
Introduction Higher-Level Language Extensions Experiments Conclusion

Automatic Vectorization of Stencil Codes with
the GGDML Language Extensions

Nabeeh Jum’ah, Julian Kunkel

Scientific Computing
Department of Informatics
University of Hamburg

WPMVP 2019 Workshop on Programming Models for
SIMD/Vector Processing

Washington DC, USA 16-02-2019

Introduction Higher-Level Language Extensions Experiments Conclusion

Goals

Enable unified high-level source code of earth system models
(e.g. climate and numerical weather prediction)
Optimally use vector units & memory bandwidth besides to
other hardware features of the different architectures.

Nabeeh Jum’ah Universität Hamburg 2 / 23

Introduction Higher-Level Language Extensions Experiments Conclusion

Project AIMES

Advanced Computation and I/O Methods for Earth-System
Simulations

Enhance programmability and performance-portability
Overcome storage limitations
Shared benchmark for icosahedral models

Nabeeh Jum’ah Universität Hamburg 3 / 23

Introduction Higher-Level Language Extensions Experiments Conclusion

Architecture-dependant Features

Architecture features drive code optimization
Broadwell processor

18 cores (36 threads)
45MB shared SmartCache for L3 caching
Max memory bandwidth is 76.8 GB/s
Intel(R) AVX2 instruction set extensions

Registers of length 256 bits
Vector operations are applied with those vector lengths.

SX-Aurora vector engine
8 cores
16MB shared last level cache
Max memory bandwidth is 1.2 TB/s
Each register holds 256 entries (64 bits).
Three FMA pipes per core

Each handles 32 double precision FP operations per cycle

Nabeeh Jum’ah Universität Hamburg 4 / 23

Introduction Higher-Level Language Extensions Experiments Conclusion

Earth-System Modeling

Earth system models are representative stencil computations
Optimal use of resources is essential to run simulations

Structure of stencil codes fits vectorization
Code should be written to exploit vector units
Memory access optimization is a key to optimal code

Grid choice, e.g. regular/icosahedral, affects stencil definition
Stencils could access cell centers, edges, vertices ...

Nabeeh Jum’ah Universität Hamburg 5 / 23

Introduction Higher-Level Language Extensions Experiments Conclusion

Model Development

Modeling using General-Purpose Languages

The semantical nature of the languages limits the compilers
ability to exploit some optimization opportunities
Scientists need to manually optimize code
Challenging effort

The complexity of the architectural features
The diversity of the architectures
Various tools and programming models

Code optimized for one architecture is suboptimal on another
Code quality

Code duplication for different architectures
Model’s maintainability

Nabeeh Jum’ah Universität Hamburg 6 / 23

Introduction Higher-Level Language Extensions Experiments Conclusion

Model Development

Modeling Language Extensibility

Bypass the shortcomings of the general-purpose languages
Still use the preferred modeling language
Extend the modeling language

Based on scientific concepts
Hiding lower level details (e.g., architecture, memory layout)

The semantical nature of the extensions allows optimization

Projected Benefits

Performance-portability
Code readability and maintainability
Developers productivity

Nabeeh Jum’ah Universität Hamburg 7 / 23

Introduction Higher-Level Language Extensions Experiments Conclusion

Approach

Separation of Concerns

Domain scientists formulate scientific logic in source code
Scientific programmers write target configurations

Model development with extended language
Scientific perspective

not machine perspective
Code is developed once

performance is achieved for different configurations
Configurations define software performance

A configuration corresponds to a target run environment
Written by programmers with more experience in platform

Nabeeh Jum’ah Universität Hamburg 8 / 23

Introduction Higher-Level Language Extensions Experiments Conclusion

Approach

Higher-level code translation
A source-to-source translation tool is used

A lightweight tool
Easily ships with code repositories
Simply fits within build procedures, e.g. make

Optimization procedures are applied during translation
to exploit features of target-machine

Translation Process Drivers

The semantical nature of the language extensions
Extracted from the source code

Configuration information

Nabeeh Jum’ah Universität Hamburg 9 / 23

Introduction Higher-Level Language Extensions Experiments Conclusion

Higher-Level Coding with GGDML

GGDML

GGDML:General Grid Definition and Manipulation Language
Grid definition
Field declaration
Field data access/update

Iterators
Access operators

Stencil operations
GGDML: Icosahedral Models Language Extensions (Nabeeh Jumah et. al)
DOI: 10.15379/2410-2938.2017.04.01.01

Hides memory locations and access details, data iteration
Abstract higher concepts of grids, hiding connectivity details

Nabeeh Jum’ah Universität Hamburg 10 / 23

Introduction Higher-Level Language Extensions Experiments Conclusion

GGDML Code Example
foreach c in grid
{

float df =(f_F[c. east_edge ()]-f_F[c. west_edge ()])/dx;
float dg =(f_G[c. north_edge ()]-f_G[c. south_edge ()])/dy;
f_HT[c]= df+dg;

}

Sample generated C code:
... handle domain decomposition and halo mangagement

for (size_t blk_start = (0); ... blocking
size_t blk_end = ...

pragma omp parallel for
for (size_t YD_index = 0; YD_index < local_Y_Cregion ;

YD_index ++) {
pragma omp simd

for (size_t XD_index = blk_start ; XD_index < blk_end ;
XD_index ++) {

float df = (f_F[YD_index][XD_index +1] -
f_F[YD_index][XD_index]) /dx;

float dg = (f_G[YD_index +1][XD_index] -
f_G[YD_index][XD_index]) /dy;

f_HT[YD_index][XD_index] = df + dg;
}Nabeeh Jum’ah Universität Hamburg 11 / 23

Introduction Higher-Level Language Extensions Experiments Conclusion

Translation process

Performance Portability of Earth System Models with User-Controlled GGDML code Translation (Jumah &
Kunkel)-DOI: 10.1007/978-3-030-02465-9_50

Nabeeh Jum’ah Universität Hamburg 12 / 23

Introduction Higher-Level Language Extensions Experiments Conclusion

Translation Configurations

Loop optimization is essential for
Optimal memory access
Applicability of vector operations

Suitable transformations are applied
Memory layout & abstract index translation
Loop order
Parallelization

Nabeeh Jum’ah Universität Hamburg 13 / 23

Introduction Higher-Level Language Extensions Experiments Conclusion

Translation Configurations

Memory Layout

Controlled by users
Memory allocation
Array Indices

The translation tool generates the needed memory layout of a
field based on

The semantical information used to declare a field
The user-provided memory allocation configuration

The indices are completely controlled by the user
Index reordering
More complicated formulae to apply mathematical
transformations, e.g. a filling curve

Loop order should match memory layout

Nabeeh Jum’ah Universität Hamburg 14 / 23

Introduction Higher-Level Language Extensions Experiments Conclusion

Translation Configurations

Access operators

The user defines
The syntax
The behavior

Define grids relationships and connectivity
Simplify references to neighborhoods
Abstracts the machine notion of array indices with domain
concepts, e.g. above, below, neighbor, right, edge...

Example definition:
above(): height=$height+1
=>Allows access to the element directly above the current

Improves semantics & code quality

Nabeeh Jum’ah Universität Hamburg 15 / 23

Introduction Higher-Level Language Extensions Experiments Conclusion

Translation Configurations

Parallelization

Parallelizaion should allow optimal vectorization
Parallelizaion on different architectures tested

multi-core processors (using OpenMP)
GPUs (using OpenACC)
Multiplr-node MPI(+OpenMP/OpenACC)

The parallelization on multiple-node configurations is possible
The user controls the communication library initialization
The user controls the halo exchange code

The translation tool uses the semantics of the field access to
generate the halo exchange code

Nabeeh Jum’ah Universität Hamburg 16 / 23

Introduction Higher-Level Language Extensions Experiments Conclusion

Experiments

Test code
Shallow water equations
Structured grid
Explicit time stepping scheme
Finite difference method
Eight kernels

Flux components
Tendencies of the two velocity components
Surface level tendency
Velocity components
Surface level

Tested configurations
Contiguous unit stride arrays
AoS emulation: Constant short distance (4 byte distance)
seperating consecutive elements
Scattered (distant) data elements

Nabeeh Jum’ah Universität Hamburg 17 / 23

Introduction Higher-Level Language Extensions Experiments Conclusion

Experiments

Multi-core experiments environment
Dual socket Broadwell nodes
Intel(R) Xeon(R) CPU E5-2697 v4 @ 2.30GHz
Intel C compiler (ICC 17.0.5 20170817)

Vector engine experiments environment
NEC SX-Aurora TSUBASA vector engine
NEC NCC (1.3.0) C compiler

Measurement tools
Likwid on Broadwell
Ftrace on Aurora

Nabeeh Jum’ah Universität Hamburg 18 / 23

Introduction Higher-Level Language Extensions Experiments Conclusion

Results on Broadwell Multi-core Processor

Max memory bandwidth is 76.8 GB/s
Achieved throughput around 62GB/s (~80% of max.)
Unit stride code is performing well taking into account the
arithmetic intensity, all kernels are completely vectorized
In constant short distance version some kernels are vectorized
In scattered data version code is not vectorized

Scattered Constant short distance Contiguous

Kernel Time (s)
AVX

GFLOPS
Time (s)

AVX
GFLOPS

Time (s)
AVX

GFLOPS

flux1 250 0 52 0 27 11
flux2 248 0 54 0 27 11
compute U tendency 431 0 80 21 41 41
update U 158 0 39 0 20 10
compute V tendency 432 0 94 18 47 37
update V 158 0 40 0 20 10
compute H tendency 251 0 55 0 28 11
update H 158 0 40 0 20 10

Application Level 2,103 3 466 13 244 25

Nabeeh Jum’ah Universität Hamburg 19 / 23

Introduction Higher-Level Language Extensions Experiments Conclusion

Results on Aurora Vector Engine

Max memory bandwidth is 1.2 TB/s
Achieved throughput around 960GB/s (~80% of max.)
Unit stride code is performing well taking into account the
arithmetic intensity, all kernels are optimally vectorized
In the other code versions the vector units still work, but as
effeciently as the unit stride code version

Scattered Constant short distance Contiguous
Kernel Time (s) GFLOPS Time (s) GFLOPS Time (s) GFLOPS

flux1 5.37 56 3.96 76 1.30 230
flux2 5.36 56 4.08 74 1.51 199
compute U tendency 20.67 92 8.26 230 5.29 359
update U 3.82 52 2.44 82 1.21 166
compute V tendency 20.66 97 9.12 220 5.22 384
update V 3.82 52 2.43 82 1.21 165
compute H tendency 6.88 73 4.26 117 1.52 330
update H 3.82 52 2.44 82 1.20 167

Application level 70.40 80 37.17 161 18.63 322

Nabeeh Jum’ah Universität Hamburg 20 / 23

Introduction Higher-Level Language Extensions Experiments Conclusion

Conclusion

GGDML improves model development
Performance portability, code quality, productivity

Memory layout is an important factor for vectoriztion
Memory bandwidth use efficiency is also affected
Loop structure should match the memory layout

Scheduling, caching, loop order
Bad memory layouts harm seriously the performance
The tools allowed estimating AoS performance (and
vectorization) without really implementing it
Some applications need both unit-stride and distant element
access, this study allowed better understanding of performance

Nabeeh Jum’ah Universität Hamburg 21 / 23

Introduction Higher-Level Language Extensions Experiments Conclusion

Future Work

Explore vectorization with inter-kernel optimization
Explore automatic optimal memory layout detection for
applications with different access patterns

Nabeeh Jum’ah Universität Hamburg 22 / 23

Introduction Higher-Level Language Extensions Experiments Conclusion

Acknowledgement

DFG (German Research Foundation)
Erlangen regional computing center (RRZE) at
Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)
NEC Deutschland

Nabeeh Jum’ah Universität Hamburg 23 / 23

	Introduction
	Introduction

	Higher-Level Language Extensions
	The Solution
	GGDML
	Translation Process

	Experiments
	Experiments

	Conclusion
	Conclusion

