
Introduction Higher-Level Language Extensions Experiments Conclusion

Exploiting Architectural Capabilities using Higher
Semantics

Nabeeh Jumah, Julian Kunkel

Scientific Computing
Department of Informatics
University of Hamburg

NEC User Group Meeting
Germany, Kiel
22-05-2019

Introduction Higher-Level Language Extensions Experiments Conclusion

Introduction

Goals

Optimal use of architectural features
cores, vector units, caches, memory bandwidth, ...

Portability to different architectures and machines.
Scalability over multiple nodes.

Challenges

Needed expertise for optimizing code for hardware features.
Different approaches and designs in different architectures.

Nabeeh Jumah Universität Hamburg 2 / 20

Introduction Higher-Level Language Extensions Experiments Conclusion

Different Architectures ... Different Features

Broadwell processor
18 cores (36 threads); 45MB shared SmartCache for L3
Max memory bandwidth is 76.8 GB/s
Intel(R) AVX2 instruction set extensions

Registers of length 256 bits
Vector operations are applied with those vector lengths.

SX-Aurora vector engine
8 cores; 16MB shared last level cache
Max memory bandwidth is 1.2 TB/s
Each register holds 256 entries (64 bits).
Three FMA pipes per core

Each handles 32 double precision FP operations per cycle
Nabeeh Jumah Universität Hamburg 3 / 20

Introduction Higher-Level Language Extensions Experiments Conclusion

Development Using General-Purpose Languages

The semantical nature of the languages limits the compilers
ability to exploit some optimization opportunities
Scientists need to manually optimize code
Challenging effort

The complexity of the architectural features
The diversity of the architectures
Various tools and programming models

Code optimized for one architecture is suboptimal on another
Code quality

Code duplication for different architectures
Code maintainability

Nabeeh Jumah Universität Hamburg 4 / 20

Introduction Higher-Level Language Extensions Experiments Conclusion

Project AIMES

Advanced Computation and I/O Methods for
Earth-System Simulations

Enhance programmability and performance-portability
Overcome storage limitations
Shared benchmark for icosahedral models

Funded within the DFG priority programme

Nabeeh Jumah Universität Hamburg 5 / 20

Introduction Higher-Level Language Extensions Experiments Conclusion

Moving to Higher-Level Semantics

Modeling Language Extensibility

Bypass the shortcomings of the general-purpose languages
Still use the preferred modeling language
Extend the modeling language

Based on scientific concepts
Hiding lower level details (e.g., architecture, memory layout)

The semantical nature of the extensions allows optimization

Projected Benefits

Performance-portability
Code readability and maintainability
Developers productivity

Nabeeh Jumah Universität Hamburg 6 / 20

Introduction Higher-Level Language Extensions Experiments Conclusion

Application-Level Challenges

Earth system models are representative stencil computations,
however, many challenges face developers

Different modeling approaches
Grid structure: regular vs. icosahedral grids
Field Localization: staggered vs. collocated grids

Optimal use of resources is essential to run simulations
e.g. memory bandwidth use is a key optimization

Nabeeh Jumah Universität Hamburg 7 / 20

Introduction Higher-Level Language Extensions Experiments Conclusion

Approach

Separation of Concerns

Domain scientists
Application source code
Scientific perspective
Machine-independent (free of machine semantics)

Scientific programmers
Configuration files (guide optimization)
Technical perspective
Target machine specific

Higher-level code translation
Flexible tools use configuration information to transform
high-level code into optimized code

Nabeeh Jumah Universität Hamburg 8 / 20

Introduction Higher-Level Language Extensions Experiments Conclusion

Higher-Level Coding with GGDML

GGDML

GGDML:General Grid Definition and Manipulation Language
Grid definition
Field declaration
Field data access/update

Iterators
Access operators

Stencil operations
GGDML: Icosahedral Models Language Extensions (Nabeeh Jumah et. al)
DOI: 10.15379/2410-2938.2017.04.01.01

Hides memory locations and access details
Hides connectivity and grid structure

Nabeeh Jumah Universität Hamburg 9 / 20

Introduction Higher-Level Language Extensions Experiments Conclusion

GGDML Code Example
foreach c in grid
{

float df =(f_F[c. east_edge ()]-f_F[c. west_edge ()])/dx;
float dg =(f_G[c. north_edge ()]-f_G[c. south_edge ()])/dy;
f_HT[c]= df+dg;

}

Sample generated C code:
... handle domain decomposition and halo mangagement

for (size_t blk_start = (0); ... blocking
size_t blk_end = ...
pragma omp parallel for
for (size_t YD_index = 0; YD_index < local_Y_Cregion ;

YD_index ++) {
pragma omp simd
for (size_t XD_index = blk_start ; XD_index < blk_end ;

XD_index ++) {
float df = (f_F[YD_index][XD_index +1] -

f_F[YD_index][XD_index]) /dx;
float dg = (f_G[YD_index +1][XD_index] -

f_G[YD_index][XD_index]) /dy;
f_HT[YD_index][XD_index] = df + dg;

}Nabeeh Jumah Universität Hamburg 10 / 20

Introduction Higher-Level Language Extensions Experiments Conclusion

Translation Configurations

Scientific programmers
Define language extensions

e.g. define access operators
right(): XD=$XD+1
=>Allows access to the neighboring cell to the right

Control optimization procedures
Different options allow to exploit hardware

Memory layout & abstract index translation, loop order,
parallelization, blocking, vector units

Configurations define grids and how they will be processed
Problem domain
Grids relationships and connectivity

Simplifies specifying stencils
Very benefecial for unstructured grids

Halo patterns under multi-node runs

Nabeeh Jumah Universität Hamburg 11 / 20

Introduction Higher-Level Language Extensions Experiments Conclusion

Translation Process

Higher-level code translation

A source-to-source translation tool is used
A lightweight tool
Easily ships with code repositories
Simply fits within build procedures, e.g. make

Optimization procedures are applied during translation
to exploit features of target-machine

Translation Process Drivers

The semantics of the language extensions
Extracted from the source code

Configuration information

Nabeeh Jumah Universität Hamburg 12 / 20

Introduction Higher-Level Language Extensions Experiments Conclusion

Translation Process

Performance Portability of Earth System Models with User-Controlled GGDML code Translation (Jumah & Kunkel)
DOI: 10.1007/978-3-030-02465-9_50

Nabeeh Jumah Universität Hamburg 13 / 20

Introduction Higher-Level Language Extensions Experiments Conclusion

Some experimental results:
Vectorization and Memory Throughput

Multi-core experiments environment
Dual socket Broadwell nodes
Intel(R) Xeon(R) CPU E5-2697 v4 @ 2.30GHz
Intel C compiler (ICC 17.0.5 20170817)

Vector engine experiments environment
NEC SX-Aurora TSUBASA vector engine
NEC NCC (1.3.0) C compiler

Measurement tools
Likwid on Broadwell
Ftrace on Aurora

Experiments done and published under: Automatic Vectorization of Stencil Codes with the GGDML Language
Extensions (Jumah & Kunkel) DOI: http://doi.acm.org/10.1145/3303117.3306160

Nabeeh Jumah Universität Hamburg 14 / 20

Introduction Higher-Level Language Extensions Experiments Conclusion

Vectorization and Memory Throughput

Test code
Shallow water equations
Structured grid
Explicit time stepping scheme
Finite difference method
Eight kernels

Flux components
Tendencies of the two velocity components
Surface level tendency
Velocity components
Surface level

Tested configurations
Contiguous unit stride arrays
AoS emulation: Constant short distance (4 byte distance)
seperating consecutive elements
Scattered (distant) data elements

Nabeeh Jumah Universität Hamburg 15 / 20

Introduction Higher-Level Language Extensions Experiments Conclusion

Results on Broadwell Multi-core Processor

Max memory bandwidth is 76.8 GB/s
Achieved throughput around 62GB/s (~80% of max.)
Unit stride code is performing well taking into account the
arithmetic intensity, all kernels are completely vectorized
In constant short distance version some kernels are vectorized
In scattered data version code is not vectorized

Scattered Constant short distance Contiguous

Kernel Time (s)
AVX

GFLOPS
Time (s)

AVX
GFLOPS

Time (s)
AVX

GFLOPS

flux1 250 0 52 0 27 11
flux2 248 0 54 0 27 11
compute U tendency 431 0 80 21 41 41
update U 158 0 39 0 20 10
compute V tendency 432 0 94 18 47 37
update V 158 0 40 0 20 10
compute H tendency 251 0 55 0 28 11
update H 158 0 40 0 20 10

Application Level 2,103 3 466 13 244 25

Automatic Vectorization of Stencil Codes with the GGDML Language Extensions (Jumah & Kunkel)
DOI: http://doi.acm.org/10.1145/3303117.3306160

Nabeeh Jumah Universität Hamburg 16 / 20

Introduction Higher-Level Language Extensions Experiments Conclusion

Results on Aurora Vector Engine

Max memory bandwidth is 1.2 TB/s
Achieved throughput around 960GB/s (~80% of max.)
Unit stride code is performing well taking into account the
arithmetic intensity, all kernels are optimally vectorized
In the other code versions the vector units still work, but as
effeciently as the unit stride code version

Scattered Constant short distance Contiguous
Kernel Time (s) GFLOPS Time (s) GFLOPS Time (s) GFLOPS

flux1 5.37 56 3.96 76 1.30 230
flux2 5.36 56 4.08 74 1.51 199
compute U tendency 20.67 92 8.26 230 5.29 359
update U 3.82 52 2.44 82 1.21 166
compute V tendency 20.66 97 9.12 220 5.22 384
update V 3.82 52 2.43 82 1.21 165
compute H tendency 6.88 73 4.26 117 1.52 330
update H 3.82 52 2.44 82 1.20 167

Application level 70.40 80 37.17 161 18.63 322

Automatic Vectorization of Stencil Codes with the GGDML Language Extensions (Jumah & Kunkel)
DOI: http://doi.acm.org/10.1145/3303117.3306160

Nabeeh Jumah Universität Hamburg 17 / 20

Introduction Higher-Level Language Extensions Experiments Conclusion

Inter-Kernel Optimization

Further experiments were done to improve data reuse
Using loop fusions
Reducing data loading from memory
Loading a field once from memory for multiple stencils
Tuning per architecture is important

For optimal use of caching
Results show better use of memory bandwidth
Performance ratios reflect architecture memory bandwidths

Before merge After merge

Architecture
Memory

bandwidth
(GB/s)

Measured
memory

throughput
(GB/s)

GFLOPS

Measured
memory

throughput
(GB/s)

GFLOPS

Broadwell 77 62 24 60 31
P100 GPU 500 380 149 389 221
NEC Aurora 1,200 961 322 911 453

Nabeeh Jumah Universität Hamburg 18 / 20

Introduction Higher-Level Language Extensions Experiments Conclusion

Conclusion

Model development is improved with GGDML semantics
Performance portability, code quality, productivity

A single code can be used for all architectures
Architecture resources can still be used

Optimal use of memory bandwidth of an architecture is the key
to maximize performance

Instead of source code, configuration files guide optimization

Nabeeh Jumah Universität Hamburg 19 / 20

Introduction Higher-Level Language Extensions Experiments Conclusion

Acknowledgement

DFG (German Research Foundation)
Erlangen regional computing center (RRZE) at
Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)
NEC Deutschland

Nabeeh Jumah Universität Hamburg 20 / 20

	Introduction
	Introduction

	Higher-Level Language Extensions
	Approach
	GGDML
	Configurations
	Translation Process

	Experiments
	Experiments

	Conclusion
	Conclusion

