A user-controlled GGDMML code translation technique for Performance Portability of Earth System Models

Nabeeh Jum’ah, Julian Kunkel

Scientific Computing
Department of Informatics
University of Hamburg

ISC HPC Research Poster Presentation
2018-06-26

This work was supported in part by the German Research Foundation (DFG) through the Priority Programme 1648 “Software for Exascale Computing” (SPPEXA) (GZ: LU 1353/11-1)
GGDML and Higher-Level Code

Goals

- Improve code quality, scientists productivity, code maintainability
- Provide better performance-portability of code

GGDML

- **GGDML:** *General Grid Definition and Manipulation Language*
- Hides memory access details
- Abstracts higher concepts of grids, hiding connectivity details
- Constructs for the abstraction of grids
 - Grid and field definition
 - Field data access/update
 - Stencil operations
Strategy

- Foster separation of concerns
 - Scientists develop the problem logic in the source code
 - Scientific programmers provide translation configurations

- Modeling with GGDML
 - Allows using the modeling language, e.g. C
 - Provides language extensions

- GGDML features
 - Coding in terms of scientific concepts
 - No machine concepts

- A source-to-source translation tool translates code based on the configuration
Highly Configurable Translation Process

- The set of the language extensions can be easily extended, for example
 - User defines groups of declaration specifiers, e.g. Dimension(2D or 3D)
 - Access operators are defined by the user
 - Simplifies definition of grid connectivity, e.g. cell.neighbor, cell.edge
 - Allows the user to add any needed operators, and control their behavior
- Users control the optimization procedures, for example
 - Memory layout is completely controlled by user
 - Memory allocation
 - Index transformations (including mathematical transformations)
 - Parallelization is controlled by user
 - User can mark code with parallelization directives (tested with OpenMP & OpenACC)
 - Single node and multiple nodes (tested with MPI)
 - User controls communication libraries initialization & halo exchange code
Performance Evaluation

Performance on P100 (and V100) GPUs, with OpenACC and MPI

<table>
<thead>
<tr>
<th></th>
<th>Serial</th>
<th>P100</th>
<th>V100</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>performance GF/s</td>
<td>Memory throughput GB/s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>read</td>
<td>write</td>
</tr>
<tr>
<td>3D</td>
<td>1.97</td>
<td>220.38</td>
<td>91.34</td>
</tr>
<tr>
<td>3D-1D</td>
<td>1.99</td>
<td>408.15</td>
<td>38.75</td>
</tr>
</tbody>
</table>

Performance on Broadwell processors with OpenMP and MPI