
Storage and I/O

Hardware Architecture of HPC Systems

Michael Kuhn
michael.kuhn@informatik.uni-hamburg.de

2019-11-26

Scientific Computing
Department of Informatics
Universität Hamburg
https://wr.informatik.uni-hamburg.de

mailto:michael.kuhn@informatik.uni-hamburg.de
https://wr.informatik.uni-hamburg.de


About Us: Scientific Computing (Wissenscha�liches Rechnen)

• High Performance Computing

• Storage and Parallel I/O

• Data Reduction Techniques

• Middleware Optimization

• Alternative I/O Interfaces

• Cost and Energy E�iciency
We are an Intel Parallel Computing Center for Lustre

(“Enhanced Adaptive Compression in Lustre”)

Michael Kuhn Storage and I/O 1 / 41



Introduction and Motivation

Storage Devices and Arrays

File Systems

Parallel Distributed File Systems

Libraries

Future Developments

Summary

Michael Kuhn Storage and I/O 2 / 41



Computation and I/O Introduction and Motivation

• Parallel applications run on multiple nodes
• Communication via MPI

• Computation is only one part of applications
• Input data has to be read
• Output data has to be written
• Example: checkpoints

• Processors require data fast
• Caches should be used optimally
• Additional latency due to I/O and network

Level Latency
L1 cache ≈ 1 ns
L2 cache ≈ 5 ns
L3 cache ≈ 10 ns

RAM ≈ 100 ns
InfiniBand ≈ 500 ns

Ethernet ≈ 100,000 ns
SSD ≈ 100,000 ns

HDD ≈ 10,000,000 ns

Table 1: Latencies [4, 3]

Michael Kuhn Storage and I/O 3 / 41



Computation and I/O.. . Introduction and Motivation

Application

Libraries

Storage device/array

Parallel distributed file system

File system

Pe
rf

or
m

an
ce

 a
na

ly
si

s

Op
tim

iz
at

io
ns

Da
ta

 re
du

ct
io

n

• I/O is o�en responsible for performance problems
• High latency causes idle processors
• I/O is o�en still serial, limiting throughput

• I/O stack is layered
• Many di�erent components are involved in accessing data
• One unoptimized layer can significantly decrease performance

Michael Kuhn Storage and I/O 4 / 41



Introduction and Motivation

Storage Devices and Arrays

File Systems

Parallel Distributed File Systems

Libraries

Future Developments

Summary

Michael Kuhn Storage and I/O 5 / 41



Hard Disk Drives Storage Devices and Arrays

• First HDD: 1956
• IBM 350 RAMAC (3.75 MB, 8.8 KB/s,

1,200 RPM)

• HDD development
• Capacity: 100× every 10 years
• Throughput: 10× every 10 years

Figure 1: HDD development [9]
Michael Kuhn Storage and I/O 6 / 41



Solid-State Drives Storage Devices and Arrays

• Benefits
• Read throughput: factor of 15
• Write throughput: factor of 10
• Latency: factor of 100
• Energy consumption: factor of 1–10

• Drawbacks
• Price: factor of 10
• Write cycles: 10,000–100,000
• Complexity

• Di�erent optimal access sizes for reads and writes
• Address translation, thermal issues etc.

Michael Kuhn Storage and I/O 7 / 41



RAID Storage Devices and Arrays

• Storage arrays for higher capacity, throughput and reliability
• Proposed in 1988 at the University of California, Berkeley

• Redundant Array of Inexpensive Disks
• Today: Redundant Array of Independent Disks

• Capacity
• Storage array can be addressed like a single, large device

• Throughput
• All storage devices can contribute to the overall throughput

• Reliability
• Data can be stored redundantly to survive hardware failures
• Devices usually have same age, fabrication defects within same batch

Michael Kuhn Storage and I/O 8 / 41



RAID.. . Storage Devices and Arrays

• Five di�erent variants initially
• RAID 1: mirroring
• RAID 2/3: bit/byte striping
• RAID 4: block striping
• RAID 5: block striping with distributed parity

• New variants have been added
• RAID 0: striping
• RAID 6: block striping with double parity

Michael Kuhn Storage and I/O 9 / 41



RAID 1 Storage Devices and Arrays

• Improved reliability via mirroring
• Advantages

• One device can fail without losing data
• Read performance can be improved

• Disadvantages
• Capacity requirements and costs are doubled
• Write performance equals that of a single device

A4
A3
A2
A1

A4
A3
A2
A1

RAID 1

Disk 0 Disk 1

Figure 2: RAID 1: Mirroring [10]

Michael Kuhn Storage and I/O 10 / 41



RAID 5 Storage Devices and Arrays

• Improved reliability via parity
• Typically simple XOR

• Advantages
• Performance can be improved
• Requests can be processed in parallel
• Load is distributed across all devices

RAID 5

Dp

C1
B1
A1

Disk 0

D1
Cp

B2
A2

Disk 1

D2
C2
Bp

A3

Disk 2

D3
C3
B3
Ap

Disk 3

Figure 3: RAID 5: Block striping with distributed parity [10]

Michael Kuhn Storage and I/O 11 / 41



RAID 5.. . Storage Devices and Arrays

• Data can be reconstructed
easily due to XOR

• ?A = A1 ⊕ A2 ⊕ Ap,
?B = B1 ⊕ B2 ⊕ B3, . . .

• Problems
• Read errors on other devices
• Duration (30 min in 2004,

13–14 h in 2019 for HDDs)
• New approaches like

declustered RAID

RAID 5

Dp

C1
B1
A1

Disk 0

D1
Cp

B2
A2

Disk 1

?D

?C

?B

?A

Disk 2

D3
C3
B3
Ap

Disk 3

Figure 4: RAID 5: Reconstruction [10]

Michael Kuhn Storage and I/O 12 / 41



Performance Assessment Storage Devices and Arrays

• Di�erent performance criteria
• Data throughput (photo/video editing, numerical applications)
• Request throughput (databases, metadata management)

• Appropriate hardware
• Data throughput

• HDDs: 150–250 MB/s, SSDs: 0.5–3.5 GB/s

• Request throughput
• HDDs: 75–100 IOPS (7,200 RPM), SSDs: 90,000–600,000 IOPS

• Appropriate configuration
• Small blocks for data, large blocks for requests
• Partial block/page accesses can reduce performance

Michael Kuhn Storage and I/O 13 / 41



Introduction and Motivation

Storage Devices and Arrays

File Systems

Parallel Distributed File Systems

Libraries

Future Developments

Summary

Michael Kuhn Storage and I/O 14 / 41



Overview File Systems

• File systems provide structure
• Typically files and directories
• Hierarchical organization

• Other approaches: tagging

• Management of data and metadata
• Block allocation
• Access permissions, timestamps etc.

• File systems use underlying storage devices or arrays

Michael Kuhn Storage and I/O 15 / 41



File SystemObjects File Systems

• User vs. system view
• Users see files and directories
• System manages inodes

• Relevant for stat etc.

• Files
• Contain data as byte arrays
• Can be read and written (explicitly)
• Can be mapped to memory (implicit)

• Directories
• Contain files and directories
• Structures the namespace

Michael Kuhn Storage and I/O 16 / 41



I/O Interfaces File Systems

• Requests are realized through I/O interfaces
• Forwarded to the file system

• Di�erent abstraction levels
• Low-level functionality: POSIX etc.
• High-level functionality: NetCDF etc.

• Initial access via path
• A�erwards access via file descriptor (few

exceptions)

• Functions are located in libc
• Library executes system calls

1 fd = open("/path/to/file", ...);
2 nb = write(fd, data,
3 sizeof(data));
4 rv = close(fd);
5 rv = unlink("/path/to/file");

Michael Kuhn Storage and I/O 17 / 41



Virtual File System (Switch) File Systems

• Central file system component in the kernel
• Sets file system structure and interface

• Forwards applications’ requests based on path
• Enables supporting multiple di�erent file systems

• Applications are still portable due to POSIX

• POSIX: standardized interface for all file systems
• Syntax defines available operations and their parameters

• open, close, creat, read, write, lseek, chmod, chown, stat etc.

• Semantics defines operations’ behavior
• write: “POSIX requires that a read(2) which can be proved to occur a�er a write() has
returned returns the new data. Note that not all filesystems are POSIX conforming.”

Michael Kuhn Storage and I/O 18 / 41



Virtual File System (Switch). . . [8] File Systems

Applications (processes)

VFS

malloc

BIOs (block I/Os)

The Linux Storage Stack Diagram
http://www.thomas-krenn.com/en/wiki/Linux_Storage_Stack_Diagram

Created by Werner Fischer and Georg Schönberger
License: CC-BY-SA 3.0, see http://creativecommons.org/licenses/by-sa/3.0/

ext2 ext3

btrfs

ext4 xfs

ifs iso9660
...

NFS coda
Network FS

gfs ocfs

smbfs ...

Pseudo FS Special
purpose FSproc sysfs

futexfs

usbfs ...

tmpfs ramfs

devtmpfs
pipefs

network

mmap
(anonymous pages)
  

Block-based FS

re
a
d

(2
)

w
ri

te
(2

)

o
p

e
n
(2

)

st
a
t(

2
)

ch
m

o
d

(2
)

..
.

Page
cache

mdraid
...

stackable

Devices on top of “normal”
block devices drbd

(optional)

LVM
BIOs (block I/Os)

ceph

struct bio
- sector on disk
 - bio_vec cnt
- bio_vec index
- bio_vec list

- sector cnt
 

Direct I/O
(O_DIRECT)

device mapper
dm-crypt dm-mirror

dm-thindm-cache bcache

unionfs FUSE

dm-raid

ecryptfs

Stackable FS

overlayfs

userspace (e.g. sshfs)

dm-delay

Michael Kuhn Storage and I/O 19 / 41



Modern File Systems File Systems

• File system demands are growing
• Data integrity, storage management, convenience functionality

• Error rate for SATA HDDs: 1 in 1014 to 1015 bits [6]
• That is, one bit error per 12.5–125 TB
• Additional bit errors in RAM, controller, cable, driver etc.

• Error rate can be problematic
• Amount can be reached in daily use
• Bit errors can occur in the superblock

• File system does not have knowledge about storage array
• Knowledge is important for performance
• For example, special options for ext4

Michael Kuhn Storage and I/O 20 / 41



Introduction and Motivation

Storage Devices and Arrays

File Systems

Parallel Distributed File Systems

Libraries

Future Developments

Summary

Michael Kuhn Storage and I/O 21 / 41



Overview Parallel Distributed File Systems

• Parallel file systems
• Allow parallel access to shared resources
• Access should be as e�icient as possible

• Distributed file systems
• Data and metadata is distributed across multiple servers
• Single servers do not have a complete view

• Naming is inconsistent
• O�en just “parallel file system” or “cluster file system”

Data

Clients

Server

File

Michael Kuhn Storage and I/O 22 / 41



Architecture Parallel Distributed File Systems

• Access via I/O interface
• Typically standardized,

frequently POSIX

• Interface consists of syntax
and semantics

• Syntax defines operations,
semantics defines behavior

• Data and metadata servers
• Di�erent access patterns

Network

Clients

MDSs
MDTs

OSSs
OSTs

Michael Kuhn Storage and I/O 23 / 41



Semantics Parallel Distributed File Systems

• POSIX has strong consistency/coherence requirements
• Changes have to be visible globally a�er write
• I/O should be atomic

• POSIX for local file systems
• Requirements easy to support due to VFS

• Contrast: Network File System (NFS)
• Same syntax, di�erent semantics

• Session semantics
• Changes only visible to other clients a�er session ends
• closewrites changes and returns potential errors

Michael Kuhn Storage and I/O 24 / 41



Data Distribution Parallel Distributed File Systems

Blocks

Server

Stripes

B1B0 B5 B6B3 B4B2 B7

B1

B7B5 B6

B3B2B0B4

• File is split into blocks, distributed across servers
• In this case, with a round-robin distribution

• Distribution does not have to start at first server
• Allows data and load to be distributed evenly

Michael Kuhn Storage and I/O 25 / 41



Performance Parallel Distributed File Systems

• 2009: Blizzard (DKRZ, GPFS)
• Computation: 158 TFLOPS
• Capacity: 7 PB
• Throughput: 30 GB/s

• 2015: Mistral (DKRZ, Lustre)
• Computation: 3.6 PFLOPS
• Capacity: 60 PB
• Throughput: 450 GB/s (5.9 GB/s per node)
• IOPS: 400,000 operations/s

• 2012: Titan (ORNL, Lustre)
• Computation: 17.6 PFLOPS
• Capacity: 40 PB
• Throughput: 1.4 TB/s

• 2019: Summit (ORNL, Spectrum Scale)
• Computation: 148.6 PFLOPS
• Capacity: 250 PB
• Throughput: 2.5 TB/s

Michael Kuhn Storage and I/O 26 / 41



Introduction and Motivation

Storage Devices and Arrays

File Systems

Parallel Distributed File Systems

Libraries

Future Developments

Summary

Michael Kuhn Storage and I/O 27 / 41



Overview Libraries

• Low-level interfaces can be used for parallel I/O
• They are typically not very convenient for developers

• Additional problems
• Exchangeability of data, complex programming, performance

• Libraries o�er additional functionality
• Self-describing data, internal structuring, abstract I/O

• Alleviating existing problems
• SIONlib (performance)
• NetCDF, HDF (exchangeability)
• ADIOS (abstract I/O)

Michael Kuhn Storage and I/O 28 / 41



NetCDF Libraries

• Developed by Unidata Program Center
• University Corporation for Atmospheric Research

• Mainly used for scientific applications
• Especially in climate science, meteorology and oceanography

• Consists of libraries and data formats
1. Classic format (CDF-1)
2. Classic format with 64 bit o�sets (CDF-2)
3. Classic format with full 64 bit support (CDF-5)
4. NetCDF-4 format

• Data formats are open standards
• CDF-1 and CDF-2 are international standards of the Open Geospatial Consortium

Michael Kuhn Storage and I/O 29 / 41



NetCDF.. . Libraries

• NetCDF supports groups and variables
• Groups contain variables, variables contain data
• Attributes can be attached to variables

• Supports multi-dimensional arrays
• char, byte, short, int, float and double
• NetCDF-4: ubyte, ushort, uint, int64, uint64 and string

• Dimensions can be sized arbitrarily
• Only one unlimited dimension with CDF-1, CDF-2 and CDF-5
• Multiple unlimited dimensions with NetCDF-4

Michael Kuhn Storage and I/O 30 / 41



NetCDF.. . Libraries

1. Create file with nc_create("file.nc", ..., &ncid)
• Parallel access with nc_create_par

2. Define dimension with nc_def_dim(ncid, "dim", ..., &dimid)

3. Define group with nc_def_grp(ncid, "group", &grpid)

4. Define variable with nc_def_var(grpid, "data", ..., &varid)

5. Write attribute with nc_put_att_*(grpid, varid, "attr", ...)
6. Leave define mode with nc_enddef(ncid)

• Performed implicitly with NetCDF-4 format
• Compression, endianness, fill values etc. can only be set on first definition

7. Write variable with nc_put_var_*(grpid, varid, ...)

8. Close file with nc_close(ncid)

Michael Kuhn Storage and I/O 31 / 41



NetCDF.. . Libraries

1. Create file with nc_create("file.nc", ..., &ncid)
• Parallel access with nc_create_par

2. Define dimension with nc_def_dim(ncid, "dim", ..., &dimid)

3. Define group with nc_def_grp(ncid, "group", &grpid)

4. Define variable with nc_def_var(grpid, "data", ..., &varid)

5. Write attribute with nc_put_att_*(grpid, varid, "attr", ...)
6. Leave define mode with nc_enddef(ncid)

• Performed implicitly with NetCDF-4 format
• Compression, endianness, fill values etc. can only be set on first definition

7. Write variable with nc_put_var_*(grpid, varid, ...)

8. Close file with nc_close(ncid)

Michael Kuhn Storage and I/O 31 / 41



NetCDF.. . Libraries

1. Create file with nc_create("file.nc", ..., &ncid)
• Parallel access with nc_create_par

2. Define dimension with nc_def_dim(ncid, "dim", ..., &dimid)

3. Define group with nc_def_grp(ncid, "group", &grpid)

4. Define variable with nc_def_var(grpid, "data", ..., &varid)

5. Write attribute with nc_put_att_*(grpid, varid, "attr", ...)
6. Leave define mode with nc_enddef(ncid)

• Performed implicitly with NetCDF-4 format
• Compression, endianness, fill values etc. can only be set on first definition

7. Write variable with nc_put_var_*(grpid, varid, ...)

8. Close file with nc_close(ncid)

Michael Kuhn Storage and I/O 31 / 41



NetCDF.. . Libraries

1. Create file with nc_create("file.nc", ..., &ncid)
• Parallel access with nc_create_par

2. Define dimension with nc_def_dim(ncid, "dim", ..., &dimid)

3. Define group with nc_def_grp(ncid, "group", &grpid)

4. Define variable with nc_def_var(grpid, "data", ..., &varid)

5. Write attribute with nc_put_att_*(grpid, varid, "attr", ...)
6. Leave define mode with nc_enddef(ncid)

• Performed implicitly with NetCDF-4 format
• Compression, endianness, fill values etc. can only be set on first definition

7. Write variable with nc_put_var_*(grpid, varid, ...)

8. Close file with nc_close(ncid)

Michael Kuhn Storage and I/O 31 / 41



NetCDF.. . Libraries

1. Create file with nc_create("file.nc", ..., &ncid)
• Parallel access with nc_create_par

2. Define dimension with nc_def_dim(ncid, "dim", ..., &dimid)

3. Define group with nc_def_grp(ncid, "group", &grpid)

4. Define variable with nc_def_var(grpid, "data", ..., &varid)

5. Write attribute with nc_put_att_*(grpid, varid, "attr", ...)

6. Leave define mode with nc_enddef(ncid)
• Performed implicitly with NetCDF-4 format
• Compression, endianness, fill values etc. can only be set on first definition

7. Write variable with nc_put_var_*(grpid, varid, ...)

8. Close file with nc_close(ncid)

Michael Kuhn Storage and I/O 31 / 41



NetCDF.. . Libraries

1. Create file with nc_create("file.nc", ..., &ncid)
• Parallel access with nc_create_par

2. Define dimension with nc_def_dim(ncid, "dim", ..., &dimid)

3. Define group with nc_def_grp(ncid, "group", &grpid)

4. Define variable with nc_def_var(grpid, "data", ..., &varid)

5. Write attribute with nc_put_att_*(grpid, varid, "attr", ...)
6. Leave define mode with nc_enddef(ncid)

• Performed implicitly with NetCDF-4 format
• Compression, endianness, fill values etc. can only be set on first definition

7. Write variable with nc_put_var_*(grpid, varid, ...)

8. Close file with nc_close(ncid)

Michael Kuhn Storage and I/O 31 / 41



NetCDF.. . Libraries

1. Create file with nc_create("file.nc", ..., &ncid)
• Parallel access with nc_create_par

2. Define dimension with nc_def_dim(ncid, "dim", ..., &dimid)

3. Define group with nc_def_grp(ncid, "group", &grpid)

4. Define variable with nc_def_var(grpid, "data", ..., &varid)

5. Write attribute with nc_put_att_*(grpid, varid, "attr", ...)
6. Leave define mode with nc_enddef(ncid)

• Performed implicitly with NetCDF-4 format
• Compression, endianness, fill values etc. can only be set on first definition

7. Write variable with nc_put_var_*(grpid, varid, ...)

8. Close file with nc_close(ncid)

Michael Kuhn Storage and I/O 31 / 41



NetCDF.. . Libraries

1. Create file with nc_create("file.nc", ..., &ncid)
• Parallel access with nc_create_par

2. Define dimension with nc_def_dim(ncid, "dim", ..., &dimid)

3. Define group with nc_def_grp(ncid, "group", &grpid)

4. Define variable with nc_def_var(grpid, "data", ..., &varid)

5. Write attribute with nc_put_att_*(grpid, varid, "attr", ...)
6. Leave define mode with nc_enddef(ncid)

• Performed implicitly with NetCDF-4 format
• Compression, endianness, fill values etc. can only be set on first definition

7. Write variable with nc_put_var_*(grpid, varid, ...)

8. Close file with nc_close(ncid)

Michael Kuhn Storage and I/O 31 / 41



Interaction Libraries

Parallel application

NetCDF

MPI-IO

Storage device/array

HDF5

LustreKernel
space

User
space

• Data transformation
• Transport through all layers
• Loss of information

• Complex interaction
• Optimizations and workarounds on all layers
• Information about other layers
• Analysis is complex

• Convenience vs. performance
• Structured data in application
• Byte stream in POSIX

Michael Kuhn Storage and I/O 32 / 41



Introduction and Motivation

Storage Devices and Arrays

File Systems

Parallel Distributed File Systems

Libraries

Future Developments

Summary

Michael Kuhn Storage and I/O 33 / 41



Storage Hierarchy Future Developments

• Current state
• L1, L2, L3 cache, RAM, SSD, HDD, tape

• Latency gap from RAM to SSD
• Huge performance loss if data is not in RAM

• Performance gap is worse on
supercomputers

• RAM is node-local, data is in parallel
distributed file system

• New technologies to close gap
• Non-volatile RAM (NVRAM),

NVM Express (NVMe) etc.

Level Latency
L1 cache ≈ 1 ns
L2 cache ≈ 5 ns
L3 cache ≈ 10 ns

RAM ≈ 100 ns

NVRAM ≈ 1,000 ns
NVMe ≈ 10,000 ns

SSD ≈ 100,000 ns
HDD ≈ 10,000,000 ns
Tape ≈ 50,000,000,000 ns

Table 2: Latencies [4, 3]

Michael Kuhn Storage and I/O 34 / 41



Storage Hierarchy Future Developments

• Current state
• L1, L2, L3 cache, RAM, SSD, HDD, tape

• Latency gap from RAM to SSD
• Huge performance loss if data is not in RAM

• Performance gap is worse on
supercomputers

• RAM is node-local, data is in parallel
distributed file system

• New technologies to close gap
• Non-volatile RAM (NVRAM),

NVM Express (NVMe) etc.

Level Latency
L1 cache ≈ 1 ns
L2 cache ≈ 5 ns
L3 cache ≈ 10 ns

RAM ≈ 100 ns
NVRAM ≈ 1,000 ns

NVMe ≈ 10,000 ns
SSD ≈ 100,000 ns

HDD ≈ 10,000,000 ns
Tape ≈ 50,000,000,000 ns

Table 2: Latencies [4, 3]

Michael Kuhn Storage and I/O 34 / 41



Storage Hierarchy.. . [1] Future Developments

Michael Kuhn Storage and I/O 35 / 41



Storage Hierarchy.. . [2] Future Developments

• I/O nodes with burst bu�ers close to compute nodes
• Slower storage network to file system servers

Michael Kuhn Storage and I/O 36 / 41



Burst Bu�ers [5] Future Developments

Michael Kuhn Storage and I/O 37 / 41



DAOS Future Developments

• New holistic approach for I/O
• Distributed Application Object Storage (DAOS)

• Supports multiple storage models
• Arrays and records are base objects
• Objects contain arrays and records (key-array)
• Containers consist of objects, storage pools consist of containers

• Support for versioning
• Operations are executed in transactions
• Transactions are persisted as epochs

• Make use of modern storage technologies

Michael Kuhn Storage and I/O 38 / 41



DAOS... [2] Future Developments

• I/O is typically performed synchronously
• Applications have to wait for slowest process, variations are normal
• File is only consistent a�er all processes have finished writing

• I/O should be completely asynchronous
• Eliminates waiting times, makes better use of resources
• Di�icult to define consistency, transactions and snapshots can be used

Michael Kuhn Storage and I/O 39 / 41



Introduction and Motivation

Storage Devices and Arrays

File Systems

Parallel Distributed File Systems

Libraries

Future Developments

Summary

Michael Kuhn Storage and I/O 40 / 41



Summary Summary

• Achieving high performance I/O is a complex task
• Many layers: storage devices, file systems, libraries etc.

• File systems organize data and metadata
• Modern file systems provide additional functionality

• Parallel distributed file systems allow e�icient access
• Data is distributed across multiple servers

• I/O libraries facilitate ease of use
• Exchangeability of data is an important factor

• New technologies will make the I/O stack more complex
• Future systems will o�er novel I/O approaches

Michael Kuhn Storage and I/O 41 / 41



Backup

References



Declustered RAID [7] Backup



Declustered RAID.. . [7] Backup



SIONlib Backup

• Mainly exists to circumvent deficiencies in existing file systems
• On the one hand, problems with many files

• Low metadata performance but high data performance

• On the other hand, shared file access also problematic
• POSIX requires locks, access pattern very important

• O�ers e�icient access to process-local files
• Accesses are mapped to one or a few physical files
• Aligned to file system blocks/stripes

• Backwards-compatible and convenient to use
• Wrappers for fread and fwrite
• Opening and closing via special functions



ADIOS Backup

• ADIOS is heavily abstracted
• No byte- or element-based access
• Direct support for application data structures

• Designed for high performance
• Mainly for scientific applications
• Caching, aggregation, transformation etc.

• I/O configuration is specified via an XML file
• Describes relevant data structures
• Can be used to generate code automatically

• Developers specify I/O on a high abstraction level
• No contact to middleware or file system



ADIOS.. . Backup

1 <adios-config host-language="C">
2 <adios-group name="checkpoint">
3 <var name="rows" type="integer"/>
4 <var name="columns" type="integer"/>
5 <var name="matrix" type="double" dimensions="rows,columns"/>
6 </adios-group>
7 <method group="checkpoint" method="MPI"/>
8 <buffer size-MB="100" allocate-time="now"/>
9 </adios-config>

• Data is combined in groups

• I/O methods can be specified per group

• Bu�er sizes etc. can be configured



Backup

References



References

[1] Brent Gorda.HPC Storage Futures – A 5-Year Outlook.
http://lustre.ornl.gov/ecosystem-2016/documents/keynotes/
Gorda-Intel-keynote.pdf.

[2] Brent Gorda.HPC Technologies for Big Data.
http://www.hpcadvisorycouncil.com/events/2013/
Switzerland-Workshop/Presentations/Day_2/3_Intel.pdf.

[3] Jian Huang, Karsten Schwan, and Moinuddin K. Qureshi. Nvram-aware logging in
transaction systems. Proc. VLDB Endow., 8(4):389–400, December 2014.

[4] Jonas Bonér. Latency Numbers Every Programmer Should Know.
https://gist.github.com/jboner/2841832.

http://lustre.ornl.gov/ecosystem-2016/documents/keynotes/Gorda-Intel-keynote.pdf
http://lustre.ornl.gov/ecosystem-2016/documents/keynotes/Gorda-Intel-keynote.pdf
http://www.hpcadvisorycouncil.com/events/2013/Switzerland-Workshop/Presentations/Day_2/3_Intel.pdf
http://www.hpcadvisorycouncil.com/events/2013/Switzerland-Workshop/Presentations/Day_2/3_Intel.pdf
https://gist.github.com/jboner/2841832


References .. .

[5] Mike Vildibill. Advanced IO Architectures. http:
//storageconference.us/2015/Presentations/Vildibill.pdf.

[6] Seagate. Desktop HDD. http://www.seagate.com/www-content/
datasheets/pdfs/desktop-hdd-8tbDS1770-9-1603DE-de_DE.pdf.

[7] Veera Deenadhayalan. General Parallel File System (GPFS) Native RAID.
https://www.usenix.org/legacy/events/lisa11/tech/slides/
deenadhayalan.pdf.

[8] Werner Fischer and Georg Schönberger. Linux Storage Stack Diagramm.
https://www.thomas-krenn.com/de/wiki/Linux_Storage_Stack_
Diagramm.

http://storageconference.us/2015/Presentations/Vildibill.pdf
http://storageconference.us/2015/Presentations/Vildibill.pdf
http://www.seagate.com/www-content/datasheets/pdfs/desktop-hdd-8tbDS1770-9-1603DE-de_DE.pdf
http://www.seagate.com/www-content/datasheets/pdfs/desktop-hdd-8tbDS1770-9-1603DE-de_DE.pdf
https://www.usenix.org/legacy/events/lisa11/tech/slides/deenadhayalan.pdf
https://www.usenix.org/legacy/events/lisa11/tech/slides/deenadhayalan.pdf
https://www.thomas-krenn.com/de/wiki/Linux_Storage_Stack_Diagramm
https://www.thomas-krenn.com/de/wiki/Linux_Storage_Stack_Diagramm


References .. .

[9] Wikipedia.Hard disk drive.
http://en.wikipedia.org/wiki/Hard_disk_drive.

[10] Wikipedia. Standard RAID levels.
http://en.wikipedia.org/wiki/Standard_RAID_levels.

http://en.wikipedia.org/wiki/Hard_disk_drive
http://en.wikipedia.org/wiki/Standard_RAID_levels

	Introduction and Motivation
	

	Storage Devices and Arrays
	

	File Systems
	

	Parallel Distributed File Systems
	

	Libraries
	

	Future Developments
	

	Summary
	

	Appendix
	Backup
	

	References
	



