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Project AIMES

Advanced Computation and I/O Methods for
Earth-System Simulations

Enhance programmability and performance-portability
Overcome storage limitations
Shared benchmark for icosahedral models

Funded within the DFG priority programme
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Earth System Modeling

Models apply numerical methods to simulate earth system
Hundreds or thousands of stencils are executed
A sequence of stencils is applied each time step

Complexity and Variation Across Models

Problem domain and grids
Dimensions
Structure of grids and connectivity
Field Localization: staggered vs. collocated grids

Stencil variability
Dimensions
Point count
Shape
Operations
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Earth-System Modeling

Performance & Modeling using General-Purpose Languages

Semantical aspects limit optimization by compilers
Manual optimization is challenging

The complexity of the architectural features
The diversity of the architectures
Various tools and programming models

Code quality is harmed: duplication & complexity
Main considerations arise

Code readability and maintainability
Developers productivity
Performance-portability
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Our DSL Approach

Keep using preferred modeling language
Extend the modeling language grammar

Based on scientific concepts
Hiding machine details

Use semantics of extensions to guide optimization

Separation of Concerns

Domain scientists formulate scientific problem in source code
Scientific programmers write target-specific configurations

Translate code and apply optimization by light-weight tools
Extract semantics from source code
Use target-specific configuration within separate files
Match semantics with config to apply transformations

Allow users to adapt extensions to model needs
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User-Controlled Code Translation

User-defined language extensions
Syntax
Behavior

Maximize semantical impact

Examples

Example spaecifier group definition:
SPECIFIER(dim=3D|2D)

Defines a dimension specifier group that informs whether the
variable represents a 2D or 3D field

Example access operator definition:
above(): height=$height+1

Allows access to the element directly above the current
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Translation process

Refer to: Performance Portability of Earth System Models with User-Controlled GGDML code Translation
(Jumah and Kunkel)

DOI: 10.1007/978-3-030-02465-9_50
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GGDML

GGDML

GGDML:General Grid Definition and Manipulation Language
Grid definition
Field declaration
Field data access/update

Iterators
Access operators

Stencil operations
GGDML: Icosahedral Models Language Extensions (Nabeeh Jumah et. al)
DOI: 10.15379/2410-2938.2017.04.01.01
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An Example GGDML Code

foreach e in grid {

f_F[e] = f_U[e] * (f_H[e. east_cell ()] +
f_H[e. west_cell () ]) / 2.0;

}

foreach e in grid {

f_G[e] = f_V[e] * (f_H[e. north_cell ()] +
f_H[e. south_cell () ]) / 2.0;

}

Now apply the transformation for a configuration

OpenMP, MPI/GPU, MPI/OpenMP, ...
Here: for OpenMP only
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Resulting Code for OpenMP

for ( size_t blk_start = (0); blk_start < ( GRIDX + 1);
blk_start += 20000) {

...
# pragma omp parallel for num_threads (36)

for ( size_t YD_index = (0); YD_index < ( local_Y_Eregion );
YD_index ++) {

# pragma omp simd
for ( size_t XD_index = blk_start ; XD_index < blk_end ;

XD_index ++) {
f_F[ YD_index ][ XD_index ] =

f_U[ YD_index ][ XD_index ] * (
f_H[ YD_index ][ XD_index ] +
f_H[ YD_index ][ XD_index -1]) /2.0;

f_G[ YD_index ][ XD_index ] =
f_V[ YD_index ][ XD_index ] * (
f_H[ YD_index ][ XD_index ] +
f_H[ YD_index -1][ XD_index ]) /2.0;

}
}

}
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Inter-Kernel Optimization

Inter-kernel optimization opportunities (e.g., cache reuse)
Use tools to translate GGDML code and apply optimization
Allow scientists to control the process

User-Controlled Tool-Supported Procedure

Automatize the time consuming and complicated parts
Tools analyze code
Prepare a list of possible fusions
Apply fusions selected by scientists

Maximize possibilities by inter-module optimization
Calls are analyzed across code files by tools
A list of possible call inlinings is prepared
Tools inline calls selected by scientists
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Experimental Results for GPU and CPU Code

Before merge After merge

Architecture

Theoretical
Memory

bandwidth
(GB/s)

Measured
memory

throughput
(GB/s)

GFLOPS

Measured
memory

throughput
(GB/s)

GFLOPS

Broadwell 77 62 24 60 31
P100 GPU 500 380 149 389 221
NEC Aurora 1,200 961 322 911 453

Refer to: Optimizing Memory Bandwidth Efficiency with User-Preferred Kernel Merge (Jumah and Kunkel)
Test code available at https://github.com/aimes-project/ShallowWaterEquations
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Multi-Node Parallelization

Data Access

How is the problem domain decomposed
Which operations need which data
Where to find that data
How to make data available for computation

Explicit Memory Data Access

Developers take care
Application code includes necessary details

Map global points to local (subdomain mapping)
Which data on which node
Indices to access local memory on each node
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Our Approach – MODA

Source code with scientific concepts
Code unaware of hardware

Single vs. multiple nodes
Memory; shared vs. distributed, host vs. device ...
Processors; multi-core vs. GPU v.s VE vs. ...

Memory-Oblivious Data Access (MODA)

Get rid of explicit tracking of data location
No node location
No array indices

Alternative indices
Scientific basis; e.g. spatial relationships
Unaware of underlying memory and hardware
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Experimental Results

Figure: Scalabilty experiments (Triangular unstructured grid)

Refer to: Performance Portability of Earth System Models with User-Controlled GGDML code Translation
(Jumah and Kunkel)

DOI: 10.1007/978-3-030-02465-9_50
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Experimental Results

Figure: Scalability experiments (Structured grid)
Shallow water equation solver

Refer to: Scalable Parallelization of Stencils using MODA (Jumah and Kunkel)
Test code available at https://github.com/aimes-project/ShallowWaterEquations
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Memory Layout, Loop Nests, & Vectorization

MODA hides actual data location in memory
Our techniques allow flexible layout transformations

Simple index intechange
Or whatever formula to define data location

Loop order control allows optimal access besides data layout
Vectorization needs a corresponding data layout & loop order
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Memory Layout, Loop Nests, & Vectorization

Table: Data layout experiments (Triangular unstructured grid)
Performance (GFLOPS )
Serial P100 V100

3D 1.97 220.38 854.86
3D-1D 1.99 408.15 1240.19

Refer to: Performance Portability of Earth System Models with User-Controlled GGDML code Translation
(Jumah and Kunkel)

DOI: 10.1007/978-3-030-02465-9_50

Table: Array-stride experiments (Structured grid)
GFLOPS

Architecture Scattered
Short

distance
Contiguous

Broadwell 3 13 25
NEC Aurora 80 161 322

Refer to: Automatic Vectorization of Stencil Codes with the GGDML Language Extensions (Jumah and Kunkel)
DOI: http://doi.acm.org/10.1145/3303117.3306160

Test code available at https://github.com/aimes-project/ShallowWaterEquations
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Conclusion

GGDML provides semantics to drive optimization
GGDML simplifies model development

Scientists write scientific code
Optimization is driven by separate configuration files

Using GGDML we could apply differnt optimization
techniques

Kernel optimizations
Inter-kernel optimizations
Multi-node parallelization

Using GGDML exactly one code version is written
GGDML code is performance portable
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