
Goals Towards higer-level code design Massive I/O Evaluation Summary

Advanced Computation and I/O Methods for
Earth-System Simulations

Status update

Julian M. Kunkel, Nabeeh Jumah, Anastasiia Novikova,
Thomas Ludwig, Thomas Dubos, Sunmin Park,
Hisashi Yashiro, Günther Zängl, John Thuburn

Scientific Computing
Department of Informatics
University of Hamburg

2019-01-23

Goals Towards higer-level code design Massive I/O Evaluation Summary

Goals

Address key issues of icosahedral earth-system models

Enhance programmability and performance-portability
Overcome storage limitations
Shared benchmark for these models

Covered models

ICON DYNAMICO NICAM

Julian Kunkel 2 / 26

Goals Towards higer-level code design Massive I/O Evaluation Summary

WP1: Towards Higher-Level Code Design

Recap: Goals of the WP

Bypass shortcomings of general-purpose languages
Offer performance-portability
Enhance source repositories maintainability
Get rid of complexity in optimized-code development
Enhance code readability and scientists productivity

Extend modelling programming language
Based on domain science concepts
Free of lower level details (e.g., architecture, memory layout)

Julian Kunkel 3 / 26

Goals Towards higer-level code design Massive I/O Evaluation Summary

Approach
Foster separation of concern

Domain scientists develop domain logic in source code
Scientific programmers write hardware configurations

Source code written with extended language
Closer to domain scientists logic
Scientists do not need to learn optimizations
Write code once, get performance for various configurations

Hardware configurations define software performance
Written by programmers with more experience in platform
Comprise information on target run environment

ICONICONICONICON

Dialects

DYNAMICODYNAMICO NICAMNICAM

Meta-DSLMeta-DSL

......

back-ends

Domain science Scientific programmer

GRIDToolsGRIDTools

Computer science

compilers ...compilers ...

DSL tools &
infrastructure

DSL tools &
infrastructure

CPUCPU

OpenACCOpenACC

PhysisPhysis

existing tools

Tools

Julian Kunkel 4 / 26

Goals Towards higer-level code design Massive I/O Evaluation Summary

Progress

Achievements of the first year
Evaluation of GridTools for NICAM
HybridFortran support in ASUCA
Development of the model dialects and extensions
Implementing a basic source-to-source translation tool
Evaluating the DSL’s impact on programmability
Refer to: Nabeeh Jumah et al. “GGDML: Icosahedral Models Language Extensions”.
In: Journal of Computer Science Technology Updates. Volume 4, Number 1 (June 2017)

Achievements of the second year
Refinements to the language extensions
Implementing more features in the translation tool

Configurable language extensions
Configurable memory layout
Configurable parallelization
Configurable halo exchange

Experiments on the performance and performance portability

Julian Kunkel 5 / 26

Goals Towards higer-level code design Massive I/O Evaluation Summary

Progress of the Third Year

Achievements of the third year
Developing new test application as proxy application

Shallow water equations
Structured grid

Implementing more features in the translation tool to aid dev.
User-configuration of selected optimizations
e.g. kernel merging to enable memory re-use
Configurable loop interchange and blocking
Supporting user-guided domain decomposition
Annotating kernels for Likwid instrumentation
Automatic generation of code to handle halo dirty regions

More experiments on performance (scaling, optimizations)
Exploring another architecture (NEC Aurora vector engine)
Developing a prototype for GASPI (to be evaluated)

Julian Kunkel 6 / 26

Goals Towards higer-level code design Massive I/O Evaluation Summary

GGDML Code Example
foreach c in grid
{

float df =(f_F[c. east_edge ()]-f_F[c. west_edge ()])/dx;
float dg =(f_G[c. north_edge ()]-f_G[c. south_edge ()])/dy;
f_HT[c]= df+dg;

}

A sample generated C code for OpenMP + MPI
... handle domain decomposition and halo mangagement

for (size_t blk_start = (0); ... blocking
size_t blk_end = ...

pragma omp parallel for
for (size_t YD_index = 0; YD_index < local_Y_Cregion ;

YD_index ++) {
pragma omp simd

for (size_t XD_index = blk_start ; XD_index < blk_end ;
XD_index ++) {

float df = (f_F[YD_index][XD_index +1] -
f_F[YD_index][XD_index]) /dx;

float dg = (f_G[YD_index +1][XD_index] -
f_G[YD_index][XD_index]) /dy;

f_HT[YD_index][XD_index] = df + dg;
}Julian Kunkel 7 / 26

Goals Towards higer-level code design Massive I/O Evaluation Summary

Performance Evaluation

Test application
Shallow water equations
Structured grid

Test machines
Intel(R) Xeon(R) CPU E5-2695 v4 with 2.10GHz

Level 3 cache is 45MB (shared among 18 cores)
Tesla P100 GPUs
NEC SX-Aurora TSUBASA vector engine

Experiments
Efficiency on different architectures
Performance depending on kernel blocking

Julian Kunkel 8 / 26

Goals Towards higer-level code design Massive I/O Evaluation Summary

The Effect of Kernel Merging on Performance

Before merge After merge

Architecture

Theoretical
Memory

bandwidth
(GB/s)

Measured
memory

throughput
(GB/s)

GFLOPS

Measured
memory

throughput
(GB/s)

GFLOPS

Broadwell 77 62 24 60 31
P100 GPU 500 380 149 389 221
NEC Aurora 1,200 961 322 911 453

All cases utilize between 76 and 80% memory bandwidth
Julian Kunkel 9 / 26

Goals Towards higer-level code design Massive I/O Evaluation Summary

Evaluation - Blocking on P100 GPUs

Performance drop is steep
around grid width of 130K
as a result of the cache size
Blocking stabilizes
performance over wider grids
(grid width >80K)
Blocking harms performance
for smaller grids
The DSL can emit both

Julian Kunkel 10 / 26

Goals Towards higer-level code design Massive I/O Evaluation Summary

Evaluation - Vectorization and Memory Layout

Investigation of vectorization and memory layout alternatives
Tested three cases

Scattered elements: distant elements
Constant short distance: 4 bytes between consecutive elements
Contiguous (unit-stride) array

We show impact of matching memory layout and access on
Vector unit and instructions utilization
Memory bandwidth utilization efficiency

Allowed to simulate AoS performance

GFLOPS

Architecture Scattered
Short

distance
Contiguous

Broadwell 3 13 25
NEC Aurora 80 161 322

Julian Kunkel 11 / 26

Goals Towards higer-level code design Massive I/O Evaluation Summary

Evaluation - Scalability

Investigation of scalability on 1,10,20..100 nodes
Tested on Broadwell and P100 GPUs

Julian Kunkel 12 / 26

Goals Towards higer-level code design Massive I/O Evaluation Summary

Outlook Until the End of AIMES

Investigate using GASPI as alternative for communication
Performance and other considerations
Differences to MPI

Investigate semi-structured grids (again from Y1)
Prepare necessary configurations
Investigate halo exchange optimizations
Investigate vectorization considerations
Compare to structured grids

Make the tool available on GitHub
Provide tool for brute-force optimization exploration

Julian Kunkel 13 / 26

Goals Towards higer-level code design Massive I/O Evaluation Summary

Massive I/O

Recap: Goals of the WP2

Optimization of I/O middleware for icosahedral data
Throughput, metadata handling

Design of domain-specific compression (ratio > 10 : 1)
Investigate metrics allowing to define accuracy per variable
Design user-interfaces for specifying accuracy
Develop a methodology for identifying the required accuracy
Implement compression schemes exploiting this knowledge

Julian Kunkel 14 / 26

Goals Towards higer-level code design Massive I/O Evaluation Summary

Progress

Achievements of the first year
C-API Design of scientific compression interface library (SCIL)

Quantities
Tools
Compression chain

Evaluation on synthetic data
Evaluation on scientific data (cloud model ECHAM)

Progress in the second year
Survey of file formats
Refactoring (Project structure, quantities)
New tool: Pattern creator
HDF5 compression plug-in
Evaluation on synthetic data patterns
Evaluation on scientific data (hurricane model Isabel)

Julian Kunkel 15 / 26

Goals Towards higer-level code design Massive I/O Evaluation Summary

Recent Progress in Year Three

Evaluating compression ratios/performance with NICAM files
Integration of SCIL into NICAM
Improved compatibility on various layers and tools
Alternative specification of compression characteristics
(in an external file)
Investigated incremental compression algorithm
Explored science case to identify tolerable precision loss

Julian Kunkel 16 / 26

Goals Towards higer-level code design Massive I/O Evaluation Summary

Configuration File for the Quantities

The file in the env. var. NETCDF_SCIL_HINTS_FILE is read by
NetCDF and applied to the respective variables:

Va r i a b l e 1 :
r e l a t i v e _ t o l e r a n c e_ p e r c e n t=1

Va r i a b l e 2 : # Deve lope r comment1
r e l a t i v e _ t o l e r a n c e_ p e r c e n t=1
r e l a t i v e _ e r r _ f i n e s t _ a b s_ t o l e r a n c e=1
ab s o l u t e_ t o l e r a n c e=1
s i g n i f i c a n t _ d i g i t s=1
s i g n i f i c a n t _ b i t s=1
lo s s l e s s_data_range_up_to=1
lo s s l e s s_da ta_range_ f r om=1
f i l l _ v a l u e =4711
comp_speed=0.5∗MiB
decomp_speed=1∗NetworkSpeed
force_compress ion_methods=ab s t o l , l z 4

Julian Kunkel 17 / 26

Goals Towards higer-level code design Massive I/O Evaluation Summary

Investigate Tolerable Error

Under noise mimicking compression, reproduce conclusions of
Berthou et al. 20161

Mediterranean region (Spain, France)
Evaluates how wind, through its action on the ocean, impacts
(with some delay) heavy precipitation
Compares outputs from two simulations (CPL and SMO) and
subjects the difference to tests of statistical significance
Student t test; 97.5% probability of rejecting a zero difference
Analyzed fields: wind, rain (convective and non-convective),
humidity, sea-surface temperature (SST)

1DOI 10.1007/s00382-016-3153-0Julian Kunkel 18 / 26

Goals Towards higer-level code design Massive I/O Evaluation Summary

Approach

1 Reproduce published results (Find data/scripts used in paper)
2 Apply statistical model for noise induced by lossy compression

Use Gaussian white noise
3 Redo the analysis, check if the conclusions are still supported
4 Increase levels of noise to input data (= model output)

One field at a time; then together

Julian Kunkel 19 / 26

Goals Towards higer-level code design Massive I/O Evaluation Summary

Compression Error Propagation: SST

Blue shade: conditional mean SST difference between CPL
and SMO simulations where statistical test is passed
Adding noise affects little the overall pattern, but makes it
harder to pass statistical test (more white holes in the blue)
Conclusions unchanged even with quite large noise on SST
(0.2°K), probably due to averaging several events

Julian Kunkel 20 / 26

Goals Towards higer-level code design Massive I/O Evaluation Summary

Compression Error Propagation: Wind

Blue/orange shade = conditional mean difference between
CPL and SMO of moisture flux divergence
Statistical test is passed inside red contours
Noise makes it harder to pass statistical test
Despite noise added to wind, moisture flux divergence still OK
Noise impact expected to worsen at higher resolution
Projects like CORDEX2 advocate for compression methods
that control noise spectrum (which is part of AIMES)

Julian Kunkel 21 / 26

Goals Towards higer-level code design Massive I/O Evaluation Summary

Outlook Until the End of AIMES

Full application I/O benchmark with NICAM (& SCIL)
Pushing HDF5-plugin for SCIL to HDF5 group
Wrap-up of the documentation

We’ll try to further work with students

Integration of alternative lossy compression algorithms
Machine learning of

Performance, expected ratio for data
Best compression algorithms

Julian Kunkel 22 / 26

Goals Towards higer-level code design Massive I/O Evaluation Summary

WP 3: Evaluation

Providing benchmark packages from icosahedral
weather/climate models
Evaluating the DSL and domain-specific I/O advancements

Julian Kunkel 23 / 26

Goals Towards higer-level code design Massive I/O Evaluation Summary

Achievements in Year Three

ICON kernels
Selection, Extraction

ICON-like mini application
Written with GGDML
C is the host language

Implemented NetCDF I/O support within this mini app
GGDML kernels support I/O

ICON-like application integration within benchmark

Julian Kunkel 24 / 26

Goals Towards higer-level code design Massive I/O Evaluation Summary

Outlook Until the End of AIMES

Integration tests
DSL
I/O
Compression

Update the already published benchmark suite
Testcode for GGDML
I/O benchmarking results

Julian Kunkel 25 / 26

Goals Towards higer-level code design Massive I/O Evaluation Summary

Summary

AIMES covers programmability issues on the high-level
DSL-extensions enrich existing languages
Fosters separation of concerns, improves performance portability
A testbed application with different kernels has been developed
The translation tool now supports own optimizations
Multi-core, GPUs, vector supported for the testcodes

AIMES addresses domain-specific lossy compression
(Help) scientists to define the variable accuracy
Exploit this knowledge in the compression scheme
Novel schemes compete with existing algorithms

Julian Kunkel 26 / 26

Backup

Backup

Julian Kunkel 27 / 26

Differences among three icosahedral atmospheric models

Horizontal grid system
NICAM: co-located, semi-structured
DYNAMICO: staggered, semi-structured
ICON: staggered, unstructured

semi-structured means. . . ”structured for stencil operation,
unstructured for communication topology”

Julian Kunkel 28 / 26

GGDML Impact on the Source Code

The DSL reduces development and maintenance effort

LOC statistics
lines (LOC) words characters

Model, kernel before DSL with DSL before DSL with DSL before DSL with DSL
ICON 1 13 7 238 174 317 258
ICON 2 53 24 163 83 2002 916
NICAM 1 7 4 40 27 76 86
NICAM 2 90 11 344 53 1487 363
DYNAMICO 1 7 4 96 73 137 150
DYNAMICO 2 13 5 30 20 402 218
total 183 55 911 430 4421 1991
relative size with dsl 30% 47% 45%

ICON
1
ICON

2
NICA

M 1
NICA

M 2
DYN.

1
DYN.

2

0

20

40

60

80

Lin
es

existing code
with GGDML

Predicting saving applying the DSL to 300k code of ICON
100k infrastructure (does not change with the DSL)
Remaining code reduced according to our test kernels
COCOMO estimations

Software project Version Effort
Applied

Dev. Time
(months)

People
require

dev. costs
(M€)

Semi-detached 2462 38.5 64 12.3
DSL 1133 29.3 39 5.7

Organic 1295 38.1 34 6.5
DSL 625 28.9 22 3.1

Julian Kunkel 29 / 26

Partners and Expertise

Funded partners

Thomas Ludwig (Universität Hamburg)
I/O middleware, compression, ICON DSL
Thomas Dubos (Institut Pierre Simon Laplace)
Application I/O servers, compression, DYNAMICO
Naoya Maruyama (RIKEN)
DSL (Physis), GPUs, NICAM
Takayuki Aoki (Tokio Institute of Technology)
DSL (HybridFortran), language extension, peta-scale apps

Julian Kunkel 30 / 26

Cooperation Partners

DKRZ (I/O, DSL)
DWD (ICON, DSL, I/O)
University of Exeter (Math. aspects in the DSL)
CSCS (GPU/ICON, GRIDTool, compression)
Intel (DSL-backend optimization for XeonPhi, CPU)
NVIDIA (DSL-backend optimization for GPU)
The HDF Group (I/O, unstructured data, compression)
NCAR (MPAS developers, another icosahedral model)
Bull
Cray

Information exchange, participate in workshops, [hardware access]

Julian Kunkel 31 / 26

Appendix. WP2: Architecture of SCIL

Contains tools to
Create random patterns, compress/decompress, add noise, plot

HDF5 and NetCDF4 integration; tools support NetCDF3, CSV
Library with

Automatic algorithm selection (under development)
Flexible compression chain:

Array of
Type-To-Type
Preconditioners

Type-To-Integer
Converter

Array of
Integer-To-Integer
Preconditioners

Type-To-Byte
Compressor

Byte-To-Byte
Compressor

compressed
data

process data process data

float float int any any

data

Julian Kunkel 32 / 26

WP2: Supported Quantities

Accuracy quantities:
absolute tolerance: compressed can become true value ± absolute tolerance
relative tolerance: percentage the compressed value can deviate from true value
relative error finest tolerance: value definining the absolute tolerable error for relative

compression for values around 0
significant digits: number of significant decimal digits
significant bits: number of significant decimals in bits

Performance quantities:
compression speed: in MiB or GiB, or relative to network or storage speed
decompression speed: in MiB or GiB, or relative to network or storage speed

Supplementary quantities:
fill value: a value that scientists use to mark special data point

Julian Kunkel 33 / 26

WP2: Synthetic Patterns

Julian Kunkel 34 / 26

WP2: Example Synthetic Data

Simplex (options 206, 2D: 100x100 points)

Right picture compressed with Sigbits 3bits (ratio 11.3:1)

Julian Kunkel 35 / 26

WP2: Analyzing Performance of Lossy Compression

Data

Single precision (1+8+23 bits)
Synthetic, generated by SCIL’s pattern lib.

e.g., Random, Steps, Sinus, Simplex
Data of the variables created by ECHAM (123 vars), Isabel

Experiments

Single thread, 10 repeats
Lossless (memcopy and lz4)
Lossy compression with significant bits (zfp, sigbits, sigbits+lz4)

Lossy compression with absolute tolerance (zfp, sz, abstol, abstol+lz4)
Tolerance: 10%, 2%, 1%, 0.2%, 0.1% of the data maximum value

Julian Kunkel 36 / 26

WP2: Comparing Algorithms for the Scientific Files

Algorithm Ratio Compr. Decomp.
MiB/s MiB/s

EC
H
AM

abstol 0.190 260 456
abstol,lz4 0.062 196 400
sz 0.078 81 169
zfp-abstol 0.239 185 301

Isa
be
l abstol 0.190 352 403

abstol,lz4 0.029 279 356
sz 0.016 70 187
zfp-abstol 0.039 239 428

Ra
nd

om

abstol 0.190 365 382
abstol,lz4 0.194 356 382
sz 0.242 54 125
zfp-abstol 0.355 145 241
(a) 1% absolute tolerance

Algorithm Ratio Compr. Decomp.
MiB/s MiB/s

EC
H
AM

sigbits 0.448 462 615
sigbits,lz4 0.228 227 479
zfp-precision 0.299 155 252

Isa
be
l sigbits 0.467 301 506

sigbits,lz4 0.329 197 366
zfp-precision 0.202 133 281

Ra
nd

om sigbits 0.346 358 511
sigbits,lz4 0.348 346 459
zfp-precision 0.252 151 251

(b) 9 bits precision

Table: Harmonic mean compression of scientific data

Julian Kunkel 37 / 26

WP2: Results for Absolute Tolerance of ECHAM
Comparing algorithms using an absolute tolerance of 1% of the maximum value

Julian Kunkel 38 / 26

DSL Development

Co-design with scientists to develop DSL constructs
Current version represents several iterations
GGDML:General grid definition and manipulation language
Grid definition
Grid-bound variable declaration
Grid-bound variable access/update
Stencil operations

Hides memory locations and access details, data iteration
Abstract higher concepts of grids, hiding connectivity details

Julian Kunkel 39 / 26

Progress of WP3

Achievements in the first year
NICAM kernels

Selection, Extraction
Performance check (on the K computer(RIKEN),
Mistral(DKRZ))

DYNAMICO and ICON kernels
Selection

tools for damping the reference data
Progress of the second year

Packaging IcoAtmosBenchmark v.1
NICAM kernels

Documents
Implementation by GridTools

DYNAMICO kernels
Extraction, Performance check, Documents

Julian Kunkel 40 / 26

	Goals
	Overview

	Towards higer-level code design
	Goals

	Massive I/O
	Objectives

	Evaluation
	Summary
	Summary

	Appendix
	Partners

