
Goals Towards higer-level code design Massive I/O Evaluation Summary & Outlook

Advanced Computation and I/O Methods for
Earth-System Simulations

Status update

Nabeeh Jum’ah, Anastasiia Novikova, Julian M. Kunkel,
Thomas Ludwig, Thomas Dubos, Naoya Maruyama, Takayuki
Aoki, Günther Zängl, Hisashi Yashiro, Ryuji Yoshida, Hirofumi

Tomita, Masaki Satoh, Yann Meurdesoif

Scientific Computing
Department of Informatics
University of Hamburg

2018-03-21

Goals Towards higer-level code design Massive I/O Evaluation Summary & Outlook

Goals

Address key issues of icosahedral earth-system models

Enhance programmability and performance-portability
Overcome storage limitations
Shared benchmark for these models

Covered models

ICON DYNAMICO NICAM

Jumah & Novikova 2 / 20

Goals Towards higer-level code design Massive I/O Evaluation Summary & Outlook

WP1: Towards Higher-Level Code Design

Recap: Goals of the WP

Bypass shortcomings of general-purpose languages
Offer performance-portability
Enhance source repositories maintainability
Get rid of complexity in optimized-code development
Enhance code readability and scientists productivity

Extend modelling programming language
Based on domain science concepts
Free of lower level details (e.g., architecture, memory layout)

Jumah & Novikova 3 / 20

Goals Towards higer-level code design Massive I/O Evaluation Summary & Outlook

Approach
Foster separation of concern

Domain scientists develop domain logic in source code
Scientific programmers write hardware configurations

Source code written with extended language
Closer to domain scientists logic
Scientists do not need to learn optimizations
Write code once, get performance for various configurations

Hardware configurations define software performance
Written by programmers with more experience in platform
Comprise information on target run environment

ICONICONICONICON

Dialects

DYNAMICODYNAMICO NICAMNICAM

Meta-DSLMeta-DSL

......

back-ends

Domain science Scientific programmer

GRIDToolsGRIDTools

Computer science

compilers ...compilers ...

DSL tools &
infrastructure

DSL tools &
infrastructure

CPUCPU

OpenACCOpenACC

PhysisPhysis

existing tools

Tools

Jumah & Novikova 4 / 20

Goals Towards higer-level code design Massive I/O Evaluation Summary & Outlook

Progress

Previous achievements (first year)
Evaluation of GridTools for NICAM
HybridFortran support in ASUCA
Development of the model dialects and extensions
Implementing a basic source-to-source translation tool
Evaluating the DSL’s impact on programmability
Refer to: Nabeeh Jumah et al. “GGDML: Icosahedral Models Language Extensions”.
In: Journal of Computer Science Technology Updates. Volume 4, Number 1 (June 2017)

Recent progress (second year)
Refinements to the language extensions
Implementing more features in the translation tool

Configurable language extensions
Configurable memory layout
Configurable parallelization
Configurable halo exchange

Experiments on the performance and performance portability

Jumah & Novikova 5 / 20

Goals Towards higer-level code design Massive I/O Evaluation Summary & Outlook

DSL Development

Co-design with scientists to develop DSL constructs
Current version represents several iterations
GGDML:General grid definition and manipulation language
Grid definition
Grid-bound variable declaration
Grid-bound variable access/update
Stencil operations

Hides memory locations and access details, data iteration
Abstract higher concepts of grids, hiding connectivity details

Jumah & Novikova 6 / 20

Goals Towards higer-level code design Massive I/O Evaluation Summary & Outlook

Fortran vs. GGDML Code Example

DO l=ll_begin , ll_end
!DIR$ SIMD

DO ij=ij_begin , ij_end
berni (ij ,l) = .5*(geopot (ij ,l)+ geopot (ij ,l+1)) +

1/(4* Ai(ij)) *
(le(ij+ u_right)*de(ij+ u_right)*u(ij+u_right ,l)**2 &
+le(ij+ u_rup) *de(ij+ u_rup) *u(ij+u_rup ,l)**2 &
+le(ij+ u_lup) *de(ij+ u_lup) *u(ij+u_lup ,l)**2 &
+le(ij+ u_left) *de(ij+ u_left) *u(ij+u_left ,l)**2 &
+le(ij+ u_ldown)*de(ij+ u_ldown)*u(ij+u_ldown ,l)**2 &
+le(ij+ u_rdown)*de(ij+ u_rdown)*u(ij+u_rdown ,l)**2)

ENDDO
ENDDO

GGDML version of the code above

FOREACH cell IN grid
berni (cell) = .5*(geopot (cell)+ geopot (cell % above)) +

1/(4* Ai(cell)) * REDUCE (+,N, le(cell % neighbour (N))*
de(cell % neighbour (N))* u(cell % neighbour (N))**2)

END FOREACH

Jumah & Novikova 7 / 20

Goals Towards higer-level code design Massive I/O Evaluation Summary & Outlook

Source-to-Source Translation

Our translation tool transforms code based on
Higher-level semantics of the language extensions
Configuration information to control code optimization

Translation Configurations

Define language extensions
access specifiers, e.g., float CELL 3D cell
access operators, e.g., cell.above

Control memory allocation/deallocation
Define grids
Control code parallelization
Control memory layout
Control halo exchange in multi-node configurations

Jumah & Novikova 8 / 20

Goals Towards higer-level code design Massive I/O Evaluation Summary & Outlook

Performance Evaluation

Current tool’s implementation can transform code into
GPU code with OpenACC
MPI code on multi-node configurations (MPI+OpenACC)

The table below shows impact of changing memory layout
On P100 and V100 GPUs
With 3D array, and a transformed 1D array

Testcode performance on P100 and V100 GPUs

Serial
P100 V100

performance
GF/s

Memory throughput
GB/s performance

GF/s

Memory throughput
GB/s

read write read write
3D 1.97 220.38 91.34 56.10 854.86 242.59 86.98

3D-1D 1.99 408.15 38.75 43.87 1240.19 148.49 57.12

Jumah & Novikova 9 / 20

Goals Towards higer-level code design Massive I/O Evaluation Summary & Outlook

Performance Evaluation

Results for:
Multi-core processor code with OpenMP
MPI code on multi-node configurations (MPI+OpenMP)

Testcode performance on Broadwell processors

Jumah & Novikova 10 / 20

Goals Towards higer-level code design Massive I/O Evaluation Summary & Outlook

Performance Evaluation

The testcode scalability under different numbers of MPI processes running different numbers of cores.

Jumah & Novikova 11 / 20

Goals Towards higer-level code design Massive I/O Evaluation Summary & Outlook

Massive I/O

Recap: Goals of the WP2

Optimization of I/O middleware for icosahedral data
Throughput, metadata handling

Design of domain-specific compression (ratio > 10 : 1)
Investigate metrics allowing to define accuracy per variable
Design user-interfaces for specifying accuracy
Develop a methodology for identifying the required accuracy
Implement compression schemes exploiting this knowledge

Jumah & Novikova 12 / 20

Goals Towards higer-level code design Massive I/O Evaluation Summary & Outlook

Progress

Previous achievements (first year)
C-API Design of scientific compression interface library (SCIL)

Quantities
Tools
Compression chain

Evaluation on synthetic data
Evaluation on scientific data (cloud model ECHAM)

Recent progress (second year)
Survey of file formats
Refactoring (Project structure, quantities)
New tool: Pattern creator
HDF5 plug-in
Evaluation on synthetic data patterns
Evaluation on scientific data (hurricane model Isabel)

Jumah & Novikova 13 / 20

Goals Towards higer-level code design Massive I/O Evaluation Summary & Outlook

WP2: Results for Absolute Tolerance of Isabel

Data
Hurricane model Isabel
Single precision (1+8+23 bits)
624 variables (100 MB pro var)

Experiments
Test system: Intel i7-6700 CPU
(Skylake) with 4 cores @ 3.40GHz
Single thread, 10 repeats
Lossy compression with absolute
tolerance of 1% of the maximum
value (10%, 2%, 1%, 0.2%, 0.1%)

Jumah & Novikova 14 / 20

Goals Towards higer-level code design Massive I/O Evaluation Summary & Outlook

WP2: HDF5 Plug-in

SCIL Framework
Application

NetCDF4
+ Quantities support

HDF5
+ Quantities support

+ SCIL Filter

SCIL
C-API

SCIL Tools

HDF5-File

SZ

ZFP

...

1quantities
and data

2quantities
and data

3

quantities
and data

4
compressed

data
5compressed

data

Jumah & Novikova 15 / 20

Goals Towards higer-level code design Massive I/O Evaluation Summary & Outlook

WP 3: Evaluation

Providing benchmark packages from icosahedral
weather/climate models
Evaluating the DSL and domain-specific I/O advancements

Jumah & Novikova 16 / 20

Goals Towards higer-level code design Massive I/O Evaluation Summary & Outlook

Progress

Previous achievements (first year)
NICAM kernels

Selection, Extraction
Performance check (on the K computer(RIKEN),
mistral(DKRZ))

DYNAMICO and ICON kernels
Selection

tools for damping the reference data
Recent progress (second year)

Packaging IcoAtmosBenchmark v.1
NICAM kernels

Documents
Implementation by GridTools

DYNAMICO kernels
Extraction, Performance check, Documents

Jumah & Novikova 17 / 20

Goals Towards higer-level code design Massive I/O Evaluation Summary & Outlook

Kernel Extraction

Extracted kernels from NICAM
stencil kernels on the structured grid

2-D(horizontal) diffusion: simple stencil
1-D(vertical) tridiagonal matrix solver: with (ij,k) array, recurrence k-axis
3-D divergence damping: simple but large memory footprint
2-D(horizontal) flux calculation with remapping: large memory footprint
2-D(horizontal) flux limiter for tracer transport: complex, max()/min()
1-D(vertical) flux limiter for tracer transport: complex, max()/min()
Setup routine for the coefficients of the stencil operators

Communication kernel: unstructured node topology
Extracted kernels from DYNAMICO

stencil kernels on the structured grid
potential vorticity calculation
geopotential calculation
horizontal solver
vertical solver

Extracted kernels from ICON
stencil kernels on unstructured gridJumah & Novikova 18 / 20

Goals Towards higer-level code design Massive I/O Evaluation Summary & Outlook

Summary

AIMES covers programmability issues on the high-level
DSL-extensions enrich existing languages
Fosters separation of concerns, improves performance portability
A testbed application with different kernels has been developed
The implementation of the translation tool has been improved
Multi-core and GPUs are now supported

On single-node and multi-node configurations
AIMES addresses domain-specific lossy compression

(Help) scientists to define the variable accuracy
Exploit this knowledge in the compression scheme
Novel schemes compete with exististing algorithms

The choosing algorithm should always pick the best

Jumah & Novikova 19 / 20

Goals Towards higer-level code design Massive I/O Evaluation Summary & Outlook

Next Steps

Investigate further inter-kernel optimization opportunities
within the DSL translation process
Investigate IO improvements with the DSL
Provide shared DSL conventions and survey more scientists
Extract and convert mini-apps of models to DSL
Implement SCIL-compression in NICAM
Evaluate algorithm covering all accuracy quantities

Jumah & Novikova 20 / 20

Partners

Backup

Backup

Jumah & Novikova 21 / 20

Partners

Differences among three icosahedral atmospheric models

Horizontal grid system
NICAM: co-located, semi-structured
DYNAMICO: staggered, semi-structured
ICON: staggered, unstructured

semi-structured means. . . ”structured for stencil operation,
unstructured for communication topology”

Jumah & Novikova 22 / 20

Partners

GGDML Impact on the Source Code

The DSL reduces development and maintenance effort

LOC statistics
lines (LOC) words characters

Model, kernel before DSL with DSL before DSL with DSL before DSL with DSL
ICON 1 13 7 238 174 317 258
ICON 2 53 24 163 83 2002 916
NICAM 1 7 4 40 27 76 86
NICAM 2 90 11 344 53 1487 363
DYNAMICO 1 7 4 96 73 137 150
DYNAMICO 2 13 5 30 20 402 218
total 183 55 911 430 4421 1991
relative size with dsl 30% 47% 45%

ICON
1
ICON

2
NICA

M 1
NICA

M 2
DYN.

1
DYN.

2

0

20

40

60

80

Lin
es

existing code
with GGDML

Predicting saving applying the DSL to 300k code of ICON
100k infrastructure (does not change with the DSL)
Remaining code reduced according to our test kernels
COCOMO estimations

Software project Version Effort
Applied

Dev. Time
(months)

People
require

dev. costs
(M€)

Semi-detached 2462 38.5 64 12.3
DSL 1133 29.3 39 5.7

Organic 1295 38.1 34 6.5
DSL 625 28.9 22 3.1

Jumah & Novikova 23 / 20

Partners

Partners and Expertise

Funded partners

Thomas Ludwig (Universität Hamburg)
I/O middleware, compression, ICON DSL
Thomas Dubos (Institut Pierre Simon Laplace)
Application I/O servers, compression, DYNAMICO
Naoya Maruyama (RIKEN)
DSL (Physis), GPUs, NICAM
Takayuki Aoki (Tokio Institute of Technology)
DSL (HybridFortran), language extension, peta-scale apps

Jumah & Novikova 24 / 20

Partners

Cooperation Partners

DKRZ (I/O, DSL)
DWD (ICON, DSL, I/O)
University of Exeter (Math. aspects in the DSL)
CSCS (GPU/ICON, GRIDTool, compression)
Intel (DSL-backend optimization for XeonPhi, CPU)
NVIDIA (DSL-backend optimization for GPU)
The HDF Group (I/O, unstructured data, compression)
NCAR (MPAS developers, another icosahedral model)
Bull
Cray

Information exchange, participate in workshops, [hardware access]

Jumah & Novikova 25 / 20

Partners

Appendix. WP2: Architecture of SCIL

Contains tools to
Create random patterns, compress/decompress, add noise, plot

HDF5 and NetCDF4 integration; tools support NetCDF3, CSV
Library with

Automatic algorithm selection (under development)
Flexible compression chain:

Array of
Type-To-Type
Preconditioners

Type-To-Integer
Converter

Array of
Integer-To-Integer
Preconditioners

Type-To-Byte
Compressor

Byte-To-Byte
Compressor

compressed
data

process data process data

float float int any any

data

Jumah & Novikova 26 / 20

Partners

WP2: Supported Quantities

Accuracy quantities:
absolute tolerance: compressed can become true value ± absolute tolerance
relative tolerance: percentage the compressed value can deviate from true value
relative error finest tolerance: value definining the absolute tolerable error for relative

compression for values around 0
significant digits: number of significant decimal digits
significant bits: number of significant decimals in bits

Performance quantities:
compression speed: in MiB or GiB, or relative to network or storage speed
decompression speed: in MiB or GiB, or relative to network or storage speed

Supplementary quantities:
fill value: a value that scientists use to mark special data point

Jumah & Novikova 27 / 20

Partners

WP2: Synthetic Patterns

Jumah & Novikova 28 / 20

Partners

WP2: Example Synthetic Data

Simplex (options 206, 2D: 100x100 points)

Right picture compressed with Sigbits 3bits (ratio 11.3:1)

Jumah & Novikova 29 / 20

Partners

WP2: Analyzing Performance of Lossy Compression

Data

Single precision (1+8+23 bits)
Synthetic, generated by SCIL’s pattern lib.

e.g., Random, Steps, Sinus, Simplex
Data of the variables created by ECHAM (123 vars), Isabel

Experiments

Single thread, 10 repeats
Lossless (memcopy and lz4)
Lossy compression with significant bits (zfp, sigbits, sigbits+lz4)

Lossy compression with absolute tolerance (zfp, sz, abstol, abstol+lz4)
Tolerance: 10%, 2%, 1%, 0.2%, 0.1% of the data maximum value

Jumah & Novikova 30 / 20

Partners

WP2: Comparing Algorithms for the Scientific Files

Algorithm Ratio Compr. Decomp.
MiB/s MiB/s

EC
H
AM

abstol 0.190 260 456
abstol,lz4 0.062 196 400
sz 0.078 81 169
zfp-abstol 0.239 185 301

Isa
be
l abstol 0.190 352 403

abstol,lz4 0.029 279 356
sz 0.016 70 187
zfp-abstol 0.039 239 428

Ra
nd

om

abstol 0.190 365 382
abstol,lz4 0.194 356 382
sz 0.242 54 125
zfp-abstol 0.355 145 241
(a) 1% absolute tolerance

Algorithm Ratio Compr. Decomp.
MiB/s MiB/s

EC
H
AM

sigbits 0.448 462 615
sigbits,lz4 0.228 227 479
zfp-precision 0.299 155 252

Isa
be
l sigbits 0.467 301 506

sigbits,lz4 0.329 197 366
zfp-precision 0.202 133 281

Ra
nd

om sigbits 0.346 358 511
sigbits,lz4 0.348 346 459
zfp-precision 0.252 151 251

(b) 9 bits precision

Table: Harmonic mean compression of scientific data

Jumah & Novikova 31 / 20

Partners

WP2: Results for Absolute Tolerance of ECHAM
Comparing algorithms using an absolute tolerance of 1% of the maximum value

Jumah & Novikova 32 / 20

	Goals
	Overview

	Towards higer-level code design
	Goals

	Massive I/O
	Objectives

	Evaluation
	Summary & Outlook
	Summary
	Next steps

	Appendix
	Partners
	Overview

