virtual Switch-to-Switch Edges 23
2.2.5 Heterogeneous Clusters . 24

2.3 Measuring Throughput . 26
2.3.1 Node-to-Node Edges . 26
2.3.2 Node-to-Switch Edges . 28
2.3.3 Switch-to-Switch Edges . 30
2.3.4 Maximum Throughput of Switches 32

2.4 Correcting Latencies . 32
2.5 Remeasuring Latencies . 35
2.6 Output . 36
2.7 Connection of Models . 36
2.8 Summary . 36

2.8.1 Summary of the Costs . 36
2.8.2 Summary of the Chapter . 37

3 Validation 38
3.1 Test Systems . 38
3.2 Comparison of Measurement Methods . 38

3.2.1 Analysis of the Distribution of the Batches 38
3.2.2 Descriptors of Deviation . 39
3.2.3 Comparison of Different Measurement Approaches 39

3.3 Testing . 41
3.3.1 Westmere Cluster . 41
3.3.2 Magny Node . 42
3.3.3 Single Blizzard Node . 43

4

3.3.4 Four Blizzard Nodes . 46
3.4 Challenges . 46
3.5 Summary of the Chapter . 47

4 Conclusion and Future Work 48
4.1 Conclusion . 48
4.2 Future Work . 49

Bibliography 50

List of Algorithms 51

List of Figures 52

List of Tables 53

A Short Manual of the Tool 54
A.1 all-against-all . 54
A.2 model . 54
A.3 throughput . 54
A.4 regression . 54

5

1. Introduction and Background
First, a short introduction to High Performance Computing is given to motivate this work
(Section 1.1). Then, an overview of the structure of this thesis is given (Section 1.2). This
is followed by an explanation of topology (Section 1.3) and performance characteristics
(Section 1.4) and ways to treat measured values (Section 1.5). At last, existing tools
(Section 1.6) and aims of this thesis (Section 1.7) are presented.

1.1. Motivation
The computing power of a single processor with a single core is often insufficient for many
computational demanding applications in science or engineering. Since the possibilities
to improve the performance of a single core are limited by the current capabilities in
microelectronics, the logical step to increase computing power is to use several CPU
cores simultaneously (multi-core processing), to use several CPUs (multiprocessing) or
to use several computers (nodes) building a cluster after all. The most powerful systems
of a given time period are called high-performance computers or supercomputers and are
listed in the top 500 list1, which is currently led by the Tianhe-2 of the China’s National
University of Defense Technology providing around 3.120.000 cores.

Coordinated execution of an application requires synchronisation and communication
between the distributed cores. Usually an application runs one or multiple processors
on each node. Due to extreme costs it is not feasible to connect each core (or even
node) directly to all others, so that one has to find a sophisticated way to connect them
balancing costs and performance. The arrangement in which the cores or nodes are
connected is called the topology.

In parallel programs multiple CPUs collaborate to compute the intended result. There
are different approaches to share the work among the CPUs, either they perform different
tasks (task/function parallelism2) or they perform the same operation on different data
(data parallelism3).

It is very important to know the topology of a supercomputer because it allows for
optimisations. For example climate simulations are typically divided into several cells
(data parallelism) which are calculated by one computing unit but have to communicate
with some of the other computing units. Since not all CPUs have the same connection,
it is important to distribute the task in such a way on the computing units so that the
time needed for communication is minimised.

1http://www.top500.org
2http://en.wikipedia.org/wiki/Task_parallelism
3http://en.wikipedia.org/wiki/Data_parallelism

6

http://www.top500.org
http://en.wikipedia.org/wiki/Task_parallelism
http://en.wikipedia.org/wiki/Data_parallelism

This thesis introduces a method to determine the topology and an efficient way to
measure the performance characteristics of the connections.

1.2. Structure of the Thesis
This thesis consists of four chapters, each having a short summary at the beginning.

This chapter gives a short motivation and introduces the most important terms. Measure-
ment methods are introduced and a short overview of existing tools and their abilities is
provided. At last the aims of the work are presented.

The second explains the developed algorithm by first giving an overview and the main
idea. Then the algorithm is developed and explained step by step. At last, the developed
output file format is displayed and a way to connect models of different levels is discussed.

In the third, different methods to measure latency are compared, the developed al-
gorithm is evaluated on several systems and a simple model to calculate the probability
of finding the correct topology is developed.

In the fourth and last chapter, the results are summarised and a perspective of possible
future work is given.

A short manual of the developed tool can be found in the appendix.

1.3. Topology
The topology of a network describes how its components like CPUs or nodes are con-
nected to each other. Usually, there are nodes connected with other nodes containing at
least one socket . Every socket can contain several CPUs and each CPU several cores.
There are several connection technologies between the sockets like Intels QuickPath
Interconnect (QPI). The topology can be represented as a graph, where every CPU is
a vertex. Nodes can either be connected directly or indirectly using a switch which
can connect several nodes and other switches. Sometime redundant or alternative, thus
multiple paths between two CPUs could exist. Typical connection technologies between
nodes are infiniband and ethernet. [Inf]

The most efficient topology is a fully connected (or fully meshed) one, where every
node is connected to all other nodes. Since for n nodes a fully meshed network requires
n(n−1)

2 communication links, the cost of this topology does not scale for clusters with
thousands of nodes. Common topologies are hierarchical topologies with switches (e.g
the fat tree topology) or hypercubes. [PD07]

7

1.4. Performance Characteristics
There are two major methods of measuring the time needed to transfer a message between
two processes.

One-Way-Delay (OWD): A message is sent between the two processes. The time when
the message is sent and the time when the message is completely received are measured.
The OWD is the difference between the times. The problem with this approach is that
perfectly synchronised clocks are needed which is very difficult in practice.

Round-Trip-Time (RTT): A message is sent from process A to process B. When it is
completely received, it is sent back and when it is received, the time is measured again.
Since the time is always measured by the same process, no synchronisation is needed.
Under the assumption that the time needed to sent a message one way is the same time
needed to sent the message the other way, we can calculate the OWD by dividing the
RTT by two. In typical HPC networks the assumption can be made and this is a much
simpler way for measuring the OWD.

If OWD(s) was plotted against the size of the message for messages of various sizes, a
graph can be obtained like in Figure 1.1.

Figure 1.1.: OWD as function of the size of the massage

As expected, the needed time is a function of the size. OWD(s) is linear and can be
written as

OWD(s) = s

t
+ l. (1.1)

8

l is usually called latency and t is usually called throughput. One might think, that if
the size becomes zero, OWD(s) will be zero, too, meaning there is no latency, but even
the transfer of the smallest message will take some time due to reasons like limited speed
of electricity. When many small messages are send, latency is very important. Since
it is not possible to send an empty message, latency cannot be measured directly. An
approximation according to (1.1) would be

l = lim
s→0

OWD(s) (1.2)

because of lims→0
s
t

= 0, but there is a lower bound of s as control data is always
transferred, so that the potential of this approximation is limited. An alternative way to
determine latency is to determine throughput first and then reconstruct the latency of a
message with

l = OWD(s)− s

t
. (1.3)

Throughput can be measured as

t = s

OWD(s)− l = 1
OWD(s)

s
− l

s

≈ s

OWD(s) (1.4)

for large s.

A different way to calculate latency and throughput would be to measure OWD(s)
for at least two sizes and calculate l and s directly with (in case of two different sizes)

t = s2 − s1

OWD(s2)−OWD(s1) (1.5)

l = OWD(s1)− s1

t
(1.6)

or to perform a linear regression (in case of more different sizes). [PD07]

Only latency and throughput between processes can be measured with the described
methods. If latency and throughput between e.g. cores have to be measured, the
processes have to be pinned to the cores.

An important characteristic of the topology is the bisection bandwidth. If the network
is divided into two parts which contain approximately the same amount of nodes so
that as few cuts as possible of connections between the parts are necessary, then the
bisection bandwidth is the summed bandwidth of the cut connections. If topology and
performance characteristics are known the bisection bandwidth can directly be computed
from them.

9

1.5. Measured Values
The latency (and also throughput) is - especially for small messages - subject to fluc-
tuations (see Section 3.2.1). To reduce measurement errors, measurements have to be
repeated. The received collection of values can be analysed using descriptive statistics.
A typical way to describe a distribution is the five-number summary containing:

• sample minimum (the lowest measured value)

• lower quartile (the lowest value such that 25% of the measured values are lower or
equal)

• median (the lowest value such that the half of the measured values is less or equal
and the other half of the values is more than or equal to it)

• upper quartile (the lowest value such that 75% of the measured values are lower or
equal)

• sample maximum (the highest measured value).

Another descriptor is the arithmetic mean of n values x1, ..., xn which is defined as

x̄ = 1
n

n∑
i=1

xi. (1.7)

Later in the developed algorithm only a single value is needed. The median should
be preferred instead of the mean, because the median is much more resistant against
outliers. Another possibility would be the minimum. Since the latency is limited by
physical limitations, fluctuation downwards is more improbable than fluctuation upwards.

If the available methods to measure the time are very inaccurate e.g. the accuracy
of the timer is in the range of the latency, it is better to measure the time of batches
containing a certain number of repetitions and divide the determined time by the number
of repetitions (which is equal to calculating the mean) to reduce measurement errors
and use median or minimum for the means of the batches.

Even these descriptors always have a measurement error so that two measured val-
ues will hardly ever be exactly equal. Due to that, it is reasonable to compare measured
values roughly. There are two major possibilities:

First, in an absolute comparison one can consider a measured value a will be less
than b if

(b− a) > ε (1.8)
for an ε > 0.

10

Second, in a relative comparison one can consider a measured value a will be less
than b if (b− a) is positive and relatively to the mean greater than a constant epsilon or
formally if

b− a
a+b

2
= 2(b− a)

a+ b
> ε (1.9)

for an ε > 0.

The advantage of the second method is that the tolerance depends - like the measurement
error - on the level of the values. When high latencies are measured, the measurement
error will probably be higher than if low latencies are measured. Due to that, only one
epsilon is needed for all cases.

The disadvantage is that if the sum of two values a and b is compared to a value
c, and a and c are similar values and b is much smaller then a or c, the sum and c will
always be considered equal, nearly independent of the amount of b. This is a problem
when one tries to measure the distance of nodes to the network interface because the
value of intra node latencies will be much smaller than the value of inter node latencies,
but the precision of intra node latencies is needed.

1.6. Existings Tools
There are several tools for obtaining information of intra-node or inter node topology
and determining performance characteristics:

• One type of tools like Carbo or Likwid4 are able to find information about the
internal structure of nodes by reading hardware information, but cannot build up
a valid model of inter-node topology nor can they characterise the connectivity.

• There are several tools to measure the performance characteristics of a certain
connection like iperf5, nuttcp6 and traceroute7.

• Furthermore there is a group of tools - often with a background of network
administration - which are able to determine the network topology, but which are
typically unable to detect switches.

1.7. Aims of the Work
The main aim of this thesis is to create a valid model of the topology so that the model
can be used to detect bottlenecks and unexpected behaviour of more complex communi-
cation patterns. The topology - including switches - has to be recognised correctly and

4http://www.code.google.com/p/likwid
5http://www.iperf.fr
6http://www.nuttcp.net
7http://www.tracert.org/traceroute

11

http://www.code.google.com/p/likwid
http://www.iperf.fr
http://www.nuttcp.net
http://www.tracert.org/traceroute

the throughput and the latency of the connections have to be measured.

Since CPU time on a supercomputer is very expensive, a functional requirement is
to reduce the time needed on the cluster. There are two major methods to achieve this
goal:

1. The method of measuring has to be optimised in such a way that the time needed
for the measurement is reduced by measuring only needed connections and by using
already gained informations.

2. The measurement and the model creation are separated, so that the model creation
must not be performed on the cluster. Due to that, the time needed for the model
creation is less important than the time needed for the measurement.

12

2. Design and Implementation
In this chapter the algorithm for determining the topology as well as latency and through-
put of the links is developed.

Since latency can approximately be measured faster than throughput using small sizes
of messages like one byte, only latency is used to build up a model of the topology.
First, the basic assumptions are introduced (Section 2.1). Then a basic model is created
and the switches are identified using clique search (Section 2.2). This model is used
to schedule the measurement of throughput: Since a model is available, throughput of
different connections can be measured simultaneously, because it is known which con-
nections will not influence each other (Section 2.3). A way to remeasure the latencies
more accurately in an efficient way using the knowledge of the topology is shown, too
(Section 2.5). The measured throughputs can be used to recalculate the true latencies
according to Equation (1.3). A method to determine the latency of the links of a switch
(which cannot be measured directly) based on a linear regression is introduced (Section 2.4).

Even if only the approach to create the inter-node model is described, the intra-node-model
(or a inter-socket-model) can be created in the same way. The inter-node and intra-node
models are created one after another and eventually connected.

If the nodes consist of multiple sockets which all have the same topology, this infor-
mation can be used to minimise the costs for building the intra-node model by building
an intra- and an inter-socket model and connecting them.

At last, the output format (Section 2.6) and a method to connect models (Section 2.7) is
described.

2.1. Basics of the Model
The model is based on the following assumptions that

1. latency and throughput are symmetric, meaning that the latency or throughput
between two nodes A and B is the same as the latency/throughput between B and
A so that the graph of the topology will be undirected.

2. latencies are additive, meaning that if three nodes A, B and C are connected in
such a way that a is connected to B, B is connected to C and A and C are not
connected, the latency between A and C will be the sum of the latency between A
and B and the latency between B and C.

13

Figure 2.1.: Assumption: Additivity of latency in a path A to B, B to C

3. if three nodes are connected in the same way, the throughput between A and C will
be the minimum of the throughput between A and B and the throughput between
B and C.

Figure 2.2.: Assumption: Throughput in a path A to B, B to C

4. if the latency between two nodes is measured, it will be assumed that the measured
latency is the latency on the shortest path between A and B.

14

Figure 2.3.: Assumption: Latency is measured on the shortest path

2.2. Building the Model
2.2.1. Generation of the Basic Model
E ← ∅ ;
C ← measurePointToPointLatencies();
sortAscending(C);
foreach (a,b) ascending ∈ C do

if latency(a,b) < shortestPathLength(a, b) then
E ← E ∪ (a, b)

end
end

Algorithm 1: Pseudocode: Generation of the basic model
To generate a basic model the following two steps, which are also sketched in Algorithm1,
are performed:

1. First, the latency of all possible node-to-node connections is measured. Let n be
the number of nodes. The first node has n-1 possible connections to other nodes,
the second node has n-2 due to symmetry of latency and so on. In total there will
be n(n−1)

2 connections (see Equation 2.1).

n−1+n−2+ · · ·+1 =
n−1∑
i=1

i =
n∑
i=1

i−n = n(n+ 1)
2 −n = n2 + n

2 − 2n
2 = n(n− 1)

2
(2.1)

All possible connections (the candidates) have to be measured, because for every
possible connection information is needed whether a direct connection exists.

Since it is not known if and which connections influence each other in this state of
the algorithm, the connections cannot be measured simultaneously without the risk

15

of measurement errors. One can try to measure the latencies in parallel (with the
scheme later described in Section 2.3.2). Single measurements have to be repeated
to reduce measurement error. If different pairs are measured in every repetition
simultaneously, there will be a chance that some of the measurements are not
influenced by others. One can take advantage of this fact by using the minimum
of the repeated measurements as the value for model creation. With parallel
execution, there is no guarantee that the model is not corrupted by measurement
errors but the costs for the measurements are reduced to linear time which is a
great advantage especially for large clusters.

2. The initial model only consists of the nodes. The candidates are sorted ascendingly.
A candidate connecting two nodes A and B will be added, if the latency of the
candidate is shorter than the latency of the shortest path between A and B. Since we
assume that latency is measured on the shortest path, the latency of the candidate
can only be lower than or equal to the latency of the shortest path between A and
B. If the latencies are equal, it will be assumed that there is no direct connection
between A and B even if it were possible. Note that this condition can lead to
errors (see Figures 2.4 and 2.5).

Figure 2.4.: Actual Topology Figure 2.5.: Model of Topology

If the shortest path between A and B contains more than three nodes (A and B included),
one could try to perform an additional test whether the direct connection exists by
„blocking“ the shortest path: The throughput between A and B is measured. Then the
throughput is measured again, but while it is measured, data is transferred between the
nodes on the path. If there is a direct connection, the throughput will not change, if not,
the throughput might be reduced.

Example
For example, the latencies in table 2.1 are measured:

16

B C D
A 3 3 3
B 3 6
C 3

Table 2.1.: Example: measured latencies

In the following, the steps of the algorithm are performed on this example data.

1. Initially, the latencies are sorted and the algorithm tries to insert the edge (A,B)
(Since every connections except of (B,D) have the same latency, every edge except
of (B,D) could be chosen). There is no path between A and B in this state of the
algorithm so that the shortest path length between A and B is ∞ and the edge is
inserted. In the same way the edges (A,C) and (A,D) are inserted. The topology
after this step is drawn in Figure 2.22.

Figure 2.6.: Example: Topology after the insertion of three edges

2. The edges (B, C) and (C, D) are inserted, too, because the latency of the shortest
path is 6 in this state of the algorithm and the latency of the edges is 3, which is
less than 6. The topology after this step is drawn in Figure 2.7.

17

Figure 2.7.: Example: all edges inserted

3. At last the algorithm tries to insert the edge (B, D). Since the latency of the
shortest path is 6 which is equal to the latency of the edge, the edge is not inserted.

2.2.2. Shortest Path Length Calculation
Since all node-to-node latencies on the shortest path are known (the measured latencies),
the shortest path length between a and b can be computed using the following lemma.
[CSRL01, Lemma 24.1]

Given a weighted, directed graph G = (V, E) with weight function
w : E→ R, let p = (v1, v2, . . . , vk) be a shortest path from vertex v1 to vertex
vk and, for any i and j such that 1 ≤ i ≤ j ≤ k, let pij = (vi, vi+1, . . . , vj) be
the subpath of p from vertex vi to vertex vj . Then, pij is a shortest path
from vi to vj.

Let pAB = (A, . . . , C,B) be the shortest path between A and B, then pAC and pCB will be
shortest paths and the length of the shortest path will be W (pAB) = W (pAC) +W (pCB).
It is not known which node is C, but it is known that C has to be adjacent to b so that
we compute the shortest path length by determining

min
d∈adj(b)

(W (pad) +W (pdb)). (2.2)

The number of nodes, n, is an upper bound for the number of nodes adjacent to B, so
that the shortest path length can be computed in O(n). Another advantage is that the
additivity of latencies is only an assumption and only one addition is needed when the
length of the shortest path is calculated this way instead of the many additions if an
algorithm like the djikstra algorithm would have been used.

18

2.2.3. Switch Detection and Replacing

repeat
change ← false;
D ← getGroupsOfLatencies(E);
foreach l ∈ D do

cliques ← findCliques(G, l) ; /* where all edges have latency l */
foreach c ∈ cliques do

replaceBySwitch(G, c);
change ← true;

end
end

until change = false ;
Algorithm 2: Pseudocode: Switch detection (allowing only cliques with a size of at
least two)

If the topology contains switches, the nodes they connect will seem to be fully meshed.
The property of a switch is to connect nodes adding the same latency to every connection.
If the cluster is homogeneous, this will be able to be used to detect the switches, because
the latency of all connections of nodes to the switch will be equal, which means that a
switch appears as a fully meshed area where all connections have the same latency. Such
areas can be detected easily using clique search like the Bron-Kerbosch algorithm. [BK73]

For each group of similar latencies is searched, whether a clique exists where all nodes
are connected with latencies belonging to the group. If a clique is found, all edges of
the clique are deleted and a new vertex, the switch, is inserted to which all nodes are
connected with a latency of half of the latency the clique was searched. If a node has
edges to all members of the clique with the same latency, these edges are deleted and a
new edge to the switch with a latency of the old edge minus the latency between the
nodes of the clique and the switch is inserted. Since new cliques can be created by this
procedure, it has to be searched until no new clique is found. A pseudocode of the
algorithm can be found in Algorithm2.

Cliques of size two are only replaced by a switch if both nodes in the clique are connected
to at least one other node and the connection between the first node of the clique and
the other node is equal to the connection between the second node of the clique and the
other node, so that the switch has at least three links.

Example
As an example, assume the latencies in table 2.2 are measured.

19

B C D E F G H I
A 2 2 4 4 4 4 4 4
B 2 4 4 4 4 4 4
C 4 4 4 4 4 4
D 2 2 4 4 4
E 2 4 4 4
F 4 4 4
G 2 2
H 2

Table 2.2.: Example: measured latencies

The algorithm is performed on data:

1. All edges are inserted so that the basic model in Figure 2.8 is received.

Figure 2.8.: Example: the basic model (simplified from the fully meshed)

2. Now cliques where all edge have the latency 2 or 4 are searched. There is no clique
with latency 4, but there are three cliques with latency 2 - {A, B, C}, {D, E, F}
and {G, C, I} - so that switches connecting them are inserted (see Figures 2.9 and
2.10).

20

Figure 2.9.: Example: One clique replaced by switch

Figure 2.10.: Example: Three cliques replaced by switches

3. Now a new clique with the latency 2 is found consisting the switch vertices (see
Figure 2.11).

21

Figure 2.11.: Example: Finished topology

Another condition is that cliques must either consist only of nodes or only of switches.
Mixed cliques must no be allowed, as this can lead to errors. In the example above, let
the measured latency between node of different switches be 3. After the first switch
insertion, a clique containing switches and nodes will be found. Due to that, the edges
of the switch to the third group will be deleted and transferred to the new switch, so
that the three switches will not be fully-meshed, but have a line topology.

An easy way to get the types of latencies is to put them into a set, but if a set which
compares roughly is used, it will depend on the order of insertion how many elements are
inserted. For example three latencies A, B and C where A is equal to B and B is equal
to C, but A and C are not equal. If they are inserted in the order A, B, C, the set will
contain A and C, but if they are inserted in the order B, A, C or B, C, A, the set will
contain only B. Another disadvantage is that an edge can belong to more than one type of
latency at a time so that the result of the algorithm can depend on the order of execution.

A simple way to only find cliques where all edges have the same latency is to copy
the graph and delete all edges not having the latency for which is searched and use a
standard clique search algorithm. One might think that clique search is np-complete and
therefore that multiple clique searches will need a lot of time, but it has to be recognised
that the graph often decomposes into several parts by this procedure so that the effective
size of the graph will be smaller and calculation will be sped up.

The idea of this step is that all node-to-switch edges basically have the same latency and
that a switch adds the same latency to all connections. Due to that this might fail if
the cluster is not homogeneous. The limitations of heterogenous clusters are shown in
Section 2.2.5.

A case where the algorithm will fail is a topology where there are several “direct“

22

connections, for example node-to-node-edge and a connection including a switch, between
two nodes (see Figure 2.12). This problem cannot be recognised by only using latencies.

Figure 2.12.: A topology, the algorithm cannot detect

2.2.4. Elimination of virtual Switch-to-Switch Edges

D ← ∅;
foreach (u,v) ∈ E do

if isSwitch(u) and isSwitch(v) then
if Latency(u,v) = minw∈adj(v)(Latency(u,w) + Latency(w, v)) then

D ← D ∪ (u, v);
end

end
end
E ← E \D;

Algorithm 3: Pseudocode: Elimination of virtual switch-to-switch edges
At last, it has to be checked if the switch-to-switch connections are actual connections
by checking if the switch to switch connection has the same latency as the shortest path
from the switch to the other switch without the connection. The algorithm is sketched
in Algorithm3.

For example, if we have a topology consisting of four switches connected as a cy-
cle (Figure 2.13), the model for the switches will be fully connected (Figure 2.14) because
when the switch-to-switch edges are created, the algorithm does not check if the latency
of the edge is shorter than the latency of the shortest path. This has to be checked now
and the mistakenly added edges have to be deleted.

23

Figure 2.13.: Example: The actual topology

Figure 2.14.: Example: The computed toplogy after applying Algorithm2

If cliques of size two are allowed, this step must be performed after every insertion of a
switch. Otherwise, the diagonal edges connecting switches in 2.14 would be mistaken for
a clique.

2.2.5. Heterogeneous Clusters
Although switch detection using clique search works primary on homogeneous clusters,
there are many cases it works on heterogeneous clusters, too, for example, if a switch is
only connected to other switches or nodes of the same kind.

Another example is a switch connected to at least two nodes of the same kind and
to one different node. The different node will not be part of the clique, but as all nodes

24

of the clique will have the same connection to the other node, the connection will be
transferred to the switch. If there are at least two nodes of one kind and at least two
nodes of another kind, the algorithm will place one switch for every group and the edge
connecting the switches will have the latency zero (Figure 2.15).This can be generalised
to any number of groups of similar nodes leading to a clique of switches, all connected
with latency 0. Due to that, such cliques should be rejoined.

Figure 2.15.: Two groups of nodes interconnected by a single switch

As a last example, let there be four nodes connected with the latencies in table 2.3

Node A2 B C
A1 2 3 4
A2 3 4
B 5

Table 2.3.: Example: Measured latencies

A clique of size two (A1 and A2) is found and replaced by a switch. This leads to the
topology in Figure 2.16.

Figure 2.16.: Example: Two nodes of the same kind and two different nodes connected
by a single switch

25

There is a false edge between B and C which can be recognised as a virtual edge, as
its latency is the sum of the latencies connecting B and C to the switch. Generally,
it should be checked if such edges exist and if they can be deleted assuming that they
actually describe the connection to the switch, too.

2.3. Measuring Throughput
Now the model has been created, it can be used to measure the throughput of the edges
simultaneously. There are three types of edges, node-to-node edges, note-to-switch edges
and switch-to-switch edges, which will be treated individually because of two reasons:
First, it reduces the complexity of the algorithm. Second, if a constant amount of data
is used to measure, the time needed will be more similar for edges of the same type than
for edges of different types which reduces waiting time.

The algorithm uses virtual time cycles are introduced as a unit for analysis: An arbitrary
pairing of nodes can be measured in every time cycle so that the amount of needed time
cycles has to be minimised to get best parallelisation.

2.3.1. Node-to-Node Edges
The best case scenario for this type of edges is the ring or the line topology which can
be measured with O(1) cycles e.g. Figure 2.17. First, the connections (a,b) and (c,d) are
measured and then the connections (b,c) and (d,e).

Figure 2.17.: Line topology which can be measured in O(1)

The worst case scenario is a topology where one node is connected to all other nodes
(Figure 2.18). In this scenario O(n) cycles are needed. Even in case of a fully-meshed
topology O(n) cycles are needed, because this is equal to measuring the throughput
of all possible pairings which can be done in Θ(n) which will be proven in the next section.

26

Figure 2.18.: A topology that can only be measured in O(n)

Generally the number of needed time cycles depends on the maximum node degree so
that edges connecting a node with a high node degree should be measured first. An
algorithm should be able to measure the worst and best case scenario with the theoretical
optimal amount of time cycles as the following algorithm:

First, the graph is copied and all switches and edges connected to switches are re-
moved. There is an attempt to use every node as a starting point for a path which is
build with an deep-first-search like algorithm. If the number of nodes of the path is
odd, the last element is removed and the throughput between the first and the second
element, the third and the fourth element and so on is measured. After measuring, the
connections are deleted from the copy of the graph and the procedure is repeated unless
all connections have been measured, which means that every edge has been deleted so
that maxv∈V ′ degree(v) = 0. A parameter for optimisation is the order in which the
nodes are used as starting points and in which the nodes are tried to be put into the
path. In both cases, the node with the highest node degree should be preferred. The
algorithm is sketched in Algorithm5.

Input: v, path, not
if |{w ∈ adj(v)|w /∈ path}| = 0 then

if length of path is even then append v to not;
else append v to path;

end
else

max← arg maxw∈adj(v)|w/∈(path∪not)degree(v);
append v to path;
recursivePath(max, path, not);

end
Algorithm 4: Pseudocode: recursivePath

27

V’ ← { v ∈ V | isSwitch(v) = false } ;
E’ ← { (u, v) ∈ E | isSwitch(u) = false ∧ isSwitch(v) = false} ;
path← not← ∅;
while maxv∈V ′ degree(v) > 0 do

max← arg maxv∈V ′|v/∈(path∪not)degree(v);
recursivePath(max, path, not);
if |path ∪ not| = |V ′| then

for i← 0 to half length of path do
measureThroughput((path[2i], path[2i+1]));
E ′ \ (path[2i], path[2i+ 1]);

end
path← not← ∅;

end
end

Algorithm 5: Pseudocode: Measuring Throughput of Node-to-Node Edges

2.3.2. Node-to-Switch Edges
As long as each node is only connected to one switch, all node-to-switch connections
of different switches can be measured simultaneously. It has to be checked first if this
condition is fulfilled.

The problem in measuring the throughput of node-to-switch connections is that the
throughput cannot be measured directly. It is only possible to measure the throughput
with another node connected to the switch and the throughput will be the maximum
of both node-to-switch connections. Due to that, one has to find the node with the
maximum throughput so that the throughput of a measured connection is limited by the
other edge.

Figure 2.19.: Example Graph, throughput annotated

28

To find the edge with the maximum throughput in Figure 2.19 one has to measure all
connections in the worst case. If, for example, all connections with the node A are
measured, every result will be 1 so that the only information gained is that node A has
the edge with the worst throughput to the switch (or all edges have the same throughput).
If then the node B is chosen, the only information gained is that B has the edge with
the second worst throughput to the switch and so on.

It would be possible to reduce the amount of needed cycles, if the maximum throughput
of the switch was high enough so that connections can be measured parallel. This can be
checked easily with three measurements: If the throughput of all except two nodes plus
the throughput between the two nodes is equal to the throughput of all nodes measured
simultaneously, the maximum throughput is high enough, otherwise the connections have
to be measured sequentially.

To measure the throughput, we have two alternatives:

1. If we assume that the throughput of an edge is correlated with the latency of the
edge, meaning that edges with a lower latency have a higher throughput, we can
use our knowledge of the latencies to optimize the measurement of the throughput
by sorting the nodes by latency and then measure the throughput between the
first and second node, third and fourth node and so on and after that measure the
throughput between the second and third, fourth and fifth node, and so on. In this
case the throughput can be measured in O(1) (parallel) or O(n) (sequential).

2. We measure the throughput of all possible pairings. Let tij be the measured
throughput between node i and j. Then the throughput between node i and the
switch is minj tij. This can be done in O(n2) (sequential) or in O(n) (parallel)
with the following scheme:

All nodes connected to a single switch are put into a group. The group is di-
vided into two groups, the left containing nodes 1 to bn2 c, the right containing
nodes bn2 c+ 1 to n. The throughput of all possible pairings - there are dn2 e possible
pairings - of the two groups is measured. The procedure is repeated for each group
until the groups only contain one or two nodes. If a group contains two nodes, the
throughput between the two members is measured.

Example

This is an example with ten nodes 1...10. In every step the throughput between
nodes that are closely written on the same height is measured. The skip indi-
cates the next step of the algorithm. Altogether there are 11 steps needed. (In
the last step the throughput between nodes 4 and 5 and nodes 9 and 10 is measured.)

29

5 10
4 9
3 8
2 7
1 6

5 6
4 10
3 9
2 8
1 7

5 7
4 6
3 10
2 9
1 8

5 8
4 7
3 6
2 10
1 9

5 9
4 8
3 7
2 6
1 10

5 10
2 4 7 9
1 3 6 8

4 9
2 3 7 8
1 5 6 10

3 8
2 5 7 10
1 4 6 9

5 10
1 2 3 4 6 7 8 9

4 9
1 2 3 5 6 7 8 10

Analysis

The amount of needed cycles is described by the following recurrence:

T (n) =
0, if n = 1
T (dn2 e) + dn2 e, if n > 1.

(2.3)

The recurrence of the cases n > 1 has the form T (n) = aT (n
b
)+f(n), where a = 1,

b = 2 and f(n) = dn2 e so that we can use the Master theorem. [CSRL01] Since
f(n) = Ω(nlogb a+ε) for 0 < ε < 1 and af(n2) ≤ cf(n) for 1

2 ≤ c < 1, we can apply
the third case of the Master Theorem so that T (n) = Θ(f(n)) = Θ(dn2 e) = Θ(n).

2.3.3. Switch-to-Switch Edges
The problem measuring switch-to-switch edges is that these edges cannot be measured
directly. One has to measure the throughput between nodes so that the switch-to-switch
edge which has to be measured is on the path between the nodes. Since the throughput
of node-to-switch edges is usually lower than than the throughput of switch-to-switch
edges, the throughput between several nodes has to be measured. It has to be guaranteed
that the edge which has to be measured is on the used path between the nodes, but it is
not known in cases of several possible paths which one will be used.

For a given edge, there are two possibilities:

1. If the graph decomposes into two unconnected sub-graphs by removing the edge,
then as many nodes as possible of the two sub-graphs can be paired. This can be
checked easily using a search algorithm, such as depth-first search.

30

2. If the sub-graphs are connected even without the edge, the pairings will have to be
chosen carefully, for example by using only the nearest nodes.

For example, if in Figure 2.20 the edge between S3 and S4 shall be measured,
one would use the nodes J, K and L as one group and the nodes D, F, E as the
other group. Adding node I to group one and for example node B to the other
group would be unsafe, because it is not known on which path the data between
the nodes is transferred.

Figure 2.20.: Example for measurement of switch-to-switch edges

Another possibility would be to assume that the data will be transferred on the
shortest path and calculate all unique shortest paths.

Since it is not known how many nodes are needed to measure the maximum throughput
of the edge, one has to use as many nodes as possible which makes the parallelisation
difficult. A simple parallelisation would be a greedy scheme where first an edge which
has to be measured is chosen and the needed nodes and involved switches are determined.
Then there is an attempt to find another edge which has to be measured and where no
node or switch needed for measurement is needed for the measurement of the first edge,
too.

If we assume that all edges of the switches will have the same throughput, we only have
to measure one switch-to-switch edge per switch. Ideally, we should choose the edge
for a switch so that the minimum of the two groups between which we measure the
throughput is maximised. Sometimes we will choose the same edge for different switches
so that the number of edges needed to be measured will be smaller than the number of
switches.

31

2.3.4. Maximum Throughput of Switches
The maximum throughput of a switch can be measured similarly. If the graph decom-
poses in more than two parts by removing the switch, one will have to consolidate the
parts so that two groups are containing approximately the same number of nodes which
corresponds to the partition problem. The partition problem is np-complete, but in
practice the amount of groups is small so that the solution can be computed fast. If the
graph does not decompose by removing the switch, the nearest nodes have to be chosen
for the measurement.

Figure 2.21.: Example for maximum throughput of switch - the dashed lines represent
the nodes

Example
In the topology sketched in Figure 2.21 let there be no connection between the switches
except of S1. To find the best pairing one has to solve the partition problem for the
multiset (2, 3, 3, 4, 6). One solution is (2,3,4) for the first group and (3, 6) for the other
group so that all nodes of the switches S2 and S3 should be put into one group and all
nodes of the switches S4, S5 and S6 should be put in the other group.

2.4. Correcting Latencies
When the throughput has been measured, the measured latencies can be corrected. Since
the latencies of node-to-switch and switch-to-switch edges cannot be measured directly,
but they can be calculated from the latencies between the nodes.

32

Figure 2.22.: Example: Three nodes connected to a switch

Because of the additivity of latencies the latencies of the edges (ea, eb and ec) in Figure 2.22
have to satisfy the following equations, where lab is the latency between the nodes a and
b:

ea + eb = lab

ea + ec = lac

eb + ec = lbc

In this case, we can calculate the latencies of the edges by solving this system of linear
equations, which can also be written as a matrix equation:1 1 0

1 0 1
0 1 1


eaeb
ec

 =

lablac
lbc

 (2.4)

Generally we can write

Ax = b (2.5)
where A is the matrix as described containing all possible paths between nodes, x the vec-
tor of the latencies of the edges that have to be calculated and b the vector of the latencies.

By using this method, we can use most of the measured latencies we had to mea-
sure for basic model generation. For every connection which is not a direct node-to-node
edge, we can add the path to matrix and the measured latency to the vector b. In cases
where several possible paths exist, there are two possibilities: Either all possible paths
whose summed latency are roughly the measured latency are added or only unique paths
are added.

33

To determine b, we have to correct the measured latencies by subtracting the time
required to transfer the data of the message. There are two possibilities:

1. According to the assumption that the throughput on a path is the minimum
throughput of the edges on the path. The throughput can be calculated by
determining the minimum of the throughput of all edges in the path . The actual
latency l is l = l′ − s

tmin
where l’ is the measured latency, s the overall size of the

massage and tmin the minimum throughput of the path belonging to l’.

2. A store-and-forward model is assumed. The message is first stored at every node
and then sent forward. Let n be the number of edges of the path. The actual
latency l is l = l′ −∑n

i=1
s
t i
, where ti is the throughput of edge i. [Kun13]

To compute x there are three possibilities depending on the number the number of rows
of A and the number of edges. Note that the number of rows of A must not be n(n−1)

2
e.g. the latencies could be remeasured with fewer measurements.

1. The number of rows of A is smaller than the number of edges. The linear equation
system cannot be solved. The algorithm does not create topologies of that kind.

2. The number of rows of A is equal to the number of edges. Equation 2.5 is a
linear equation system. If A is regular, it can be solved (for example by using
LU-decomposition). The question to be asked is if A is always regular, meaning
it is always possible to solve the corresponding linear equation system or if there
might be cases in which no unique solution exists. It is known from mathematics
that a matrix is regular if and only if the matrix has full rank. For a topology
similar to Figure 2.22, but with n nodes, the matrix can be written as the following:

1 1 0 0
0 1 1 0 . . .

...
...
... 0
0 1 1
1 0 0 1


(2.6)

Let M(i) the ith row vector of the matrix. It can be easily seen that if n is even,
then

A(n) =
n∑
i=1

(−1)i+1A(i) (2.7)

meaning that in this case the last row is linear dependent of the other rows/columns,
meaning that the matrix has not full rank so that A is not regular and no unique
solution of the linear equation system exists. In that case there are two possibilities:
Either one could measure additional connections and perform a regression or one
could measure different connections. However, the first method increases the

34

required amount of measurements and the needed computation time. The second
method has the problem that all edges are no longer measured with the same time
and accuracy.

3. The number of rows of A is greater than the number of edges. In general, there is
no x so that Ax− b = 0 thus we have to find

min
x∈R
‖Ax− b‖ (2.8)

for a convenient norm, meaning we have to perform a linear regression to find
the best latencies of the edges of an additive model. For the euclidean norm the
problem is known as Ordinary Least Squares (OLS) regression and there are many
algorithm to solve it like QR-decomposition.

A regression delivers a coefficient of determination, R2 ∈ [0, 1], describing how good
the calculated latencies can explain the measured ones. In case of a perfect model
R2 is 1, in case of no linear dependence R2 is 0. This can be used to validate the
determined topology. If R2 is not high, this can indicate a wrong topology. Note
that a high value of R2 does not prove a correct model. The higher the amount
of variables (edges), the higher is the value of R2. A fully meshed topology will
always have an coefficient of determination of 1, as there are as many variables as
observations (measured latencies). [MPV12]

2.5. Remeasuring Latencies
If the latencies for the model creation have been measured shortly, intending to reduce
the time needed for the measurement, or if the latencies were determined simultaneously
so that the measurements might have influenced each other, it might be of interest to
remeasure the latencies. As it is no longer required to determine the latencies of all
possible pairings, the time of a single measurement can be increased. Also it can be
profited by the knowledge of the topology by using similar methods as they were used to
measure the throughput.

The procedure for measuring the latency of node-to-node edges is exactly the same
as the procedure for measuring the throughput of those edges.

In case of node-to-switch edges, the node-to-switch edges of different switches can be
measured simultaneously but the node-to-switch edges of each switch should be measured
sequentially to avoid measurement errors.

Since there are only two nodes needed for the measurement of a switch-to-switch
edge (and not as many as possible like for the measurement of the throughput) the
parallelisation scheme will be more efficient.

35

2.6. Output
Since graph drawing is very complex, no graphical output is implemented. There are
several free graph drawing programs which can be used so that the graph of the model
can be outputted as a .tgf file. The Trivial Graph Format is an easy graph format which
is supported by nearly all graph programs and has the following structure:

A list of the unique vertex id and the label is followed by the hash symbol and a
list of the edges with the pair of connected vertex ids and the label of the edge. For
example:

1 v1
2 v2
#
1 2 l: 3 t: 10
2 1 l: 3 t: 10

2.7. Connection of Models
As mentioned the intra node model can be build in the same way as the inter-node model
where the nodes are the CPU cores and the switches are points connecting edges. To
connect the models, a neighboured node has to be chosen and all connection from this
node to the cores have to be measured and inserted as connection from a virtual external
vertex to the candidates in the step of basic model creation. After the creation of the
intra-node model, the latencies of the connection between the external vertex and the
other nodes are subtracted by the minimum of the latencies between the external vertex
and other vertices.

The models can connected by replacing the external vertex with the vertex representing
the node. If one vertices which were used to measure the latency for the inter-node model
have a connection higher than zero to the vertex representing the node, the latency
between the two vertices representing the node has to be corrected by subtracting the
latency of the connection between core vertex and node vertex.

Using the .tgf file format the connection can easily be done using a simple perl script.

2.8. Summary
2.8.1. Summary of the Costs
Due to the clique search, the cost for the computation of the model out of the measured
data will be O(exp (n)), where n is the number of nodes, sockets or cores depending on
which model we are creating. However, these costs are unimportant because the constant

36

factor is usually extremely smaller than the constant of the measurement. The cost to
perform a linear regression are O(r3) = O(n6), where r is the number of rows, so that
the (optional) step of recalculating the latencies by a linear regression can lead to a high
runtime.

The costs for measuring the data to create the basic models are O(n2) (sequentially
measured) or O(n) (parallel measured).

The time required to measure the throughput of node-to-node edges is O(nN), where nN
is the number of nodes having an edge to another node. (Even if we had a fully connected
topology, we would be able to measure in linear time using the scheme described in
Section 2.3.2).

To measure the node-to-switch edges, we need O(nS), where ns is the number of nodes
having a connection to a switch.

Finally, the time needed to measure the switch-to-switch edges is - in the case that every
edge of a switch is measured - O(|ES−S|), where |ES−S| is the number of switch-to-switch
edges, and O(S), where S is the number of switches, in the case that only one edges per
switch is measured.

Summed up, if the connections to create the basic model are measured parallel and the
throughput of only one switch-to-switch edge is measured, the required time for the
necessary measurements is proportional of the number of nodes (because the number of
switches depends of the number of nodes too).

2.8.2. Summary of the Chapter
In this chapter, we have seen all major aspects off the developed algorithm:

• The latency of all possible pairings of nodes is measured and the data is used to
compute a basic model in a way that switches can be detected using standard
clique search algorithms.

• Although the algorithm is designed for usage on homogeneous clusters, it is shown
that the algorithm can detect some cases of heterogeneous clusters.

• A schedule to measure the throughput is developed by separating the problem into
three problems which are easier to solve.

• By performing a linear regression, not only the latency of edges which cannot be
measured directly can be computed, but also all measured latencies can be used.

The algorithm must now be validated with several test.

37

3. Validation
First, the three test systems are described (Section 3.1). The distribution of the batches of
a measurement on the Magny node is analysed (Section 3.2.1). Descriptors to compare
measurements are defined (Section 3.2.2) and used to compare different measurement
methods (Section 3.2.3). The developed algorithm is tested with four test cases (Sec-
tion 3.3). At last, a simple model to estimate the probability of failure is presented
(Section 3.4). The chapter ends with a short summary (Section 3.5).

3.1. Test Systems
Three different systems are used for validation:

• The WR working group hosts a cluster with heterogeneous hardware for teaching
and research. Amongst others, the cluster offers 10 dual-socket Intel Westmere
compute nodes and a four-socket AMD Magny-Cours node with 12 cores per socket
which are used for testing. The Westmere cluster is mainly used for teaching and
student projects. Each node of it contains two Intel® Xeon® X5650 processors
with 6 cores each. The nodes are all connected with a single switch so that the
topology can be called a star or a tree. The operating system of the cluster is
Ubuntu 12.04 and OpenMPI was used to compile the tool.

• The Blizzard is the supercomputer of the DKRZ (Deutsches Klimarechenzentrum).
It consists of 264 IBM Power6-compute nodes with 16 Dual Core Processors per
node. The nodes are connected with an Infiniband network. The operating system
of the Blizzard is AIX 6.1 and the parallel environment (PE) was used.

3.2. Comparison of Measurement Methods
3.2.1. Analysis of the Distribution of the Batches
To analyse the distribution of the batches, the latency between the first and second core
of the Magny node is measured with batches consisting of a single measurement and
50,000 repetitions. The five-number summary and the mean of all of the batches are
calculated with R1 (see Table 3.1).

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.951 1.061 1.071 1.130 1.101 32.820

Table 3.1.: Five-number summary of the distribution of a single measurement

1http://www.r-project.org/ version 2.14.1

38

http://www.r-project.org/

The difference between the minimum and the 3rd Quartile is small, whereas the maximum
is very high. Although in this case mean and median are almost equal, the extremely high
maximum can increase the mean, especially if a smaller number of repetitions is used.
The difference between the minimum and the median is small, so that the minimum can
be used to describe the whole measurement, too.

3.2.2. Descriptors of Deviation
Different methods to measure latency (sequential and parallel measurement/size of
batches) have been described and will be compared in this section. To compare two
datasets A and B, where Ai is the ith value of the n values in Set A, the following
descriptors are used:

• mean deviation, defined as

MD(A,B) := 1
n

n∑
i=0

(Ai−Bi) = 1
n

n∑
i=0

Ai−
1
n

n∑
i=0

Bi = mean(A)−mean(B) (3.1)

• mean absolute deviation, defined as

MAD(A,B) := 1
n

n∑
i=0
|Ai −Bi| (3.2)

• quadratic mean deviation (also called root mean square), defined as

QMD(A,B) =
√√√√ 1
n

n∑
i=0

(Ai −Bi)2 (3.3)

• maximum deviation, defined as

MAXD(A,B) := Ax −Bx,where x = arg maxx|Ax −Bx| (3.4)

3.2.3. Comparison of Different Measurement Approaches
The following measurements are measurements of all possible pairings of cores on a single
node of the Blizzard.

Comparison of Repeated Measurements
First, three measurements where every single value is the median of 10,000 measurements
and all possible pairings are measured parallel are compared. The unit of all values is
µs. Measured intra-cpu latency is approximately 1.15µs, inter-cpu latency 1.3µs and
inter-socket latency varies from 1.7µs to 2.1µs.

39

compared measurements MD(A,B) MAD(A,B) QMD(A,B) MAXD(A,B)
1 and 2 0.0006 0.0077 0.0100 0.0350
1 and 3 -0.0053 0.0111 0.0180 -0.0840
2 and 3 -0.0059 0.0106 0.0176 -0.0970

Table 3.2.: Comparison of repetitions of a measurement

Since the MD is very small, the means of the two measurements are almost equal. The
MAD and QMD are not big, too. Only the maximum deviation is not very small, which
can lead to problems, as the difference of latency between inter- and intra-processor
communication is only 0.15 µs.

Comparison of batched and individual measurement
Next, different approaches to measure the latency of a single batch are compared. The
batches of the first measurement (A) consist only of a single measurement, whereas the
batches of the second measurement (B) consist of a number of repetitions so that the
batch needs approximately 100 µs.

repetition MD(A,B) MAD(A,B) QMD(A,B) MAXD(A,B)
1 0.0655 0.0655 0.0662 0.1182
2 0.0628 0.0628 0.0638 0.0965
3 0.0685 0.0686 0.0712 0.1694

Table 3.3.: Comparison of individual (A) and batched execution (B)

In all three cases the MD and MAD are almost equal indicating that the mean is simply
shifted to a higher latency. A possible explanation is that the measurement of time
itself needs some time and, in the case of batches consisting of many measurements, the
mean of the batch is less influenced as a batch consisting only of a single measurement
(remember the mean is calculated by determining the time of the whole batch and
dividing by the number of measurements in the batch).

Comparison of sequential and parallel measurement
At last sequential (A) and parallel measurement (B) of all possible pairings is compared.

compared measurements MD(A,B) MAD(A,B) QMD(A,B) MAXD(A,B)
individual execution -0.0294 0.0306 0.0357 -0.1080

batched execution (time 100 µs) -0.0340 0.0348 0.0406 -0.1197

Table 3.4.: Comparison of sequential (A) and parallel (B) measurement

40

It can be seen that parallel measurement leads to a small, but unimportant increase of
latency, even maximum deviation is not significantly higher than the maximum deviation
of simple repeated measurements.

3.3. Testing
3.3.1. Westmere Cluster
The measured inter-node latencies can be found in table 3.5 and the measured intra-node
latencies in table 3.6.

nodes 2 3 4 5 6 7 8 9 10
1 53.253 53.252 53.263 53.377 53.362 54.658 53.457 53.647 53.335
2 53.127 53.022 53.348 53.437 53.406 54.417 53.311 53.167
3 53.394 53.409 53.176 53.954 53.318 54.457 53.453
4 53.356 53.176 54.039 53.349 53.462 54.387
5 54.263 53.632 53.634 53.343 53.403
6 54.504 54.595 54.614 54.543
7 53.522 53.377 53.875
8 53.366 53.156
9 53.328

Table 3.5.: Measured inter-node latencies of the Westmere nodes, median of 100 repeti-
tions, batch time 10,000 µs, all values in µs

cores 2 3 4 5 6 7 8 9 10 11 12
1 0.445 0.457 0.455 0.443 0.447 0.844 0.827 0.866 0.858 0.863 0.854
2 0.452 0.460 0.451 0.447 0.892 0.875 0.910 0.914 0.905 0.906
3 0.454 0.456 0.459 0.858 0.838 0.905 0.911 0.877 0.908
4 0.464 0.460 0.858 0.846 0.886 0.887 0.879 0.880
5 0.446 0.858 0.850 0.889 0.891 0.891 0.876
6 0.853 0.845 0.881 0.886 0.879 0.878
7 0.451 0.456 0.452 0.451 0.448
8 0.445 0.441 0.438 0.437
9 0.452 0.454 0.450
10 0.439 0.446
11 0.445

Table 3.6.: Intra-node latencies of the Westmere nodes, median of 100 repetitions, batch
time 10,000 µs, all values in µs

First, a model of the inter-node topology was created and then a model of one node.
Finally, the intra-node model was duplicated and the two models were connected. The

41

result was visualised with yEd2.

Figure 3.1.: Determined Topology of the Westmere Cluster

As it can be seen, the correct topology was found: In the middle is the central switch
connecting the nodes represented by a virtual vertex. Connected to the virtual vertices
are the two "switches" representing the two sockets each connected to six cores.

3.3.2. Magny Node
Since only a single node is available, only the intra-node model can be generated and
tested. The problem determining the topology of the Magny node is that the latencies
of inter- and intra-socket communication are very similar. (see Table 3.7 and 3.8)

2http://www.yworks.com/en/products_yed_about.html

42

http://www.yworks.com/en/products_yed_about.html

sockets 2 3 4
1 1.204 1.232 1.171
2 1.213 1.189
3 1.171

Table 3.7.: Inter-socket latencies measured as the median of 1,000,000 single measure-
ments, all values in µs

cores 2 3 4 5 6 7 8 9 10 11 12
1 1.1145 1.101 1.109 1.098 1.134 1.160 1.144 1.138 1.141 1.159 1.155
2 1.050 1.108 1.060 1.114 1.111 1.107 1.096 1.109 1.108 1.128
3 1.063 1.050 1.122 1.171 1.145 1.159 1.164 1.172 1.157
4 1.046 1.106 1.130 1.103 1.086 1.104 1.120 1.131
5 1.073 1.150 1.138 1.153 1.128 1.147 1.154
6 1.135 1.147 1.130 1.144 1.143 1.164
7 1.038 1.067 1.054 1.044 1.045
8 1.045 1.046 1.031 1.034
9 1.052 1.049 1.052
10 1.037 1.052
11 1.035

Table 3.8.: Intra-socket latencies (of the first socket) measured as the median of 1,000,000
single measurements, all values in µs

As it can be seen, the intra-socket latency varies from 1.035 µs to 1.172 µs and the
inter-socket from 1.171 µs to 1.232 µs. Due to that, the algorithm cannot distinguish
between the two kinds of connections and this leads to a false topology.

If the epsilon is chosen high, the algorithm assumes all connections have roughly the same
latency, the topology will be a star with a single switch. In cases where the latencies are
very similar, it can be argued that the differences are not important enough to justify
placement decisions because by optimizing the distribution of task to the sockets only a
small time decrease can be gained.

3.3.3. Single Blizzard Node
The intra-node topology of the Blizzard Node with 16 dual-core processors is complex
(see Figure 3.2). There are four quad-node building blocks, each consisting of four
fully-meshed processors and each processor is linked to two other processors in a way
that it is possible to reach every other processor with at most two other processor on the
path. There are four different types of edges:

• the edges between core and processor (type A)

43

• the edges in the block(type B)

• the edge between processors which are not in the same block (type C)

Figure 3.2.: Inter-processor topology of the Blizzard nodes [Lud11, p. 437]

Figure 3.3.: 100-bin Histogram of measured Blizzard latencies, latencies in µs

All possible core-to-core latencies are measured. A histogramm of them can be found in
Figure 3.3. The six groups (from left to the right) can be identified as

1. latencies between cores of the same processor (2 x type A)

2. latencies between cores of processors being in the same block (2 x type A + type
B)

44

3. latencies between cores of processors not being in the same block (2 x type A +
type C)

4. latencies between cores of processor with one other processor on the path (2 x type
A + type B + type C)

5. same as fourth group (explanation below)

6. latencies between cores of processors with two other processors on the path (2 x
type A + 2 x type B + type C)

Actually, group 4 and 5 are actual the same, because the gap between the groups is very
small and the assumption that they were different would lead to contradictions:

• The latencies of the connection between processor 0 and processors 10-13 (see
Figure 3.9) would belong to different groups, although they are all connected in
the same way (type B + type C).

• To explain the last group, one had to assume that the connection between processors
0 and 14 is two edges of type C, but the latency between processors 0 and 14 is
equal to the latency between processors 0 and 15 (see Figure 3.9). However, these
processors are not connected with two edges of type C.

p 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 1.31 1.30 1.31 1.82 1.84 1.71 1.83 1.73 1.84 1.87 1.95 1.86 1.94 2.10 2.05

Table 3.9.: Measured latencies between first cores of the processors (p)

The algorithm almost computes the correct topology (see Figure 3.4). The fully-meshed
areas are mistakenly replaced by a switch, but a switch, efficient enough so that different
nodes connected to it do not influence each other, is equivalent to a fully-meshed topology.

Figure 3.4.: Computed topology of the Blizzard node

45

3.3.4. Four Blizzard Nodes
If all possible core-to-core latencies are measured parallel and the cores are on different
nodes, the intra-node measurements are influenced (see Figure 3.5). This is surprising as
the parallel measurement of intra-node latencies alone does not lead to measurement
errors (see Section 3.2). However, this can easily be prevented by separating the model
generation of inter- and intra-node model and connecting them after the generation.

Figure 3.5.: 100-bin Histogram of intra-node latencies, all possible core-to-core latencies
measured parallel, latencies in µs

3.4. Challenges
When the latencies are measured and the topology is created, a single wrongly determined
latency of an edge can lead to a completely wrong topology. As simplification we can
assume that every wrongly measured latency will lead to a false topology (which is
untrue, because if the measured latency is compared to the shortest path latency and
the measured latency is higher than the shortest path latency, which is an measurement
error, this will not lead to a wrong topology).

Let p be the probability that the latency of a single connection is measured within
the tolerances and n be the number of nodes (cores or sockets). The probability P that
all n(n−1)

2 connections are measured without any error is

P = p
n(n−1)

2 . (3.5)

46

p \n 12 32 128 256
99% 51,5% 0,7% 0% 0%
99,9% 93,6% 60,1% 0,03% 0%
99,99% 99,3% 95,2% 44,4% 3,4%

Table 3.10.: P calculated for different error probability (p) and numbers of processors (n)

In table 3.10, it can be seen that the latency of a connection has to be determined with
a very high precision for high amounts of nodes/cores.

The required precision - and therefore p - is directly dependent on ε. If there are
very small differences and due to that only small tolerances are allowed (meaning ε
is very small), the precision needed to provide a good probability p will be high or
the probability to measure the right value with a given precision will be small and the
algorithm will fail.

3.5. Summary of the Chapter
By analysing the distribution of the batches the importance of robust descriptors is made
clear as high outliers are possible.

The comparison of different measurement methods showed that intra-node latencies can
be determined in parallel with only a small measurement error. This is very important
as this provides a linear scaling. It is also shown that the measurement with batches
should be preferred, as the measurement without batches leads to a small methodical error.

The tests on the Westmere cluster and the single Blizzard node demonstrate that
he correct topology can be found in many cases, but the test on the Magny node and
the four Blizzard nodes demonstrate also that the accurate measurement of the latencies
is vital.

Al last, it is illustrated that a single wrongly measured latency can lead to a wrong
topology.

47

4. Conclusion and Future Work
A conclusion (Section 4.1) and a perspective of future work (Section 4.2) are given.

4.1. Conclusion
A completely new approach was tested with this work: Since both - topology and
performance characteristics - are demanded, the determination is combined. First, the
latencies are measured and the topology is determined by analysing them. Then, the
topology is used to support the measurement of the throughput. Although in the first
step the topology is not known and simply the latency of all possible edges is measured,
all of the gained data can be used by performing a linear regression. The algorithm is
designed highly abstractly, so that a single algorithm can be used to determine e.g. inter-
or intra-node topology.

One of the main advantages of the tool - the latencies are measured and the topol-
ogy is determined on the side by analysing the latencies - is also a disadvantage: A
single measured latency can lead to a wrong topology, so that the schedule of the
throughput measurement will be incorrect, too. However, as long as the latencies can be
measured with high precision (relative to the differences of the latencies), the algorithm
can find the right topology in many cases as seen on the Westmere cluster and can even
detect the complex topology of the Blizzard node. The computation of the topology of
the Magny-cours node only failed as the latencies could not be measured precisely enough.

Some examples of cases where the algorithm fails to determine the correct topology
were shown. Nevertheless, no test went wrong due to errors of the algorithm, but there
were only few test cases thus it cannot be ensured that these theoretical limitations are
unimportant in practice.

Although the algorithm provides linear scaling (of measurement time), this can lead
to a high runtime, if the number of cores or nodes is very high. The amount of CPUs
in high-performance-computers or even desktop pc has been extremely increasing. It
is an interesting fact that if the constants of algorithms (here the required time for a
measurement of a connection) do not decrease, someday there will be a point where
every non-constant scaling algorithm will be impractical. This leads to the challenging
necessity of developing algorithms with a constant need of time.

48

4.2. Future Work
There are several things that should be improved:

• In this work, only point-to-point communication was regarded and collective
communication (a communication with more than two participated points) was
completely ignored, although collective communication is very important in practice.

• Since the probability of finding the right topology depends mainly on the probability
of measuring the latencies correctly, the technique to measure latencies should be
improved in order to make it more robust and accurate.

• Furthermore, the parallelisation scheme when measuring the throughput of switch-
to-switch edges is very simple and often provides a non-optimal solution.

• The usage of a set to determine the groups of latencies allows to demonstrate the
algorithm but has many disadvantages in real test cases as seen at the test with
the Blizzard. A much better solution is to use approaches from cluster analysis to
determine a strict partitioning clustering.

For example, one could group the latencies by sorting the measured values and
determine the bounds of the groups by checking whether the gap between two
neighboured values is bigger than a defined constant. The latencies of the inputfile
can be replaced by the mean of the group they belong to. If the latencies are
corrected by using the actual latencies, this step has no further effect than to
simplify the computation of the topology.

• The behaviour on heterogeneous clusters was not tested. Also a method to determine
the topology of an arbitrary heterogeneous cluster should be developed.

49

Bibliography
[BK73] Coen Bron and Joep Kerbosch. Algorithm 457: Finding all cliques of an

undirected graph. Commun. ACM, 16(9):575–577, September 1973.

[CSRL01] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson.
Introduction to Algorithms. McGraw-Hill Higher Education, 2nd edition, 2001.

[Inf] Interconnect analysis: Infiniband and 10gige in high-performance comput-
ing. http://www.hpcadvisorycouncil.com/pdf/IB_and_10GigE_in_HPC.
pdf. Accessed: 2014-03-16.

[Kun13] Julian Kunkel. Simulation of Parallel Programs on Application and System
Level. Phd thesis, Universität Hamburg, 07 2013.

[Lud11] Thomas Ludwig. Skript zur Vorlesung Hochleistungsrechnen. http:
//wr.informatik.uni-hamburg.de/_media/teaching/wintersemester_
2011_2012/hr-1112.pdf, October 2011. Accessed: 2014-03-17.

[MPV12] D.C. Montgomery, E.A. Peck, and G.G. Vining. Introduction to Linear
Regression Analysis. Wiley Series in Probability and Statistics. Wiley, 2012.

[PD07] Larry L. Peterson and Bruce S. Davie. Computer Networks: A Systems
Approach, Fourth Edition (The Morgan Kaufmann Series in Networking).
Morgan Kaufmann, 4 edition, March 2007.

50

http://www.hpcadvisorycouncil.com/pdf/IB_and_10GigE_in_HPC.pdf
http://www.hpcadvisorycouncil.com/pdf/IB_and_10GigE_in_HPC.pdf
http://wr.informatik.uni-hamburg.de/_media/teaching/wintersemester_2011_2012/hr-1112.pdf
http://wr.informatik.uni-hamburg.de/_media/teaching/wintersemester_2011_2012/hr-1112.pdf
http://wr.informatik.uni-hamburg.de/_media/teaching/wintersemester_2011_2012/hr-1112.pdf

List of Algorithms
1 Pseudocode: Generation of the basic model 15
2 Pseudocode: Switch detection (allowing only cliques with a size of at least

two) . 19
3 Pseudocode: Elimination of virtual switch-to-switch edges 23
4 Pseudocode: recursivePath . 27
5 Pseudocode: Measuring Throughput of Node-to-Node Edges 28

51

List of Figures

1.1 OWD as function of the size of the massage 8

2.1 Assumption: Additivity of latency in a path A to B, B to C 14
2.2 Assumption: Throughput in a path A to B, B to C 14
2.3 Assumption: Latency is measured on the shortest path 15
2.4 Actual Topology . 16
2.5 Model of Topology . 16
2.6 Example: Topology after the insertion of three edges 17
2.7 Example: all edges inserted . 18
2.8 Example: the basic model (simplified from the fully meshed) 20
2.9 Example: One clique replaced by switch 21
2.10 Example: Three cliques replaced by switches 21
2.11 Example: Finished topology . 22
2.12 A topology, the algorithm cannot detect 23
2.13 Example: The actual topology . 24
2.14 Example: The computed toplogy after applying Algorithm2 24
2.15 Two groups of nodes interconnected by a single switch 25
2.16 Example: Two nodes of the same kind and two different nodes connected

by a single switch . 25
2.17 Line topology which can be measured in O(1) 26
2.18 A topology that can only be measured in O(n) 27
2.19 Example Graph, throughput annotated 28
2.20 Example for measurement of switch-to-switch edges 31
2.21 Example for maximum throughput of switch - the dashed lines represent

the nodes . 32
2.22 Example: Three nodes connected to a switch 33

3.1 Determined Topology of the Westmere Cluster 42
3.2 Inter-processor topology of the Blizzard nodes [Lud11, p. 437] 44
3.3 100-bin Histogram of measured Blizzard latencies, latencies in µs 44
3.4 Computed topology of the Blizzard node 45
3.5 100-bin Histogram of intra-node latencies, all possible core-to-core latencies

measured parallel, latencies in µs . 46

52

List of Tables

2.1 Example: measured latencies . 17
2.2 Example: measured latencies . 20
2.3 Example: Measured latencies . 25

3.1 Five-number summary of the distribution of a single measurement 38
3.2 Comparison of repetitions of a measurement 40
3.3 Comparison of individual (A) and batched execution (B) 40
3.4 Comparison of sequential (A) and parallel (B) measurement 40
3.5 Measured inter-node latencies of the Westmere nodes, median of 100

repetitions, batch time 10,000 µs, all values in µs 41
3.6 Intra-node latencies of the Westmere nodes, median of 100 repetitions,

batch time 10,000 µs, all values in µs . 41
3.7 Inter-socket latencies measured as the median of 1,000,000 single measure-

ments, all values in µs . 43
3.8 Intra-socket latencies (of the first socket) measured as the median of

1,000,000 single measurements, all values in µs 43
3.9 Measured latencies between first cores of the processors (p) 45
3.10 P calculated for different error probability (p) and numbers of processors (n) 47

53

A. Short Manual of the Tool

A.1. all-against-all
This program can be used to measure the latencies of all possible process-to-process
connections. It has to be executed parallel and it has to be ensured that the threads are
bound to cores and in case core-to-core connections are measured that the thread with
rank one is bound to core one and so on. The results are printed to the console. The
available options are:

• -s: measure sequentially instead of parallel

• -c: prints "c[rank]" instead of hostname

• -r: how many batches are measured to determine the latency of a single connection.
The measured values are the median of the batches.

• -t: set minimum time of a single batch

A.2. model
This program uses the described algorithm to generate the topology from the output of
all-against-all.x. The inputfile is the output of all-against-all. The topology is printed
to the console as an .tgf file. To compare values the method of a relative comparison is
used.

Options are:

• -e: The value of ε

A.3. throughput
This program can be used to measure the throughput of edges in a topology. It has to
be started parallel and the threads have to be bound to the cores/nodes in the same
order as they were bound to measure the latencies. The inputfile is the .tgf file of the
toplogy. A .tgf file with the measured throughput inserted is printed out to the console.

A.4. regression
The inputfiles are the .tgf file of the topology and the output file with the measured
latencies. The measured latencies will be corrected by throughput recalculated using a
linear regression. To link the executable, the GNU Scientific Library is required. The
available options are:

54

• -s: the size of the data packet sent to determine the throughput

• -r: how often every measurement is repeated. The final value is the median of the
measurements.

• -b: use MPI_SendReceive

55

Erklärung
Ich versichere, dass ich die Arbeit selbstständig verfasst und keine anderen, als die
angegebenen Hilfsmittel – insbesondere keine im Quellenverzeichnis nicht benannten In-
ternetquellen – benutzt habe, die Arbeit vorher nicht in einem anderen Prüfungsverfahren
eingereicht habe und die eingereichte schriftliche Fassung der auf dem elektronischen
Speichermedium entspricht.

Vordorf, den 18. März 2014 .

57

	Introduction and Background
	Motivation
	Structure of the Thesis
	Topology
	Performance Characteristics
	Measured Values
	Existings Tools
	Aims of the Work

	Design and Implementation
	Basics of the Model
	Building the Model
	Generation of the Basic Model
	Shortest Path Length Calculation
	Switch Detection and Replacing
	Elimination of virtual Switch-to-Switch Edges
	Heterogeneous Clusters

	Measuring Throughput
	Node-to-Node Edges
	Node-to-Switch Edges
	Switch-to-Switch Edges
	Maximum Throughput of Switches

	Correcting Latencies
	Remeasuring Latencies
	Output
	Connection of Models
	Summary
	Summary of the Costs
	Summary of the Chapter

	Validation
	Test Systems
	Comparison of Measurement Methods
	Analysis of the Distribution of the Batches
	Descriptors of Deviation
	Comparison of Different Measurement Approaches

	Testing
	Westmere Cluster
	Magny Node
	Single Blizzard Node
	Four Blizzard Nodes

	Challenges
	Summary of the Chapter

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	List of Algorithms
	List of Figures
	List of Tables
	Short Manual of the Tool
	all-against-all
	model
	throughput
	regression

