
Introduction Higher-Level Language Extensions Experiments

Using Higher-Level Language Extensions to
Support Earth-System Modeling

Nabeeh Jum’ah

Scientific Computing
Department of Informatics
University of Hamburg

Reading, 16-04-2018

Introduction Higher-Level Language Extensions Experiments

AIMES Project

Address key issues of icosahedral earth-system models

Enhance programmability and performance-portability
Overcome storage limitations
Shared benchmark for these models

Covered models

ICON DYNAMICO NICAM

Nabeeh Jum’ah Universität Hamburg 2 / 17

Introduction Higher-Level Language Extensions Experiments

Earth-System Modeling

Modeling with General-Purpose Languages

The semantical nature of the languages limit the compilers
ability to exploit some optimization opportunities
Scientists need to manually optimize code

Need to learn how to deal with machine features
Need to learn new tools and programming models

Model development for multiple different architectures even
complicates the development further in terms of

Learning optimization techniques (for multiple architectures)
Code duplication
Model’s maintainability

Nabeeh Jum’ah Universität Hamburg 3 / 17

Introduction Higher-Level Language Extensions Experiments

Improvement Opportunities

Improvement Aspects

Code readability
Code maintainability
Developers productivity
Performance-portability

A Slight Language Shift

Bypass the shortcomings of the general-purpose languages
Extend the modeling programming language

Based on scientific concepts
Hiding lower level details (e.g., architecture, memory layout)

Nabeeh Jum’ah Universität Hamburg 4 / 17

Introduction Higher-Level Language Extensions Experiments

Approach

Separation of Concerns

Domain scientists formulate scientific logic in source code
Scientific programmers specify hardware configurations

Model development with extended language
Scientific perspective

not machine perspective
The need for optimization is dropped from the source code
Code is developed once

performance is achieved for different configurations
Hardware configurations define software performance

Written by programmers with more experience in platform
Comprise information on target run environment

Nabeeh Jum’ah Universität Hamburg 5 / 17

Introduction Higher-Level Language Extensions Experiments

Approach

Higher-level code translation
A source-to-source translation tool is used

A lightweight tool
Easily ships with code repositories
Simply fits with build procedures, e.g. make

An optimized code is generated
With respect to a target-machine

Multiple optimization procedures are applied during the code
translation process

Translation Process Drivers

The semantical nature of the language extensions
Exhibited by the source code

Configuration information

Nabeeh Jum’ah Universität Hamburg 6 / 17

Introduction Higher-Level Language Extensions Experiments

DSL Development

Iterative development
Feedback from scientists

GGDML

GGDML:General Grid Definition and Manipulation Language
Grid definition
Variable declaration, allocation and deallocation
Variable access/update

Iterators
Access operators

Stencil operations

Hides memory locations and access details, data iteration
Abstract higher concepts of grids, hiding connectivity details

Nabeeh Jum’ah Universität Hamburg 7 / 17

Introduction Higher-Level Language Extensions Experiments

Abstractions

Element-wise access

Basic grid abstraction

Cell

Edge

%edge

Vertex

%vertex

%cell

%vertex

%cell

%edge

GRID

EDGE, nD

edges

CELL, nD

cells

VERT, nD

vertices

foreach

foreach

foreach

Nabeeh Jum’ah Universität Hamburg 8 / 17

Introduction Higher-Level Language Extensions Experiments

Fortran vs. GGDML Code Example

DO l=ll_begin , ll_end
!DIR$ SIMD

DO ij=ij_begin , ij_end
berni (ij ,l) = .5*(geopot (ij ,l)+ geopot (ij ,l+1)) +

1/(4* Ai(ij)) *
(le(ij+ u_right)*de(ij+ u_right)*u(ij+u_right ,l)**2 &
+le(ij+ u_rup) *de(ij+ u_rup) *u(ij+u_rup ,l)**2 &
+le(ij+ u_lup) *de(ij+ u_lup) *u(ij+u_lup ,l)**2 &
+le(ij+ u_left) *de(ij+ u_left) *u(ij+u_left ,l)**2 &
+le(ij+ u_ldown)*de(ij+ u_ldown)*u(ij+u_ldown ,l)**2 &
+le(ij+ u_rdown)*de(ij+ u_rdown)*u(ij+u_rdown ,l)**2)

ENDDO
ENDDO

GGDML version of the code above

FOREACH cell IN grid
berni (cell) = .5*(geopot (cell)+ geopot (cell % above)) +

1/(4* Ai(cell)) * REDUCE (+,N, le(cell % neighbour (N))*
de(cell % neighbour (N))* u(cell % neighbour (N))**2)

END FOREACH

Nabeeh Jum’ah Universität Hamburg 9 / 17

Introduction Higher-Level Language Extensions Experiments

Translation Configuration Information

The translation process is highly configurable
Users control the optimization procedures
The set of the language extensions can be easily extended

Translation Configurations

Define language extensions
access specifiers
access operators

Control memory allocation/deallocation
Define grids
Control code parallelization
Control memory layout
Control halo exchange in multi-node configurations

Nabeeh Jum’ah Universität Hamburg 10 / 17

Introduction Higher-Level Language Extensions Experiments

Translation Configuration Information

Access specifers are defined in groups
A group allows multiple alternatives for one attribute

e.g. Dimension specifier group: 2D and 3D
Access operators are defined by the user

Simplifies definition of grid connectivity
e.g. cell.neighbor, cell.edge

Allows the user to add any needed operators
Allows the user to control the bahavior of the operator

The grids of the model are defined in the configuration
Global domain is defined
Grids relationships are defined through access operators

Memory layout is completely controlled by user
Memory allocation
Index transformations including mathematical transformations

Communication is controlled by user
Initializing communication libraries
Communicating the halo

Nabeeh Jum’ah Universität Hamburg 11 / 17

Introduction Higher-Level Language Extensions Experiments

Translation process

Nabeeh Jum’ah Universität Hamburg 12 / 17

Introduction Higher-Level Language Extensions Experiments

GGDML Impact on the Source Code

The DSL reduces development and maintenance effort

LOC statistics
lines (LOC) words characters

Model, kernel before DSL with DSL before DSL with DSL before DSL with DSL
ICON 1 13 7 238 174 317 258
ICON 2 53 24 163 83 2002 916
NICAM 1 7 4 40 27 76 86
NICAM 2 90 11 344 53 1487 363
DYNAMICO 1 7 4 96 73 137 150
DYNAMICO 2 13 5 30 20 402 218
total 183 55 911 430 4421 1991
relative size with dsl 30% 47% 45%

ICON
1
ICON

2
NICA

M 1
NICA

M 2
DYN.

1
DYN.

2

0

20

40

60

80

Lin
es

existing code
with GGDML

Applying the DSL to 300k code of ICON
100k infrastructure (does not change with the DSL)
Remaining code reduced according to our test kernels
COCOMO estimations

Software project Version Effort
Applied

Dev. Time
(months)

People
require

dev. costs
(M€)

Semi-detached 2462 38.5 64 12.3
DSL 1133 29.3 39 5.7

Organic 1295 38.1 34 6.5
DSL 625 28.9 22 3.1

Nabeeh Jum’ah Universität Hamburg 13 / 17

Introduction Higher-Level Language Extensions Experiments

Performance Evaluation

Current tool’s implementation can transform code into
GPU code with OpenACC
MPI code on multi-node configurations (MPI+OpenACC)

The table below shows impact of changing memory layout
On P100 and V100 GPUs
With 3D array, and a transformed 1D array

Testcode performance on P100 and V100 GPUs

Serial
P100 V100

performance
GF/s

Memory throughput
GB/s performance

GF/s

Memory throughput
GB/s

read write read write
3D 1.97 220.38 91.34 56.10 854.86 242.59 86.98

3D-1D 1.99 408.15 38.75 43.87 1240.19 148.49 57.12

Nabeeh Jum’ah Universität Hamburg 14 / 17

Introduction Higher-Level Language Extensions Experiments

Performance Evaluation

Results for:
Multi-core processor code with OpenMP
MPI code on multi-node configurations (MPI+OpenMP)

Testcode performance on Broadwell processors

Nabeeh Jum’ah Universität Hamburg 15 / 17

Introduction Higher-Level Language Extensions Experiments

Performance Evaluation

Nabeeh Jum’ah Universität Hamburg 16 / 17

Introduction Higher-Level Language Extensions Experiments

PhD

"Language Extensibility and Configurability to Support Earth
System Modeling"

Modeling-language extensibility
Modeling-language configurability

Define a basic set of suggested extensions to support the
development with domain-specific concepts
Explore possibilites to support model-specific needs
Investigate impact and performance gain in icosahedral
models as a results of using the extensions with the meta-dsl
translation technique.

Nabeeh Jum’ah Universität Hamburg 17 / 17

	Introduction
	Introduction

	Higher-Level Language Extensions
	The Solution
	GGDML
	Translation Process

	Experiments
	Experiments

