
Introduction Higher-Level Language Extensions Experiments

Earth System Modeling with User-Controlled
GGDML code Translation

Nabeeh Jum’ah, Julian Kunkel

Scientific Computing
Department of Informatics
University of Hamburg

Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) 2018
23-07-2018



Introduction Higher-Level Language Extensions Experiments

Earth-System Modeling

Computations with fields over earth surface or parts of it
Discretizes with different types of grids: regular, icosahedral ...
Values at the centers of the cells, on the edges, at the vertices

Many kernels within time steps apply stencil operations

Nabeeh Jum’ah Universität Hamburg 2 / 26



Introduction Higher-Level Language Extensions Experiments

Earth-System Modeling

Modeling using general-Purpose Languages

The semantical nature of the languages limit the compilers
ability to exploit some optimization opportunities
Scientists need to manually optimize code
Challenging effort

The complexity of the architectural features
The diversity of the architectures
Various tools and programming models

Code quality
Code duplication
Model’s maintainability

Nabeeh Jum’ah Universität Hamburg 3 / 26



Introduction Higher-Level Language Extensions Experiments

Improvement Opportunities

Code readability and maintainability
Developers productivity
Performance-portability

Modeling Language Extensibility

Bypass the shortcomings of the general-purpose languages
Still use the preferred modeling language
Extend the modeling language

Based on scientific concepts
Hiding lower level details (e.g., architecture, memory layout)

The semantical nature of the extensions allows optimization

Nabeeh Jum’ah Universität Hamburg 4 / 26



Introduction Higher-Level Language Extensions Experiments

Approach

Separation of Concerns

Domain scientists formulate scientific logic in source code
Scientific programmers write target configurations

Model development with extended language
Scientific perspective

not machine perspective
Code is developed once

performance is achieved for different configurations
Configurations define software performance

Written by programmers with more experience in platform
Fit the target run environment

Nabeeh Jum’ah Universität Hamburg 5 / 26



Introduction Higher-Level Language Extensions Experiments

Approach

Higher-level code translation
A source-to-source translation tool is used

A lightweight tool
Easily ships with code repositories
Simply fits within build procedures, e.g. make

An optimized code is generated
With respect to a target-machine

Multiple optimization procedures are applied during the code
translation process

Translation Process Drivers

The semantical nature of the language extensions
Exhibited by the source code

Configuration information

Nabeeh Jum’ah Universität Hamburg 6 / 26



Introduction Higher-Level Language Extensions Experiments

Higher-Level Coding with GGDML

GGDML

GGDML:General Grid Definition and Manipulation Language
Grid definition
Field declaration
Field data access/update

Iterators
Access operators

Stencil operations

Hides memory locations and access details, data iteration
Abstract higher concepts of grids, hiding connectivity details

Nabeeh Jum’ah Universität Hamburg 7 / 26



Introduction Higher-Level Language Extensions Experiments

Abstractions

Element-wise access

Basic grid abstraction

Cell

Edge

%edge

Vertex

%vertex

%cell

%vertex

%cell

%edge

GRID

EDGE, nD

edges

CELL, nD

cells

VERT, nD

vertices

foreach

foreach

foreach

Nabeeh Jum’ah Universität Hamburg 8 / 26



Introduction Higher-Level Language Extensions Experiments

Fortran vs. GGDML Code Example

DO l=ll_begin , ll_end
!DIR$ SIMD

DO ij=ij_begin , ij_end
berni (ij ,l) = .5*( geopot (ij ,l)+ geopot (ij ,l+1)) +

1/(4* Ai(ij)) *
(le(ij+ u_right )*de(ij+ u_right )*u(ij+u_right ,l)**2 &
+le(ij+ u_rup ) *de(ij+ u_rup ) *u(ij+u_rup ,l)**2 &
+le(ij+ u_lup ) *de(ij+ u_lup ) *u(ij+u_lup ,l)**2 &
+le(ij+ u_left ) *de(ij+ u_left ) *u(ij+u_left ,l)**2 &
+le(ij+ u_ldown )*de(ij+ u_ldown )*u(ij+u_ldown ,l)**2 &
+le(ij+ u_rdown )*de(ij+ u_rdown )*u(ij+u_rdown ,l)**2 )

ENDDO
ENDDO

GGDML version of the code above

FOREACH cell IN grid
berni ( cell ) = .5*( geopot ( cell )+ geopot ( cell % above )) +

1/(4* Ai( cell )) * REDUCE (+,N, le( cell % neighbour (N))*
de( cell % neighbour (N))* u( cell % neighbour (N))**2)

END FOREACH

Nabeeh Jum’ah Universität Hamburg 9 / 26



Introduction Higher-Level Language Extensions Experiments

User-Controlled Code Translation

The translation process is highly configurable
Users control the optimization procedures
The set of the language extensions can be easily extended

Translation Configurations

Define language extensions
Control memory allocation/deallocation of fields data
Define grids
Control code parallelization
Control memory layout
Control communication in multi-node configurations

Nabeeh Jum’ah Universität Hamburg 10 / 26



Introduction Higher-Level Language Extensions Experiments

User-Controlled Code Translation

Declaration Specifers

NOT a static part of the language
Not built in compiler processing

Defined in groups
A group allows multiple alternatives for one attribute
Example spaecifier group definition: SPECIFIER(dim=3D|2D)

Defines a dimension specifier group that informs whether the
variable represents a 2D or 3D field

Provide semantical information to the translation tool
The tool uses this information during optimization

Nabeeh Jum’ah Universität Hamburg 11 / 26



Introduction Higher-Level Language Extensions Experiments

User-Controlled Code Translation

Access operators

The user defines
The syntax
The behavior

Define grids relationships and connectivity
Simplify references to neighborhoods
Abstracts the machine notion of array indices with domain
concepts, e.g. above, below, neighbor, right, edge...

Example definition:
above(): height=$height+1
=>Allows access to the element directly above the current

Comprises high semantical impact for optimization beside the
impact on code quality

The translation tool uses the semantics for optimization

Nabeeh Jum’ah Universität Hamburg 12 / 26



Introduction Higher-Level Language Extensions Experiments

User-Controlled Code Translation

Problem Domain and Grids

Multiple grids can be used
The user defines the set of access operators that define the
connectivity and relationships between the different grids
Provide the translation tool information about the global
problem domain (The whole space over all nodes)
Allows the translation tool beside to the declaration specifiers
to optimize field data access

Nabeeh Jum’ah Universität Hamburg 13 / 26



Introduction Higher-Level Language Extensions Experiments

User-Controlled Code Translation

Memory Layout

Completely controlled by the user
Memory allocation
Array Indices

The translation tool generates the needed memory layout of a
field based on

The semantical information used to declare a field
The user-provided memory allocation configuration

The indices are completely controlled by the user
Index reordering
More complicated formulae to apply mathematical
transformations, e.g. Hilber filling curve

Nabeeh Jum’ah Universität Hamburg 14 / 26



Introduction Higher-Level Language Extensions Experiments

User-Controlled Code Translation

Parallelization

Controlled by the user
Single-node and multiple-node configurations
Parallelization on node & Over multiple nodes

The code parallelizaion was tested on
Multi-core processors (using OpenMP)
GPUs (using OpenACC)
Multiple-node MPI(+OpenMP/OpenACC)

The parallelization on multiple-node configurations is possible
The user controls the communication library initialization
The user controls the halo exchange code

The translation tool uses the semantics of the field access to
generate the halo exchange code

Nabeeh Jum’ah Universität Hamburg 15 / 26



Introduction Higher-Level Language Extensions Experiments

Translation process

Nabeeh Jum’ah Universität Hamburg 16 / 26



Introduction Higher-Level Language Extensions Experiments

Performance Evaluation
GPU experiments with OpenACC and OpenACC+MPI

Tested on NVIDIA’s PSG cluster, on Haswell (E5-2698 v3 @
2.30GHz) nodes, with P100 and V100 GPUs
Testcode: Laplacian on icosahedral (triangles) grid (1024x1024
horizontal x 60 vertical levels)

The table below shows impact of changing memory layout
On P100 and V100 GPUs
With 3D array, and a transformed 1D array

Testcode performance on P100 and V100 GPUs

Serial
P100 V100

performance
GF/s

Memory throughput
GB/s performance

GF/s

Memory throughput
GB/s

read write read write
3D 1.97 220.38 91.34 56.10 854.86 242.59 86.98

3D-1D 1.99 408.15 38.75 43.87 1240.19 148.49 57.12

Nabeeh Jum’ah Universität Hamburg 17 / 26



Introduction Higher-Level Language Extensions Experiments

Performance Evaluation

Multiple-node configurations were tested for scalability
Both strong and weak scaling
Communication overhead was evaluated to estimate
performance cost

Nabeeh Jum’ah Universität Hamburg 18 / 26



Introduction Higher-Level Language Extensions Experiments

Performance Evaluation

Multi-core processor experiments with OpenMP and
OpenMP+MPI

Tested on DKRZ Mistral, on Broadwell (E5-2695 v4 @
2.1GHz) nodes
Same testcode as on GPUs

Testcode performance on Broadwell processors

Nabeeh Jum’ah Universität Hamburg 19 / 26



Introduction Higher-Level Language Extensions Experiments

Performance Evaluation

The testcode scalability under different numbers of MPI processes running different numbers of cores.

Nabeeh Jum’ah Universität Hamburg 20 / 26



Introduction Higher-Level Language Extensions Experiments

Inter-Kernel Optimization Analysis - Initial Experiments

Goal
Implement such optimization within the translation tool

Current experiments
Evaluate inter-kernel optimization performance impact
Identify the performance factors and architectural behavior

Experimental setup
Shallow water equations
1000x1000 grid
Caches:

L1: 32 KB (data)
L2: 256 KB
L3: 8 MB

Nabeeh Jum’ah Universität Hamburg 21 / 26



Introduction Higher-Level Language Extensions Experiments

Inter-Kernel Optimization Analysis - Initial Experiments

Likwid was used for the measurements
The code was also theoretically analysed

42 values are read per grid cell per time-step
8 values are written
Single precision floating point values

The caches impact on the data access is improved after the
inter-kernel code optimization
Compilers optimization behavior after applying this
optimization is considerable

Nabeeh Jum’ah Universität Hamburg 22 / 26



Introduction Higher-Level Language Extensions Experiments

Inter-Kernel Optimization Analysis - Initial Experiments

Initial measurements for data access
Caches reduce the needed access to the memory
The access time to the caches is less that to memory
The total time to access data is reduced

Nabeeh Jum’ah Universität Hamburg 23 / 26



Introduction Higher-Level Language Extensions Experiments

Conclusion

The approach improves the software development process
The technique is modeling-language neutral
The extensions provide a slight language change
Scientists role is restricted to scientific perspective
Machine perspective is provided within separate configurations
The translation technique allows users to control translation
Code transformation supports multiple configurations

Nabeeh Jum’ah Universität Hamburg 24 / 26



Introduction Higher-Level Language Extensions Experiments

Future Work

Explore applying further optimizations
Test optimization for other H.W. (e.g. NEC vector processors)
Investigate high-level (Parallel) IO support with our tools
Investigate calling optimized libraries by traslating user code

Nabeeh Jum’ah Universität Hamburg 25 / 26



Introduction Higher-Level Language Extensions Experiments

Acknowledgement

DFG (German Research Foundation)
DKRZ (German Climate Computer Center)
NVIDIA

Nabeeh Jum’ah Universität Hamburg 26 / 26


	Introduction
	Introduction

	Higher-Level Language Extensions
	The Solution
	GGDML
	Translation Process

	Experiments
	Experiments
	Future Work


