FSs Libra o ooc Data Reduc

on Future

e Summa

References

High Performance Computing and I/O PIER Graduate Week 2017

Michael Kuhn

michael.kuhn@informatik.uni-hamburg.de

Scientific Computing Department of Informatics Universität Hamburg https://wr.informatik.uni-hamburg.de

2017-10-09

Universität Hamburg

 HPC
 Devices
 File Systems
 Parallel FSs
 Libraries
 Data Reduction
 Future
 Summary
 References

 000000
 000000
 000000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000

About Us: Scientific Computing

- Analysis of parallel I/O
- I/O & energy tracing tools
- Middleware optimization

- Alternative I/O interfaces
- Data reduction techniques
- Cost & energy efficiency

We are an Intel Parallel Computing Center for Lustre ("Enhanced Adaptive Compression in Lustre")

HPC								
000000	000000	000000	000000	0000000	000	000000	0	000

1 High Performance Computing

2 Storage Devices and Arrays

3 File Systems

- 4 Parallel Distributed File Systems
- 5 Libraries
- 6 Data Reduction
- 7 Future Developments
- 8 Summary

9 References

HPC ●00000	File Systems 000000		Data Reduction		

Architectures

- Until 2005: performance increase via clock rate
- Since 2005: performance increase via core count
 - Clock rate can not be increased further
 - Energy consumption/heat dissipation depends on clock rate
 - The largest supercomputers have more than 10,000,000 cores
- Categorization using memory connection
 - Shared and distributed memory
 - Hybrid systems are commonly found in practice

HPC 0●0000	File Systems 000000		Data Reduction		

Threads vs. Processes

Threads share one common address space

- Communication using shared memory segments
- If one thread crashes, all of them crash
- Processes have their own address spaces
 - Communication usually happens via messages
 - Overhead is typically higher than for shared memory
- Hybrid approaches in practice
 - A few processes per node (for example, one per socket)
 - Many threads per process (for example, one per core)

HPC 00●000	File Systems 000000		Data Reduction		

Parallelization

Parallel applications run on multiple nodes

- Independent processes, communication via messages
- OpenMP threads within processes
- MPI provides communication operations
 - MPI is the de-facto standard
 - Process groups, synchronization, communication, reduction etc.
 - Point-to-point and collective communication
- MPI also supports input/output
 - Parallel I/O for shared files

HPC 000●00	File Systems 000000		Data Reduction		

Latencies

	Level	Latency
·	L1 cache	pprox 1 ns
	L2 cache	pprox 5 ns
	L3 cache	pprox 10 ns
	RAM	pprox 100 ns
	InfiniBand	pprox 500 ns
	Ethernet	pprox 100,000 ns
	SSD	pprox 100,000 ns
	HDD	pprox 10,000,000 ns

Table: Latencies [4, 3]

- Processors require data fast
 - Caches should be used optimally
- Additional latency due to I/O and network

Performance and Energy Efficiency

Supercomputers are very complex

- Performance yield is typically not optimal
- Interaction of many different components
 - Processors, caches, main memory, network, storage system
- Performance analysis is an important topic
- Supercomputers are very expensive
 - Should be used as efficiently as possible
 - Procurement costs: € 40,000,000–250,000,000
 - Operating costs (per year):
 - Sunway TaihuLight (rank 1): 15.4 MW ≈ € 15,400,000 (in Germany)
 - DKRZ (rank 38): 1.1 MW ≈ € 1,100,000

HPC 00000●	File Systems 000000		Data Reduction		

I/O Layers

■ I/O is often responsible for performance problems

- High latency causes idle processors
- I/O is often still serial
- I/O stack is layered
 - Many different components are involved in storing data
 - An unoptimized layer can significantly decrease performance

	Devices							
000000	000000	000000	000000	0000000	000	000000	0	000

- 1 High Performance Computing
- 2 Storage Devices and Arrays
- 3 File Systems
- 4 Parallel Distributed File Systems
- 5 Libraries
- 6 Data Reduction
- 7 Future Developments
- 8 Summary
- 9 References

Devices				
00000				

Hard Disk Drives

First HDD: 1956

- IBM 350 RAMAC (3,75 MB, 8,8 KB/s, 1.200 RPM)
- HDD development
 - Capacity: factor of 100 every 10 years
 - Throughput: factor of 10 every 10 years

Parameter	Started with	Developed to	Improvement
Capacity (formatted)	3.75 megabytes ^[9]	eight terabytes	two-million-to- one
Physical volume	68 cubic feet (1.9 m ³) ^{[c][3]}	2.1 cubic inches (34 cc) ^[10]	57,000-to-one
Weight	2,000 pounds (910 kg) ^[3]	2.2 ounces (62 g) ^[10]	15,000-to-one
Average access time	about 600 milliseconds ^[3]	a few milliseconds	about 200-to-one
Price	US\$9,200 per megabyte ^{[11][dubious – discuss}]	< \$0.05 per gigabyte by 2013 ^[12]	180-million- to-one
Areal density	2,000 bits per square inch ^[13]	826 gigabits per square inch in 2014 ^[14]	> 400-million- to-one

Figure: HDD development [9]

	Devices							
000000	00000	000000	000000	0000000	000	000000	0	000

Solid-State Drives

Benefits

- Read/write throughput: factor of 10–20
- Latency: factor of 100
- Energy consumption: factor of 1–10
- Drawbacks
 - Price: factor of 7–10
 - Write cycles: 10.000–100.000

HPC 000000	Devices 00●000	File Systems 000000		Data Reduction		

RAID

RAID

- RAID 0: striping
- RAID 1: mirroring
- RAID 2/3: bit/byte striping
- RAID 4: block striping
- RAID 5/6: block striping
- Failures
 - HDDs usually have roughly the same age
 - Fabrication defects within same batch
- Reconstruction
 - Read errors on other HDDs
 - Duration (30 min in 2004, 11 h in 2017)

RAID... [7]

HPC 000000	Devices 0000●0	File Systems 000000		Data Reduction		
	 1					

RAID... [7]

IBM GPFS Native RAID

Declustered RAID Rebuild Example - Single Fault

Rebuild activity confined to just a few disks – slow rebuild, disrupts user programs

© 2011 IBM Corporation

Rebuild activity spread across many disks, faster rebuild or less disruption to user programs

17 of 31

 HPC
 Devices
 File Systems
 Parallel FSs
 Libraries
 Data Reduction
 Future
 Summary
 References

 000000
 000000
 000000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000

Performance Assessment

- Different performance criteria
 - Data throughput
 - Examples: photo/video editing, numerical applications
 - Request throughput
 - Examples: databases, metadata management
- Appropriate hardware
 - Data throughput
 - HDDs: 150–200 MB/s
 - SSDs: 2–3 GB/s
 - Request throughput
 - HDDs: 75–100 IOPS (7,200 RPM) to 175–210 IOPS (15,000 RPM)
 - SSDs: 10,000-400,000 IOPS
- Appropriate configuration
 - Small blocks for data, large blocks for requests
 - Partial block/page accesses can reduce performance

		File Systems						
000000	000000	000000	000000	0000000	000	000000	0	000

- 1 High Performance Computing
- 2 Storage Devices and Arrays

3 File Systems

- 4 Parallel Distributed File Systems
- 5 Libraries
- 6 Data Reduction
- 7 Future Developments
- 8 Summary
- 9 References

HPC 000000	File Systems ●00000		Data Reduction		

Tasks

Structure

- Typically files and directories
- Hierarchical organization
- Other approaches: tagging
- Management of data and metadata
 - Block allocation
 - Access permissions, timestamps etc.
- File systems use underlying storage devices or arrays
 - Logical Volume Manager (LVM) and/or mdadm

HPC 000000	File Systems ○●○○○○		Data Reduction		

I/O Interfaces

- Requests are realized through I/O interfaces
 - Forwarded to the file system
 - Different abstraction levels
- Low-level functionality: POSIX, MPI-IO, ...
- High-level functionality: HDF, NetCDF, ...

Initial access via path

- Afterwards access via file descriptor (few exceptions)
- Functions are located in libc
 - Library executes system calls

 HPC
 Devices
 File Systems
 Parallel FSs
 Libraries
 Data Reduction
 Future
 Summary
 References

 000000
 000000
 000000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000

Virtual File System (Switch)

- Central file system component in the kernel
 - Sets file system structure and interface
- Forwards applications' requests based on mount point
- Enables supporting multiple different file systems
 - Applications are still portable due to POSIX
- POSIX: standardized interface for all file systems
 - Syntax
 - open, close, creat, read, write, lseek, chmod, chown, stat etc.
 - Semantics
 - write: "POSIX requires that a read(2) which can be proved to occur after a write() has returned returns the new data. Note that not all filesystems are POSIX conforming."

Virtual File System (Switch)... [8]

The Linux Storage Stack Diagram http://www.thomas-krenn.com/en/wiki/Linux_Storage_Stack_Diagram Created by Werner Fischer and Georg Schönberger License: CC-BY-SA 3.0, see http://creativecommons.org/licenses/by-sa/3.0/

HPC 000000	File Systems 0000●0		Data Reduction		

File System Objects

User vs. system view

- Users see files and directories
- System manages inodes
 - Relevant for stat etc.
- Files
 - Contain data as byte arrays
 - Can be read and written (explicitly)
 - Can be mapped to memory (implicit)
- Directories
 - Contain files and directories
 - Structures the namespace

Modern File Systems

- File system demands are growing
 - Data integrity, storage management, convenience functionality
- Error rate for SATA HDDs: 1 in 10¹⁴ to 10¹⁵ bits [6]
 - That is, one bit error per 12,5–125 TB
 - Additional bit errors in RAM, controller, cable, driver etc.
- Error rate can be problematic
 - Amount can be reached in daily use
 - Bit errors can occur in the superblock
- File system does not have knowledge about storage array
 - Knowledge is important for performance
 - For example, special options for ext4

			Parallel FSs					
000000	000000	000000	000000	0000000	000	000000	0	000

- 1 High Performance Computing
- 2 Storage Devices and Arrays
- 3 File Systems
- 4 Parallel Distributed File Systems
- 5 Libraries
- 6 Data Reduction
- 7 Future Developments
- 8 Summary
- 9 References

HPC 000000	File Systems 000000	Parallel FSs ●00000	Data Reduction		

Definition

- Parallel file systems
 - Allow parallel access to shared resources
 - Access should be as efficient as possible
- Distributed file systems
 - Data and metadata is distributed across multiple servers
 - Single servers do not have a complete view
- Naming is inconsistent
 - Often just "parallel file system" or "cluster file system"

HPC 000000	File Systems 000000	Parallel FSs 0●0000	Data Reduction		

Architecture

- Access to file system via I/O interface
 - Typically standardized, frequently POSIX
- Interface consists of syntax and semantics
 - Syntax defines operations, semantics defines behavior

HPC 000000	File Systems 000000	Parallel FSs 00●000	Data Reduction		
<u> </u>					

Semantics

- POSIX has strong consistency/coherence requirements
 - Changes have to be visible globally after write
 - I/O should be atomic
- POSIX for local file systems
 - Requirements easy to support due to VFS
- Contrast: Network File System (NFS)
 - Same syntax, different semantics
- Session semantics
 - Changes only visible to other clients after session ends
 - close writes changes and returns potential errors
- Later: MPI-IO
 - Less strict for higher scalability

HPC 000000	File Systems	Parallel FSs 000●00	Data Reduction		

Architecture

Separate servers for data and metadata

Produce different access patterns

HPC 000000	File Systems 000000	Parallel FSs 0000●0	Data Reduction		

Architecture...

- File is split into blocks, distributed across servers
 - In this case, with a round-robin distribution
- Distribution does not have to start at first server

HPC 000000	File Systems 000000	Parallel FSs 00000●	Data Reduction		
_					

Performance

- Parallel distributed file systems enable massive high performance storage systems
- Blizzard (DKRZ, GPFS)
 - Capacity: 7 PB
 - Throughput: 30 GB/s
- Mistral (DKRZ, Lustre)
 - Capacity: 54 PiB
 - Throughput: 450 GB/s (5.9 GB/s per node)
 - IOPS: 80,000 operations/s (phase 1 only)
- Titan (ORNL, Lustre)
 - Capacity: 40 PB
 - Throughput: 1.4 TB/s

				Libraries				
000000	000000	000000	000000	0000000	000	000000	0	000

- 1 High Performance Computing
- 2 Storage Devices and Arrays
- 3 File Systems
- 4 Parallel Distributed File Systems
- 5 Libraries
- 6 Data Reduction
- 7 Future Developments
- 8 Summary
- 9 References

HPC 000000		File Systems 000000	Libraries ●000000	Data Reduction		
0	•					

Overview

- POSIX and MPI-IO can be used for parallel I/O
 - Both interfaces are not very convenient for developers
- Problems
 - Exchangeability of data, complex programming, performance
- Libraries offer additional functionality
 - Self-describing data, internal structuring, abstract I/O
- Alleviating existing problems
 - SIONlib (performance)
 - NetCDF, HDF (exchangeability)
 - ADIOS (abstract I/O)

HPC 000000		File Systems 000000	Libraries 0●00000	Data Reduction		
SION	lib					

Mainly exists to circumvent deficiencies in existing file systems

- On the one hand, problems with many files
 - Low metadata performance but high data performance
- On the other hand, shared file access also problematic
 - POSIX requires locks, access pattern very important
- Offers efficient access to process-local files
 - Accesses are mapped to one or a few physical files
 - Aligned to file system blocks/stripes
- Backwards-compatible and convenient to use
 - Wrappers for fread and fwrite
 - Opening and closing via special functions

HPC 000000		File Systems 000000	Libraries 00●0000	Data Reduction		
NetC	DF					

- Developed by Unidata Program Center
 - University Corporation for Atmospheric Research
- Mainly used for scientific applications
 - Especially in climate science, meteorology and oceanography
- Consists of libraries and data formats
 - 1 Classic format (CDF-1)
 - 2 Classic format with 64 bit offsets (CDF-2)
 - 3 NetCDF-4 format
- Data formats are open standards
 - Classic formats are international standards of the Open Geospatial Consortium

HPC 000000	File Systems 000000	Libraries 000●000	Data Reduction		
HDF					

- Consists of libraries and data formats
 - Allows managing self-describing data
- Current version is HDF5
 - HDF4 is still actively supported
- Problems with previous versions
 - Complex API, limitations regarding 32 bit addressing
- Used as base for many higher-level libraries
 - NetCDF-4 (climate science)
 - NeXus (neutron, x-ray and muon science)

HPC 000000		File Systems 000000	Libraries 0000●00	Data Reduction		
ADIO	S					

ADIOS is heavily abstracted

- No byte- or element-based access
- Direct support for application data structures
- Designed for high performance
 - Mainly for scientific applications
 - Caching, aggregation, transformation etc.
- I/O configuration is specified via an XML file
 - Describes relevant data structures
 - Can be used to generate code automatically
- Developers specify I/O on a high abstraction level
 - No contact to middleware or file system

HPC 000000		File Systems 000000	Libraries 00000●0	Data Reduction		
	S					

```
<adios-config host-language="C">
1
2
     <adios-group name="checkpoint">
3
       <var name="rows" type="integer"/>
4
       <var name="columns" type="integer"/>
5
       <var name="matrix" type="double"
           \hookrightarrow dimensions="rows,columns"/>
6
     </adios-group>
7
     <method group="checkpoint" method="MPI"/>
     <buffer size-MB="100" allocate-time="now"/>
8
9
   </adios-config>
```

- Data is combined in groups
- I/O methods can be specified per group
- Buffer sizes etc. can be configured

HPC 000000	File Systems 000000	Libraries 000000●	Data Reduction		

Interaction...

- Data transformation
 - Transport through all layers
 - Loss of information
- Complex interaction
 - Optimizations and workarounds on all layers
 - Information about other layers
 - Analysis is complex
- Convenience vs. performance
 - Structured data in application
 - Byte stream in POSIX

					Data Reduction			
000000	000000	000000	000000	0000000	000	000000	0	000

- 1 High Performance Computing
- 2 Storage Devices and Arrays
- 3 File Systems
- 4 Parallel Distributed File Systems
- 5 Libraries
- 6 Data Reduction
- 7 Future Developments
- 8 Summary

9 References

Development of Computation and Storage

Capacity and performance continue to improve exponentially

Data Reduction ●○○

- Components improve at different rates
- I/O is becoming increasingly problematic
 - Data can be produced faster than it can be stored
- Storage hardware is a significant portion of TCO
 - DKRZ: approximately 20 % of overall costs (€ 6,000,000)

		Data Reduction		
		000		

Example: DKRZ

	2009	2015	Factor
Performance	150 TF/s	3 PF/s	20x
Node count	264	2,500	9.5x
Node performance	0.6 TF/s	1.2 TF/s	2x
Main memory	20 TB	170 TB	8.5x
Storage capacity	5.6 PB	45 PB	8x
Storage throughput	30 GB/s	400 GB/s	13.3x
HDD count	7,200	8,500	1.2x
Archive capacity	53 PB	335 PB	6.3x
Archive throughput	9.6 GB/s	21 GB/s	2.2x
Power consumption	1.6 MW	1.4 MW	0.9x
Acquisition costs	€30 M	€30 M	1x

Data Reduction Techniques

Recomputation of results

- Instead of storing all results, recompute them on demand
- Data has to be analyzed in situ, reproducibility is problematic
- Deduplication
 - Data is split into blocks, redundant blocks reference original
 - Requires additional main memory for tables
 - Studies show 20–30 % savings for HPC data
- Compression
 - Data can be compressed by the application or file system
 - Requires additional CPU
 - Studies show 30+ % savings for HPC data

						Future		
000000	000000	000000	000000	0000000	000	000000	0	000

- 1 High Performance Computing
- 2 Storage Devices and Arrays
- 3 File Systems
- 4 Parallel Distributed File Systems
- 5 Libraries
- 6 Data Reduction
- 7 Future Developments
- 8 Summary
- 9 References

HPC 000000	File Systems 000000		Data Reduction	Future ●00000	

Storage Hierarchy

Current state

- L1, L2, L3 cache, RAM, SSD, HDD, tape
- Latency gap from RAM to SSD
 - Huge performance loss if data is not in RAM
- Performance gap is worse on supercomputers
 - RAM is node-local, data is in parallel distributed file system
- New technologies to close gap
 - NVRAM, 3D XPoint etc.

Level	Latency
L1 cache	pprox 1 ns
L2 cache	pprox 5 ns
L3 cache	pprox 10 ns
RAM	pprox 100 ns
NVRAM	pprox 1.000 ns
3D XPoint	pprox 10.000 ns
SSD	pprox 100.000 ns
HDD	pprox 10.000.000 ns
Tape	pprox 50.000.000.000 ns

Table: Latencies [4, 3]

HPC 000000	File Systems 000000		Data Reduction	Future ⊙●○○○○	

Storage Hierarchy... [1]

 HPC
 Devices
 File Systems
 Parallel FSs
 Libraries
 Data Reduction
 Future
 Summary
 References

 000000
 000000
 000000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000

Storage Hierarchy... [2]

- I/O nodes with burst buffers close to compute nodes
- Slower storage network to file system servers

Burst Buffers [5]

Analysis of a major HPC production storage system

- 99% of the time, storage BW utilization < 33% of max
- 70% of the time, storage BW utilization < 5% of max

HPC 000000		File Systems 000000		Data Reduction	Future 0000●0	
DAOS	5					

- New holistic approach for I/O
 - Distributed Application Object Storage (DAOS)
- Supports multiple storage models
 - Arrays and records are base objects
 - Objects contain arrays and records (key-array)
 - Containers contain objects
 - Storage pools contain containers
- Support for versioning
 - Operations are executed in transactions
 - Transactions are persisted as epochs
- Make use of modern storage technologies
- Native support for HDF5
 - HDF data structures are mapped to DAOS objects

DAOS... [2]

- I/O is typically performed synchronously
 - Applications have to wait for slowest process
 - Variations of I/O performance are normal

- I/O should be completely asynchronous
 - Eliminates waiting times
 - Difficult to define consistency

							Summary	
000000	000000	000000	000000	0000000	000	000000	0	000

- 1 High Performance Computing
- 2 Storage Devices and Arrays
- 3 File Systems
- 4 Parallel Distributed File Systems
- 5 Libraries
- 6 Data Reduction
- 7 Future Developments
- 8 Summary
- 9 References

HPC 000000		File Systems 000000		Data Reduction	Summary •	
Sum	mary					

- Achieving high performance I/O is a complex task
 - Many layers: storage devices, file systems, libraries etc.
- File systems organize data and metadata
 - Modern file systems provide additional functionality
- Parallel distributed file systems allow efficient access
 - Data is distributed across multiple servers
- I/O libraries facilitate ease of use
 - Exchangeability of data is an important factor
- New hardware technologies will alter the I/O stack
 - Systems will become even more complex

								References
000000	000000	000000	000000	0000000	000	000000	0	000

- 1 High Performance Computing
- 2 Storage Devices and Arrays
- 3 File Systems
- 4 Parallel Distributed File Systems
- 5 Libraries
- 6 Data Reduction
- 7 Future Developments
- 8 Summary

9 References

HPC Devices File Systems Parallel FSs Libraries Data Reduction Future Summary References 000000 000000 000000 000 000 000 0 0 0 0 References References

- [1] Brent Gorda. HPC Storage Futures A 5-Year Outlook. http://lustre.ornl.gov/ecosystem-2016/ documents/keynotes/Gorda-Intel-keynote.pdf.
- [2] Brent Gorda. HPC Technologies for Big Data. http://www.hpcadvisorycouncil.com/events/2013/ Switzerland-Workshop/Presentations/Day_2/3_ Intel.pdf.
- [3] Jian Huang, Karsten Schwan, and Moinuddin K. Qureshi.
 Nvram-aware logging in transaction systems. *Proc. VLDB Endow.*, 8(4):389–400, December 2014.
- [4] Jonas Bonér. Latency Numbers Every Programmer Should Know. https://gist.github.com/jboner/2841832.

HPC 000000	File Systems 000000		Data Reduction		References ●●●

References II

[5] Mike Vildibill. Advanced IO Architectures. http://storageconference.us/2015/ Presentations/Vildibill.pdf.

[6] Seagate. Desktop HDD.

http://www.seagate.com/www-content/datasheets/ pdfs/desktop-hdd-8tbDS1770-9-1603DE-de_DE.pdf.

[7] Veera Deenadhayalan. General Parallel File System (GPFS) Native RAID. https://www.usenix.org/legacy/events/ lisa11/tech/slides/deenadhayalan.pdf.

[8] Werner Fischer and Georg Schönberger. Linux Storage Stack Diagramm. https://www.thomas-krenn.com/de/wiki/ Linux_Storage_Stack_Diagramm.

HPC 000000	File Systems 000000		Data Reduction		References ●●●

References III

[9] Wikipedia. Hard disk drive.

http://en.wikipedia.org/wiki/Hard_disk_drive.