Domain-Specific Programming for Climate and
Weather

Nabeeh Jumah, Julian Kunkel

Scientific Computing
Department of Informatics
University of Hamburg

SPPEXA Final Symposium 2019
Dresden, Germany
23-10-2019

Introduction gher-Level Language Extensions Optimization

[Yele) 000000 000!

Project AIMES

Advanced Computation and 1/0 Methods for
Earth-System Simulations

& IMES

& WVOD~0bomwd
m Enhance programmability and performance-portability
m Overcome storage limitations

m Shared benchmark for icosahedral models

SPPEXA
2=

Funded within the DFG priority programme

Nabeeh Jumah Universitat Hamburg 2/19

Introduction el Language Extensions Conclusion

[e] e}

Earth System Modeling

m Models apply numerical methods to simulate earth system

m Hundreds or thousands of stencils are executed
m A sequence of stencils is applied each time step

Complexity and Variation Across Models

m Problem domain and grids

m Dimensions
m Structure of grids and connectivity
m Field Localization: staggered vs. collocated grids

m Stencil variability
m Dimensions
m Point count
m Shape
m Operations

Nabeeh Jumah Universitat Hamburg 3/19

Introduction anguage Extensions Optimization Conclusion

[ele] J

Earth-System Modeling

Performance & Modeling using General-Purpose Languages

m Semantical aspects limit optimization by compilers
m Manual optimization is challenging

m The complexity of the architectural features

m The diversity of the architectures

m Various tools and programming models
m Code quality is harmed: duplication & complexity
m Main considerations arise

m Code readability and maintainability
m Developers productivity
m Performance-portability

Nabeeh Jumah Universitat Hamburg 4/19

Introduction Higher-Level Language Extensions Opti Conclusion
000 ©00000 00 0

Our DSL Approach

m Keep using preferred modeling language
m Extend the modeling language grammar
m Based on scientific concepts
m Hiding machine details

m Use semantics of extensions to guide optimization

Separation of Concerns

m Domain scientists formulate scientific problem in source code

m Scientific programmers write target-specific configurations

m Translate code and apply optimization by light-weight tools
m Extract semantics from source code
m Use target-specific configuration within separate files
m Match semantics with config to apply transformations

m Allow users to adapt extensions to model needs
Nabeeh Jumah Universitat Hamburg 5/19

Introduction Higher-Level Language Extensions a Conclusion

000000

User-Controlled Code Translation

m User-defined language extensions

m Syntax
m Behavior

m Maximize semantical impact

m Example spaecifier group definition:
SPECIFIER(dim=3D|2D)
m Defines a dimension specifier group that informs whether the
variable represents a 2D or 3D field

m Example access operator definition:
above(): height=$height+1

m Allows access to the element directly above the current

Nabeeh Jumah Universitat Hamburg 6/19

uage Extensions

User
Options

S25
translation®,
Tool ’

6. Write code

Ne.Code

)

Translation
Configuration

Refer to: Performance Portability of Earth System Models with User-Controlled GGDML code Translation
(Jumah and Kunkel)
DOI: 10.1007/978-3-030-02465-9_50

Nabeeh Jumah Universitat Hamburg 7/19

r-Level Language Extensions

000000

GGDML

GGDML

m GGDML:General Grid Definition and Manipulation Language
m Grid definition

m Field declaration

m Field data access/update
m lterators
m Access operators

m Stencil operations

GGDML: Icosahedral Models Language Extensions (Nabeeh Jumah et. al)
DOI: 10.15379/2410-2938.2017.04.01.01

Nabeeh Jumah Universitat Hamburg 8/19

Introduction Higher-Level Language Extensions Opti] Conclusion
000 000000 00

An Example GGDML Code

foreach e in grid {
f_Fle] = f_Ule]l * (f_H[e.east_cell ()] +
f_Hle.west_cell()]) / 2.0;
}

foreach e in grid {

f_G[e]l = f_V[e] * (f_H[e.north_cell ()] +
f_H[e.south_cell()]) / 2.0;

Now apply the transformation for a configuration

m OpenMP, MPI/GPU, MP1/OpenMP, ...
m Here: for OpenMP only

Nabeeh Jumah Universitat Hamburg 9/19

Introduction Higher-Level Language Extensions

Conclusion
[e]e] } O

Resulting Code for OpenMP

for (size_t blk_start = (0); blk_start < (GRIDX + 1);
blk_start += 20000) {

#pragma omp parallel for num_threads (36)
for (size_t YD_index = (0); YD_index < (local_Y_Eregion);
YD_index++) {
#pragma omp simd
for (size_t XD_index = blk_start; XD_index < blk_end;
XD_index++) {
f_F[YD_index] [XD_index] =
f_U[LYD_index J[XD_index] *
f_H[YD_index J[XD_index] +
f_H[YD_index J[XD_index -11) /2.0;
f_G[YD_index] [XD_index] =

f_V[YD_index J[XD_index 1 * (
f_H[YD_index J[XD_index 1+
f_H[YD_index -1]1[XD_index 1) /2.0

Nabeeh Jumah Universitat Hamburg 10/19

Introduction anguage Extensions Optimization Conclusion

00

Inter-Kernel Optimization

m Inter-kernel optimization opportunities (e.g., cache reuse)
m Use tools to translate GGDML code and apply optimization

m Allow scientists to control the process

User-Controlled Tool-Supported Procedure

m Automatize the time consuming and complicated parts
m Tools analyze code
m Prepare a list of possible fusions
m Apply fusions selected by scientists

m Maximize possibilities by inter-module optimization

m Calls are analyzed across code files by tools
m A list of possible call inlinings is prepared
m Tools inline calls selected by scientists

Nabeeh Jumah Universitat Hamburg 11/19

Experimental Results for GPU and CPU Code

Before merge After merge
Theoretical Measured Measured

. Memory memor: memor: .\

Architecture bandwidyth throughgut GFLOPS through]z/ut GFLOPS
(GB/s) (GB/s) (GB/s)

Broadwell s 62 24 60 31
P100 GPU 500 380 149 389 221
NEC Aurora 1,200 961 322 911 453

Refer to: Optimizing Memory Bandwidth Efficiency with User-Preferred Kernel Merge (Jumah and Kunkel)
Test code available at https://github.com/aimes-project/ShallowWaterEquations

Nabeeh Jumah Universitat Hamburg 12/19

https://github.com/aimes-project/ShallowWaterEquations

/el Language Extensions Optimization

0O0@00000

Multi-Node Parallelization

m How is the problem domain decomposed

m Which operations need which data
m Where to find that data

m How to make data available for computation

Explicit Memory Data Access

m Developers take care

m Application code includes necessary details

m Map global points to local (subdomain mapping)
m Which data on which node
m Indices to access local memory on each node

Nabeeh Jumah Universitat Hamburg 13/19

Introduction el Language Extensions Optimization Conclusion

00080000

Our Approach — MODA

m Source code with scientific concepts
m Code unaware of hardware

m Single vs. multiple nodes
m Memory; shared vs. distributed, host vs. device ...
m Processors; multi-core vs. GPU v.s VE vs. ...

Memory-Oblivious Data Access (MODA)

m Get rid of explicit tracking of data location

m No node location
m No array indices

m Alternative indices

m Scientific basis; e.g. spatial relationships
m Unaware of underlying memory and hardware

Nabeeh Jumah Universitat Hamburg 14 /19

Experimental Results

Figure: Scalabilty experiments (Triangular unstructured grid)

o
S

(o]

Q

&2

& 100~

k) .

[scaling
[0

8 —o— strong
5 —o— weak
£

g

=

fo)

a

0 o 20 30 40 50
MPI Processes

Refer to: Performance Portability of Earth System Models with User-Controlled GGDML code Translation
(Jumah and Kunkel)
DOI: 10.1007/978-3-030-02465-9_50

Nabeeh Jumah Universitat Hamburg

15/19

Experimental Results

Figure: Scalability experiments (Structured grid)
Shallow water equation solver

Architecture
9000 —o— Broadwell
- P100
4
6000 -
Q
[y
(O]
3000
04
0 25 50 75 100

Nodes

Refer to: Scalable Parallelization of Stencils using MODA (Jumah and Kunkel)
Test code available at https://github.com/aimes-project/ShallowWaterEquations

Nabeeh Jumah Universitat Hamburg

16 /19

https://github.com/aimes-project/ShallowWaterEquations

Introduction gher-Level Language Extensions Optimization Conclusion

Memory Layout, Loop Nests, & Vectorization

m MODA hides actual data location in memory
m Our techniques allow flexible layout transformations

m Simple index intechange
m Or whatever formula to define data location

m Loop order control allows optimal access besides data layout

m Vectorization needs a corresponding data layout & loop order

Nabeeh Jumah Universitat Hamburg 17/19

1age Extensions

Memory Layout, Loop Nests, & Vectorization

Table: Data layout experiments (Triangular unstructured grid)

[Performance (GFLOPS) |
| Serial T PI00 [VI00O |
[1.97 | 220.38 | 85486]
| 1.99 | 40815 | 1240.19 |

3D
[3D-1D

Refer to: Performance Portability of Earth System Models with User-Controlled GGDML code Translation
(Jumah and Kunkel)
DOI: 10.1007/978-3-030-02465-9_50

Table: Array-stride experiments (Structured grid)

GFLOPS
. . Short .
Architecture Scattered . Contiguous
distance
Broadwell 3 13 25
NEC Aurora 80 161 322

Refer to: Automatic Vectorization of Stencil Codes with the GGDML Language Extensions (Jumah and Kunkel)
DOI: http://doi.acm.org/10.1145/3303117.3306160
Test code available at https://github.com/aimes-project/ShallowWaterEquations

Nabeeh Jumah Universitat Hamburg 18/19

https://github.com/aimes-project/ShallowWaterEquations

Introduction el Language Extensions Optimiza Conclusion

Conclusion

m GGDML provides semantics to drive optimization
m GGDML simplifies model development

m Scientists write scientific code
m Optimization is driven by separate configuration files

m Using GGDML we could apply differnt optimization
techniques

m Kernel optimizations
m Inter-kernel optimizations
m Multi-node parallelization

m Using GGDML exactly one code version is written

m GGDML code is performance portable

Nabeeh Jumah Universitat Hamburg 19/19

Acknowledgement

DFG (German Research Foundation)
German Climate Computing Center (DKRZ)
Swiss National Supercomputing Center (CSCS)

Erlangen regional computing center (RRZE) at
Friedrich-Alexander-Universitat Erlangen-Nirnberg (FAU)

NEC Deutschland
m Prof. John Thuburn, University of Exeter

Nabeeh Jumah Universitat Hamburg 20/19

	Introduction
	Introduction

	Higher-Level Language Extensions
	The Solution
	Our Domain-specific Language Extensions

	Optimization
	Inter-Kernel Optimization
	Scalability
	Memory Layout and Other Optimizations

	Conclusion
	Conclusion

	Appendix

