Michael Kuhn, Anastasiia Novikova, Jannek Squar
michael.kuhn@informatik.uni-hamburg.de

Scientific Computing
Department of Informatics
Universität Hamburg
https://wr.informatik.uni-hamburg.de

2018-06-26
The group Scientific Computing conducts research and development on high performance storage systems. We develop HPC concepts and apply them to simulation software with a focus on earth system models.

We are an Intel Parallel Computing Center for Lustre. (“Enhanced Adaptive Compression in Lustre”)
High Performance Storage Systems

- Data reduction
 - **SCIL**: Application-specific, lossy compression
 - Lustre: File system, adaptive lossless compression
 - BigStorage: Energy-efficient data reduction

- Performance
 - I/O monitoring and optimization (15:15)

- I/O interfaces
 - **JULEA**: Flexible storage framework for HPC (15:35)
 - ESDM: Earth system data, HDF5
SCIL

- **Scientific Compression Interface Library (SCIL)**
 - Design of quantities, tools, compression chain
 - HDF5 plug-in for transparent use
- **Domain-specific compression (ratio > 10 : 1)**
 - Investigate metrics allowing to define accuracy per variable
 - Design user-interfaces for specifying accuracy
 - Develop a methodology for identifying the required accuracy
 - Implement compression schemes exploiting this knowledge
- **Evaluation on synthetic and scientific data (ECHAM, Isabel)**
- **Part of WP2 of the AIMES project**
 - https://wr.informatik.uni-hamburg.de/research/projects/aimes/start
Accuracy quantities:

absolute tolerance: compressed can become true value ± absolute tolerance
relative tolerance: percentage the compressed value can deviate from true value
relative error finest tolerance: value defining the absolute tolerable error for relative compression for values around 0
significant digits: number of significant decimal digits
significant bits: number of significant decimals in bits

Performance quantities:

compression speed: in MiB/s or GiB/s, or relative to network or storage speed
decompression speed: in MiB/s or GiB/s, or relative to network or storage speed

Supplementary quantities:

fill value: a value that scientists use to mark special data points
SCIL

Application

NetCDF4
+ Quantities support

HDF5
+ Quantities support
+ SCIL Filter

SCIL Tools

SCIL C-API

ZFP

SZ

...
JULEA provides a flexible storage framework
- Contains necessary building blocks for storage systems
- Facilitates rapid prototyping and evaluation
- Many projects implement basic functionality from scratch

Runs completely in user space and has few dependencies
- Easy to debug and develop
- Possible to use on clusters without root access

Feedback and contributions are always welcome
- First projects using it are running already
- https://github.com/wr-hamburg/julea
JULEA...
HPC Concepts and Infrastructure

- Domain-Specific Languages
 - GGDMML: Definition and manipulation of grids
 - FortranTestGenerator: Unit tests with capture and replay
- Energy efficiency
 - ArduPower: Open Source, based on Arduino
- Compiler optimizations
 - DasTool: Translation from OpenMP to MPI-3 RMA (14:50)
 - MPI-Checker: Static analysis for MPI
- Spack: Software management for supercomputers
DasTool

- Tool to automatize parallelization code modification
 - Probably not as effective as handwritten code ...
 - ... but no knowledge of MPI required by user

- Workflow:
 1. Exchange compiler calls by tool wrapper
 2. Rebuild application
 3. Adapt problem size to utilize additional nodes
 4. Run application as usual

Figure: Pass integration, based on [1]
HPC Education

- PeCoH: Performance engineering and HPC certification (14:30)
- Lectures about high-performance computing and high-performance I/O
- Seminars and software labs in cooperation with geoscience

- Student Cluster Competition
 - Fifth year in a row
 - Visit us at booth B-1366
 - Follow us on Twitter: @UHH_ISC_SCC
 - Vote for us: https://uhh.de/scc18
[1] Adrian Sampson. LLVM for Grad Students.