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About Us: Scientific Computing (Wissenscha�liches Rechnen)

• High Performance Computing

• Storage and Parallel I/O

• Data Reduction Techniques

• Middleware Optimization

• Alternative I/O Interfaces

• Cost and Energy E�iciency
We are an Intel Parallel Computing Center for Lustre

(“Enhanced Adaptive Compression in Lustre”)
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Computation and I/O Introduction and Motivation

• Parallel applications run on multiple nodes
• Communication via MPI

• Computation is only one part of applications
• Input data has to be read
• Output data has to be written
• Example: checkpoints

• Processors require data fast
• Caches should be used optimally
• Additional latency due to I/O and network

Level Latency
L1 cache ≈ 1 ns
L2 cache ≈ 5 ns
L3 cache ≈ 10 ns

RAM ≈ 100 ns
InfiniBand ≈ 500 ns

Ethernet ≈ 100,000 ns
SSD ≈ 100,000 ns

HDD ≈ 10,000,000 ns

Table 1: Latencies [4, 3]
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Computation and I/O.. . Introduction and Motivation

Application

Libraries

Storage device/array

Parallel distributed file system
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• I/O is o�en responsible for performance problems
• High latency causes idle processors
• I/O is o�en still serial, limiting throughput

• I/O stack is layered
• Many di�erent components are involved in accessing data
• One unoptimized layer can significantly decrease performance
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Hard Disk Drives Storage Devices and Arrays

• First HDD: 1956
• IBM 350 RAMAC (3.75 MB, 8.8 KB/s,

1,200 RPM)

• HDD development
• Capacity: 100× every 10 years
• Throughput: 10× every 10 years

Figure 1: HDD development [9]
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Solid-State Drives Storage Devices and Arrays

• Benefits
• Read throughput: factor of 15
• Write throughput: factor of 10
• Latency: factor of 100
• Energy consumption: factor of 1–10

• Drawbacks
• Price: factor of 10
• Write cycles: 10,000–100,000
• Complexity

• Di�erent optimal access sizes for reads and writes
• Address translation, thermal issues etc.
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RAID Storage Devices and Arrays

• Storage arrays for higher capacity, throughput and reliability
• Proposed in 1988 at the University of California, Berkeley

• Redundant Array of Inexpensive Disks
• Today: Redundant Array of Independent Disks

• Capacity
• Storage array can be addressed like a single, large device

• Throughput
• All storage devices can contribute to the overall throughput

• Reliability
• Data can be stored redundantly to survive hardware failures
• Devices usually have same age, fabrication defects within same batch
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RAID.. . Storage Devices and Arrays

• Five di�erent variants initially
• RAID 1: mirroring
• RAID 2/3: bit/byte striping
• RAID 4: block striping
• RAID 5: block striping with distributed parity

• New variants have been added
• RAID 0: striping
• RAID 6: block striping with double parity
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RAID 1 Storage Devices and Arrays

• Improved reliability via mirroring
• Advantages

• One device can fail without losing data
• Read performance can be improved

• Disadvantages
• Capacity requirements and costs are doubled
• Write performance equals that of a single device

A4
A3
A2
A1

A4
A3
A2
A1

RAID 1

Disk 0 Disk 1

Figure 2: RAID 1: Mirroring [10]
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RAID 5 Storage Devices and Arrays

• Improved reliability via parity
• Typically simple XOR

• Advantages
• Performance can be improved
• Requests can be processed in parallel
• Load is distributed across all devices

RAID 5

Dp

C1
B1
A1

Disk 0

D1
Cp

B2
A2

Disk 1

D2
C2
Bp

A3

Disk 2

D3
C3
B3
Ap

Disk 3

Figure 3: RAID 5: Block striping with distributed parity [10]
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RAID 5.. . Storage Devices and Arrays

• Data can be reconstructed
easily due to XOR

• ?A = A1 ⊕ A2 ⊕ Ap,
?B = B1 ⊕ B2 ⊕ B3, . . .

• Problems
• Read errors on other devices
• Duration (30 min in 2004,

13–14 h in 2019 for HDDs)
• New approaches like

declustered RAID

RAID 5

Dp
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A1

Disk 0

D1
Cp
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Disk 1

?D

?C

?B

?A

Disk 2

D3
C3
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Figure 4: RAID 5: Reconstruction [10]
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Performance Assessment Storage Devices and Arrays

• Di�erent performance criteria
• Data throughput (photo/video editing, numerical applications)
• Request throughput (databases, metadata management)

• Appropriate hardware
• Data throughput

• HDDs: 150–250 MB/s, SSDs: 0.5–3.5 GB/s

• Request throughput
• HDDs: 75–100 IOPS (7,200 RPM), SSDs: 90,000–600,000 IOPS

• Appropriate configuration
• Small blocks for data, large blocks for requests
• Partial block/page accesses can reduce performance
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Overview File Systems

• File systems provide structure
• Typically files and directories
• Hierarchical organization

• Other approaches: tagging

• Management of data and metadata
• Block allocation
• Access permissions, timestamps etc.

• File systems use underlying storage devices or arrays
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File SystemObjects File Systems

• User vs. system view
• Users see files and directories
• System manages inodes

• Relevant for stat etc.

• Files
• Contain data as byte arrays
• Can be read and written (explicitly)
• Can be mapped to memory (implicit)

• Directories
• Contain files and directories
• Structures the namespace

Michael Kuhn Storage and I/O 16 / 41



I/O Interfaces File Systems

• Requests are realized through I/O interfaces
• Forwarded to the file system

• Di�erent abstraction levels
• Low-level functionality: POSIX etc.
• High-level functionality: NetCDF etc.

• Initial access via path
• A�erwards access via file descriptor (few

exceptions)

• Functions are located in libc
• Library executes system calls

1 fd = open("/path/to/file", ...);
2 nb = write(fd, data,
3 sizeof(data));
4 rv = close(fd);
5 rv = unlink("/path/to/file");
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Virtual File System (Switch) File Systems

• Central file system component in the kernel
• Sets file system structure and interface

• Forwards applications’ requests based on path
• Enables supporting multiple di�erent file systems

• Applications are still portable due to POSIX

• POSIX: standardized interface for all file systems
• Syntax defines available operations and their parameters

• open, close, creat, read, write, lseek, chmod, chown, stat etc.

• Semantics defines operations’ behavior
• write: “POSIX requires that a read(2) which can be proved to occur a�er a write() has
returned returns the new data. Note that not all filesystems are POSIX conforming.”
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Virtual File System (Switch). . . [8] File Systems

Applications (processes)

VFS

malloc

BIOs (block I/Os)

The Linux Storage Stack Diagram
http://www.thomas-krenn.com/en/wiki/Linux_Storage_Stack_Diagram

Created by Werner Fischer and Georg Schönberger
License: CC-BY-SA 3.0, see http://creativecommons.org/licenses/by-sa/3.0/
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Modern File Systems File Systems

• File system demands are growing
• Data integrity, storage management, convenience functionality

• Error rate for SATA HDDs: 1 in 1014 to 1015 bits [6]
• That is, one bit error per 12.5–125 TB
• Additional bit errors in RAM, controller, cable, driver etc.

• Error rate can be problematic
• Amount can be reached in daily use
• Bit errors can occur in the superblock

• File system does not have knowledge about storage array
• Knowledge is important for performance
• For example, special options for ext4
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Overview Parallel Distributed File Systems

• Parallel file systems
• Allow parallel access to shared resources
• Access should be as e�icient as possible

• Distributed file systems
• Data and metadata is distributed across multiple servers
• Single servers do not have a complete view

• Naming is inconsistent
• O�en just “parallel file system” or “cluster file system”

Data

Clients

Server

File
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Architecture Parallel Distributed File Systems

• Access via I/O interface
• Typically standardized,

frequently POSIX

• Interface consists of syntax
and semantics

• Syntax defines operations,
semantics defines behavior

• Data and metadata servers
• Di�erent access patterns

Network

Clients

MDSs
MDTs

OSSs
OSTs
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Semantics Parallel Distributed File Systems

• POSIX has strong consistency/coherence requirements
• Changes have to be visible globally a�er write
• I/O should be atomic

• POSIX for local file systems
• Requirements easy to support due to VFS

• Contrast: Network File System (NFS)
• Same syntax, di�erent semantics

• Session semantics
• Changes only visible to other clients a�er session ends
• closewrites changes and returns potential errors
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Data Distribution Parallel Distributed File Systems

Blocks

Server

Stripes

B1B0 B5 B6B3 B4B2 B7

B1

B7B5 B6

B3B2B0B4

• File is split into blocks, distributed across servers
• In this case, with a round-robin distribution

• Distribution does not have to start at first server
• Allows data and load to be distributed evenly
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Performance Parallel Distributed File Systems

• 2009: Blizzard (DKRZ, GPFS)
• Computation: 158 TFLOPS
• Capacity: 7 PB
• Throughput: 30 GB/s

• 2015: Mistral (DKRZ, Lustre)
• Computation: 3.6 PFLOPS
• Capacity: 60 PB
• Throughput: 450 GB/s (5.9 GB/s per node)
• IOPS: 400,000 operations/s

• 2012: Titan (ORNL, Lustre)
• Computation: 17.6 PFLOPS
• Capacity: 40 PB
• Throughput: 1.4 TB/s

• 2019: Summit (ORNL, Spectrum Scale)
• Computation: 148.6 PFLOPS
• Capacity: 250 PB
• Throughput: 2.5 TB/s
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Overview Libraries

• Low-level interfaces can be used for parallel I/O
• They are typically not very convenient for developers

• Additional problems
• Exchangeability of data, complex programming, performance

• Libraries o�er additional functionality
• Self-describing data, internal structuring, abstract I/O

• Alleviating existing problems
• SIONlib (performance)
• NetCDF, HDF (exchangeability)
• ADIOS (abstract I/O)
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NetCDF Libraries

• Developed by Unidata Program Center
• University Corporation for Atmospheric Research

• Mainly used for scientific applications
• Especially in climate science, meteorology and oceanography

• Consists of libraries and data formats
1. Classic format (CDF-1)
2. Classic format with 64 bit o�sets (CDF-2)
3. Classic format with full 64 bit support (CDF-5)
4. NetCDF-4 format

• Data formats are open standards
• CDF-1 and CDF-2 are international standards of the Open Geospatial Consortium
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NetCDF.. . Libraries

• NetCDF supports groups and variables
• Groups contain variables, variables contain data
• Attributes can be attached to variables

• Supports multi-dimensional arrays
• char, byte, short, int, float and double
• NetCDF-4: ubyte, ushort, uint, int64, uint64 and string

• Dimensions can be sized arbitrarily
• Only one unlimited dimension with CDF-1, CDF-2 and CDF-5
• Multiple unlimited dimensions with NetCDF-4
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NetCDF.. . Libraries

1. Create file with nc_create("file.nc", ..., &ncid)
• Parallel access with nc_create_par

2. Define dimension with nc_def_dim(ncid, "dim", ..., &dimid)

3. Define group with nc_def_grp(ncid, "group", &grpid)

4. Define variable with nc_def_var(grpid, "data", ..., &varid)

5. Write attribute with nc_put_att_*(grpid, varid, "attr", ...)
6. Leave define mode with nc_enddef(ncid)

• Performed implicitly with NetCDF-4 format
• Compression, endianness, fill values etc. can only be set on first definition

7. Write variable with nc_put_var_*(grpid, varid, ...)

8. Close file with nc_close(ncid)
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Interaction Libraries

Parallel application

NetCDF

MPI-IO

Storage device/array

HDF5

LustreKernel
space

User
space

• Data transformation
• Transport through all layers
• Loss of information

• Complex interaction
• Optimizations and workarounds on all layers
• Information about other layers
• Analysis is complex

• Convenience vs. performance
• Structured data in application
• Byte stream in POSIX

Michael Kuhn Storage and I/O 32 / 41



Introduction and Motivation

Storage Devices and Arrays

File Systems

Parallel Distributed File Systems

Libraries

Future Developments

Summary

Michael Kuhn Storage and I/O 33 / 41



Storage Hierarchy Future Developments

• Current state
• L1, L2, L3 cache, RAM, SSD, HDD, tape

• Latency gap from RAM to SSD
• Huge performance loss if data is not in RAM

• Performance gap is worse on
supercomputers

• RAM is node-local, data is in parallel
distributed file system

• New technologies to close gap
• Non-volatile RAM (NVRAM),

NVM Express (NVMe) etc.

Level Latency
L1 cache ≈ 1 ns
L2 cache ≈ 5 ns
L3 cache ≈ 10 ns

RAM ≈ 100 ns

NVRAM ≈ 1,000 ns
NVMe ≈ 10,000 ns

SSD ≈ 100,000 ns
HDD ≈ 10,000,000 ns
Tape ≈ 50,000,000,000 ns

Table 2: Latencies [4, 3]
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Storage Hierarchy.. . [1] Future Developments
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Storage Hierarchy.. . [2] Future Developments

• I/O nodes with burst bu�ers close to compute nodes
• Slower storage network to file system servers
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Burst Bu�ers [5] Future Developments
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DAOS Future Developments

• New holistic approach for I/O
• Distributed Application Object Storage (DAOS)

• Supports multiple storage models
• Arrays and records are base objects
• Objects contain arrays and records (key-array)
• Containers consist of objects, storage pools consist of containers

• Support for versioning
• Operations are executed in transactions
• Transactions are persisted as epochs

• Make use of modern storage technologies
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DAOS... [2] Future Developments

• I/O is typically performed synchronously
• Applications have to wait for slowest process, variations are normal
• File is only consistent a�er all processes have finished writing

• I/O should be completely asynchronous
• Eliminates waiting times, makes better use of resources
• Di�icult to define consistency, transactions and snapshots can be used
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Summary Summary

• Achieving high performance I/O is a complex task
• Many layers: storage devices, file systems, libraries etc.

• File systems organize data and metadata
• Modern file systems provide additional functionality

• Parallel distributed file systems allow e�icient access
• Data is distributed across multiple servers

• I/O libraries facilitate ease of use
• Exchangeability of data is an important factor

• New technologies will make the I/O stack more complex
• Future systems will o�er novel I/O approaches
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Declustered RAID [7] Backup



Declustered RAID.. . [7] Backup



SIONlib Backup

• Mainly exists to circumvent deficiencies in existing file systems
• On the one hand, problems with many files

• Low metadata performance but high data performance

• On the other hand, shared file access also problematic
• POSIX requires locks, access pattern very important

• O�ers e�icient access to process-local files
• Accesses are mapped to one or a few physical files
• Aligned to file system blocks/stripes

• Backwards-compatible and convenient to use
• Wrappers for fread and fwrite
• Opening and closing via special functions



ADIOS Backup

• ADIOS is heavily abstracted
• No byte- or element-based access
• Direct support for application data structures

• Designed for high performance
• Mainly for scientific applications
• Caching, aggregation, transformation etc.

• I/O configuration is specified via an XML file
• Describes relevant data structures
• Can be used to generate code automatically

• Developers specify I/O on a high abstraction level
• No contact to middleware or file system



ADIOS.. . Backup

1 <adios-config host-language="C">
2 <adios-group name="checkpoint">
3 <var name="rows" type="integer"/>
4 <var name="columns" type="integer"/>
5 <var name="matrix" type="double" dimensions="rows,columns"/>
6 </adios-group>
7 <method group="checkpoint" method="MPI"/>
8 <buffer size-MB="100" allocate-time="now"/>
9 </adios-config>

• Data is combined in groups

• I/O methods can be specified per group

• Bu�er sizes etc. can be configured
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